MINIMALNO-CZASOWE STERY STEROWALNOŚCI RAKIETY
W LOCIE PŁASKIM

STANISŁAW DUBIEL
ANDRZEJ HOMZIUK

Wojskowa Akademia Techniczna, Warszawa

Technika rakietowa jest jedną z dziedzin, których rozwój był szczególnie uzależniony od wyznaczenia optymalnych warunków lotu. Możliwość jaką dysponuje silnik rakietowy przekształcania dużych ilości energii w krótkim czasie, wymagała bardzo precyzyjnego określenia warunków pracy tego zespołu napędowego. Optymalne warunki lotu stwarzają możliwość najwłaściwszego wykorzystania tej energii. Nic dziwnego, że właśnie technika rakietowa jest dziedziną, w której metody optymalizacji znalazły niezwykle szerokie zastosowanie. Poszukiwania optymalnych warunków lotu rakiet są w kierunku wyznaczania programów minimum strat energetycznych lub programów minimalno-czasowych. Te dwa kryteria stały się zasadniczymi kryteriami przy poszukiwaniu optymalnych programów pracy zespołu napędowego, czy programów sterowania obiektami latającymi. Kryterium minimalno-energetyczne było bardziej naczące, toteż zastosowano go do rozwiązania większej ilości zagadnień. Bardziej problematyczne okazały się rozwiązania zaga-

dnień minimalno-czasowych programów lotu.

Rozwiązanie zagadnienia minimalno-czasowego nastręcza pewne trudności z tego powodu, że można je sformułować poprawnie tylko jako zagadnienie warunkowe. Bez ograniczenia przyspieszeń i prędkości rozwiązanie skończone nie istnieje, ponieważ czas przejścia od jednego do drugiego punktu w przestrzeni jest tym krótszy im większa jest prędkość. W granicy gdy prędkość dąży do nieskończoności \(t \rightarrow 0 \). Problematyczne są także rozwiązania dotyczące zmiany kierunku lotu obiektów. Przy braku ograniczeń na przeciążenia normalne, rozwiązaniem zaga-

dzenia minimalno-czasowego jest lot po prostej (najkrótszej drodze). Przy zada-

nym kącie startupu lub kącie dojścia do punktu końcowego, bardzo często uzyskuje się rozwiązania trywialne, gdy ustalenie kierunku następuje poprzez zmianę kąta wektor prędkości w punkcie. Sformułowanie problemu przy poszukiwaniu sterowań minimalno-czasowych jest więc szczególnie istotne, gdyż warunkuje otrzymanie nietrywialnych rozwiązań.
Stosowane oznaczenia

\(t \) — czas,
\(t_0 \) — czas rozpoczęcia sterowania,
\(t_1 \) — czas zakończenia sterowania,
\(x_j \) — współrzędne określające położenie obiektu w przestrzeni stanu,
\(x_j^0 \) — współrzędne określające położenie obiektu w przestrzeni stanu w chwili \(t_0 \),
\(x_j^1 \) — współrzędne określające położenie obiektu w przestrzeni stanu w chwili \(t_1 \),
\(V \) — prędkość lotu obiektu (rakiety),
\(V_0 \) — prędkość rakiety w chwili startu (\(t_0 \)),
\(V_m \) — prędkość maksymalnego zakrętu rakiety,
\(V_d \) — dopuszczalna prędkość rakiety,
\(n_x , n_y \) — składowe jednostkowego przyspieszenia,
\(a_{xd} = gn_{xd} \) — przyspieszenia styczne dopuszczalne,
\(a_{yd} = gn_{yd} \) — przyspieszenia normalne dopuszczalne,
\(u \) — sterowania,
\(\lambda \) — zmieniona sprzężona do zmiennej przestrzeni stanu,
\(\bar{\lambda} \) — zmieniona sprzężona do zmiennej przestrzeni stanu transformowana,
\(H(\lambda, x, u) \) — funkcja Hamiltona,
\(R_d = V_d^2/a_{yd} \) — promień zakrętu rakiety z maksymalnymi przyspieszeniami normalnymi przy prędkości \(V_d \),
\(R_m = V_m^2/a_{yd} \) — promień zakrętu rakiety z maksymalnymi przyspieszeniami normalnymi przy prędkości \(V_m \).

1. Sformułowanie problemu

Poszukiwanie sterowań minimalno-czasowych oparto na modelu małej rakiety przeciwlotniczej w którym:
— pominięto równania wahań jako bryły,
— można rozdzielić układy równań ruchu podłużnego i bocznego,
— przyjęto układ równań ruchu w płaszczyźnie poziomej,
— wprowadzono dwa sterowania: przyspieszenie całkowite styczne oraz wychylenie sterów rakiety,
— na wychylenie sterów rakiety nałożono więzy ograniczające to sterowanie w zależności od przeciążeń normalnych.

Ruch rakiet w płaszczyźnie poziomej opisuje układ równań:

\[\dot{V} = n_x g - C_x \frac{S_\delta V^2}{2m}, \]
\[V \dot{\phi} = C_y \frac{S_\delta V^2}{2m} \delta, \]
\[\dot{z} = V \cos \phi, \]
\[\dot{y} = V \sin \phi, \]

\[\phi \] — kąt odchylenia wektora prędkości od osi \(z \),
\[V \] — prędkość rakiety,
\(x, y \) — współrzędne położenia środka masy rakiety w przestrzeni konfiguracji,
\[S \] — powierzchnia odniesienia współczynników aerodynamicznych,
\[\delta \] — kąt wychylenia skrzydła.

Rys. 1.

Program sterowania minimalno-czasowego wyznaczono z zasady maksimum Pontriagina. Zakłada się, że rakieta startuje pod określonym kątem \(\psi_0 = 0 \) a jej celem jest dotarcie w najkrótszym czasie do punktu końcowego \(y_1, z_1 \). Układ
równań ruchu rakiety (rys.1) można do następującej postaci:

\[\begin{align*}
\dot{x}_1 &= u_1, \\
\dot{x}_2 &= Ax_1 u_2, \\
\dot{x}_3 &= x_1 \cos x_2, \\
\dot{x}_4 &= x_1 \sin x_2,
\end{align*} \]
(1.2)

gdzie:

\[x_1 = V, \ x_2 = \psi, \ x_3 = x, \ x_4 = y, \]
\[u_1 = n_4 g - C_x \frac{S \rho V^2}{2m}, \ u_2 = \delta, \ A = C_\psi \frac{S \rho}{2m}. \]

W zadaniu przyjęto najbardziej naturalne ograniczenia lotu:

a) na maksymalne przyspieszenie styczne:

\[0 \leq u_1 \leq a_{x'd}, \]
(1.3)

b) na maksymalne wychylenie sterów:

\[u_2^2 - (\delta_{\text{max}})^2 \leq 0, \]
(1.4)

c) na maksymalne przyspieszenie normalne:

\[(Ax_1^2 u_2)^2 - a_{\psi d}^2 \leq 0, \]
(1.5)

d) prędkości lotu (która nie powoduje uszkodzeń termicznych):

\[0 \leq x_1 \leq V_d. \]
(1.6)

Zadanie sprowadza się do znalezienia sterowań optymalnych \(u_1^*(t), \ u_2^*(t) \), przeprowadzających układ z punktu początkowego:

\[X^0 = \left(x_1^0, \ x_2^0, \ x_3^0, \ x_4^0 \right) \]
(1.7)

do rozmałości końcowej \(\Theta^1 \) określonej równaniami:

\[\begin{align*}
x_1 - x_1^i &= 0, \\
x_3 - x_3^i &= 0, \\
x_4 - x_4^i &= 0,
\end{align*} \]
(1.8)

przy minimum funkcjonału jakości:

\[I = \int_{t_0}^{t_1} dt. \]
(1.9)
2. Wyznaczenie równań sprzężonych do równań ruchu

Równania ruchu rakiety (1.2) oraz wskaźnik jakości (1.9) prowadzą do funkcji Hamiltona:

\[H(\lambda, x, u) = \lambda_0 + \lambda_1 u_1 + \lambda_2 A x_1 u_2 + \lambda_3 x_1 \cos x_2 + \lambda_4 x_1 \sin x_2. \]
\[(2.1) \]

Ze względu na więzy nałożone na sterowanie \(u_2 \) w zależności od zmiennej stanu \(x_1 \) (1.5) ogólna postać równań sprzężonych przyjmię postać:

\[\frac{d\lambda}{dt} = -\lambda \frac{\partial f}{\partial x} + \nu \frac{\partial R}{\partial x}, \]
\[(2.2) \]

gdzie:

\[\nu = \lambda \frac{\partial f}{\partial u} \left(\frac{\partial R}{\partial u} \right)^{-1}, \quad R = u_2 - \frac{a_{yd}}{A x_1^2} = 0, \]

a układ równań sprzężonych do równań ruchu (1.2):

\[\dot{\lambda}_1 = -(\lambda_3 \cos x_2 + \lambda_4 \sin x_2) - \lambda_2 A u_2, \]
\[\dot{\lambda}_1 = -(\lambda_3 \cos x_2 + \lambda_4 \sin x_2) + \lambda_2 A u_2, \]
\[\dot{\lambda}_2 = x_1 (\lambda_3 \sin x_2 - \lambda_4 \cos x_2), \]
\[\dot{\lambda}_3 = 0, \]
\[\dot{\lambda}_4 = 0. \]
\[(2.3) \]

Pierwsze równanie układu równań (2.3) obowiązuje wówczas gdy:

\[u_2 - \frac{a_{yd}}{A x_1^2} < 0, \]
\[(2.4) \]

co jest jednoznaczne z \(u_2 = \delta_{\text{max}} \). W przypadku gdy:

\[u_2 - \frac{a_{yd}}{A x_1^2} = 0 \]
\[(2.5) \]

obowiązuje drugie równanie na \(\lambda_1 \). Z równania (2.5) wyznaczyć można charakterystyczną prędkość rakiety \(V_m \), gdzie:

\[V_m = \sqrt{\frac{a_{yd}}{A \delta_{\text{max}}}} \]
\[(2.6) \]

Zatem pierwsze równanie układu równań (2.3) obowiązuje wówczas, gdy \(x_1 < V_m \), natomiast drugie gdy \(x_1 \geq V_m \).
Funkcja Hamiltona oraz równanie sprzężone w powyższej przedstawionej postaci nastręczają dużo trudności przy ich analizie. Proponuje się pewną modyfikację tych równań. Wprowadza się następujące związki:

$$\lambda_3 \cos x_2 + \lambda_4 \sin x_2 = \sqrt{\lambda_3^2 + \lambda_4^2} \cos(x_2 - \arctg \frac{\lambda_4}{\lambda_3}),$$

$$\lambda_3 \sin x_2 - \lambda_4 \cos x_2 = \sqrt{\lambda_3^2 + \lambda_4^2} \sin(x_2 - \arctg \frac{\lambda_4}{\lambda_3}).$$

(2.7)

Ostatecznie otrzymuje się przekształconą funkcję Hamiltona:

$$H(\tilde{\lambda}, x, u) = \tilde{\lambda}_0 + \tilde{\lambda}_1 u_1 + \tilde{\lambda}_2 A x_1 u_2 + x_1 \cos(x_2 - \tilde{\lambda}_3),$$

(2.8)

oraz układ równań sprzężonych:

$$\dot{\tilde{\lambda}}_1 = -\cos(x_2 - \tilde{\lambda}_3) - \tilde{\lambda}_2 A u_2 \quad \text{gdy} \quad x_1 < v_m,$$

$$\dot{\tilde{\lambda}}_1 = -\cos(x_2 - \tilde{\lambda}_3) + \tilde{\lambda}_2 A u_2 \quad \text{gdy} \quad x_1 \geq v_m,$$

$$\dot{\tilde{\lambda}}_2 = x_1 \sin(x_2 - \tilde{\lambda}_3),$$

$$\dot{\tilde{\lambda}}_3 = 0,$$

(2.9)

gdzie:

$$\tilde{\lambda}_1 = \frac{\lambda_1}{\sqrt{\lambda_3^2 + \lambda_4^2}}, \quad \tilde{\lambda}_2 = \frac{\lambda_2}{\sqrt{\lambda_3^2 + \lambda_4^2}},$$

$$\tilde{\lambda}_3 = \arctg \frac{\lambda_4}{\lambda_3}, \quad \tilde{\lambda}_0 = \frac{\lambda_0}{\sqrt{\lambda_3^2 + \lambda_4^2}}.$$

W dalszej części artykułu w celu uproszczenia zapisu będą stosowane oznaczenia λ zamiast $\tilde{\lambda}$.

3. Warunki transwersalności

Z warunków transwersalności dotyczących rozmaitości końcowej (1.8) otrzymuje się:

$$\lambda_1(t_1) = \text{dowolne},$$

$$\lambda_2(t_1) = 0,$$

$$-\pi < \lambda_3(t_1) < \pi.$$

(3.1)

Ponieważ wartość końcowa zmiennej x_1^\dagger jest ograniczona nierównością (1.6) dla tego, wyznaczając sterowania optymalne, należy dopuścić dwie możliwości:
a) sterowanie daje takie przejście, że:

\[V_0 < x^1_1 < V_d, \]

(3.2)
wówczas wobec dowolności \(x^1_1 \) końcowy warunek transwersalności prowadzi do:

\[\lambda_1(t_1) = 0, \]

(3.3)
b) sterowanie daje takie przejście, że:

\[x^1_1 = V_d \; \text{lub} \; x^1_1 = V_0, \]

(3.4)
wówczas pozostanie prawdziwa zależność (3.1), że \(\lambda_1(t_1) \) jest wielkością dowolną.

Po osiągnięciu prędkości \(V_d \) dalszy lot rakiet odbywa się z \(x_1(t) = V_d = \text{const} \) co jest równoznaczne z \(u_1(t) = 0 \). Tak więc bez względu na przyjęty wariant sterowania:

\[\lambda_1(t_1)u_1(t_1) = 0. \]

(3.5)

4. Wyznaczenie sterowań optymalnych

Z funkcji Hamiltona (2.8) odpowiednio dla sterowań \(u_1(t) \) oraz \(u_2(t) \) wynikają funkcje przełączania \(\sigma(t) \):

\[\sigma_1(t) = \lambda_1(t), \]
\[\sigma_2(t) = \lambda_2(t)Ax_1. \]

(4.1)

Ponieważ przypadek, gdy \(x_1 = 0 \) dla \(t > t_0 \) można pominać a stała \(A > 0 \), dlatego można zapisać:

\[\sigma_1(t) = \lambda_1(t), \]
\[\sigma_2(t) = \lambda_2(t). \]

(4.2)
Z funkcji przełączania (4.2) wynikają następujące zależności na przebieg sterowań w czasie:

\[u_1(t) = a_{xd} \; \text{jeśli} \; \lambda_1(t) > 0, \]
\[u_1(t) = 0 \; \text{jeśli} \; \lambda_1(t) < 0, \]
\[u_2(t) = +\delta^{\text{max}} \; \text{jeśli} \; \lambda_2(t) > 0 \; \text{i} \; x_1 < V_m, \]
\[u_2(t) = -\delta^{\text{max}} \; \text{jeśli} \; \lambda_2(t) < 0 \; \text{i} \; x_1 < V_m, \]

(4.3)
\[u_2(t) = +\frac{a_{yd}}{Ax_1^2} \; \text{jeśli} \; \lambda_2(t) > 0 \; \text{i} \; x_1 \geq V_m, \]
\[u_2(t) = -\frac{a_{yd}}{Ax_1^2} \; \text{jeśli} \; \lambda_2(t) < 0 \; \text{i} \; x_1 \geq V_m, \]
\[u_{2osob}(t) = 0 \; \text{jeśli} \; x_2(t) = \lambda_3. \]
Ze względu na symetrię rozwiązania przy \(\pm u_2(t) \) w dalszej części artykułu omawiane będą tylko sterowania nieujemne.

5. Strefy sterowalności

A) Strefa "niedostępna"

Rozważa się stany końcowe jakie mogą być osiągnięte z początkowego punktu startu \(x_0, x_2, x_3, x_4 \). Z równań ruchu rakiety (1.2) wynika, że minimalny promień zakrętu rakiety wynosi:

\[
R_{\text{min}} = \frac{V^2}{a_{yd}} = \frac{1}{A\delta^m}.
\]

(5.1)

Minimalny promień jest stały dla wszystkich prędkościach \(x_1 \) z przedziału \(0, V_m > \) przy sterowaniu czysto aerodynamicznym. Istnieje zatem strefa niedostępna (oznaczona jako strefa \(n \)) ograniczona minimalnym promieniem zakrętu rakiety (rys. 2b). Na rysunku tym przedstawiony został charakterystyczny punkt \(X^m(V_m, \psi_m, x_m, y_m) \) leżący na brzegu strefy \(n \). Współrzędne tego punktu jednoznacznie określają zależności:

\[
V_m = V_0 + a_{xd}t_m,
\]

\[
\psi_m = \left(\frac{2a_{yd}}{a_{xd}} \right) \left(1 - \frac{V_0^2}{V_m^2} \right),
\]

\[
x_m = R_m \sin \psi_m,
\]

\[
y_m = R_m \left(1 - \cos \psi_m \right),
\]

gdzie: \(t_m = (V_m - V_0)/a_{xd} \) natomiast \(R_m \) określa zależność (5.1).

B) Strefa I

Przejdźmy do rozwiązania sformułowanego na wstępie zadania. Rozpatrzymy przypadek gdy \(0 \leq \lambda_3 \leq \psi_m \). Można dowieść, że \(x_2 \to \lambda_3 \) ponieważ tylko wówczas możliwe jest sterowanie osobliwe \(u_2 = 0 \) (lot po prostej).

Przyjmijmy \(\lambda_3 = \psi_m \). Ponieważ \(x_2 \to \lambda_3 = \psi_m \), zatem w czasie \(t \leq t_m \) zarówno \(\lambda_2 \) jak i \(\dot{\lambda}_2 \) osiągną wartość równą zero. Z ujemnego znaku \(\dot{\lambda}_2 \) wynika dodatnia wartość \(\lambda_2(t) = \sigma^m \) oraz sterowanie \(u_2(t) = +\sigma^m \). Uwzględniając, że:

\[
x_2(t) = A\delta^m t(x_{10} + \left(\frac{a_{xd}t}{2} \right)) + x_{20},
\]
a) \[\lambda_1 \]
\[\lambda_2 \]
\[U_1 \]
\[U_2 \]
\[t_p \quad t_m \quad t_d \quad t_f \quad t_f' \]

b) Rys. 2.
oraz:
\[x_2^1 = \lambda_3 = \psi_m, \]
\[x_1^0 = x_{20} = 0, \]
otrzymuje się:
\[\lambda_2(t) = \left(\frac{1}{A_{\delta_{\text{max}}}} \right) \left[\cos \lambda_3 - \cos (x_2(t) - \lambda_3) \right] + \lambda_2(t_0). \] (5.3)

Ponieważ z warunków transwersalności \(\lambda_2(t_1) = 0 \) wówczas:
\[\lambda_2(t_0) = \left(\frac{1}{A_{\delta_{\text{max}}}} \right) (1 - \cos \lambda_3). \] (5.4)

Podstawienie (5.3) i (5.4) do wyrażenia na \(\lambda_1 \) daje:
\[\dot{\lambda}_1(t) = -1, \] (5.5)
a po scałkowaniu:
\[\lambda_1(t) = \lambda_1(t_0) - t, \] (5.6)
gdzie:
\[\lambda_1(t_0) = (V_d - V_0) a_{zd}. \]

Rozwiązania ilustruje rys. 2a.

W powyższej przedstawiony sposób można wyznaczyć sterowania, dla dowolnie zadanej wartości \(\lambda_3 \) z przedziału \(< 0, \psi_m >\). Układają się one w charakterystyczną strefę nazywaną dalej pierwszą strefą sterowalności (rys. 2b). Otrzymane rozwiązania w strefie pierwszej są jedynymi rozwiązaniami ekstremalnymi (nie ma dwóch wartości \(\lambda_3 \) dających takie same rozwiązania). Są one więc rozwiązaniami optymalnymi minimalno-czasowymi.

C) Strefa II

Dotychczas nie rozważano nieciągłości funkcji \(\lambda_1(t), \lambda_2(t) \) w chwili \(t_m \) podczas przejścia ze sterowania \(u_2(t) = \sigma_{\text{max}} \) na sterowanie \(u_2(t) = a_{yd}/A x_1^2 \) (twierdzenie 4.14 [3]). Omówione wyżej rozwiązania nie posiadają takiej nieciągłości ponieważ dla dowolnych \(\lambda_3 \) z przedziału \(< 0, \psi_m > \lambda_2 \) zerowala się w czasie \(t \leq t_m \), to znaczy przed zmianą charakteru sterowania. Wobec warunku stałości funkcji Hamiltona:

\[H(\lambda(t_m - 0), x(t_m - 0), u(t_m - 0)) = H(\lambda(t_m + 0), x(t_m + 0), u(t_m + 0)) \]

oraz \(\lambda_2(t \geq t_m) = 0 \), prawdziwa jest zależność:
\[\lambda_1(t_m - 0) = \lambda_1(t_m + 0). \] (5.7)
Tak więc rzeczywiście dotychczas nie trzeba było rozpatrywać funkcji skoku (wartość funkcji skoku wynosiła zero).

Rozpatrując \(\lambda_3 \) spoza przedziału \(< 0, \psi_m > \) funkcja ta nie będzie się zerowała.

Ponieważ wyznaczenie funkcji skoku jest kłopotliwe, wykorzystuje się dotychczasowe rozwiązania oraz twierdzenie 4 [2]. Twierdzenie to dowodzi, iż w przypadku konieczności przeprowadzenia obiektu przez obszar zabroniony, trajektoriami optymalnymi są trajektorie pokrywające się z brzegiem tego obszaru. Wejście oraz zjeście z brzegu obszaru zabronionego odbywać się musi stycznie. Rolę obszaru zabronionego pełni strefa "n". Z zasady addytywności kosztu przejścia z punktu początkowego \(X^0 \) do punktu końcowego \(X^1 \) wynika, że koszt ten wynosi:

\[
K(X^0 \rightarrow X^1) = K(X^0 \rightarrow X^m) + K(X^m \rightarrow X^1),
\]

(5.8)

gdzie \(X^m \) jest punktem trajektorii optymalnej.

Oczywiście jest, że punkt \(X^m \), leżący na brzegu strefy "n" jest punktem, przez który przechodzi wszystkie trajektorie optymalne doprowadzające do punktów leżących poza pierwszą strefą sterowalności rakiet.

Ponieważ znany jest minimalny koszt przejścia rakiety z punktu \(X^0 \) do \(X^m \),
\[K(X^0 \rightarrow X^m) = t_m \]
pozostaje do określenia jedynie koszt \(K(X^m \rightarrow X^1) \). Tak więc, zamiast wyznaczać funkcję skoku w chwili \(t_m \) wystarczy w dalszej części rozważań przyjąć założenie: \(X^m = X^0 \) pamiętając, że faktycznie:

\[
K(X^0 \rightarrow X^1) = t_m + K(X^m \rightarrow X^1).
\]

(5.9)

Wprowadźmy kolejny charakterystyczny punkt przestrzeni konfiguracji \(X^d(V_d, \psi_d, x_d, y_d) \) opisany równaniami:

\[
V_d = \text{dopuszczalna prędkość rakiety},
\]

\[
\psi_d = \frac{a_y}{a_x} \left[\ln \left| \frac{V_d}{V_m} \right| + \frac{V_m^2 - V_0^2}{2V_m^2} \right],
\]

\[
x_d = \frac{R_d a_y \cos(x_{2d} - \varphi) + 2R_m a_x \sin(x_{2m} - \varphi)}{\sqrt{4a_x^2 + a_y^2}},
\]

\[
y_d = \frac{R_d a_y \sin(x_{2d} - \varphi) - 2R_m a_x \cos(x_{2m} - \varphi)}{\sqrt{4a_x^2 + a_y^2}} + R_m,
\]

(5.10)

gdzie: \(R_d = V_d^2 / a_y \), \(R_m = V_m^2 / a_y \), \(\varphi = \arctg(a_{yd}/2a_{xd}) \).

Przyjmuje się \(\lambda_3 \) z przedziału \((\psi_m, \psi_d) \). W przypadku poszukiwania sterowań w pierwszej strefie sterowalności, pochodna \(\lambda_1 \) była ujemna (wynikało to z pierwszego równania układu (2.9) na zmienią \(\lambda_1 \)). Z drugiego równania tego układu pochodna \(\lambda_1 \) może przybierać wartości zarówno dodatnie jak i ujemne. Tak więc początkowa wartość zmiennej sprężonej \(\lambda_{10} \) również może być dodatnia.
i ujemna. Jest to o tyle kłopotliwe, iż \(\lambda_1(t) \) jest jednocześnie funkcją przełączania \(\sigma_1(t) \). Brak jest zatem jednoznacznego określenia sterowania \(u_1(t) \) już w chwili początkowej \(t_0 \). Niech:
\[
\lambda_1(t_1) = 0,
\]
co jest równoznaczne z dowolną prędkością rakiety w punkcie końcowym. Zwróćmy jeszcze uwagę na pochodną \(\dot{\lambda}_1 \) (drugie równanie układu (2.9)). Ponieważ \(\lambda_2(t_1) \) równa się zero oraz \(x_2(t_1) = \lambda_3 \) pochodna \(\dot{\lambda}_1 \to -1 \) przy \(t \to t_1 \). Ze znaku pochodnej wynika, że:
\[
\lambda_1(t_1 - 0) > 0 \implies \sigma_1(t_1 - 0) > 0 \implies u_1(t_1 - 0) = a_{xd}. \tag{5.12}
\]
Sterowanie \(u_1 \) w końcu trajektorii jest więc określone. Pozostaje do sprawdzenia, kiedy \(\lambda_1 \) może przyjąć wartość ujemną. Całkując \(\lambda_2 \) przy sterowaniach \(u_1(t) = a_{xd} \) oraz \(u_2(t) = a_{yd}/a_{x}^2 \) uzyskuje się:
\[
\lambda_2(t) = \frac{x_1^2(t)}{\sqrt{4a_{zd}^2 + a_{yd}^2}} \sin[x_2(t) - \lambda_3 - \varphi] + \frac{a_{yd}(x_1^1)^2}{4a_{zd}^2 + a_{yd}^2}, \tag{5.13}
\]
gdzie: \(x_1(t) = V_m + a_{xd}t \),
\[
x_2(t) = \frac{a_{yd}}{a_{xd}} \left[\ln \left| \frac{x_1(t)}{V_m} \right| + \frac{V_m^2 - V_0^2}{2V_m^2} \right].
\]
Po podstawieniu (5.13) do drugiego równania układu (2.9) na \(\lambda_1 \) i scalkowaniu otrzymuje się:
\[
\lambda_1(t) = -\frac{2x_1(t)}{\sqrt{4a_{zd}^2 + a_{yd}^2}} \cos(x_2(t) - \lambda_3 - \varphi) + \frac{(x_1^1)^2a_{yd}^2}{x_1(t)a_{xd}(4a_{zd}^2 + a_{yd}^2)} + \frac{x_1^1}{a_{xd}}. \tag{5.14}
\]
W wyrażeniu (5.13) tak dobrano \(\lambda_2(t_0) \) aby wyzerowanie tej funkcji wystąpiło w chwili końcowej \(t_1 \) (rys. 3a). Jest to bowiem najbardziej niekorzystny przypadek. Gdy zmieniona sprzężona \(\lambda_2(t) \) zeruje się wcześniej w chwili \(t_p \) (chwili prostowania sterów) tj. \(t_p < t_1 \) wówczas:
\[
\lambda_1(t_p) = \frac{V(t_1) - V(t_p)}{a_{xd}} \tag{5.15}
\]
i tym samym wartość \(\lambda_1(t_0) \) wzrośnie również o wartość opisaną zależnością (5.15) (rys. 3b).
Rys. 3.
Tablica 1.

<table>
<thead>
<tr>
<th>(1/S_A = a_{xd}/a_{yd})</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_V = S_{dg}/V_m)</td>
<td>5.46</td>
<td>6.26</td>
<td>7.15</td>
<td>8.11</td>
<td>9.16</td>
<td>10.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(1/S_A = a_{xd}/a_{yd})</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_V = S_{dg}/V_m)</td>
<td>11.48</td>
<td>12.76</td>
<td>14.12</td>
<td>15.57</td>
<td>17.09</td>
</tr>
</tbody>
</table>

Okazuje się, że przy zadanych wartościach \(V_m\), \(a_{xd}\), \(a_{yd}\) istnieje jedna prędkość końcowa \(V(t_1)\), przy której \(\lambda_1(t_0) = \lambda_1(t_1) = 0\) (rozwiązanie na rysunku 3a). Dalej prędkość ta nazywana będzie prędkością dopuszczalną graniczną \(V_{dg}\). Prędkość tę wyznaczyć można po przyrównaniu (5.14) do zera w chwili \(t_0\). Ostatecznie po przekształceniu otrzymuje się:

\[
S_V^2 - S_A^2 - S_V(4 + S_V^2) + 4 \cos(S_A \ln S_V) - 2S_A \sin(S_A \ln S_V) = 0, \quad (5.16)
\]

gdzie: \(S_V = V_{dg}/V_m\); \(S_A = a_{yd}/a_{xd}\). Rozwiązanie równania (5.16) dla różnych wartości stosunku przyspieszeń \(S_A\) przedstawia tabela 1.

Można obecnie zrezygnować z założenia o dowolności \(x_1(t_1)\) tj. \(\lambda_1(t_1) = 0\) zachowując jedynie warunek aby \(\lambda_3\) zawierała się w przedziale prawostronnie domkniętym \((\psi_m, \psi_d)\), oraz \(V_d \leq V_{dg}\). Okazuje się bowiem, że nie zmieniają się wówczas rozwiązania minimalno-czasowe. Powyższe stwierdzenie można dowieść następująco:

a) \(\lambda_1(t_1) > 0\), przypadku takiego można nie rozpatrywać ponieważ wcześniejsiej z warunków transwersalności stwierdzono, że \(\lambda_1(t_1)u_1(t_1) = 0\), co wyklucza powyższe założenie;

b) \(\lambda_1(t_1) < 0\), aby rakieta mogła osiągnąć prędkość \(V_d\) (w innym przypadku nie można rozpatrywać \(\lambda_1(t_1)\) różnego od zera). \(\lambda_1(t) = \sigma_1(t)\) musi być dodatnia w czasie:

\[
t_d = \frac{(V_d - V_m)}{a_{xd}}. \quad (5.17)
\]

W czasie tym \(\lambda_2(t)\) "zdąży się wyzerować" ponieważ maksymalna wartość \(\lambda_3\) została wcześniej ograniczona. Zatem \(\lambda_2(t_0)\) nie może być większa niż przyjęto przy wyznaczaniu \(V_{dg}\). Jeśli zatem \(V_d\) jest \(V_d \leq V_{dg}\) to wówczas \(\lambda_1(t_0) \geq 0\). Jedynie ekstremalne, a więc optymalne rozwiązania przedstawia rys. 4a. W podany sposób można przeanalizować i wyznaczyć sterowania dla dowolnej wartości \(\lambda_3\) z przedziału \((\psi_m, \psi_d)\). Układają się one w charakterystyczną strefę nazywaną dalej drugą strefą sterowności (rys. 4b).
D) Strefa III

Niech $\lambda_3 > \psi_d$ oraz prędkość końcowa rakiety $x_1(t_1)$ należy do przedziału (V_m, V_d). Drugie założenie powoduje, że $\lambda_1(t_1) = 0$. Wcześniej wykazano przy identycznych założeniach, iż:

$$\lambda_3 \in (x_{2m}, x_{2d}) \cap V_d \leq V_{dg} \implies \lambda_1(t_0) \geq 0. \tag{5.18}$$

Obecnie dopuszcza się większe λ_3, zatem:

$$\lambda_1(t_0) < 0. \tag{5.19}$$

Ponieważ jest ustalony koniec zmiennej sprzężonej $\lambda_1(t_1) = 0$ można wyznaczyć jedynie ekstremalne, a zatem optymale rozwiązania (rys. 5a). Otrzymane rozwiązania składają się w charakterystyczną strefę nazywaną dalej trzecią strefą sterowalności (rys. 5b).

Należy zaznaczyć, że w przypadku gdy nie jest ustalony koniec zmiennej sprzężonej $\lambda_1(t_1)$ tj.:

$$\lambda_1(t_1) = 0 \implies x_1(t_1) = V_d \tag{5.20}$$

istnieje wiele rozwiązań ekstremalnych. Bez dodatkowych sprawdzeń nie można stwierdzić, które z nich są rozwiązaniom optymalnymi minimalno-czasowymi. Tak więc do pozostałego obszaru płaszczyzny $x, 0, y$ (poza pierwszą, drugą i trzecią strefą sterowalności) prowadzi wiele sterowań i jest to jedyny obszar, w którym nie zostały wyznaczone sterowania optymale. Dalej obsza ten nazywany jest czwartą strefą sterowalności.

E) Strefa IV

Wyznaczenie sterowań optymalnych w czwartej strefie sterowalności wymaga pewnej modyfikacji zadania. Zauważmy, że w strefie tej prędkość lotu rakiety jest stała i wynosi V_d. Pomińmy zatem zmienną przestrzenną stanu x_1 oraz sterowanie $u_1(t)$. Ponadto wykorzystując zasadę addytywności kosztu rozpatrzmy minimalno-czasowe przejście rakiety od brzegu strefy III/IV do rozmaitości końcowej Θ^1 opisanej zależnościami:

$$x_3 - x_3 = 0,$$
$$x_4 - x_4 = 0. \tag{5.21}$$

Należy jednak pamiętać, że czas dojścia do brzegu stref III/IV nie jest stały. Dlatego wprowadza się dodatkową zmienną stanu x_5 oraz stałą Φ_0 (rys. 5b).

Zmodyfikowane zadanie na znalezienie sterowań optymalnych w strefie czwartej przyjmie następującą postać:
Rys. 5.
Znaleźć sterowanie $u_2(t)$ układu opisanego równaniami:

$$
\dot{x}_2 = a_{yd} \frac{u_2}{V_d},
$$

$$
\dot{x}_3 = V_d \cos x_2,
$$

$$
\dot{x}_4 = V_d \sin x_2,
$$

$$
\dot{x}_5 = 0,
$$

(5.22)

przeprowadzające układ od brzegu stref III/IV:

$$
x_2^0 = x_5 + \Phi_0,
$$

$$
x_3^0 = R_g \cos x_5,
$$

$$
x_4^0 = R_g \sin x_5,
$$

(5.23)

gdzie:

$$
R_g = \sqrt{x_2^2 + (y_d - R_m)^2},
$$

$$
\Phi_0 = \psi_d - \arctg \frac{y_d - R_m}{x_d},
$$

(5.24)

do rozmaitości końcowej opisanej równaniami (5.21) przy minimum kombinowana wskaźnika jakości:

$$
I = \int_{t_0}^{t_1} dt + \frac{x_5 V_m}{a_{yd}}.
$$

(5.25)

Kombinowany wskaźnik jakości (5.25) uwzględnia czas dojścia rakiety od rzeczywistego punktu startu do brzegu stref III i IV. Wykorzystując transformsję funkcji Hamiltona i równań zmiennych sprzężonych otrzymamy:

$$
H(\lambda, x, u) = \lambda_0 + \lambda_2 \frac{a_{yd}}{V_d} u_2 + V_d \cos(x_2 - \lambda_3),
$$

(5.26)
oraz:

$$
\dot{\lambda}_2 = V_d \sin(x_2 - \lambda_3),
$$

$$
\dot{\lambda}_3 = \dot{\lambda}_4 = \dot{\lambda}_5 = 0.
$$

(5.27)

Początkowy warunek transwersalności (dla zmiennych sprzężonych nietransformowanych) wyrażony zależnością:

$$
\lambda_2^0 \eta_2^0 + \lambda_3^0 \eta_3^0 + \lambda_4^0 \eta_4^0 + \lambda_5^0 \eta_5^0 = 0,
$$

(5.28)

$$
\sum_{j=2}^{5} \frac{\partial \Theta_k}{\partial x_j} |_{x=x_0} \eta_j^0 = 0, \quad k = 1, 2, 3,
$$
prowadzi do następujących związków:

\[\eta_2^0 = \eta_5^0, \]
\[\eta_3^0 = -\eta_5^0 R_g \sin x_5, \]
\[\eta_4^0 = -\eta_5^0 R_g \cos x_5. \]
\[(5.29) \]

Wobec dowolności \(\eta_5^0 \) z pierwszego równania \((5.28) \) oraz \((5.29) \) wynika:

\[\lambda_2(t_0) = R_g (\lambda_3 \sin x_5 - \lambda_4 \cos x_5) - \lambda_5, \]
\[\lambda_2(t_0) = R_g \sin(x_5 - \lambda_3) - \lambda_5, \]
\[(5.30) \]

Końcowy warunek transwersalności (dla zmiennych sprzężonych nietransformowanych), uwzględniający kombinowany wskaźnik jakości, wyrażony zależnościami:

\[-\lambda_2^0(t_0) V_m a_{vd}^{-1} \eta_5^1 + \lambda_3^1 \eta_2^1 + \lambda_4^1 \eta_3^1 + \lambda_5^1 \eta_4^1 + \lambda_5^1 \eta_5^1 = 0, \]
\[(5.31) \]

\[\sum_{j=2}^{5} \frac{\partial \Theta_k}{\partial x_j} |_{x=x_1} \eta_j^1 = 0, \quad k = 1, 2, \]

prowadzi do związków:

\[\eta_3^1 = \eta_4^1 = 0. \]
\[(5.32) \]

Wobec dowolności \(\eta_2^1 \) oraz \(\eta_5^1 \) z pierwszego równania \((5.31) \) po uwzględnieniu \((5.32) \) otrzymuje się:

\[\lambda_2(t_1) = 0, \]
\[(5.33) \]
\[\lambda_5 = \lambda_0 V_m a_{vd}^{-1}. \]

Ponieważ tak jak w poprzednich rozwiązaniach \(x_2(t \to t_1) \to \lambda_3 \) z funkcji Hamiltona \((5.26) \) wynikają następujące zależności:

\[H_{\text{max}}(\lambda, x, u) \bigg|_{t=t_1} = \lambda_0 + \lambda_2^0 a_{vd} V_d u_1 + V_d \cos(x_2^0 - \lambda_3) = 0, \]
\[(5.34) \]

\[H_{\text{max}}(\lambda, x, u) \bigg|_{t=t_1} = \lambda_0 + \lambda_2^0 a_{vd} V_d u_1 + V_d \cos(x_2^1 - \lambda_3) = 0. \]

Po przekształceniu \((5.34) \) otrzymamy odpowiednio z pierwszego i drugiego równania:
\[\lambda_2(t_0) = \frac{-V_d^2}{a_y d} \cos(x_2^0 - \lambda_3) - \lambda_0 \frac{V_d}{a_y d}, \]

\[\lambda_0 = -V_d. \] (5.35)

Po porównaniu (5.35) i (5.30) oraz podstawieniu zależności na \(\lambda_5 \) (5.33), \(x_5 \) (5.23) otrzymuje się końcowy warunek sterowania optymalnego dla sformułowanego zadania:

\[R_d \sin(x_2^0 - x_2^1 - \Phi_0) + R_d \cos(x_2^0 - x_2^1) = R_d(1 - \frac{V_m}{V_d}). \] (5.36)

Po przekształceniach z (5.36) ostatecznie otrzymuje się:

\[\Delta x_2 = x_2^i - x_2^o = -\arcsin \left(\frac{R_d(1 - \frac{V_m}{V_d})}{R_d^2 + R_d^2 - 2R_d R_g \sin \Phi_0} \right) + \\
- \arctg \left(\frac{R_g \sin \Phi_0 - R_d}{R_g \cos \Phi_0} \right). \] (5.37)

Przy zadanym stałym wartościach \(V_0 \), \(V_m \), \(V_d \), \(a_x \), \(a_y \) z równania (5.37) otrzymuje się wartość zmiany kąta wektora prędkości rakiety poruszającej się ze stałą prędkością \(V_d \) przy minimalno-czasowym przejściu z brzegu stref III/IV do rozmałoczenia końcowej opisanej równaniami (5.21). Istotnym jest fakt, że \(\Delta x_2 \) jest wielkością stałą. Czwartą strefę sterowalności podzielić można na trzy strefy IVa, IVb i IVc charakterystycznym punktem \(X^p(V_p, \psi_p, x_p, y_p) \) gdzie;

\[V_p = V_d, \]

\[\psi_p = \psi_d + \Delta x_2, \]

\[x_p = R_d[\sin(\psi_p) - \sin(\psi_d)] + x_d, \] (5.38)

\[y_p = R_d[\cos(\psi_d) - \cos(\psi_p)] + y_d, \]

oraz:

\[R_p = \sqrt{x_p^2 + (y_p - R_m)^2} \]

Przykładowe rozwiązania równania (5.37) przy \(V_0 = 0, V_m = 300[m/s], n_{xd} = n_{yd} = 10 \) oraz różnych wartościach \(V_d \) przedstawia tabela 2. W tabeli tej przeliczono wartość \(\Delta x_2 \) na czas lotu rakiety, w którym dokonuje ona manewru.

Zwróćmy uwagę na związek pomiędzy równaniem (5.37) oraz wcześniej wprowadzoną prędkością dopuszczalną graniczną \(V_dg \) określoną przez (5.16). Okazuje się, że przy prędkości maksymalnej rakiety równej \(V_{dg} \), \(\Delta x_2 = 0 \). Ze względu na postać równań (5.37), (5.16) zależność tę sprawdzono jedynie symulacyjnie dla kilkudziesięciu różnych danych wejściowych. Tak więc, gdy \(\Delta x_2 = 0 \) wówczas w
czwartej strefie sterowalności realizowany jest jedynie lot po prostej (znikają strefy IVa i IVb). Inaczej, wielkość stref IVa i IVb zależy od wartości V_d w stosunku do V_{dg}.

Na rys. 6 przedstawiono płaszczyznę Ozy ze wszystkimi strefami sterowalności rakiet.

6. Wnioski

W artykule przedstawiono nietypowy sposób rozwiązania zadania na wyznaczenie sterowań minimalno-czasowych metodą maksimum Pontriagina.

Niezniesieme trafne okazało się zastosowanie jako sterowań rakiet całkowitych przyspieszeń [1]. Ponadto zastosowanie przekształcenia funkcji Hamiltona i zmien-nych sprzężonych oraz ustalenie jednej zmiennej sprzężonej (λ_3) umożliwiło wyznaczenie sterowań optymalnych.

Rozwiązania te układają się w charakterystyczne strefy nazwane strefami ste-rowalności rakiet. W każdej ze stref obowiązuje inny program sterowania. Oka-zuje się, że osiągnięcie maksymalnych prędkości nie zawsze jest korzystne przy minimalno-czasowych przejściach rakiety do celu (strefy III, IVb, IVc). Bardziej "opłacalne" jest wówczas wykonanie manewru z prędkością V_m. Dla tych stref charakterystyczny przebieg prędkości w czasie przedstawia rys. 7.

Rys. 6.

\begin{equation*}
\begin{align*}
V_0 & \quad \text{t}_0 \\
V_m & \quad \text{t}_m \\
V_d & \quad \text{t}_1
\end{align*}
\end{equation*}

Rys. 7.

Literatura

1. S. Dubiel, *Minimalno-czasowy program zespołu napędowego rakiety*, biuletyn WAT nr 10 1987

Summary

Minimum-time programs of target interception have been determined by means of Pontriagin's maximum principle. The programs consist of two or more segments of even extremals, according to the range of desired change of flight direction. Particular programs belong to different zones of controllability which were distinguished within the entire range of possible changes of flight direction (from \(-\pi\) to \(+\pi\)). The construction of particular zones has been discussed in details.

Резюме

Минимально-временные программы перехвата целей определено на основании принципа максимума Понтригина. Экстремали как решения этой задачи состоят из двух или более кусочно непрерывных промежутков в зависимости от диапазона необходимого изменения направления полёта. Множество аналитических экстремалей производят некоторую зону управляемости. В полном диапазоне возможных направлений (от \(-\pi\) до \(+\pi\)) получено четыре характеристические зоны. Конструкцию этих зон рассмотрено в работе подробно.

Praca wpłynęła do Redakcji dnia 1 marca 1989 roku