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In this study, a finite element based formulation is developed for analyzing the buckling
and post-buckling of composite laminates subjected to mechanical and hygrothermal loads
using Modified Hyperbolic Shear Deformation Theory (MHSDT). The changes in the critical
buckling load are presented for different lamination schemes, thicknesses, material properties
and plate aspect ratios. In addition, post buckling analysis is performed for a composite plate
subjected to uniform in-plane thermal and moisture induced loadings by using MHSDT.
Matlab software has been used for programming the analysis. The results obtained by Matlab
codes are in a satisfactory consistence compared to the references. Thus, the developed
MHSDT has been validated for buckling and post buckling analysis of laminated plates in
hygrothermal environment.

Keywords: angle-ply laminate, buckling, composite plate, finite element method, shear de-
formation theory

1. Introduction

Compared to conventional metal structures, fibrous composite materials continue to experience
increased application in aerospace, marine, automobile and other mechanical and civil structures
due to their superior strength and stiffness to weight ratios; however, due to material anisotropy,
analyzing and designing these materials are more complicated than metallic materials.
In order to prevent buckling and post-buckling effects in laminated plates, using an extra-

-strength is of great practical importance in the structural design of laminated plates.
Buckling is known as one of the most critical failure modes, often pre-generated or produced

during service life. A significant reduction in weight of laminated plates can be achieved conside-
ring the post buckling behavior, which is an important factor in aerospace structures. The elastic
buckling and post-buckling of fiber reinforced composite plates are investigated in several text-
books (Agarwal et al., 2006; Reddy, 2004; Turvey and Marshall, 2012). Composite laminates are
also susceptible to delamination buckling and exterior damage at stress free edges, which occurs
when the properties mismatch at the ply interface. It can also be produced by external forces,
elevated temperature and absorbed moisture. Stresses within laminates are redistributed to re-
duce the load carrying capacity, when delamination occurs. Composite laminates are subjected
to changing environmental conditions like temperature and moisture. The effect of temperature
and moisture is known as thermal and hygroscopic effect, respectively. The combined effect of
these two parameters is called the hygrothermal effect. A hygrothermal environment reduces
both strength and elastic properties, especially in the case of fibrous polymeric composites. Fur-
thermore, associated hygrothermal expansion, either alone or in combination with mechanically
produced deformation, can result in buckling, large deflections, and high stress levels. Conse-
quently, examining the hygrothermal effects is essential in analyzing and designing laminated
systems (Tauchert and Huang, 2012). Due to the fact that most applications are limited to
purely thermal loadings, the majority of published researches lie in this field.
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According to the similarities between mathematical formulations of the governing ther-
mal and hygroscopic loadings, the given thermoelastic solutions could be generalized to elasto-
-hygrothermal cases. Similarly, it is not difficult to simplify the hygrothermal formulations and
solution methods to include the isothermal effects. For predicting the real behavior of a structure,
it is important to choose an adequate theory which is used in the expansion of different variables
(Mantari et al., 2012). In the 3D elasticity theory, heterogeneous laminated plates are modeled
as 3D solid elements, so predicting transverse shear stresses can be significantly improved, ho-
wever, by using this theory would lead to a complex procedure and multiplied computational
cost.
In the literature, different models have been suggested for studying the composite laminated

structures, including layerwise, quasi-layerwise and equivalent single layer models. Three prin-
cipal equivalent theories have been proposed to reduce the 3D models to 2D ones; which are
known as the Classical Laminated Plate Theory (CLPT), First-order Shear Deformation Theory
(FSDT) and Higher-order Shear Deformation Plate Theory (HSDT) (Kharazi et al., 2014).
In the CLPT, which relies on the Love-Kirchhoff assumptions, the transverse shear defor-

mation is neglected and is only applicable for thin laminated plates, so, in order to consider
the shear effect, the FSDT based on Reissner-Mindlin theory has been developed. The FSDT is
simple to perform and can be applied for both thick and thin laminates; however, the accuracy
of solutions strongly relies on the shear correction factors. In addition, the FSDT would not give
satisfactory results in predicting the accurate and smooth variations of stresses, specifically for
laminated plates with clamped or free edges, sharp corners and highly skewed geometry where
high stress gradients occur. To overcome the limitation of the FSDT, a simple higher order the-
ory was presented by Reddy (2004) for laminated plates, various types of HSDT, which include
higher order terms in Taylor’s expansion.
Many studies in the literature investigated the buckling and post-buckling in composite la-

minated thin plates subjected to mechanical or thermal loadings or both based on the classical
plate theory, see for example (Kazemi and Verchery, 2016; Peković et al., 2015; Ahmadi and
Pourshahsavari, 2016; Muc and Chwał, 2016). In some other studies (Girish and Ramachan-
dra, 2005; Mechab et al., 2012; Dafedar and Desai, 2002), the application of shear deformation
plate theories was developed for buckling and post-buckling analysis of laminated plates under
combined mechanical and thermal loading. It should be noted that in all these investigations,
the material properties are considered to be independent of temperature. Although compre-
hensive literature has been published in the field of pure mechanical or pure thermal loadings,
few investigations have been devoted to the elastic buckling and post-buckling caused by co-
upled thermal and mechanical loads, which is encountered in real cases and operational life of
composite structures.
A refined two-dimensional model was proposed by Brischetto (2013) for static hygrothermal

analysis of laminated composites and sandwich shells neglecting the transverse shear deforma-
tion effects. Sreehari and Maiti (2015) introduced a finite element solution for handling buckling
and post buckling analysis of laminated plates under mechanical and hygrothermal loads using
a refined HSDT; however, the accuracy of the method was verified only for cross-ply laminates.
Natarajan et al. (2014) considered the effect of moisture condensation and thermal variation on
the vibration and buckling of laminates with cutouts within the formulation of the extended
finite element method. Pandey et al. (2009) examined the influence of moisture concentration,
temperature variation, plate parameters and fiber-volume fraction on the buckling and post buc-
kling of the laminated plates based on HSDT and von Karman’s nonlinear kinematics; however,
the distribution of temperature and moisture on the surface was assumed to be uniform.
The aim of present work is to analyze the buckling and post buckling behavior of composite

laminated plates in hygrothermal environment using the Finite Element Method (FEM) based
on a new higher order formulation, in which the displacement of the middle surface is developed
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as a trigonometric and exponential function of thickness, and the transverse displacement is
assumed to be constant through the thickness. An appropriate distribution of the transverse
shear strain is assumed across the plate thickness and, also, the stress-free boundary conditions
are considered on the boundary surface, therefore, a shear modification factor is not needed.

2. Trigonometric shear displacement model (TSDM)

A laminated plate consisting of N orthotropic plies is considered. Length, width and thickness
of the rectangular plate are a, b, and h, respectively. An 8-noded serendipity quadrilateral
element, which is C0-continuous isoperimetric bi-quadratic, has been used for discretization of
the laminated plate. In this work, the following new displacement model is proposed to satisfy
the boundary conditions at the top and bottom of the laminated plate

u(x, y, z) = u0(x, y)− z
∂w

∂x
+
[
sin

πz

h
exp

(
m cos

πz

h

)
+
π

h
mz
]
θx(x, y)

v(x, y, z) = v0(x, y)− z
∂w

∂y
+
[
sin

πz

h
exp

(
m cos

πz

h

)
+
π

h
mz
]
θy(x, y)

w(x, y, z) = w0

(2.1)

where u, v, w represent displacement components in the x, y and z directions, respectively;
and u0, v0, w0 are displacement components in the middle surface of the plate. θx and θy are
rotations about the y and x axes at the mid-plane, respectively. The first order derivatives of
the transverse displacement can be formulated in terms of the in-plane displacement parameters
as separate independent degrees of freedom as given below

u(x, y, z) = u0(x, y)− zφx(x, y) + [g(z) + Γz]θx(x, y)
v(x, y, z) = v0(x, y)− zφy(x, y) + [g(z) + Γz]θy(x, y)
w(x, y, z) = w0(x, y)

(2.2)

where

φx =
∂w

∂x
φy =

∂w

∂y
g(z) = sin

πz

h
exp

(
m cos

πz

h

)
Γ =

π

h
m

The linear displacement vector given in the above equation can be expressed in terms of the
middle surface of the laminated plate as follows

ε5×1 = Z5×13ε13×1 (2.3)

where

ε =
{
ε01 ε02 ε06 κ11 κ12 κ16 ε04 ε05 κ24 κ25

}T

ε01 =
∂u0
∂x

ε02 =
∂v0
∂y

ε06 =
∂u0
∂y
+
∂v0
∂x

ε04 =
∂w0
∂y
− φy

ε05 =
∂w0
∂x
− φx k01 = Γ

∂θx
∂x
− ∂φx

∂x
k02 = Γ

∂θy
∂y
− ∂φy

∂y

k06 = Γ
(∂θx
∂y
+
∂θy
∂y

)
− ∂φx

∂y
− ∂φy

∂x
k11 =

∂θx
∂x

k12 =
∂θy
∂x

k16 =
∂θy
∂x
+
∂θx
∂y

k24 = θy k25 = θx
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Z =




1 0 0 z 0 0 g(z) 0 0 0 0 0 0
0 1 0 0 z 0 0 g(z) 0 0 0 0 0
0 0 1 0 0 z 0 0 0 g(z) 0 0 0
0 0 0 0 0 0 0 0 0 1 0 g(z) 0
0 0 0 0 0 0 0 0 0 0 1 0 g(z)




and

ε13×1 = L13×7∆7×1 ∆ =
{
u0 v0 w0 θx θy φx φy

}T

The following assumptions are considered in the derivation of the equations:

• Small elastic deformations are assumed (i.e. deformations and rotations are small and agree
to the Hooke’s law).

• The plies of the composite laminated structure are supposed to be well bonded.

The linear strain equations derived from the displacements of Eqs. (2.1), which are valid for thin
as well as thick plates under consideration, are as follows

εxx = ε0xx + zε
1
xx + sin

πz

h
exp

(
m cos

πz

h

)
ε2xx

εyy = ε0yy + zε
1
yy + sin

πz

h
exp

(
m cos

πz

h

)
ε2yy

εxy = ε0xy + zε
1
xy + sin

πz

h
exp

(
m cos

πz

h

)
ε2xy

εxz = ε0xz +
π

h

(
cos

πz

h
−m sin2 πz

h

)
exp

(
m cos

πz

h

)
ε3xz

εyz = ε0yz +
π

h

(
cos

πz

h
−m sin2 πz

h

)
exp

(
m cos

πz

h

)
ε3yz

(2.4)

and

ε0xx =
∂u

∂x
ε1xx = m

π

h

∂θx
∂x
− ∂2w

∂x2
ε2xx =

∂θx
∂x

ε0yy =
∂v

∂x
ε1yy = m

π

h

∂θy
∂x
− ∂2w

∂x2
ε2yy =

∂θy
∂x

ε0xy =
∂v

∂x
+
∂u

∂y
ε1xy = m

π

h

∂θy
∂x
+m

π

h

∂θx
∂y
− 2 ∂

2w

∂x∂y
ε2xy =

∂θy
∂x
+
∂θx
∂y

ε0xz = m
π

h
θx ε3xz = θx ε0yz = m

π

h
θy ε3yz = θy

(2.5)

3. Governing equations of the hygrothermal buckling and post-buckling

The laminated plate composed of elastic orthotropic plies and the stress–strain relations in the
orthotropic local frame are as follows (Reddy, 2004)





σ1
σ2
τ12
τ13
τ23





=




Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44








ε1
ε2
γ12
γ13
γ23





(3.1)

where Qij are elastic stiffness coefficients relative to the plane-stress state that neglects the
transversal stress. These coefficients are given below (Reddy, 2004) in terms of the engineering
constants in the material coordinates
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Q11 =
E1

1− ν12ν21
Q22 =

E2
1− ν12ν21

Q12 = ν12Q11 Q33 = G12

Q44 = G23 Q55 = G13 ν21 = ν12
E2
E1

(3.2)

In general, the laminates are in the plane stress state due to temperature or moisture changes;
therefore, externally applied stresses would develop at the supports. These in-plane stresses can
be evaluated using elasto-hygrothermal constitutive equation. When hygrothermal effects are
considered, the stress tensor is usually expressed in the contracted notation as follows

σi = Qij

(
εj −

T∫

T0

αj(τ,M) dτ −
M∫

M0

βj(T,m) dm

)
i, j = 1, 2, 3 (3.3)

where the elastic stiffness coefficients Qij, the thermal expansion coefficients αj , and the moistu-
re coefficients βj depend upon the temperature T and moisture concentration M . For moderate
temperature ∆T = T −T0 and moisture ∆M =M −M0 changes from the corresponding stress-
-free values T0 and M0, if the elastic properties are considered independent from the hygrother-
mal, the stress-strain relations are simplified as follows

σ = Qij(ε1 − αj∆T − β∆M)(ε1 − αj∆T − β∆M) i, j = 1, 2, 3 (3.4)

Proper tensor transformations can be employed in transforming equation (3.4) from principal
material coordinates x1, x2 and x3 to the plate coordinates x, y and z. For a typical k-th ply of
the laminate, the resulted expression can be written as





σxx
σyy
τxy
τxz
τyz




k

=




Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0
0 0 0 Q55 Q54
0 0 0 Q45 Q44




k





εxx − αx∆T − βx∆C
εyy − αy∆T − βy∆C
εxy − αxy∆T − βxy∆C

εxz
εyz




k

(3.5)

or in a condensed form

σk = Qkεk (3.6)

where Qij, αi, βi (i, j = x, y, xy) denote the transformed material coefficients.
According to the potential energy theorem, the equilibrium state can be achieved when

variation of the total potential energy equates to zero.
The potential energy theorem can be expressed for the typical i-th ply enclosing a space

volume V as follows
∫

V

(σxxδεxx + σyyδεyy + τxyδεxy + τxzδεxz + τyzδεyz) dVe −
∫

A

qδw dAe = 0 (3.7)

When the laminate is subjected to temperature or moisture changes, due to the restriction on
freeing the hygrothermal loading, some stresses are developed at the supports. The governing
equations on the pre-buckling can be obtained via the following formula

K∆ = F (3.8)

where K is the linear stiffness matrix and F represents the load vector associated with the tem-
perature variation or hygroscopic effects. Equation (3.8) is solved under the specified boundary
condition and in-plane loads. In the next step, the geometric stiffness matrix KG associated
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with these in-plane loads is calculated. The critical hygrothermal buckling is calculated through
solving the linear eigenvalue problem

(K+ λcrKG)∆ = 0 (3.9)

The smallest eigenvalue corresponds to the amplitude of the critical buckling load. In the post-
-buckling step, the nonlinear stiffness matrix Knl is incorporated as

(K+Knl + λcrKG)∆ = 0 (3.10)

The geometric stiffness matrix can be expressed as

KG = σpxKG1 + σ
p
yKG2 (3.11)

where σpx, σ
p
y denote externally applied stresses acting in the x and y directions. Subsequently,

the critical buckling stresses can be calculated by the following formulas

σpxcr = λcrσ
p
x σpycr = λcrσ

p
y (3.12)

4. Numerical results and discussion

In this Section, numerical examples are presented for buckling and post buckling of the laminated
composite plates under mechanical and hygrothermal loads. The accuracy of the proposed TSDM
model considering the transverse shear stresses is examined. A variety of problems are solved
using the finite element formulation and the results are compared with 3D elasticity solution. It
is important to note that the proposed displacement model can be applied to any lay-up of the
laminated plates. The different mechanical properties examined in the numerical examples are
given in Table 1.

Table 1. Material properties used in the numerical examples

Mater- Elastic constants
ial No. (Reddy and Liu, 1985; Dafedar and Desai, 2002)

1 E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25
2 E1/E2 = 3 to 40, E3 = E2, G12/E2 = G13/E2 = 0.60, G23/E2 = 0.50,

ν12 = ν23 = ν13 = 0.25
3 E1/E2 = 40, E3 = E2, G12/E2 = G13/E2 = 0.50, G23/E2 = 0.20,

ν12 = ν23 = ν13 = 0.25
4 E1/E2 = 15, E3 = E2, G12/E2 = G13/E2 = 0.50, G23/E2 = 0.3356,

ν12 = ν23 = ν13 = 0.3, a1/a0 = 0.015, a2/a0 = a3/a0 = 1.00
5 Elastic moduli of graphite/epoxy ply at different moisture

concentrations C [%],
E1 = 130GPa, G13 = G12 = 6.0GPa, G23 = 0.5G12,
ν12 = ν23 = ν13 = 0.3, β1 = 0 and β2 = β3 = 0.44 and
C [%] 0.00 0.25 0.50 0.75 1.00 1.25 1.50
E2 [GPa] 9.50 9.25 9.00 8.75 8.50 8.50 8.50

In order to simplify comparison, the critical buckling stresses have been transformed into
dimensionless coefficients as follows

λcr =
σcrb

2

E2h2
(4.1)
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4.1. Examples for validating the TSDM model

Three cases are examined to confirm TSDM formulation using finite element programming.

Case A

A symmetric four-layered (0/90/90/0) cross-ply laminated plate is considered under uniaxial
compression loading. The critical buckling coefficients for various values of length-to-thickness
ratios a/h are presented in Table 2. As it is demonstrated in Table 2, the HSDT overestimates
the critical buckling loads in comparison with the results from the present formulation and those
given by Pagano et al. (1994).

Table 2. Effect of length to thickness ratio on the critical buckling load

a/h Present
3D HSDT

(Pagano and Reddy, 1994) (Reddy and Liu, 1985)

5 1.922 1.575 1.997
10 13.367 13.453 13.384
20 20.689 21.707 21.886
50 23.354 23.356 23.747
100 24.034 24.255 24.953

Case B

The effect of elastic moduli ratios on the buckling loads of a square plate under uniaxial
loading is examined, and the results are presented in Table 3. According to the results obtained
via the TSDM formulation are in excellent agreement with other references.

Table 3. Effect of elastic moduli ratios on critical buckling loads

E1/E2 Present
3D HSDT

(Pagano and Reddy, 1994) (Reddy and Liu, 1985)

3 5.396 5.399 5.114
10 9.952 9.967 13.384
20 15.327 15.352 15.297
30 19.703 19.758 19.968
40 23.564 23.451 23.344

Case C

Table 4 presents the comparison between the critical buckling coefficients obtained through
the present model and the reference values for the square laminated plate under uniaxial com-
pression loading. The analysis is carried out for two values of fiber orientation angles θ = 30◦

and θ = 45◦ for both of the two-ply and six-ply antisymmetric angle-ply laminates. The results
are validated by comparing them with the HSDT model proposed by Reddy and Liu (1985).

4.2. Effect of the length-to-thickness ratio on the critical buckling load

A symmetric four-layered (0/90)s cross-ply laminated plate is considered under both uniaxial
and biaxial compression loadings. The effect of the side-to-thickness ratio for the simply suppor-
ted rectangular plate is examined using material No. 1, and the results are plotted in Fig.1. It is
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Table 4. Critical buckling coefficients for angle-ply laminates

θ = 30◦ θ = 45◦

a/h
2 ply 6 ply

a/h
2 ply 6 ply

Present [10] Present [10] Present [10] Present [10]

5 10.694 11.543 13.404 13.536 5 10.084 10.782 12.169 12.172
10 16.108 17.123 29.046 33.624 10 16.734 18.051 30.648 32.504
20 18.234 18.764 41.023 46.231 20 19.234 19.764 48. 230 52.132
50 19.748 19.863 49.963 51.643 50 20.746 20.863 58.963 59.643
100 20.308 30.603 53.079 54.896 100 21.267 21.664 59.431 61.021
[10] – Muc and Chwał (2016)

observed that the critical buckling loads are higher in the uniaxial loading case. Additionally, the
buckling load coefficients increase considerably as the thickness ratio decreases. The variations
of both curves for two loading conditions are very slow above the a/h = 40 ratio (are only a
little above a/h = 40).

Fig. 1. Effect of the length-to-thickness ratio on the critical buckling load for cross-ply laminates

4.3. Effect of ply orientation on the critical buckling load

The buckling load coefficient for a square and antisymmetric angle-ply laminated plate is
tested under uniaxial compressive loading; the effect of ply orientation for various numbers of
layers of the angle-ply laminate is plotted in Fig. 2. All the edges are supposed to be simply
supported, and material 5 of Table 1 is used in all cases. It is observed that in all cases, the

Fig. 2. Effect of the ply angle on the critical buckling load
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critical buckling load increases at first but decreases then. By varying the fiber orientation angles
from 0◦ to 90◦, it is observed that the maximum critical buckling load occurs at 45◦.

4.4. Effect of the elastic moduli ratio on the critical buckling load

The variations of critical buckling coefficients of antisymmetric cross-ply laminated plates
under uniaxial and biaxial loadings are demonstrated in Figs. 3, respectively. The results are
presented for a/h = 10. It is observed that as the elastic moduli ratio rises, the critical buckling
load also increases in both uniaxial and biaxial loadings; however, in biaxial cases, the buckling
loads are approximately half of the corresponding uniaxial values at all analyzed ratios.

Fig. 3. Variation of the buckling load for square antisymmetric cross-ply laminate when a/h = 10;
(a) uniaxial loading, (b) biaxial loading

4.5. Effect of thermal loads on the buckling of laminates

Buckling under thermal loads for a laminated plate consisting of 10 plies of material 4 is
examined using TSDM model and compared with 3D elasticity solutions. The thermal buckling
coefficients of λT = α0Tcr are provided in Table 5. The obtained results are in excellent agreement
with the 3D elasticity results proposed by Noor and Burton (1992), for both the thin and thick
laminated plates. In this case, the critical buckling loads correspond to the buckling modes
of m,n = 1, 2, because the laminates under high temperature variations are mainly subjected
to the biaxial loading condition. The results confirm that the buckling in the thick laminated
plates occur at higher temperatures compared to the thin ones. In Fig. 4, the thermo-buckling
curve is plotted for a simply supported square and [±45◦] antisymmetric angle-ply laminate.
The obtained results by the present model are very close to the analytical solutions proposed
by Singha et al. (2001).

Table 5. Thermal buckling coefficient λT = α0Tcr for a square angle-ply laminated plate

a/h Present
3D solution

(Noor and Burton, 1992)

100.0000 0.7463 · 10−3 0.7458 · 10−3
20.0000 0.1739 · 10−3 0.1721 · 10−3
10.0000 0.5782 · 10−3 0.5820 · 10−3
6.6667 0.1029 0.1034
5.0000 0.1436 0.1515
4.0000 0.1777 0.1886
3.3333 0.2057 0.2063
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Fig. 4. Thermo-buckling path plotted for a simply supported square [±45◦] antisymmetric
angle-ply laminate

4.6. Effect of change in moisture concentration on the buckling load

The effects of changes in moisture concentrations on the uniaxial buckling load coefficients λU
of a cross-ply [(0/90)s] laminate using material 5 is presented in Table 6. The buckling loads
are evaluated by reducing the material properties and increasing the moisture concentration.
The parameter (E2)c=0% is used to calculate the buckling load coefficient λU using the TSDM
model. In Fig. 6, the variation of the buckling load coefficient with respect to the moisture
concentration is shown for different b/h ratios. As it is seen from this figure, in thin plates, the
buckling coefficient decreases faster compared to the thick ones. However, the slope is almost
linear for both thin and thick laminates, and the thin plates may buckle due to a little change
in the moisture concentration, even in the absence of external loads.

Table 6. Effect of moisture concentration on the critical buckling load coefficient of a symmetric
cross-ply laminated plate for various values of the thickness-to-length ratio

a/h C [%] Present Dafedar and Desai (2002)

5

0.0 6.9932 7.1383
0.5 6.8911 7.0365
1.0 6.7963 6.9420
1.5 6.7320 6.8776

10

0.0 11.3466 11.4275
0.5 11.0183 11.0990
1.0 10.7205 10.8009
1.5 10.4631 10.5435

20

0.0 13.6835 13.7106
0.5 12.5247 12.5517
1.0 11.4879 11.5147
1.5 10.4582 10.4851

40

0.0 14.4529 14.4602
0.5 10.0180 10.0254
1.0 6.0708 6.0781
1.5 1.9523 1.9596
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5. Conclusions

A new finite element formulation is developed using MHSDT for investigating the effects of
elasto-hygrothermal loads in the buckling of composite laminated plates. The transverse stresses
through thickness of a plate and the continuity of displacements are entirely satisfied in the
proposed formulation. From the extensive numerical investigation, the results obtained using
Trigonometric Shear Displacement Model (TSDM) is in excellent agreement with the three-
-dimensional elasticity solutions as well as other equivalent higher-order theories. The variations
of the critical buckling load are presented for different lamination lay-ups, elastic constants and
length-to-thickness plate ratios. The effect of thermally-induced loading and moisture concen-
tration on the buckling and post-buckling of the laminated plates are investigated using TSDM
formulation. The following conclusions are obtained:

• In the hygrothermal buckling analysis of composite plates, it is mandatory to exploit
refined higher-order theories dealing with the transverse normal deformation.

• Increasing the moisture concentrations and temperatures would result in a reduction in the
buckling and post-buckling strength. The results also confirm that the post-buckling cha-
racteristics are significantly affected by a rise in the temperature, moisture concentration,
transverse shear deformation, plate geometry, total number of plies and fiber orientation.

• Increasing the length-to-thickness ratio, the number of layers and the orthotropic ratio
(E1/E2) would lead to an increase in the buckling strength due to in-plane compressive
loading.

• The critical buckling load is higher in the case of uniaxial loading compared to the biaxial
one.
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The generalized thermoelastic problem of a thermo-mechanically loaded beam is studied.
The upper surface of the beam is thermally isolated and subjected to a mechanical load while
the bottom surface is traction free and subjected to a heating source. Based on the heat
conduction equation containing the thermoelastic coupling term and the two-dimensional
elasticity theory, thermoelastic coupling differential equations of motion are established.
The generalized thermoelasticity theory with the dual-phase-laggings (DPLs) model is used
to solve this problem. A closed-form analytical technique is used to calculate vibration of
displacements and temperature. The effects of the phase-laggings (PLs), the intensity of the
applied load and heat parameters on the field quantities of the beam are discussed. The
variation along the axial direction and through-the-thickness distributions of all fields are
investigated. Some comparisons have been also shown graphically to estimate the effects of
the time on all the studied fields.

Keywords: thermoelasticity, dual-phase-lag model, two-dimensional elasticity solution

Nomenclature

Ce – specific heat per unit mass at constant strain
e – volumetric strain
E – Young’s modulus
K – thermal conductivity
L, h – beam length and thickness, respectively
Q∗ – heat source
q – heat flux vector
T (x, z, t) – temperature distribution
T0 – environmental temperature
u – displacement vector
u,w – axial and transverse displacements
u∗, w∗ – amplitudes of axial and transverse displacements

Greek symbols
α – linear thermal expansion coefficient
δ – unification parameter
εij , σij – strain and stress tensor, respectively
γ – stress-temperature modulus, γ = Eα/(1 − 2ν)
λ∗, µ∗ – Lamé’s constants
ν – Poisson’s ratio
ω – angular frequency
ρ – material density of medium
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σ∗j – stress amplitudes
σ0 – intensity of applied load at upper face surface
τθ, τq – phase-lag of temperature gradient and of heat flux
θ = T − T0 – temperature increment
θ∗ – amplitude of temperature increment
θ0 – intensity of heat source
∂θ/∂z – normal components of heat flux vector

1. Introduction

Many generalized theories of thermoelasticity have been developed in the literature to study
the behavior of thermoelastic structures. These theories can be classified in different models,
such as the theory of coupled thermoelasticity (CTE) (Biot, 1956), the Lord and Shulman (L-S)
theory (Lord and Shulman, 1967), the Green and Lindsay (G-L) theory (Green and Lindsay,
1972), the Green and Naghdi (G-N) theory (Green and Naghdi, 1991, 1992, 1993) as well as the
Tzou (1955a,b, 1006) dual-phase-lag (DPL) thermoelasticity theory (see also Chandrasekharaia
(1998)). To the author’s best knowledge, only a few authors have presented the exact two-
-dimensional solution to the generalized thermoelastic beam problem up to present time. Most
authors used the classical theory for thin beams as well as one of the generalized thermoelasticity
theories.
The investigation of harmonic plane wave propagations in an elastic medium have been at-

tempted by several researchers. Prasad et al. (2010) investigated the propagation of harmonic
plane waves with an assigned frequency by employing the thermoelasticity theory with dual-
-phase-lags. Mukhopadhyay (2004) presented thermoelastic interactions without energy dissipa-
tion in a spherical-cavity medium subjected to harmonically varying temperature. Kobzar’ and
Fil’shtinskii (2008) presented the plane dynamic problem of coupled thermoelasticity takeing
into account the harmonic form of the change of field quantities with time. Allam et al. (2009)
presented the 2-D problem of electromagneto-thermoelasticity for a perfectly conducting thick
plate subjected to a harmonically time-dependent heat source in the context of G-N theory.
Ram et al. (2008) obtained a general solution to the field equations of a harmonically time-
dependent generalized thermodiffusion in an elastic solid. Mukhopadhyay and Kumar (2008)
studied thermoelastic interactions in a spherical-cavity medium subjected to a time-dependent-
heating effect in the context of different thermoelasticity theories. Gue et al. (2012) analyzed
thermoelastic damping of a micro-beam resonator by the dual-phase-lag thermal conduction
model of the generalized thermoelasticity theory. Zenkour and Abouelregal (2014) presented
nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmoni-
cally varying heat. Recently, Zenkour (2015) presented a three-dimensional thermal shock plate
problem within the framework of different thermoelasticity theories.
The present article is concerned with the two-dimensional transient generalized thermoela-

stic problem for a thick beam subjected to thermal and thermomechanical loads at its faces.
Based on the dual-phase-lags model (Abouelregal and Zenkour, 2014; Abbas and Zenkour, 2014;
Zenkour and Abouelregal, 2015; Zenkour et al., 2013), the exact closed-form solution for the
governing equations is established. The equations of the classical thermoelasticity theory, Lord
and Shulman theory, and Green and Naghdi theory may be established as special cases of the
DPLs theory. All expressions for temperature, displacements and stresses are presented. Nume-
rical results showing the thermoelastic dynamic responses of the field quantities through the
axial and thickness directions of the beam are presented. The effect of the time parameter is
also investigated.
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2. Thermoelastic basic equations

Let us consider a homogenous isotropic thermoelastic solid in the Cartesian coordinate system
Oxyz initially un-deformed and at a uniform temperature T0. The basic governing equations
of motion, balance of the equilibrated force and heat conduction in the context of generalized
(non-Fourier) thermoelasticity for the displacement vector u(x, y, z, t) in the absence of body
forces should be considered.
The modified classical thermoelasticity model is given by the Tzou theory in which the

Fourier law is replaced by an approximation of the equation

q(x, t+ τq) = −K∇T (x, t+ τθ) (2.1)

The above equation may be approximated by

(
1 + τq

∂

∂t

)
q = −K

(
1 + τθ

∂

∂t

)
∇T (2.2)

where 0 < τθ ¬ τq. Then the heat conduction equation corresponding to the dual-phase-lag
model proposed by Tzou in this case takes the form

K
(
1 + τθ

∂

∂t

)
∇2θ +

(
1 + τq

∂

∂t

)
ρQ∗ =

(
δ + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e

∂t

)
(2.3)

Equation (2.3) describes the coupled dynamical thermoelasticity theory (CTE), the genera-
lized thermoelasticity theories proposed by Lord and Shulman (L-S), Green and Naghdi (G-N)
theory and dual-phase-lag (DPL) model for different sets of values of phase-lags parameters τq,
τθ and the unification parameter δ as follows:

CTE: τθ = τq = 0 and δ = 1

L-S: τθ = 0, τq = τ0 (τ0 is the relaxation time) and δ = 1

G-N: τθ = 0, δ = 0, τq 6= 0, and K = K∗ (the material constant characteristic)
DPL: δ = 1 and 0 < τθ ¬ τq

3. Governing equations

Let us consider small flexural deflections of an elastic beam with dimensions (L×b×h) as shown
in Fig. 1. The beam may be subjected to various thermal and mechanical loads according to the
type of the problem used. Let u, v = 0 and w denote displacement components of a material
point located at (x, y, z) in the present beam in the x, y, and z directions, respectively. The
stress-strain relationships in the beam coordinates are written in the form

{
σx
σz

}
=

E

(1 + ν)(1− 2ν)

[
1− ν ν
ν 1− ν

]{
εx − αθ
εz − αθ

}
σxz =

E

2(1 + ν)
εxz (3.1)

Fig. 1. Schematic diagram of the beam
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The strain-displacement relations are taken in the linear form

εx =
∂u

∂x
εz =

∂w

∂z
εxz =

∂w

∂x
+
∂u

∂z
(3.2)

The governing equations of motion σij,j = ρüi can be presented in an expanded form as

E(1 − ν)
(1 + ν)(1− 2ν)

∂2u

∂x2
+

E

2(1 + ν)
∂2u

∂z2
+

E

2(1 + ν)(1− 2ν)
∂2w

∂x∂z
− Eα)
(1 + ν)(1− 2ν)

∂θ

∂x
= ρ

∂2u

∂t2

E

2(1 + ν)(1− 2ν)
∂2u

∂x∂z
+

E

2(1 + ν)
∂2w

∂x2
+

E(1− ν)
(1 + ν)(1− 2ν)

∂2w

∂z2
− Eα)
(1 + ν)(1− 2ν)

∂θ

∂z
=ρ

∂2w

∂t2

(3.3)

In addition, the thermal conduction equation for the beam without a heat source (Q∗ = 0) is
given as

(
1 + τθ

∂

∂t

)(∂2θ
∂x2
+
∂2θ

∂z2

)
=
(
δ + τq

∂

∂t

)[
η
∂θ

∂t
+
γT0
K

∂

∂t

(∂u
∂x
+
∂w

∂z

)]
(3.4)

where η = ρCe/K. Now, the following dimensionless definitions will be used for the variable
quantities

{x̄, z̄, L̄, h̄, ū, w̄} = ηc{x, z, L, h, u,w} {t̄, τ̄0, τ̄θ, τ̄q} = ηc2{t, τ0, τθ, τq}

θ̄ =
θ

T0
{σ̄x, σ̄z} =

(1 + ν)(1− 2ν)
E

{σx, σz}

σ̄xz =
2(1 + ν)

E
σxz c2 =

E

ρ(1 + ν)(1− 2ν)

(3.5)

Therefore, the heat equation and equations of motion are given by (dropping the prime for
convenience)

(
1 + τθ

∂

∂t

)(∂2θ
∂x2
+
∂2θ

∂z2

)
=
(
δ + τq

∂

∂t

)[∂θ
∂t
+

γ

ηK

∂

∂t

(∂u
∂x
+
∂w

∂z

)]

(1− ν)∂
2u

∂x2
+
1− 2ν
2

∂2u

∂z2
+
1
2
∂2w

∂x∂z
− αT0

∂θ

∂x
=
∂2u

∂t2

1
2
∂2u

∂x∂z
+
1− 2ν
2

∂2w

∂x2
+ (1− ν)∂

2w

∂z2
− αT0

∂θ

∂z
=
∂2w

∂t2

(3.6)

In addition, the stress components will be

{
σx
σz

}
=

[
1− ν ν
ν 1− ν

]


∂u

∂x
− αT0θ

∂w

∂z
− αT0θ





σxz =
∂w

∂x
+
∂u

∂z
(3.7)

4. Solution of the problem

To obtain the displacements, temperature and stresses of the beam, thermal and mechanical
boundary conditions must be satisfied. Firstly, the following simply-supported conditions are
imposed at the edges of the beam

σx(x, z, t) = 0 w(x, z, t) = 0 θ(x, z, t) = 0 at x = 0, L (4.1)
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The closed form solution of the governing and constitutive equations may be obtained by adap-
ting the supported-normal mode analysis as

{u,w, θ}(x, z, t) = {u∗(z) cos(µx), w∗(z) sin(µx), θ∗(z) sin(µx)}eωt (4.2)

where µ = π/L. The displacement and temperature components given in Eq. (4.2) are satisfying
the above boundary conditions on the edges of the beam. Then, Eqs. (3.6), after some elementary
manipulations, become

( d2

dz2
− c1

)
u∗ + c2

dw∗

dz
= c3θ∗

( d2

dz2
− c4

)
w∗ + c5

du∗

dz
= c6

dθ∗

dz
( d2

dz2
− c7

)
θ∗ = c8u∗ + c9

dw∗

dz

(4.3)

where the expressions ck are given by

c1 =
2[ω2 + µ2(1− ν)]

1− 2ν c2 =
µ

1− 2ν c3 =
2µαT0
1− 2ν

c4 =
2ω2 + µ2(1− 2ν)
2(1 − ν) c5 = −

µ

2(1− ν) c6 =
αT0
1− ν

c7 = µ2 +
(δ + τqω)ω
1 + τθω

c8 = −
(δ + τqω)γµω
(1 + τθω)ηK

c9 =
(δ + τqω)γω
(1 + τθω)ηK

(4.4)

In addition, the stresses are

{σx, σz} = {σ∗x(z), σ∗z (z)}eωt sin(µx) σxz = σ∗xz(z)e
ωt cos(µx) (4.5)

They are given by

{
σ∗x
σ∗z

}
=

[
1− ν ν
ν 1− ν

]

− µu∗ − αT0θ∗
dw∗

dz
− αT0θ∗



 σ∗xz = µw

∗ +
du∗

dz
(4.6)

Eliminating u∗(z) and w∗(z) in Eqs. (4.3), one obtains

( d6

dz6
−A1

d4

dz4
+A2

d2

dz2
−A3

)
θ∗(z) = 0 (4.7)

where

A1 = c1 + c4 + c7 + c2c5 + c6c9
A2 = c1(c4 + c7 + c6c9)− c3(c8 − c5c9) + c5(c2c7 + c3c9) + c4c7
A3 = c4(c1c7 − c3c8)

(4.8)

Now, Eq. (4.7) may be factorized as

( d2

dz2
− λ21

)( d2

dz2
− λ22

)( d2

dz2
− λ23

)
θ∗(z) = 0 (4.9)

where λ2j (j = 1, 2, 3) denote the roots of the characteristic equation

λ6 −A1λ4 +A2λ2 −A3 = 0 (4.10)
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They are given by

λ1,2 = ∓

√
i 3
√
A0
[(
1 + i

√
3
)
3
√
A0 − 4A1

]
+ 4

(
1− i
√
3
)
(A21 − 3A2)

2
√
3 6
√
A0

λ3,4 = ∓

√
3
√
A0
[
4A1 −

(
1− i

√
3
)
3
√
A0
]
− 4

(
1 + i
√
3
)
(A21 − 3A2)

2
√
3 6
√
A0

λ5,6 = ∓

√
3
√
A0
(
3
√
A0 + 2A1

)
+ 4(A21 − 3A2)√

6 6
√
A0

(4.11)

where i = −1 and

A0 = 8A31 − 36A1A2 + 108A3 +
√
3A21(4A1A3 −A22)− 6A2(9A1A3 − 2A22) + 81A23 (4.12)

The solution θ∗(z) of Eq. (4.7) is given by

θ∗(z) =
3∑

j=1

(
B1jeλjz +B2je−λjz

)
(4.13)

where Bkj (k = 1, 2) are arbitrary unknown complex constants connected with the boundary
conditions. In a similar manner, one gets

{u∗(z), w∗(z)} =
3∑

j=1

(
{B̂1j , B̌1j}eλjz + {B̂2j , B̌2j}e−λjz

)
(4.14)

where B̂kj and B̌kj are additional unknown constants. Substitution of Eqs. (4.13) and (4.14)
into Eqs. (4.3)1 and (4.3)2 gives

{B̂1j , B̂2j} = Uλj{B1j , B2j} {B̌1j , B̌2j} =Wλj{B1j ,−B2j} (4.15)

in which

Uλj =
c3(λ2j − c4)− c2c6λ2j

(λ2j − c1)(λ2j − c4)− c2c5λ2j
Wλj =

λj [c6(λ2j − c1)− c3c5]
(λ2j − c1)(λ2j − c4)− c2c5λ2j

(4.16)

Finally, the stress amplitudes are

σ∗x =
3∑

j=1

σxλj

(
B1jeλjz +B2je−λjz

)
σ∗z =

3∑

j=1

σzλj

(
B1jeλjz +B2je−λjz

)

σ∗xz =
3∑

j=1

σxzλj

(
B1jeλjz −B2je−λjz

) (4.17)

where

σxλj = −µ(1− ν)Uλj + νλjWλj − αT0 σzλj = −µνUλj + (1− ν)λjWλj − αT0 (4.18)

Now, the upper surface of the beam is considered to be thermally insulated and subjected
to a mechanical load while the bottom surface is traction free and subjected to a heating source
(Zenkour and Abouelregal, 2016). So, the beam is subjected to the following boundary conditions

θ
(
x,−h
2
, t
)
= θ0 sin(µx)eωt

∂θ

∂z

∣∣∣∣∣
z=+h

2

= 0

σz
(
x,−h
2
, t
)
= σxz

(
x,±h
2
, t
)
= 0 σz

(
x,
h

2
, t
)
= −σ0 sin(µx)eωt

(4.19)
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Substituting Eqs. (4.13), (4.14) and (4.17) into the above boundary conditions, one obtains six
linear equations in the following matrix form

βB = G (4.20)

where G = {θ0, 0, 0,−σ0, 0, 0}T and B = {B11, B12, B13, B21, B22, B23}T is the vector of con-
stants. The elements βlkj (l = 1, 2, . . . , 6) of the marix β are given by

β11j = e
−λj h2 β12j = e

λj
h
2 β21j = λjβ

1
2j β22j = −λjβ11j

β31j = β
4
2j = σ

z
λje
−λj h2 β32j = β

4
1j = σ

z
λje

λj
h
2

β51j = −β62j = σxzλj e−λj
h
2 β52j = −β61j = −σxzλj eλj

h
2

(4.21)

Solving the system of above equations to get values of the constants Bkj. So, this completes
the solution of the problem. Hence, one can easily obtains expressions for the dimensionless
quantities of temperature θ, displacements u and w, and stresses σ1 = σx, σ3 = σz and σ5 = σxz
in the present beam.

5. Numerical results

The thermoelastic coupling effect is presented here to get the temperature, displacements and
stresses. The material parameters used here are due to physical data of copper at T0 = 293K:
λ∗ = 7.76 · 1010 N/m2, µ∗ = 3.86 · 1010 N/m2, ρ = 8954kg/m3, Ce = 383.1 J/(kgK),
K = 386N/(sK), α = 1.78 · 10−5K−1).
It is to be noted that Young’s modulus E and Poisson’s ratio ν are given in terms of Lamé’s

constants λ∗ and µ∗ by

E =
µ∗(3λ∗ + 2µ∗)

λ∗ + µ∗
ν =

λ∗

2(λ∗ + µ∗)
(5.1)

The length-to-thickness ratio of the beam is fixed at L/h = 5 and the angular frequency
ω = ω0 + iζ. All plots are prepared by using the real values of the dimensionless variables
defined in Eq. (3.5) for a wide range of the beam length and thickness. The computations
are carried out for different values of time and delay time parameters τθ and τq. Once again,
the directions of the beam are given in terms of the length and thickness of the beam, that
is x̄ = x/L and z̄ = z/h (the prime is dropped in the figures for convenience). Figures 2-7
compare the results obtained for temperature, displacements and stresses against the x and z
directions when t = 0.3. The variation of the field quantities versus the time parameter are also
presented in Figs. 8-10. The graphs represent curves predicted by the CTE, L-S and G-N models
of thermoelasticity obtained as special cases of the present general DPL model. The results of
the CTE model (τθ = τq = 0, δ = 1), the L-S model (τθ = 0, τq = 0.05, δ = 1), the G-N model
(τθ = 0, τq = 0.05, δ = 0), and the DPL model (τθ = 0.02 < τq = 0.05, δ = 1) are all presented.
Also, other parameters are fixed at θ0 = 0.5, ω0 = 2, ζ = −1, and two values are considered for
the intensity of the applied load, namely σ0 = 0.5 and σ0 = 1.
Figure 2a shows the variation of the dimensionless temperature θ along the axial direction

at the upper surface z = 0.5 of the beam. The behavior of all models may be the same with
different amplitudes. The absolute maximum temperature occurs at the center of the beam. For
the two load cases, the temperature of the L-S model is positive for σ0 = 0.5 while it changes to
negative for σ0 = 1. The DPL model gives the largest temperatures while L-S model gives the
smallest ones.
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Figure 2b shows the variation of the dimensionless axial displacement u along the axial
direction at the mid-plane z = 0 of the beam. The axial displacement, as expected, vanishes at
the center of the beam for all models. The CTE model gives the smallest axial displacements at
the first edge of the beam and the smallest ones at the second edge. However, the DPL model
gives the largest axial displacements at the first edge of the beam and the smallest ones at the
second edge. The behavior of the L-S model may be unchanged for the two cases of lateral loads.

Fig. 2. Distribution of temperature θ (a) and of axial displacement u (b) in the axial direction for two
load parameters

Figure 3a shows the variation of the transverse displacement w along the axial direction at
the middle surface z = 0. Each model gives different behavior of w along the axial direction of
the beam. The maximum (minimum) deflection occurs at the center of the beam for the L-S
model (CTE model) in the two cases σ0 = 1 and σ0 = 0.5.
Figure 3b shows the variation of the dimensionless axial stress σ1 along the axial direction

at the upper surface z = 0.5 of the beam. The absolute maximum axial stress σ1 occurs at the
center of the beam (x = 0.5). For the first loaded beam (σ0 = 0.5), the axial stress σ1 of the G-N
model only still positive while other models give negative axial stresses along the axial direction
for the two loaded beams.
Figure 4a shows the variation of the dimensionless normal stress σ3 along the axial direction

at the upper surface z = 0.5 of the beam. All of the transverse normal stresses are compressive
due to different models. The DPL model gives the smallest normal stress when σ0 = 1 and the
largest ones when σ0 = 0.5.
Figure 4b shows the variation of the dimensionless transverse shear stress σ5 along the axial

direction at the mid-plane z = 0 of the beam. The shear stresses vanish at the center of the axial
direction according to all models. The shear stresses for σ0 = 0.5 are much smaller than those
for σ0 = 1. The DPL and L-S models give tensile shear stresses at the first edge and compressive
shear stresses at the second edge of the beam for both σ0 = 0.5 and σ0 = 1. Also, the CTE
model gives compressive shear stresses at the first edge and tensile shear stresses at the second
edge of the beam for both σ0 = 0.5 and σ0 = 1. However, the G-N model gives compressive
shear stress at the first edge and tensile shear stresses at the second edge of the beam for σ0 = 1
and vice versa for σ0 = 0.5.



A generalized thermoelastic dual-phase-lagging response of thick beams... 23

Fig. 3. Distribution of transverse deflection w (a) and of axial stress σ1 (b) in the axial direction for two
load parameters

Fig. 4. Distribution of transverse normal stress σ3 (a) and of transverse shear stress σ5 in the axial
direction for two load parameters

Figure 5a shows the through-the-thickness variation of the dimensionless temperature θ at
the center x = 0.5 of the beam. The maximum temperature occurs at the upper face of the beam
according to all models due to thermal conditions. The temperature for the CTE model may
change through the beam thickness with a very small magnitude comparing to other models. All
models, as expected, have the same temperature at the bottom surface of the beam. However,
the DPL and L-S models give, respectively, the largest and smallest temperature at the upper
surface of the beam.
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Figure 5b shows the through-the-thickness variation of the axial displacement u at the first
edge x = 0 of the beam under various loads. All models give different behavior of the axial
displacements. The axial displacements for the DPL model are positive, and for the CTE and
G-N models are negative.

Fig. 5. Distribution of temperature θ (a) and of axial displacement u (b) in the thickness direction for
two load parameters

Fig. 6. Distribution of transverse deflection w (a) and of axial stress σ1 (b) in the thickness direction for
two load parameters

Figure 6a shows the through-the-thickness variation of the dimensionless transverse displa-
cement w at the center x = 0.5 of the beam. The deflections due to the DPL and L-S models
may be closed to each other. All models may exhibit different behavior through-the-thickness of
the beam.
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Figure 6b shows the through-the-thickness variation of the dimensionless axial stress σ1 at
the center of the beam x = 0.5. The DPL model gives axial stresses more different than those
of other models. The axial stresses due to the L-S, G-N and CTE are close to each other. The
axial stresses for the DPL when σ0 = 0.5 are greater than those of the DPL model when σ0 = 1.
This is not the same for other models.

Figure 7a shows the through-the-thickness variation of the dimensionless normal stress σ3 at
the center of the beam x = 0.5. All models are very sensitive to the variation of the used load.

Figure 7b shows the through-the-thickness variation of the dimensionless transverse shear
stress σ5 at the first edge x = 0 of the beam. All models are very sensitive to the variation of the
used load, especially in the DPL model. The DPL model gives the smallest compressive stress
near the mid-plane of the beam at z = −0.16 and tensile axial stress at z = −0.16.

Fig. 7. Distribution of transverse normal stress σ3 (a) and of transverse shear stress σ5 in the thickness
direction for two load parameters

Figure 8a shows the variation of the dimensionless temperature θ versus the time parameter
at the center (x = 0.5 and z = 0) of the beam. The behavior of all models may be different.
The sign of temperature for all models (except the G-N model) may be changed from positive
to negative. At t = 1.5, the CTE model gives the smallest temperature and the G-N model gives
the largest temperature for σ0 = 1. Also, temperatures for the G-N (L-S) model are directly
increasing (decreasing) as t increases. Otherwise, the temperatures are no longer increasing and
have their maximum at different values of the time parameter.

Figure 8b shows the variation of the dimensionless axial displacement u versus the time
parameter at the first edge x = 0 of the mid-plane z = 0 of the beam under two different
loads. The axial displacement for the DPL (G-N) model are directly increasing (decreasing) as
t increases for the two cases σ0 = 0.5 and σ0 = 1. The axial displacement for the CTE model
are directly increasing as t increases for σ0 = 0.5 and decreasing as t increases for σ0 = 1.

Figure 9a shows the variation of the transverse displacement w versus the time parameter
at the center (x = 0.5 and z = 0) of the beam. The deflections for the L-S model are directly
increasing as t increases for the two cases σ0 = 0.5 and σ0 = 1. However, the deflections for the
other models are directly decreasing as t increases for the two cases σ0 = 0.5 and σ0 = 1.
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Fig. 8. Variation of temperature θ (a) and of axial displacement u (b) versus the time parameter for two
load parameters

Figure 9b shows the variation of the dimensionless axial stress σ1 versus the time parameter
at the center x = 0.5 of the upper surface z = 0.5 of the beam. The axial stress for the G-N
(DPL) model are directly increasing (decreasing) as t increases for the two cases σ0 = 0.5 and
σ0 = 1. The axial stress for the CTE model are directly decreasing as t increases for σ0 = 0.5.

Fig. 9. Variation of transverse deflection w (a) and of axial stress σ1 (b) versus the time parameter for
two load parameters

Figure 10a shows the variation of the dimensionless normal stress σ3 versus the time para-
meter at the center x = 0.5 of the upper surface z = 0.5 of the beam. Most transverse normal
stresses are no longer decreasing, and finally increase as t increases. For σ0 = 0.5, σ3 in the DPL
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model is directly increasing with an increase in the time parameter while σ3 for the CTE model
is directly decreasing.
Figure 10b shows the variation of the dimensionless transverse shear stress σ5 versus the

time parameter at the first edge of the mid-plane (x = 0, z = 0) of the beam. The shear stresses
for the L-S (G-N) model are increasing (decreasing) as t increases for σ0 = 1 and σ0 = 0.5. For
σ0 = 0.5, σ5 for the DPL (CTE) model is decreasing (increasing) as t increases. For σ0 = 1,
σ5 for the DPL model is no longer increasing and its maximum is at t = 1.1, and then it is
decreasing again while σ5 for the CTE model is decreasing as t increases.

Fig. 10. Variation of transverse normal stress σ3 (a) and of transverse shear stress σ5 (b) versus the
time parameter for two load parameters

For the sake of completeness and comparison, some plots for the filed quantities are displayed
through-the-thickness of the beam using the DPL model only. Here, the upper surface of the
beam is considered to be thermally insulated and subjected to a mechanical load while the bot-
tom surface is subjected to both mechanical load and heating source. So, the beam is subjected
to the following boundary conditions

θ
(
x,−h
2
, t
)
= θ0 sin(µx)eωt

∂θ

∂z

∣∣∣∣∣
z=+h

2

= 0

σ5
(
x,±h
2
, t
)
= 0 σ3

(
x,−h
2
, t
) {

σ3
(
x,
h

2
, t
)}
= {−σ̄0, σ̄0} sin(µx)eωt

(5.2)

In this case, the initial temperature and stresses are fixed as θ0 = 1, σ̄0 = 0.25 and σ̄0 = 0.75.
Figure 11a shows the through-the-thickness variation of the dimensionless temperature θ at the
center x = 0.5 of the beam according to different time parameters. The temperature increases
with an increase in z and t. Figure 11b shows the through-the-thickness variation of the axial
displacement u at the first edge x = 0 of the beam according to different time parameters. The
axial displacement is very sensitive to variation of the time parameter. The magnitude of the
axial displacement wave is increasing as t increases.
Figure 12a shows the through-the-thickness variation of the dimensionless transverse displa-

cement w at the center x = 0.5 of the beam according to different time parameters. Also, the
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Fig. 11. Distribution of temperature θ (a) and of axial displacement u (b) through-the-thickness of the
beam at different time parameters

Fig. 12. Distribution of transverse deflection w (a) and of axial stress σ1 (b) through-the-thickness of
the beam at different time parameters

deflection is very sensitive to variation of the time parameter. The magnitude of the deflection
wave is increasing as t increases. Figures 12b and 13a show the through-the-thickness variation
of the dimensionless axial stress σ1 and the transverse normal stress σ3 at the center x = 0.5
of the beam according to different time parameters. The stresses themselves are decreasing as
t increases while the magnitudes of their waves are increasing. Finally, Figure 13b shows the
through-the-thickness variation of the dimensionless transverse shear stress σ5 at the first edge
x = 0 of the beam according to different time parameters. The shear stress is very sensitive to
variation of the time parameter. The magnitude of the transverse shear stress wave is increasing
as t increases.
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Fig. 13. Distribution of σ3 (a) and σ5 (b) through-the-thickness of the beam at different time parameters

6. Conclusions

The exact presentations of temperature, displacements and stresses in the axial and thickness
directions of a generalized thermoelastic beam are considered in this article. The model of gene-
ralized thermoelasticity with dual-phase-laggings is constructed and other known thermoelastic
models may be considered as special cases. The exact 2D general solution is applied to the
present beam subjected to various heating sources or thermomechanical loads. The compari-
sons are shown along the axial and thickness directions of the beam. The field quantities are
very sensitive to the applied thermal and mechanical loads and variation of the time parameter.
The method used here may be applicable to a wide range of problems in thermodynamics and
thermoelasticity. The numerical results presented here may be considered as more general in
the sense that they include exact analysis of different field quantities. It is concluded from the
graphical results presented here that the effect of dual-phase-lag parameters plays a significant
role on all the physical quantities. Some models may fail to treat the thermoelastic response of
many structures.
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A coupling model between turbine blades with a varying rotating speed and oncoming vor-
tices is constructed, where the coupling of the structure and the fluid is simulated by the van
der Pol oscillation. Partial differential governing equations of motions for the coupled system
are obtained and discretized by using the Galerkin method. The 1:2 subharmonic resonance
and the 1:1 internal resonance are investigated with the multiple scale method and first-order
averaged equations are then derived. Nonlinear responses and bifurcation characteristics are
studied by a numerical integration method. Stability of bifurcation curves is determined
by utilizing the Routh-Hurwitz criterion. The effect of system parameters including the
detuning parameter, steady-state rotating speed, amplitude of periodic perturbation for the
rotating speed and freestream velocity on vibration responses are investigated.
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1. Introduction

The blade is an important component in the turbomachinery, such as gas axial compressors,
wind turbines, aero-engine turbines, etc. Rotating blades are subjected to high centrifugal and
aerodynamic loads which can lead to aeroelastic problems of the blades, like flutter and vortex-
-induced vibrations (Gostelow et al., 2006). To keep safe running of the turbomachinery, analysis
of the dynamic response characteristics is of importance for the blade design.
Owing to a variety of engineering applications, dynamic analysis of rotating blades has re-

ceived broad interest. Transverse and rotational motion as well as control of vibrations for a
rotating uniform Euler-Bernoulli beam were studied by Yang et al. (2004). In addition, the ear-
ly research that focused on the problem of rotating nonconstant speed was done in the work
by Kammer and Schlack (1987). Nonlinear vibration of a variable speed rotating beam was
studied by Younesian and Esmailzadeh (2010), where the influence of various parameters was
investigated. The nonlinear dynamic response of a rotating blade with varying rotating speed
was investigated by Yao et al. (2012), and the results showed that the dynamic responses of the
rotating blade changed from periodic motions to chaotic motions with different rotating speeds.
Nonlinear oscillations and steady-state responses of a rotating compressor blade with varying ro-
tating speed were investigated by Yao et al. (2014). Staino and Basu (2013) formulated a multi-
-modal flexible wind turbine model with variable rotor speed by using a Lagrangian approach,
and anlysed the effect of the rotational speed on the edgewise vibration of the blades. The
equations of motion of a rotating composite Timoshenko beam were derived in the study of
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Georgiades et al. (2014), and the results showed that the variable rotating speed as well as a
nonzero pitch angle have important effects on the system dynamics. A more accurate nonlinear
model of a rotating cantilever beam was proposed by Kim and Chung (2016). Geometrically
nonlinear vibrations of beams with properties periodically varying along the axis were investiga-
ted by Domagalski and Jędrysiak (2016). A new model for a spinning beam under deployment
was proposed and the dynamic responses and characteristics were analyzed by Zhu and Chung
(2016). The study of forced nonlinear vibrations of a simply supported Euler-Bernoulli beam
resting on a nonlinear elastic foundation with quadratic and cubic nonlinearities was carried out
by Shahlaei-Far et al. (2016) with the homotopy analysis method. Vibration of a rotating beam
with variable speed/acceleration has been controlled by using the sandwich beam filled with
an ER fluid (Wei et al., 2006). Moreover, Warmiński and Latalski (2016) applied a nonlinear
saturation control strategy to suppress vibration of the rotating hub-beam structure.
The vortex-induced vibration of a rotating blade with the steady-state rotating speed was

investigated by Wang et al. (2016c), where the time-varying characteristic of the vortex shed-
ding was represented by a van der Pol oscillator. Moreover, the van der Pol oscillator has been
introduced as a reduced model in a number of articles to model the time-varying characteri-
stics of the fluid (Hartlen and Currie, 1970; Barron and Sen, 2009; Hemon, 1999; Gabbai and
Benaroya, 2005; Wang et al., 2016a) or the fluid-structure interaction (Barron, 2010; Lee et al.,
2006; Facchinetti et al., 2004; Keber and Wiercigroch, 2008; Wang et al., 2016b) according to
experimental and numerical studies. In addition, the effect of structural vibration on the mo-
tion of the fluid was also investigated in the above articles. Under different air flow conditions,
the dynamic behaviour of the blades becomes very complex when the rotating speed is time-
-varying, which could convert to a nonlinear system with the coupling of parametric-excitation
and self-excitation.
The motivation of this paper is to investigate the dynamic response and bifurcation cha-

racteristics of blades with varying rotating speed. The coupling model of the blade with the
varying rotating speed and the time-varying flows is derived based on the results by Wang et
al. (2016c). The analysis of the 1:2 subharmonic resonance and 1:1 internal resonance is carried
out with the multiple scale method. Four-dimensional nonlinear averaged equations are then
derived. Bifurcation curves are obtained and the effect of the system parameters on dynamic
responses are discussed in detail.

2. Modeling

2.1. Modeling of the coupling for the structure and vortices

The blade with length r and varying rotating speed Ω is assumed as a continuous uniform
straight cantilever beam based on the Euler-Bernoulli formulation in the centrifugal force field
as shown in Fig. 1.

Fig. 1. A beam with varying rotating speed

Similar to the derivation process of formulas in the study by Wang et al. (2016c), the go-
verning equation of transverse motion of a uniform cantilever beam with varying rotating speed
can be obtained as follows
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EI
∂4w(x, t)
∂x4

+ m̃
∂2w(x, t)
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∂w(x, t)
∂t

= Ff − ρAΩ2x
∂w(x, t)
∂x

+
1
2
ρAΩ2(r2 − x2)∂

2w(x, t)
∂x2

(2.1)

where w(x, t) denotes the transverse displacement of the blade, EI is the flexural rigidity of the
structure, c̃ is the viscous damping coefficient, m̃ = (ρ+ ρf )A is the total mass of the structure
and fluid, ρ and ρf are densities of the structure and air flow, respectively, A is the area of the
cross-section of the cantilever beam, Ff = 0.5ρfU2DCL(x, t) is the lift force effecting the blade
and induced by the vortex, U =

√
V 2 + (Ωx)2 is the total velocity, V is the freestream velocity,

D denotes characteristic length of the cross-section of the beam. Here, the varying rotating
speed is expressed as Ω = Ω0 + Ω1 cosωt, representing the periodic perturbation Ω1 cosωt on
the steady-state rotating speed Ω0.
Letting v(x, t) = w(x, t)/D, z = x/r, Eq. (2.1) can be rewritten as
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2v(z, t)
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(2.2)

with the boundary conditions v(0, t) = 0, v′(0, t) = 0, v′′(1, t) = 0, v′′′(1, t) = 0, where
ω0 =

√
EI/(m̃r4), ζ = c̃/m̃ is the damping ratio, q(z, t) = 2CL/CL0 represents a time-varying

variable of the vortical flows, CL0 is the reference lift coefficient.
Similarly, the van der Pol oscillator is applied to simulate time-varying characteristics of the

vortices as follows

∂2q(z, t)
∂t2

+ sωf [q2(z, t) − 1]
∂q(z, t)
∂t

+ ω2fq(z, t) =M
∂2v(z, t)
∂t2

(2.3)

where ωf is the shedding frequency of the vortex, s is the van der Pol damping coefficient,
M is the linear coupling parameter representing the impact of structural vibration on the fluid
motion.

2.2. The Galerkin discretization of the coupled system

Discretization of partial differential equations (2.2) and (2.3) into a finite-dimensional system
is done according to the study by Clough and Penzien (2003), Wang et al. (2016c), letting

v(z, t) =
∞∑

i=1

vi(t)ṽi(z) (2.4)

represent an arbitrary oscillation of the structure and

q(z, t) =
∞∑

i=1

qi(t)q̃i(z) (2.5)

denote an arbitrary oscillation of the vortical flows.
The modal functions of the structure and the fluid are expressed as those used in the study

of Wang et al. (2016c), that is

ṽi(z) = cosh(βiz)− cos(βiz)−
cosh βi + cos βi
sinhβi + sin βi

[sinh(βiz)− sin(βiz)] (2.6)

and

q̃i(z) = sin(iπz) i = 1, 2, . . . (2.7)
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where βi (i = 1, 2, . . .) satisfy the equation cos β cosh β + 1 = 0 that is obtained from the
boundary conditions for the cantilever beam.
Repeating the discretization process again, the first mode motion of the structure and fluid

can be derived as follows

d2v1(t)
dt2

+ ζ
dv1(t)
dt
+ ω20β

4
1v1(t) + a(Ω0 +Ω1 cosωt)

2v1(t)

= [b+ d̃(Ω0 +Ω1 cosωt)2]q1(t)

d2q1(t)
dt2

+ sωf
[3
4
q21(t)− 1

]dq1(t)
dt
+ ω2fq1(t) =M

d2v1(t)
dt2

(2.8)

where

a =
ρA

2m̃
2
∫ 1
0
dṽ1(z)
dz ṽ1(z)z dz −

∫ 1
0
d2ṽ1(z)
dz2 (1− z2)ṽ1(z) dz∫ 1

0 ṽ
2
1(z) dz

b =
CL0ρfV

2

4m̃

∫ 1
0 q̃1(z)ṽ1(z) dz∫ 1
0 ṽ
2
1(z) dz

d̃ =
CL0ρfr

2

4m̃

∫ 1
0 q̃1(z)ṽ1(z)z

2 dz
∫ 1
0 ṽ
2
1(z) dz

Equations (2.8) model the interactions between the vortical flows and the structure, which
is also a Mathieu-van der Pol type oscillation.

3. Analysis with the multiple scale method

The research by Hao and Cao (2015), Hao et al. (2016) showed that nonlinear systems can
present rich dynamic characteristics when the resonance occurs, like the primary resonance,
superharmonic/subharmonic resonance as well as the internal resonance, etc. The multiple scale
method is often utilized to understand qualitative characteristics of the system which present
resonant conditions (Nayfeh and Mook, 1979).
Introducing the scaling parameters ζ → εζ, CL0 → εCL0, s→ εs, Ω1 → εΩ1, M → εM into

Eqs. (2.8), one can obtain

d2v1(t)
dt2

+ εζ
dv1(t)
dt
+ ω2sv1(t) + a(ε

2Ω21 cos
2 ωt+ 2εΩ0Ω1 cosωt)v1(t)

=
[
εb+ εd̃(Ω0 + εΩ1 cosωt)2

]
q1(t)

d2q1(t)
dt2

+ εsωf
[3
4
q21(t)− 1

]dq1(t)
dt
+ ω2fq1(t) = εM

d2v1(t)
dt2

(3.1)

where ωs =
√
ω20β

4
1 + aΩ

2
0 denotes the uncoupled natural frequency of the first-order mode of

the beam.
Considering the possible 1:1 internal resonance between the structure and the fluid as well

as the 1:2 subharmonic resonance conditions, the relations of frequencies can be expressed as
ω = 2ωs + εσ, ωf = ωs + εσ1, where σ, σ1 are the detuning parameters, respectively.
Assume the approximate form of the solutions as shown in the following

v1(t) = v10(T0, T1) + εv11(T0, T1) + . . .

q1(t) = q10(T0, T1) + εq11(T0, T1) + . . .
(3.2)

Substituting solutions (3.2) into Eqs. (3.1) and equating the coefficients of like powers of ε, one
can obtain:
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— order ε0

D20v10(T0, T1) + ω
2
sv10(T0, T1) = 0

D20q10(T0, T1) + ω
2
fq10(T0, T1) = 0

(3.3)

— order ε1

D20v11(T0, T1) + 2D0D1v10(T0, T1) + ω
2
sv11(T0, T1) = bq10(T0, T1) + d̃Ω

2
0q10(T0, T1)

− ζD0v10(T0, T1)− 2av10(T0, T1)Ω0Ω1 cosωt
D20q11(T0, T1) + 2D0D1q10(T0, T1) + ω

2
fq11(T0, T1) =MD20v10(T0, T1)

− sωf
[3
4
q210(T0, T1)− 1

]
D0q10(T0, T1)

(3.4)

where

d

dt
= D0 + εD1 + ε2D2 + . . .

d2

dt2
= D20 + 2εD0D1 + . . . Dn =

∂

∂Tn

General solutions to Eqs. (3.3) can be obtained in the complex form

v10 = A(T1)eiωsT0 +A(T1)e−iωsT0

q10 = B(T1)eiωfT0 +B(T1)e−iωfT0
(3.5)

Substituting (3.5) into Eqs. (3.4) and considering the resonance conditions yields

D20v11 + ω
2
sv11 = bBe

i(ωsT0+σ1T1) + d̃Ω20Be
i(ωsT0+σ1T1) − iζωsAeiωsT0

− aΩ0Ω1
[
Aei(ω+ωs)T0 +Aei(ωsT0+σT1)

]
− 2iωsD1AeiωsT0 + c.c.

D20q11 + ω
2
fq11 = −Mω2sAe

i(ωf−εσ1)T0 − 2iωfD1BeiωfT0

− isω2f
[3
4
B3e3iωfT0 +

(3
4
BB − 1

)
BeiωfT0

]
+ c.c.

(3.6)

where c.c. stands for the complex conjugate of the proceeding terms.
The solvability conditions of Eqs. (3.6) can be obtained by equating the coefficients of secular

terms to zero, which reads

bBeiσ1T1 + d̃Ω20Be
iσ1T1 − iζωsA− aΩ0Ω1AeiσT1 − 2iωsD1A = 0

−Mω2sAe
−iσ1T1 − isω2f

(3
4
BB − 1

)
B − 2iωfD1B = 0

(3.7)

The derivatives of amplitudes A and B with respect to T1 can be obtained by Eqs. (3.7), that is

D1A =
1
2ωs

[
−ibBeiσ1T1 − id̃Ω20Beiσ1T1 − ζωsA+ iaΩ0Ω1AeiσT1

]

D1B =
1
2ωf

[
iMω2sAe

−iσ1T1 − sω2f
(3
4
BB − 1

)
B
] (3.8)

Assume that the functions A and B are expressed in polar co-ordinates, which reads

A(T1) =
a1(T1)
2
eiθ1(T1) B(T1) =

a2(T1)
2
eiθ2(T1) (3.9)
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where ak, θk (k = 1, 2) represent the amplitudes and phase angles of the responses, respectively.
The first-order averaged equations can be obtained after separating the real and imaginary parts
by substituting (3.9) into Eqs. (3.8), that is

a′1 =
1
2ωs
[(b+ d̃Ω20t)a2 sinϕ− ζωsa1 − aΩ0Ω1a1 sinφ]

θ′1 =
1
2a1ωs

[−(b+ d̃Ω20)a2 cosϕ+ aΩ0Ω1a1 cosφ]

a′2 =
1
2ωf

[
Mω2sa1 sinϕ− sω2f

( 3
16
a22 − 1

)
a2
]

θ′2 =
1
2a2ωf

Mω2sa1 cosϕ

(3.10)

where (′) denotes the derivatives with respect to T1 and ϕ = θ2 + σ1T1 − θ1, φ = σT1 − 2θ1.
The derivatives of ϕ and φ with respect to T1 can be derived by eliminating θ1 and θ2 from

Eqs. (3.10)2,4

ϕ′ =
Mω2sa1 cosϕ
2a2ωf

+ σ1 +
(b+ d̃Ω20)a2 cosϕ− aΩ0Ω1a1 cosφ

2a1ωs

φ′ = σ +
(b+ d̃Ω20)a2 cosϕ− aΩ0Ω1a1 cosφ

a1ωs

(3.11)

The equilibrium solutions of Eqs. (3.10)1,3 and (3.11) correspond to periodic motions of the
coupled system. The steady-state solutions for system (2.8) can be obtained when assuming
a′1 = 0, a

′
2 = 0, ϕ

′ = 0, φ′ = 0.

4. The nonlinear response and bifurcation analysis with different system
parameters

The research of Facchinetti et al. (2004), Keber and Wiercigroch (2008), Wang et al. (2016c)
showed that during the interaction process of the fluid and structure, the structural motion can
affect formation of the fluid as well. Therefore, the effects of the system parameters including
the detuning parameter σ, steady-state rotating speed Ω0 and the amplitude of periodic pertur-
bation Ω1 as well as freestream velocity V on the amplitudes and phase angles of the responses
under different coupling parameters M are investigated. The bifurcation curves are computed
and stability is determined by examining the eigenvalues of the corresponding characteristic
equation to Eqs. (3.10)1,3 and (3.11).
Figures 2 and 3 show the varying trends of the amplitudes a1 and a2 and phase angles

ϕ and φ (mod T ) with respect to the detuning parameter σ for the coupling parameters
M = 0.1, 0.2, 0.3, respectively. The other parameters are fixed at A = 4.2 · 10−4m2,
ρ = 7800 kg/m3, ρf = 1.225 kg/m3, EI = 300Nm, V = 110m/s, Ω0 = 350 rad/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6Ns/m, CL0 = 0.01, ωf = 552.64 rad/s, s = 0.03,
respectively.
It can be seen from Figs. 2a,b and 3a,b that as the detuning parameter σ increases, the

trivial solutions of the amplitudes a1, a2 and the phase angles ϕ, φ jump to large two-mode
solutions via a saddle-node bifurcation at SN1, leading to the occurrence of a stable and an
unstable solution. Similarly, as the dutuning parameter σ decreases, the trivial solutions of
the amplitudes a1 and a2 and the phase angles ϕ, φ become other two-mode solutions via a
saddle-node bifurcation at SN2, resulting in a stable and an unstable solution, respectively.
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Fig. 2. Frequency-response curves of the amplitude a1 and the phase angle ϕ of the structure with
respect to the detuning parameter σ

Fig. 3. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
detuning parameter σ

Figures 2a and 3a show that the amplitudes a1 and a2 have the same varying trends with
respect to the varying detuning parameter. The phase angles ϕ and φ have the opposite varying
trends with respect to the varying detuning parameter, which means that there is transformation
between the two vibration modes. In addition, Figs. 2 and 3 show that the absolute value of σ
for the critical bifurcation increases and the amplitudes as well as the period of the steady-state
solutions can be increased as the coupling parameter M increases.
Figures 4 and 5 show the varying trends of the responses with respect to the steady-state ro-

tating speed Ω0 for the coupling parametersM = 0.1, 0.2, 0.3, respectively. The other parameters
are fixed at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m3, EI = 300Nm,V=110m/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6Ns/m, CL0 = 0.01, ωf = 552.64 rad/s, s = 0.03,
σ = 0.01, respectively.
It can be seem from Figs. 4 and 5 that the trivial solution jumps to large solutions via

a saddle-node bifurcation, resulting in the occurrence of a two-mode solution consisting of a
stable solution and an unstable one. Figure 4a shows that the steady-state solutions of the
amplitude a1 decrease as the steady-state rotating speed Ω0 increases, which indicates that the
increasing of the steady-state rotating speed can suppress the large-amplitude vibrations of the
structure. Figure 5a shows that the steady-state solutions of the amplitude a2 increase as the
steady-state rotating speed Ω0 increases, which displays an inverse varying trend of the responses
comparing with those for the amplitude a1. By comparison, the stable and unstable solutions
for the phase angle ϕ as shown in Fig. 4b increase simultaneously as the steady-state rotating
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Fig. 4. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
steady-state rotating speed Ω0

Fig. 5. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
steady-state rotating speed Ω0

speed Ω0 increases while the stable solutions of the phase angle φ decrease and the unstable one
increases when the steady-state rotating speed Ω0 increases, as shown in Fig. 5b. Moreover, the
critical steady-state rotating speed can decrease for the saddle-node bifurcation as the coupling
parameter M increases, that is: Ω0 = 257.9793 rad/s for M = 0.1, Ω0 = 146.8258 rad/s for
M = 0.2, Ω0 = 101.3993 rad/s forM = 0.3, respectively. In addition, an increase in the coupling
parameter M can increase the amplitudes a1 and a2 of the responses. It can be illustrated from
system (2.8) that the increasing of the coupling parameter M can excite large vibrations of the
fluid, which can in turn promote the oscillations of the structure.
Figures 6 and 7 show the bifurcation characteristics of the system responses with respect to

the amplitude Ω1 of the periodic perturbation for different coupling parameters M . The other
parameters are fixed at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m3, EI = 300Nm,
V = 110m/s, Ω0 = 350 rad/s,D = 0.1m, r = 0.3m, c̃ = 6Ns/m, CL0 = 0.01, ωf = 552.64 rad/s,
s = 0.03, σ = 0.01, respectively.
It can be seen from Figs. 6 and 7 that the trivial solution jumps to the large solution via

a saddle-node bifurcation (SN), leading to the occurrence of a two-mode solution including a
stable solution and an unstable one as the parameter Ω1 increases. Figures 6a and 7a display that
the varying trends of the amplitudes a1 and a2 with respect to the parameter Ω1 are the same to
each other, that is, the stable solutions of the amplitudes a1 and a2 increase as Ω1 increases while
the unstable solutions decrease as Ω1 increases. In comparison, the stable and unstable solutions
of the phase angles ϕ and φ have the opposite varying trend. In addition, the increasing of the
coupling parameter M can make the critical bifurcation value of the parameter Ω1 smaller, that
is, Ω1 = 0.0674 rad/s for M = 0.1, Ω1 = 0.0383 rad/s for M = 0.2 and Ω1 = 0.0286 rad/s for
M = 0.3, respectively.
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Fig. 6. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
amplitude Ω1 of the periodic perturbation

Fig. 7. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
amplitude Ω1 of the periodic perturbation

Figures 8 and 9 display the varying trends of the responses with respect to the freestream
velocity V under different values of the coupling parameter M . The other parameters are fixed
at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m3, EI = 300Nm, Ω0 = 350 rad/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6N s/m, CL0 = 0.01, s = 0.03, σ = 0.01, respectively.

Fig. 8. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
freestream velocity V

It can be seen from Figs. 8 and 9 that the trivial solution jumps to a large solution via a
saddle-node bifurcation as the freestream velocity V increases, resulting in the occurrence of a
two-mode solution consisting of a stable solution and an unstable one. The stable and unstable
solutions of the amplitudes a1 and a2 increase when the freestream velocity V increases, as shown
in Figs. 8a and 9a which present the similar varying trends for the solutions of the amplitudes
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Fig. 9. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
freestream velocity V

a1 and a2. Figures 8b and 9b indicate the opposite varying trends for the stable solutions of the
phase angles ϕ and φ, namely, the solution of the phase angle ϕ increases while the solution of
the phase angle φ decreases as the freestream velocity V increases. Similarly, the increasing of
the coupling parameter M can decrease the critical freestream velocity V for the saddle-node
bifurcation of the responses.

5. Conclusions

The dynamic responses and bifurcation characteristics of turbine blades under variable rotating
speed have been investigated, where the rotating blade was modeled as a cantilever beam and
the effect of the oncoming vortices was represented as the van der Pol oscillation. And the
acceleration coupling was considered to simulate the influence of the vibration of the beam on
the van der Pol oscillation. The first-order mode vibrations of the coupled system were obtained
by the Galerkin discretization. The 1:2 subharmonic resonance and the 1:1 internal resonance for
the coupled system were studied by using the multiple scale method. The averaged equations were
derived and the bifurcation curves were computed. Effects of the system parameters including
the dutuning parameter σ, the steady-state rotating speed Ω0, the amplitude Ω1 of the periodic
perturbation as well as the freestream velocity V on the responses were investigated.
The phenomenon of saddle-node bifurcation was found to occur under certain parameter

conditions. The bifurcation analysis indicates that the increasing of the coupling parameter M
can delay the saddle-node bifurcation of the responses with respect to the detuning parameter
while the increasing of the coupling parameter M can make the saddle-node bifurcation occur
earlier for the responses with respect to the steady-state rotating speed Ω0, the amplitude Ω1
of the periodic perturbation as well as the freestream velocity V . Moreover, the increasing of
the steady-state rotating speed can suppress large vibration of the structure. The amplitudes
of vibrations of the structure and fluid can be increased as the freestream velocity V increases.
The opposite varying trends for the amplitudes and phase angles with respect to the system
parameters indicate the energy transfer between the vibrations of the fluid and the structure.
The results can help one to understand the interaction of the fluid and the structure.
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The paper presents the method for the optimal synthesis of four-link mechanism generating
open/closed paths with time prescription. Although the method is suitable for both closed
and open paths, it enables decreasing the number of design parameters describing dimen-
sions, orientation and position of a path generator. Compared to the methods presented in
the references, this is a one-phase synthesis method; although the number of design para-
meters is reduced, the method does not require affine transformations to be performed on
the synthesised mechanism. The effectiveness of the method is discussed based on examples
of three paths, with two taken from the literature.

Keywords: path synthesis, evolutionary algorithm, four-bar linkage

1. Introduction

Recent literature reveals a great variety of problems related to the path synthesis in which di-
mensions of a mechanism are sought, the point of which traces a desired path. This diversification
may be classified with respect to:

1. Methods of solutions: analytical, computer (deterministic, heuristic).

2. Formulation of the problem: closed- or open-path synthesis, path synthesis with or without
timing, one- or two-phase path synthesis.

3. Type of method: direct or indirect synthesis method (based on an atlas of coupler curves).

Owing to great mathematical complexity (Erdman et al., 2001), computer methods are ma-
inly developed. The prevalent techniques are based on the genetic/evolutionary algorithms and
other heuristic methods patterned upon biological systems and social behaviours (Avilés et al.,
2010; Bulatović et al., 2013, 2016; Buśkiewicz, 2009, 2015; Buśkiewicz et al., 2010; Cabrera et
al., 2007, 2011; Ebrahimi and Payvandy, 2015; Gogate and Matekar, 2012; Kafash and Nahvi,
2015; Kunjur and Krishnamurty, 1997; Lin, 2010; Matekar and Gogate, 2012; Nadal et al., 2015;
Penunuri et al., 2011; Shiakolas et al. 2002, 2005). Frequently, the methods are devoted to a
single specific path-synthesis task: synthesis of open-path generators, synthesis of closed-path
generators, path synthesis with and without timing (time prescription). In the path synthesis
with timing, each position of the coupler point corresponds to a prescribed angular position
of the active link. In many cases, this correspondence is of less significance. In the open-path
synthesis, a part of the coupler trajectory is prescribed.
The two-phase synthesis (Buśkiewicz et al., 2009; Buśkiewicz, 2010; Lin, 2014, 2015; McGarva

and Mullineux, 1993; Nadal et al., 2015; Sanchez Marin and Gonzalez, 2004; Smaili and Diab,
2007; Sun et al., 2015; Ullah and Kota, 1997) for the direct synthesis method consists of two steps.
At first the shape synthesis is carried out followed by scale-rotation-translation transformations.
The first step reduces the number of design variables. This number is important when a synthesis
method is based on deterministic-probabilistic algorithms for optimal parameter determination.
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Every additional parameter increases the dimension of the solution space and may increase the
computational cost. In general, the effectiveness of a method depends essentially on the number
of design parameters, by which the objective function is expressed.
This paper deals with the direct synthesis method dedicated for an open/closed-path syn-

thesis with timing. The mathematical foundations of the usage of the Fourier descriptors (FDs)
as shape signatures (descriptors) of a closed curve were formulated by Zahn and Roskies (1972).
Although a prevailing number of these methods may be used for closed paths, the wavelet
transform has been used to describe open paths by Sun et al. (2015). Smaili and Diab (2007)
presented the two-phase synthesis method based on the so-called cyclic angular deviation vec-
tor. Buśkiewicz et al. (2009) proposed a two-phase synthesis method in which the shape was
described by means of the curvature-based Fourier descriptors. The centroid, the direction of
the major principal axis and the perimeter of a curve enabled translation, rotation and scaling
of the mechanism to the desired configuration. Buśkiewicz (2010) also proposed a two-phase
synthesis method using the function of the distance of the curve from its centroid, to describe
the curve shape in terms of its normalised Fourier coefficients. Sanchez Marin and Gonzalez
(2004) utilised geometric properties to describe the path (without addressing harmonic series
theories) and to reduce the number of optimised parameters to five in the open-path synthesis.
The methods using decomposition of the path into normalised parameters, invariant with

respect to affine transformation, also belongs to the so-called indirect synthesis method (Chu and
Sun, 2010; Galán-Maŕın et al., 2009; Hoeltzel and Chieng, 1990; McGarva, 1994; Mullineux, 2011;
Sun and Chu, 2009; Vasiliu and Yannou, 2001; Yu et al., 2007, 2012). The second phase consists
of searching through a computerised atlas database of normalised descriptors which are linked
to dimensions of the mechanisms generating closed paths. Nonetheless, most techniques are one-
phase syntheses which either introduce new error functions or develop algorithms evaluating
an objective function (Acharyya and Mandal, 2009; Avilés et al., 2010; Bulatović and Dordević,
2009; Bulatović et al., 2013, 2016; Cabrera et al., 2002, 2007, 2011; Ebrahimi and Payvandy, 2015;
Gogate and Matekar, 2012; Khorshidi et al., 2011; Kinzel et al., 2006; Kunjur and Krishnamurty,
1997; Lio 1997; Lio et al., 2000; Lin, 2010; Lin and Hsiao, 2017; Matekar and Gogate, 2012;
Penunuri et al., 2011, Sancibrian et al., 2004; Schmiedeler et al., 2014; Shiakolas et al., 2002,
2005; Smaili et al., 2005). The number of design parameters is as large as necessary to define
the problem. In the optimum synthesis with timing the design variables are not only mechanism
dimensions and orientation but also angular positions of the input link corresponding with the
prescribed coupler points.
The number of techniques for open/closed-path synthesis with timing, defined by the de-

creased number of design parameters, is rather small (Nadal et al., 2015; Kafash and Nahvi,
2015). The paper presents the method for the optimal synthesis of a four-link planar mechanism
generating open paths with time prescription, enabling a decrease in the number of design pa-
rameters describing dimensions, orientation and position of the path generator. Compared with
the methods presented in the references, this is a one-phase synthesis method; i.e. although the
number of design parameters is reduced, the method does not require affine transformations to
be performed on the synthesised mechanism. The paper is a continuation of the work (Buśkie-
wicz, 2015) dealing with the one-phase path synthesis without timing, defined by means of a
reduced number of design parameters.

2. Method description

2.1. Mathematical foundations

The method for path synthesis with timing is aimed at minimising the number of design
variables being optimised using a heuristic algorithm. The coupler curve is defined by means of
the discrete number of points. When the input link rotates by a given angle, the coupler point
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passes between two neighbouring curve points. The geometric scheme of the four-bar linkage is
shown in Fig. 1a.
The design variables optimised by means of the algorithm are (Fig. 1b):
• coordinates of the input link pivot: xO1, yO1,
• input link length: l1, and coupler AB length: l2,
• angle between arms AD and AB of the coupler: θ4,
• angular position of the input link θ10 corresponding with the first coupler point.

Six parameters define the four-bar linkage instead of the 10 required in the classical approach
to path synthesis with timing (l1, l2, l3, l4, l5,xO1, yO1, θ4, γ, θ10).
The input data are given as set {(xi, yi, θ1i), i = 1, . . . , n}, where (xi, yi) are the coordinates

of the points to be drawn by the coupler pointD for the input link angular position θ′1i = θ1i+θ10.
It means that passing from the point i to the point i+1 is accompanied by rotation of the input
link by the angle θ1i+1− θ1i. The angle γ is determined in the phase of the computations and is
not known in the initial phase. This is why the angular position of the input link θ1 is measured
from the horizontal line. Let us assume that we have a set of arbitrary values of the design
variables defining a candidate for the optimum mechanism. One has to evaluate how accurately
this mechanism approximates the given performance.

Fig. 1. (a) General geometric scheme of the four-bar linkage, (b) design variables (underlined) and
variables determined using design variables

The algorithm for determination of the remaining dimensions of the mechanism is as follows.
Having certain design variables xO1, yO1, l1 and θ10, the positions of the joint A on the input

link for i = 1, . . . , n are computed

xAi = xO1 + l1 cos(θ1i + θ10) yAi = yO1 + l1 sin(θ1i + θ10) (2.1)

Subsequently, the lengths are computed

|AiDi| =
√
(xAi − xi)2 + (yAi − yi)2 (2.2)

as well as the trigonometric functions between the section AiDi and the horizontal line

cosαi =
xi − xAi
|AiDi|

sinαi =
yi − yAi
|AiDi|

(2.3)



46 J. Buśkiewicz

The optimum length of the arm |AD| minimises, in the sense of the least square method, the
sum of the squared deviations of the prescribed point D positions from the points generated
by dyad O1AD, defined by xO1, yO1, l1, θ10 and l5 for the prescribed angular positions of the
link O1A

E1 =
n∑

i=1

[(xAi + l5 cosαi − xi)2 + (yAi + l5 sinαi − yi)2] (2.4)

As l5 is not known, differentiating E1

∂E1
∂l5
= 2

n∑

i=1

[(xAi + l5 cosαi − xi) cosαi + (yAi + l5 sinαi − yi) sinαi] = 0 (2.5)

one can obtain

l5 =
1
n

n∑

i=1

[(xAi − xi) cosαi + (yAi − yi) sinαi] (2.6)

which equals the average value of |AiDi| for all i.
Then the desired design variables minimise the deviations of |AiDi| from l5. The next set of

design variables are the angle between the coupler arms AD and AB − θ4 and the coupler AB
length – l2. Having these values, one can compute the position of the joint B connecting the co-
upler and the output link. Using the complex number notation, we have the subsequent positions
of the link AB corresponding with the positions of the link AD

AiBi = (xBi − xAi) + j(yBi − yAi) = l2
AiDi
|AiDi|

ej(−θ4)

= l2(cosαi + j sinαi)[cos(−θ4) + j sin(−θ4)]
(2.7)

Hence, the coordinates

xBi = xAi + l2 cos(αi − θ4) yBi = yAi + l2 sin(αi − θ4) (2.8)

are obtained by clockwise rotating the unit vector AiDi by the angle θ4 and multiplicating the
result by l2. It is expected that the position of the joint B can be approximated by a circular arc.
The radius of the arc that best fits into these points equals the length of the output link O2B,
and the centre of the arc becomes the pivot of this link. The parameters of this circular arc
may be computed using the method described in (Buśkiewicz, 2015). Let l3i denote the radius
of the circle with the centre at (xO2i, yO2i) passing through three points: Bi, Bi′ and Bi′′ , where:
i = 1, . . . , n, i′ = i+2, i′′ = i′+2, and the number point greater than n is diminished by n. The
centre coordinates of the i-th circle are

xO2i =
b1a22 − b2a12
a11a22 − a12a21

yO2i =
b2a11 − b1a21
a11a22 − a12a21

(2.9)

where

a1 = 2(xBi − xBi′) a12 = 2(yBi − yBi′)
a21 = 2(xBi − xBi′′) a22 = 2(yBi − yBi′′)
b1 = x2Bi + y

2
Bi − x2Bi′ − y2Bi′ b2 = x2Bi + y

2
Bi − x2Bi′′ − y2Bi′′

Then, the coordinates of the ground pin are

xO2 =
1
n

n∑

i=1

xO2i yO2 =
1
n

n∑

i=1

yO2i (2.10)
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Similarly, the average radius is taken as the length of the output link

l3 =
1
n

n∑

i=1

l3i =
1
n

n∑

i=1

|O2Bi| (2.11)

The final step is to compute the length of the immovable link, and cosine and sine of the angle γ

l4 = |O1O2| cos γ =
xO2 − xO1

l4
sin γ =

yO2 − yO1
l4

(2.12)

An alternative method for measuring the similarity of the set of points to the circular curve
has recently been presented by Kafash and Nahvi (2015). The Circular Proximity Function is
defined as

CPF =
n∑

i=1

[(xBi − xO2)2 + (yBi − yO2)2 −R2] (2.13)

where the average value of the squared distances between the points B and the centre of the
hypothetical circle is as follows:

R =
1
n

n∑

i=1

[(xBi − xO2)2 + (yBi − yO2)2] (2.14)

The optimum circle centre coordinates minimises the CPF .

2.2. Objective function and Euclidian error

The four-bar linkage realises exactly the desired motion when the sum of deviations of the
arm length l5 from real distances |AiDi| and deviations of the length of the output link from
computed real distances |O2Bi| (the measure of the deviation of the path of the joint B from an
ideal circular arc)

δ =
max |AiDi| −min |AiDi|

l5
+
max |O2Bi| −min |O2Bi|

l3
(2.15)

equals 0. Then δ is the minimised objective function and, simultaneously, it is the indirect
measure of the inaccuracy of the method. This error bears no information about the Euclidian
deviation between given points and points traced by the mechanism obtained. For the determined
dimensions of the four-bar linkage, the coordinates of the coupler points for the given angular
positions of the input link are computed. For this purpose, the angular position of the coupler
and the output link O2B

θ21,2 = 2arctan
−KE ±

√
K2E − 4KDKF

2KD
θ31,2 = 2arctan

−KB ±
√
K2B − 4KAKC

2KA

(2.16)

are determined, where

KA = K3 −K1 + (1−K2) cos(θ1 − γ) KB = −2 sin(θ1 − γ)
KC = K1 +K3 − (1 +K2) cos(θ1 − γ) KD = K5 −K1 + (1 +K4) cos(θ1 − γ)

KE = −2 sin(θ1 − γ) KF = K1 +K5 + (K4 − 1) cos(θ1 − γ) K1 =
l4
l1

K2 =
l4
l3

K3 =
l21 − l22 + l23 + l24

2l1l3
K4 =

l4
l2

K5 =
−l21 − l22 + l23 − l24

2l1l2



48 J. Buśkiewicz

Each solution corresponds to the two configurations of the four-bar linkage in which the
mechanism can be assembled for the pre-set dimensions and the angular position of link O1A.
At this stage, the mechanism whose configuration has been generated is not known, therefore
the errors for both signs at the square roots in Eqs. (2.16) are computed and the more accurate
solution is taken into account.
Then the position of the point D at the instant when the angular position of the input link

measured from the horizontal line equals to θ1i + θ10 is determined from the equations

xDi = xO1 + l1 cos(θ1i + θ10) + l5 cos[θ2(θ1i + θ10 − γ) + θ4 + γ]
yDi = yO1 + l1 sin(θ1i + θ10) + l5 sin[θ2(θ1i + θ10 − γ) + θ4 + γ]

(2.17)

The angular position of the crank with respect to the axis O1O2 equals θ1i+ θ10− γ. Therefore,
this angle is taken to compute θ2 from Eq. (2.16). In the references, the absolute Euclidian error
between the points given and generated is defined as follows

E =
n∑

i=1

[(xDi − xi)2 + (yDi − yi)2] (2.18)

2.3. Optimisation technique

The evolutionary algorithm (EA) (Goldberg, 1989) minimises the objective function (Eq.
(2.15)). The technique is described in depth in (Buśkiewicz, 2010, 2015). Preliminary numerical
simulations were performed to establish the parameters controlling the EA:
• The size of the population Nmax = 80 (case I), Nmax = 50 (cases II and III).

• The number of individuals to be crossed over in each generation lcr = 30.
• The number of randomly generated individuals introduced to each population in the place
of the worst fitted ones lrnd = 25.

• A feature of the new individual (N) is inherited from the parent (I) with the probability
pb = 0.75 (from parent (II) with the probability 0.25).

• The initial value of the mutation coefficient λ = 0.05 (the value is gradually decreased to
0.005), the initial disturbance coefficient µ = 0.001 is gradually decreased to 0.00001).

• The minimum value of the error function (objective function) Emin depends on the case
being solved.

• The maximum number of iterations executed (generations) in the case of not achieving
the prescribed minimum value of the error function Lg = 10000.

3. Numerical solutions

To prove the effectiveness of the method, three examples are solved and discussed. Two of them
are taken from references and comparative analysis is carried out.
For all cases presented the points are gathered in sets in the forms as follows: tab =

{(xi, yi, θ1i), i = 1, . . . , n}. The coordinates are non-dimensional, the angles are in radians.

Case 1

The first case was presented by Acharyya and Mandal (2009). The authors of this paper
considered the synthesis with timing defined by data given in tab1

tab1 =
{
(0, 0, 0.5236), (1.9098, 5.878, 1.0472), (6.9098, 9.511, 1.5708), (13.09, 9.511, 2.0944),

(18.09, 5.878, 2.618), (20, 0, 3.1416)
}
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The input geometric constraints were:

• the range of the coordinates of the crank pivot: −50 ¬ xO1, yO1 ¬ 50,
• the lengths of the crank: 5 ¬ l1 ¬ 50, and of the coupler: 5 ¬ l2 ¬ 50.

The computational time was 00:01:14 with 1000 iterations (generations in EA – 80 000 evalu-
ations of the objective function) performed. The evaluations of chosen parameters are shown in
Fig. 2a. The progress of the absolute Euclidian error is presented in Fig. 2b.

Fig. 2. (a) Evaluation of the crank length and crank pivot coordinates. (b) Evaluation of
the Euclidian distance

It is visible from Figs. 2a,b that the areas surrounding the found values of parame-
ters are localised in the first 200 iterations. The best solution of the problem with in-
stalling parameters for the first position (Fig. 3) is: l1 = 11.1149, l2 = 42.6226, θ4 =
−0.1368 rad, γ = 6.2819 rad, θ10 = 3.29 rad, l3 = 11.9381, l5 = 52.4112, l4 = 43.30492,
O1(−43.3598,−0.0067), O2(−0.0549,−0.0609), D(−0.143478, 0.271792), A(−52.058,−6.92637),
B(−11.032, 4.63172) and θ1 = θ10+ θ11(= tab11,3) = 3.8136 rad (the angle is measured form the
horizontal line).

Fig. 3. Case 1: Synthesised four-bar linkage with paths given (continuous line) and generated

The method error δ = 2.767, and the absolute Euclidian error E = 2.10037. Three EAs
namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution
(DE) were applied separately in (Acharyya and Mandal, 2009). The best solution obtained
using DE is presented in Table 1. The error reported by the authors is 2.349649, whereas the
error computed for the corresponding mechanism dimensions is 5.52074 – this difference was
also observed by Ebrahimi and Payvandy (2015). In all addressed methods 100 000 or 200 000
evaluations of the objective function were performed, whereas in the presented paper there
were 80 000. The four-bar linkages generating this path were also determined in (Ebrahimi and
Payvandy, 2015) using: imperialist competitive algorithm (ICA) and parallel simulated annealing
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(SA). The best solution is also presented in Table 1. Ebrahimi and Payvandy also solved the
problem of the path synthesis with workspace limits, which is not here considered. The ICA and
EA differ from each other in terms of the structure and, therefore, it is difficult to compare their
computational costs of the evaluations of the objective functions.

Table 1. Path 1: comparison of results

Acharyya and Ebrahimi and
Mandal (2009) Payvandy (2015) Proposed

DE ICA

l1 5 5 11.1149
l2 5.905345 7.08248 42.6226
l3 50 48.05733 11.9381
l4 50 50 43.30492
l5 18.819312 21.3969 52.4112
θ4 0 0.6956 −0.1368
xO1 14.373772 11.88034 −43.3598
y01 −12.444295 −16.08766 −0.0067
γ 0.463633 6.2831853 6.2819
θ10 – – 3.29
E 5.52074 2.5998 2.10037

Case 2

Kunjur and Krishnamurty (1997) presented the synthesis with timing of the path given by
18 points:

tab2 =
{
(0.5, 1.1, 0.3491), (0.4, 1.1, 0.6981), (0.3, 1.1, 1.0472), (0.2, 1.0, 1.3963),

(0.1, 0.9, 1.7453), (0.05, 0.75, 2.0944), (0.02, 0.6, 2.4435), (0, 0.5, 2.7925), (0, 0.4, 3.1416),

(0.03, 0.3, 3.4907), (0.1, 0.25, 3.8397), (0.15, 0.2, 4.1888), (0.2, 0.3, 4.5379),

(0.3, 0.4, 4.8869), (0.4, 0.5, 5.2360), (0.5, 0.7, 5.5851), (0.6, 0.9, 5.9341), (0.6, 1, 6.2832)
}

The range for the coordinates of the crank pivot is: −50 ¬ xO1, yO1 ¬ 50. The lengths
of the crank and coupler l1, l2 cannot exceed 50. The computational time is 00:00:36. Within
this time, 200 iterations have been performed – the number of evaluations of the objective
function is 10 000. The optimum solution is expressed as follows: l1 = 0.4102, l2 = 1.2166,
θ4 = 0.8342853 rad, γ = 0.1110 rad, l3 = 1.1230, l5 = 0.7859, l4 = 1.5395, θ10 = 0.8721 rad.
These parameters are completed with installing parameters for the first position

(Fig. 4): O1(0.363,−0.0874), O2(1.8931, 0.0831), D(0.516114, 1.08379), A(0.503501, 0.297987),
B(1.41786, 1.10058), θ1 = θ10 + θ11(= tab21,3) = 1.2212 rad.
The absolute Euclidian error E = 0.0185453, and the method error δ = 0.1821. Taking into

account the solutions obtained by means of the EAs (Kunjur and Krishnamurty, 1997; Cabrera
et al. 2011; Nadal et al. 2015), the method presented in this paper gives the best solution. The
number of evaluations of the objective functions in these methods is 5000. In order to provide
higher repeatability, when 34 in 100 algorithm executions give the solution with error E < 0.02,
twice as many evaluations of the objective function in the presented method are taken. In order
to obtain more accurate solutions, Lin and Hsiao (2017) employed the Cuckoo Search (CS) and
teaching-learning-based optimization (TLBO) algorithms (200 001 evaluations of the objective
function – twice as many evaluations resulted only in the smaller values of the mean error
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Fig. 4. Case 2: Synthesised four-bar linkage with paths given (continuous line) and generated

and standard deviation). The Modified Krill Herd algorithm applied by Bulatović et al. (2016)
produced the same degree of accuracy. The number of the objective function evaluations in the
MKH algorithm is the product of the number of iterations and the number of repetitions – both
parameters are equal to 50. Compared with the EAs, the computational cost of one evaluation of
the objective function seems to be higher. This issue, however, was not discussed in (Bulatović et
al., 2016) since the MKH, as was the case with the ICA, differred from the EA in performance.
All the results are summarised in Table 2.

Table 2. Path 2: comparison of the results

Kunjur and Cabrera Nadal Bulatović Lin and
Krishnamurty et al. et al. et al. Hsiao Proposed
(1997) (2011) (2015) (2016) (2017)

l1 0.274853 0.297057 0.239834 0.4218 0.4238752 0.4102
l2 1.180253 3.913095 0.941660 0.87821 0.9142488 1.2166
l3 2.138209 0.849372 3.164512 0.58013 0.5989170 1.1230
l4 1.879660 4.453772 2.462696 1.00429 1.0539434 1.5395
l5 0.91561 2.65198 0.4834 0.5234 0.54481 0.7859
θ4 3.5680854 2.464734 1.5638233 0.8147729 0.822721 0.8342853
xO1 1.132062 −1.309243 0.569026 0.26886 0.2676546 0.363
yO1 0.663433 2.806964 0.350557 0.17715 0.1546514 −0.0874
γ 4.354224 2.7387359 4.788536 0.29294 0.2848225 0.1110
θ10 2.558625 4.853543 2.47266 0.88595 0.8915568 0.8721
E 0.043 0.0196 0.113595 0.00911 0.0090289 0.0185453

Case 3

The set tab3 presents the straight line discretised by 6 points with the crank positions assigned
to

tab3 =
{
(5.0000, 1.000, 0.3491), (4.0000, 1.000, 0.6981), (3.0000, 1.000, 1.0472),

(2.0000, 1.000, 1.3963), (1.0000, 1.000, 1.7453), (0.0000, 1.000, 2.0944)
}

The input geometric constraints define the range for the crank pivot coordinates: −25 ¬ xO1,
yO1 ¬ 25, and the maximum permissible lengths of the crank and coupler equal to 15. The
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computational time is 00:00:47 with 1000 iterations performed for Nmax = 50. The geometric
parameters of the optimum mechanism are as follows: l1 = 1.7930, l2 = 6.6176, θ4 = 0.4732 rad,
γ = 2.6679 rad, θ10 = 4.5633 rad, l3 = 6.6175, l5 = 11.7914, l4 = 3.475.
The absolute Euclidian error E = 0.0000173, and method error δ = 0.0038. Taking into acco-

unt the absolute error, one can state that the solution is very accurate. The installing parameters
for the first position (Fig. 5) are: O1(5.5219,−9.0021), O2(2.4294,−7.4167), D(4.99683, 0.99906),
A(5.87813,−10.7594), B(8.44532,−4.65988). θ1 = θ10 + θ11(= tab31,3) = 4.9124 rad.

Fig. 5. Case 3: Synthesised four-bar linkage with paths given (continuous line) and generated

4. Conclusion

As mentioned in the introduction, two main branches have been developed recently in the field
of mechanism synthesis. The first one deals with the enhancement of probabilistic determini-
stic algorithms. The other focuses on the minimisation of the number of design variables. It
is difficult to find papers on the reduction of the number of design parameters in the case of
open/closed-path synthesis with timing in the one-phase path synthesis. The presented method
tries to overcome these difficulties and this is the distinctive feature of the method. Free paths
are considered to investigate the effectiveness of the method. Although the algorithm employed
in this paper utilizes the classical EA, the results of the synthesis are comparable to the best of
those presented in the literature. The analysis performed is encouraging for further studies in
developing the methods decreasing the number of design parameters, which may be an alterna-
tive to more complex, frequently hybrid, new optimisation algorithms. The method, although
presented on the example of a four-bar linkage, can be applied in synthesis of other four-link
planar mechanisms: crank-slider mechanism and mechanism with slotted links using techniques
described in (Buśkiewicz, 2015).
One can formulate some general observations on the way the results obtained by many

authors are compared. First of all, it seems reasonable to take into account some measure which
reflects the ratio of sizes of the mechanism and the synthesised path. Frequently, the working
space occupied by the optimal mechanism when tracing the path is much larger than the space
enclosed by the path alone. Such a solution is frequently useless for practical implementation.
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Moreover, in the case of an open-path synthesis, the general tendency is that a better solution
is characterised by a smaller ratio of the length of the synthesised part to the total path length.
This means that the path is generated for a very small angle of rotation of the input link, and
the greater part of the mechanism motion is dead motion. Therefore, the comparison of different
methods based on the values of the objective functions should only be concluded very carefully.
Such an approach to mechanism synthesis, which consists of reducing the number of de-

sign parameters, imposes distinction between the problems with and without timing. In other
methods, when the problem without timing is considered, the orientations of the input link
corresponding with the coupler point synthesis are treated as additional design parameters.
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36. Sancibrian R., Viadero F., Garćıa P., Fernández A., 2004, Gradient-based optimization
of path synthesis problems in planar mechanisms, Mechanism and Machine Theory, 39, 8, 839-856

37. Schmiedeler J.P., Clark B.C., Kinzel E.C., Pennock G.R., 2014, Kinematic synthesis for
infinitesimally and multiply separated positions using geometric constraint programming, Journal
of Mechanical Design, 136, 3, 034503 (7 pages)

38. Shiakolas P.S., Koladiya D., Kebrle J., 2002, On the optimum synthesis of four-bar linkages
using differential evolution and the geometric centroid of precision positions, Inverse Problems in
Science and Engineering, 10, 6, 485-502

39. Shiakolas P.S., Koladiya D., Kebrle J., 2005, On the optimum synthesis of six-bar linkages
using differential evolution and the geometric centroid of precision positions technique, Mechanism
and Machine Theory, 40, 319-335

40. Smaili A., Diab N., 2007, A new approach to shape optimization for closed-path synthesis of
planar mechanisms, Journal of Mechanical Design, 129, 9, 941-948

41. Smaili A.A., Diab N.A., Atallah N.A., 2005, Optimum synthesis of mechanisms using Tabu-
Gradient search Algorithm, Journal of Mechanical Design, 127, 917-923

42. Sun J., Liu W., Chu J., 2015, Dimensional synthesis of open-path generator of four-bar mecha-
nisms using the haar wavelet, Journal of Mechanical Design, 137, 8, 082303 (8 pages)

43. Sun J.W., Chu J.K., 2009, Fourier method to function synthesis of an RCCC mechanism, Pro-
ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, 223, 2, 503-513

44. Ullah I., Kota S., 1997, Optimal synthesis of mechanisms for path generation using Fourier
descriptors and global search methods, Journal of Mechanical Design, 119, 504-510

45. Vasiliu A., Yannou B., 2001, Dimensional synthesis of planar mechanisms using neural networks:
application to path generator linkage, Mechanism and Machine Theory, 36, 2, 299-310

46. Yu H., Tang D., Wang Z., 2007, Study on a new computer path synthesis method of a four-bar
linkage, Mechanism and Machine Theory, 42, 4, 383-392

47. Yue C., Su H.J., Ge Q.J., 2012, A hybrid computer-aided linkage design system for tracing open
and closed planar curves, Computer-Aided Design, 44, 11, 1141-1150

48. Zahn T., Roskies R.Z., 1972, Fourier descriptors for plane closed curves, IEEE Transactions on
Computers, 21, 3, 269-281

Manuscript received May 9, 2017; accepted for print July 17, 2017





JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

56, 1, pp. 57-69, Warsaw 2018
DOI: 10.15632/jtam-pl.56.1.57

ANNULAR ROTATING DISKS OPTIMAL WITH RESPECT TO MIXED
CREEP RUPTURE

Aneta Ustrzycka
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

e-mail: austrzyc@ippt.pan.pl

Krzysztof Szuwalski
Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Cracow, Poland

Optimal shapes in the class of polynomial functions for rotating annular disks with respect
to the mixed creep rupture time are found. Two effects leading to damage: diminishing of
transversal dimensions and growth of micro-cracks are simultaneously taken into account.
The first of them requires the finite strain analysis, the latter is described by Kachanov’s
evolution equation. Behaviour of the material is described by nonlinear Norton’s law, genera-
lized for true stresses and logarithmic strains, and the shape change law in form of similarity
of true stresses and logarithmic strains deviators. For optimal shapes of the disk, changes
of geometry and a continuity function are presented. The theoretical considerations based
on the perception of the structural components as some highlighted objects with defined
properties is presented.
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1. Introduction

The problems of optimal design in creep conditions are rather new ones, they started at the
end of the last century. The difficulty, first of all, is connected with a new additional variable
– time. On the other hand, such problems offer new possibilities of formulation of optimization
problems Betten, 2001). Życzkowski (1971, 1988) pointed out some new optimization criteria
such as: stress relaxation, limitation of displacements or their velocities at a given time, and
time to creep rupture, which seems to be the most important one. Many solutions were found
for structures with maximal time to brittle creep rupture (Białkiewicz, 1986; Ganczarski and
Skrzypek, 1976; Piechnik and Chrzanowski, 1970; Rysz, 1987). Such problems are comparatively
simpler, because they may be solved within the framework of the small strain theory. Optimal
shapes often coincide with shapes of uniform initial strength. Much more complicated are pro-
blems of optimization using other theories of creep rupture: ductile and mixed. Both of them
are connected with large deformations and require the finite strain theory. Therefore, solutions
of optimal design with respect to ductile (Hoff, 1953) or mixed rupture time (Kachanov, 1960,
1999) are rather scarce. Till now, only optimal rotating bars and rotating disks with respect to
ductile rupture were found by Szuwalski (1989, 1995). Some problems of prismatic rods under
tension were discussed by Golub et al. (2008). The ductile creep rupture analysis for elasto-
plastic disks was carried by Dems and Mróz (1992), Ahmet and Erslan (2003), Çallıoǧlu et al.
(2006), Farshi and Bidabadi (2008), Jahed et al. (2005) and Gun (2008). Modifications of the
Hoff model was proposed by Golub and Teteruk (1994). The influence of boundary conditions
on the optimal shape was investigated by Pedersen (2001) and Szuwalski and Ustrzycka (2013).
Even more difficult are problems of optimal design with respect to mixed creep rupture time as,
besides large strains, they take into account damage development. The first solutions for optimal
structures were found by Szuwalski and Ustrzycka (2012, 2013).
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2. Formulation of the problem

In the present paper, the initial shape of a rotating annular disk of given internal and external
radii A and B and given volume V (Fig. 1) ensuring the longest time to mixed creep rupture
time is sought. For the annular disk of the given volume V , initial thickness H and initial radii
A, B rotating with constant angular velocity ω, made of a material with known properties with
mass M uniformly distributed at the outer edge, the optimization problem is stated as follows:
• for given V , A, B, ω, γ, M
• we look for the initial profile of the disk H(R; b0, b1, b2) = b0 + b1R+ b2R2

• that t(m)∗ → max

Fig. 1. Model of the annular rotating disk

The problem seems to be of great importance because in such a way rotors of jet engines,
power plant turbines working in high temperatures may be calculated. In such structures, the
creep effects must be taken into account, additionally of great importance are body forces. The
axially symmetric problem (all variables depend only on one material coordinate, radius) is
described using the material, Lagrangean coordinate denoted by capital R. The corresponding
special coordinate r is the radius of the considered point of the disk after deformation and R is
the radius of the considered point of the disk prior to deformation. The external loading of the
disk results from the centrifugal force acting on the blades of total massM put at the outer edge
of the disk on the assumption that they are uniformly distributed. Moreover, the body forces
connected with own mass of the disk are taken into consideration. What makes the problem
more difficult is that both loadings depend on the spatial coordinate and change within the
creep process. The condition of internal equilibrium derived for an already deformed element of
the disk takes form

1
hr′

∂

∂R
(hσr) +

σr − σϑ
r
+
γ

g
ω2r = 0 (2.1)

where r′ denotes the derivative of spatial coordinate with respect to the material one, h –
current thickness of the disk. By “primes” in all formulas are denoted derivatives with respect
to the material coordinate, while by overdots – with respect to time. The disk rotates with
constant angular velocity ω and is made of a material with the specific weight γ. Radial and
circumferential stresses are true stresses related to already deformed cross-sections. The stress
orthogonal to the plane of the disk is disregarded (plane stress state assumption). Consequently,
for large deformations, the logarithmic strains are introduced. They are connected with true
stresses by Norton’s law

ε̇e = kσne (2.2)
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here expressed by true stresses and logarithmic strains and generalized for complex stress state
with the help of the Huber-Mises-Hencky hypothesis

σe =
√
σ2r + σ

2
ϑ − σrσϑ (2.3)

The shape change law is adopted in form of similarity of true stresses and logarithmic strains
deviators, in which the creep modulus ϕc is equal to

ϕc = kσn−1e (2.4)

This leads to the relationship

ṙ

r
=
1
2
kσn−1e (2σϑ − σr) (2.5)

Additionally, the compatibility equation for axially symmetric logarithmic strains

εr = εϑ + ln
(
1 +R

∂εϑ
∂R

)
(2.6)

expressed, with the help of the shape change law, by stresses, takes form

σ′ϑ =
6σ2e (σr − σϑ) r

′

r − σ′r[(n − 1)(2σr − σϑ)(2σϑ − σr)− 2σ2e ]
(n − 1)(2σϑ − σr)2 + 4σ2e ]

(2.7)

The general assumption of incompressibility of the material may be written

HRdR = hr dr (2.8)

Large deformations of the disk are accompanied by development of micro-cracks whose effect is
described by Kachanov’s evolution law

∂Ψ

∂t
= −D

(σe
Ψ

)m
(2.9)

where Ψ stands for the continuity function describing the degree of damage of material, D and
m stand for material constants. With the help of the above presented equations, the five unk-
nowns: true radial σr and circumferential σϑ stresses, spatial coordinate r, current thickness h
and continuity function Ψ may be calculated. This can be done only by numerical integration of
the derived earlier equations. All unknowns are functions of two independent variables: material
coordinate R and time t. For numerical calculations, the dimensionless quantities must be intro-
duced. The full, flat, motionless disk of volume V and radius B subjected to the uniform radial
traction s resulting from centrifugal force caused by mass M uniformly distributed at radius B,
serves as a comparative disk

s =
Mω2

2πhm
=
Mω2B2

2V
(2.10)

where hm stands for constant thickness of the comparative disk. The dimensionless stress is
related to s (2.10), whereas the dimensionless time is defined as

t̂ =
t

t
(d)
0

(2.11)

where t(d)0 stands for the time of ductile rupture for the full plane disk. To evaluate the time of
ductile rupture t(d)0 for the full plane disk, the following equation may be used

ε̇z =
ḣ

h
=
3
2
kσn−1e (σz − σm) (2.12)
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In the problem under consideration, the effective stress is

σe = σr = σϑ = p (2.13)

while the mean stress

σm =
2
3
p (2.14)

The implementation of these substitutions to (2.12) leads to the equation

1
h

dh

dt
= −k

(Mω2

2πh

)n
(2.15)

describing the change of thickness in time. The initial condition takes form

for t = 0 h = hm (2.16)

The condition of ductile rupture: h→ 0, enables calculation of the time of ductile rupture t(d)0

t
(d)
0 =

1

nk
(
Mω2

2πhm

)n =
1

nksn
(2.17)

Finally, dimensionless time (2.11) is defined as

t̂ = nksnt (2.18)

The dimensionless radii are related to external radius B of the comparative disk and dimension-
less thickness to its constant thickness hm.
Finally, the set of five differential dimensionless equations takes form

σ̂′r =
r̂′

r̂
(σ̂ϑ − σ̂r)− 2r̂r̂′µ−

ĥ′

ĥ
σ̂r

σ̂′ϑ =
6σ̂2e(σ̂r − σ̂ϑ) r̂

′

r̂
− σ̂′r[(n− 1)(5σ̂r σ̂ϑ − 2σ̂2r − 2σ̂2ϑ)− 2σ̂2e ]
(n − 1)(2σ̂ϑ − σ̂r)2 + 4σ̂2e

(2.19)

and

dr̂

dt̂
=

r̂

2n
(σ̂2r + σ̂

2
ϑ − σ̂rσ̂ϑ)

n−1
2 (2σ̂ϑ − σ̂r) ĥ =

ĤR̂

r̂′r̂
(2.20)

and

∂Ψ

∂t̂
=

−1
(m+ 1)Θ

( σ̂e
Ψ

)m
(2.21)

where all dimensionless quantities are denoted by (•̂) over the symbol, and additional parameters
µ and Θ are introduced

µ =
γV

gM
(2.22)

where µ is the ratio of own mass of the disk to the mass M uniformly distributed at the outer
edge, and Θ contains and replaces four material constants from Norton’s law and the evolution
equation

Θ =
t
(b)
pr

t
(d)
pr

=
nk

(m+ 1)D
sn−m (2.23)
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and is defined as the ratio of brittle and ductile creep rupture time of prismatic bars subject to
tension with stress s (2.10). This parameter may be also treated as a measure of sensitivity on
the kind of creep rupture.
We define the rupture criterion in the following form

∃R : R ∈ 〈0, l〉 ∧ Ψ ∈ 〈1, 0〉 ∧ Ψ(σ)
∣∣∣
t
(m)
∗

→ 0 (2.24)

The time after which the continuity function diminishes to zero is the time of mixed rupture t(m)∗ .
The criterion of rupture is adopted in form of diminishing to zero the value of the continuity
function at least at one nodal point.

3. Numerical calculations

To obtain unique solutions for the above presented set of differential equations, initial and
boundary conditions must be formulated. At the beginning of the creep process, the shape of the
disk is described by the assumed equation H(R). As the initial condition serves the coincidence
of the spatial and material coordinate

r̂(R̂, 0) = R̂ ĥ(R̂, 0) = Ĥ(R̂) (3.1)

The boundary condition at the inner radius A may be formulated in several ways. In the case
when the disk is connected with a rigid shaft

σ̂r(β, t̂) = 2σ̂ϑ(β, t̂) (3.2)

the radial stress is two times larger than the circumferential one, but their values are unknown.
The parameter β stands for the ratio of radii of the disk: β = A/B. On the other hand, at the
outer radius, the radial stress must be equal to tension caused by the centrifugal force acting on
the mass M placed there

σ̂r(1, t̂) =
1

ĥ(1, t̂)
(3.3)

For this reason, a recurrential procedure must be used. Assuming various values of stresses at
the radius A, we must finally find such values which will make it possible to satisfy condition
(3.3). The numerical algorithm consists of three steps:

• first step – for given geometry of the disk, the true stresses distribution is established (from
Eqs. (2.19)). We do not know the values of stresses at the inner edge of the disk, so we
assume them arbitrarily. The boundary condition at the outer edge of the disk must be
fulfilled (see Fig. 2).

• second step – from the first step, the distribution of true stresses is known. It is possible
to establish the new, changed geometry of the disk (from Eqs. (2.20)). The mixed creep
rupture can occur earlier than the ductile creep rupture. Therefore, it is necessary to check
whether the thickness is not small enough (hadm), which finishes the procedure.

• third step – the distribution of the continuity function Ψ is calculated from Eq. (2.21). If
its minimum value satisfies the rupture criterion, the creep process is finished – the time
to mixed rupture has been found.
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Fig. 2. Algorithm of numerical calculations – flow chart

4. Uniparametric optimization

Due to the inability of explicitly writting the objective function (mixed rupture time) as a
function of the optimization parameters (initial profile of the disk), the parametric optimization
is applied (search method). Initially, the optimal solution is sought among conical disks whose
initial shape is described by the formula

Ĥ(R̂;u0, u1) = u0 + u1R̂ (4.1)

From the condition of constant volume this leads to

u1 =
3
2
(1− u0) (4.2)

so only one free parameter u0 remains.

4.1. Conical disk clamped on a rigid shaft

The optimal solutions of the disks clamped on a rigid shaft for various parameters Θ are
presented in Fig. 3.
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Fig. 3. Optimal profiles of a conical disk clamped on a rigid shaft, β = 0.1, µ = 0.1

For Θ = 0.4 the optimal profile of the conical disk becomes almost flat. For higher values of
the parameter Θ, the mass moves toward the inner edge.

4.2. Conical disk with the free inner edge

The boundary condition at the inner radius is described in the following way

σ̂r(β, t̂) = 0 (4.3)

and at the outer radius by the following equations

σ̂r(1, t̂) =
1

ĥ(1, t̂)
(4.4)

The optimal profiles for the conical disk found according to the algorithm presented in Fig. 2 as
a function of the parameter Θ are plotted in Fig. 4.

Fig. 4. Optimal profiles of the conical disk with the free inner edge, β = 0.1, µ = 0.1

The optimal profiles of conical disks with the free inner edge are characterized by a significant
reduction of thickness at the outer radius, even larger than that for the disk clamped on a rigid
shaft.
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5. Biparametric optimization

It is expected that the earlier presented results could be improved by expanding the class of
functions, in which the optimal solution is sought. In the next step, biparametric optimization
is used. The initial shape is defined by a quadratic function

Ĥ(R̂; b0, b1, b2) = b0 + b1R̂+ b2R̂2 b2 6= 0 (5.1)

From the three parameters in this function, only two may be treated as free ones, the third
results from the given volume of the disk

b2 = 2− 2b0 −
4
3
b1 (5.2)

The search process for biparametric optimization is much more time-absorbing. For the given
parameter b0, the time to the mixed rupture for various parameters b1 is calculated. In such a
way one may find the parameter b1 leading to the longest lifetime. This procedure is repeated
for subsequent values b0. At last the optimal solution is established as “maximum maximorum”
of all investigated disks (sometimes almost hundred).

5.1. Parabolic disk clamped on a rigid shaft

The creep process of the annular rotating disk is considered for three different boundary con-
ditions. As the first, the disk clamped on a rigid shaft will be analyzed (e.g. welded connections).
Then, despite condition (3.2), an additional condition must be satisfied

ĥ(β, t̂) = Ĥ(β, 0) (5.3)

Optimal shapes of the disks for biparametric optimization are shown in Fig. 5.

Fig. 5. Optimal shapes of disks clamped on the rigid shaft, β = 0.5, µ = 0.1

For Θ = 0.4 the optimal shape of the disk is characterized by a large increase of thickness
at the external edge. In spite of larger centrifugal forces, the outer edge works as a kind of
reinforcement slowing down the creep process. For larger values of the parameter Θ, this effect
does not occur.
The course of the creep process for finding the optimal disk with the initial profile described

by the function

Ĥ(R̂) = 3.51 − 5R̂+ 2.76R̂2 (5.4)
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is presented in Fig. 6 showing changes of the shape (a) and of the distribution of the continuity
function (b) in terms of time. The distribution of the continuity function at the moment of
rupture is not uniform, the criterion of rupture is fulfilled inside the disk at one point. For other
radii, values of the function Ψ are non-zero, and at the inner and outer edge they are quite large.
This effect is related only to disks with the initial profile described by quadratic function (5.4).

Fig. 6. Time cross-section of the creep process for β = 0.5, µ = 0.1 and Θ = 3

5.2. Parabolic disk fastened on the rigid shaft with thickness allowed to change

Optimal shapes of disks fastened on a rigid shaft (radial displacement is possible) but with
possibility of thickness changing (e.g. spline joint) are shown in Fig. 7.

Fig. 7. Optimal shapes of disks fastened on the rigid shaft β = 0.5, µ = 0.1

For Θ = 0.4 and Θ = 3 the optimal shapes of the disk have a reinforcement of the outer
edge (increase of the thickness). For Θ = 10 this effect is smaller.
The above figure drawn for the optimal disk

Ĥ(R̂) = 4.39 − 8R̂ + 5.05R̂2 (5.5)

shows the time cross-section of the optimal profile of the annular disk fastened on the rigid shaft
(Fig. 8a) and the continuity function (Fig. 8b). The geometrical changes of the profile of the disk
in the creep process are not significant. Due to small width of the disk, the change of thickness
at the inner edge, although permissible, is not too large.
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Fig. 8. Time cross-section of the creep process for β = 0.5, µ = 0.1, Θ = 3

5.3. Parabolic disk with the free inner edge

Optimal shapes of the free disks (4.3) for biparametric optimization are shown in Fig. 9.

Fig. 9. Optimal shape of the disk with the free inner edge, β = 0.5, µ = 0.1

The reinforcement of the outer edge of the disk is observed for Θ = 0.1. For Θ = 0.2 and
Θ = 0.3 the optimal shapes are characterized by reduction of the thickness of the disk toward
the outer edge.
As an example of the found optimal profiles is

Ĥ(R̂) = 4.09 − 5.01R̂ + 1.79R̂2 (5.6)

The time cross-section for this optimal profile of the free disk and the continuity function is
shown respectively in Figs. 10a and 10b.
The time cross sections of the continuity function indicate that the criterion of rupture of

the disk is fulfilled at the inner edge, despite the significant reinforcement of thickness at this
point.

6. Corrected disks of uniform initial strength

We expect that disks of uniform initial strength, in which the radial and circumferential stresses
are equal and independent of radius, would be close to the optimal profiles with respect to the
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Fig. 10. Time cross-sections of the creep process for the free edge, Θ = 0.2, β = 0.5, µ = 0.1

mixed rupture time. For a homogeneous material of the uniform initial strength disk, for t = 0,
the radial Σr and circumferential Σϑ stresses are the same

Σr = Σϑ = Σ = const (R) (6.1)

and the stress perpendicular to the middle surface of the disk is assumed to be equal to zero
(σz ≡ 0).
The shape of uniform initial strength disks results from the internal equilibrium equation

Ĥus(R̂) =
1

Σ̂
exp

[ µ
Σ̂
(1− R̂2)

]
(6.2)

where Σ̂ denotes the dimensionless equalized initial stress calculated from the condition of
constant volume

Σ̂ =
µ

ln(1 + µ)
(6.3)

The correction of shape (6.2) is imposed, which is adopted here in form of a third degree
polynomial function without linear term

Ĥcor = p0 + p2R̂2 + p3R̂3 (6.4)

Finally, the initial profile of the disk is described by the equation

Ĥ(R̂) = Ĥus(R̂) + Ĥcor(R̂) (6.5)

Numerical calculations have been carried out for the set of parameters: µ = 0.1, Θ = 3, and
exponents: in Norton’s law n = 6, in Kachanov’s law m = 2. It turns out that the optimal
correction takes form

Ĥcor = −0.3− 0.04R̂2 + 9.47R̂3 (6.6)

The optimal shape of the corrected disk of uniform initial strength compared with the profiles
obtained with uni- and biparametric optimizations is presented in Fig. 11. Additionally, the time
to rupture for all those solutions is given.
The corrected profile of uniform initial strength disks provides the longest time to mixed

rupture. It is characterized by significant strengthening of the middle and outer part of the disk,
which seems to be very reasonable taking into account the results shown in Fig. 11.



68 A. Ustrzycka, K. Szuwalski

Fig. 11. Optimal shape of the uniform initial strength disks compared with uni- and biparametric
optimization

7. Conclusions

The problems of optimal design in creep conditions are very difficult due to a new additional
factor-time. When the time to ductile or mixed creep rupture is involved, the difficulties even
grow. Such problems require the finite strain approach, i.e. resignation of the rigidification the-
orem and analysis of the already deformed body using true stresses and logarithmic strains. For
this reason, the parametric optimization is applied – the initial shape of the disk is described by
a polynomial function. The obtained solutions strongly depend on boundary conditions at the
inner edge of the annular disk. For disks fastened on a rigid shaft, the time to rupture is much
longer than for disks with free inner edges. Better results – longer times to mixed creep rupture
are obtained for biparametric optimization – the initial shape described by a quadratic function.
The best results are obtained for the disk of uniform initial strength corrected by a polynomial
function of the third degree. A significant influence on the optimal solution of the parameter Θ
describing the sensitivity of the material to brittle or ductile rupture is observed. Also the ratio
of own mass of the disk and mass placed at the outer edge µ is of great importance.
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Most plates used in engineering structures such as aircraft wings, ship ducts and buildings,
although quite capable of resisting tensile loads, are poor in withstanding compression.
In order to avoid premature failure under compression, it is important to know buckling
behavior of the plate. This article primarily deals with the analytical study of buckling
behavior of a carbon nanotube reinforcing polymer composite plates based on the first order
shear deformation theory by employing Mori-Tanaka micromechanics approach to obtain
elastic properties. In this investigation, an attempt is made for evaluating the effect of plate
thickness, CNT volume fraction, stacking sequence and CNT radii on the buckling of plates.

Keywords: buckling, carbon nanotube, composite plates, micromechanics, FSDT

1. Introduction

Since the recognized discovery of Carbon Nanotubes (CNTs), Iijima (1991), they have attracted
an intense interest among researchers in various disciplines due to their stupendous mechanical,
electrical and thermal properties (Saito et al., 1999; Ounaies et al., 2003; Weisenberger et al.,
2003). The remarkable electrical properties have made CNTs excellent candidates to act as
reinforcement in a wide range of applications such as nanosensors and atomic transportation
(Arash and Wang, 2013; Wang, 2008). In addition, the outstanding physical and mechanical
properties of CNTs, for example an ultra-high Young’s modulus of the order of 1TPa and
tensile strength of 200GPa (Lau and Hui, 2002; Demczyk et al., 2002), stimulated the interest
in using CNTs as filler materials in polymer composites to make ultra light structural materials
with enhanced mechanical properties.
In the past decade, the wide-ranging experimental and theoretical studies conducted on car-

bon nanotubes have focused on mechanical characterization and modeling aspects of reinforced
polymer composites to assist the development of nanocomposites (Xiao et al., 2005; Zhang Z.
et al., 2010; Zhang Y. et al., 2013; Arash et al., 2014; Silani et al., 2014; Gates et al., 2005;
Tserpes and Papnikos, 2005). Even though these studies are fairly useful in estimating proper-
ties of the nanomaterials, their use in actual structural applications is the ultimate idea behind
the development of this highly sophisticated class of materials. However, the literature shows
that much of work in this direction is not accomplished. As such, there is a need to examine
the macro behavior of the material in actual structural elements such as beams and plates. The
behavior of beams under a static loading was studied by Wuite and Adali (2005) for different
CNT volume of fractions and nanotube diameters. Based on different assumptions for displace-
ment fields, different theories for plate analysis have been devised. These theories can be divided
into three major categories, individual layer theories, equivalent single-layer (ESL) theories, and
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three-dimensional elasticity solution procedures. These categories are further divided into sub-
-theories by the introduction of different assumptions. For example, the second category includes
the classical laminate plate theory (CLPT), the first-order and higher-order shear deformation
theories (FSDT and HSDT). Analytical observations on static and dynamic behavior of plates
by using CLPT were made by Madhu et al. (2012).
For the implementation of Carbon nanotube reinforced polymer (CNRP) composites in struc-

tural applications, accurate property-microstructure relations are required in the form of micro-
mechanics models. In the present investigation, micromechanics properties of CNRP are com-
puted using Mori-Tanaka method as given in (Popov et al., 2000; Shi et al., 2004; Wuite and
Adali, 2005; Madhu et al., 2012). The effects of the characteristics developed in these models
are investigated on the buckling behavior of CNRP composite plates using FSDT with a view
towards assessing the effectiveness of these materials in the design of structural nanocomposites.

2. Micro-mechanics model

The micro-mechanical model involves an elastic and isotropic polymer reinforced with straight,
aligned and infinitely longsingle walled carbon nanotubes (SWCNT). The plate under the stu-
dy is composed of polystyrene as the matrix with the Young modulus and Poisson’s ratio of
Em = 1.9GPa and νm = 0.3, respectively. Each SWCNT is considered to be solid and transver-
sely isotropic, and their Hill’s elastic constants are taken from Popov et al. (2000). The SWCNT
radius is assumed to be 10 Å for all the cases, otherwise mentioned, for which the representa-
tive values of the elastic constants are: nr = 450GPa, kr = 30GPa, mr = pr = 1GPa and
lr = 10GPa. The bonding at the nanotube-polymer interface is taken to be perfect. The re-
sulting composite is also considered as transversely isotropic and its constitutive stress strain
relations σ = Cε can be expressed as follows
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where k is the plane-strain bulk modulus normal to the fiber direction, n is the uni-axial tension
modulus in the fiber direction (1), l is the associated cross modulus, m and p are the shear
moduli in planes normal and parallel to the fiber direction, respectively, and they are Hill’s
elastic constants. A composite with a reinforcing phase volume fraction cr, matrix Young’s
modulus Em and matrix Poisson’s ratio νm is considered. Using the Mori-Tanaka method, Hill’s
elastic moduli are found to be (Popov et al., 2000; Shi et al., 2004; Wuite and Adali, 2005;
Madhu et al., 2012)

k =
Em{Emcm + 2kr(1 + νm)[1 + cr(1− 2νm)]}

2(1 + νm)[Em(1 + cr − 2νm) + 2cmkr(1− νm − 2ν2m)]

l =
Em{cmνm[Em + 2kr(1 + νm)] + 2crlr(1− ν2m)}

(1 + νm)[2cmkr(1− νm − 2ν2m) + Em(1 + cr − 2νm)]

n =
E2mcm(1 + cr − cmνm) + 2cmcr(krnr − l2r)(1 + νm)2(1− 2νm)
(1 + νm)[2cmkr(1− νm − 2ν2m) + Em(1 + cr − 2νm)] (2.2)

+
Em[2c2mkr(1− νm) + crnr(1− 2νm + cr) + 4cmcrlrνm]

2cmkr(1− νm − 2ν2m) + Em(1 + cr − 2νm)
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p =
Em[Emcm + 2(1 + cr)pr(1 + νm)]

2(1 + νm)[Em(1 + cr) + 2cmpr(1 + νm)]

m =
Em[Emcm + 2mr(1 + νm)(3 + cr − 4νm)]

2(1 + νm){Em[cm + 4cr(1− νm)] + 2crmr(3− νm − 4ν2m)}
where kr, lr, mr, nr and pr are Hill’s elastic moduli for the reinforcing phase. The expres-
sions for the moduli of the CNTRC as functions of the stiffness constants are determined for a
unidirectional composite as follows

E1 = n−
l2

k
E2 =

4m(kn − l2)
kn− l2 +mn G12 = 2p ν12 =

l

2k
(2.3)

3. Basic equations

The buckling behavior of a symmetric laminated carbon nanotube reinforced polymer square
plate is to be studied under the first order shear deformation theory (FSDT), and the basic
equations are summarized in this section.

Fig. 1. Buckling of a plate under in-plane compressive edge forces

For laminated composite plates subjected to only in-plane loads, the constitutive relations
for the buckling under FSDT are taken from Reddy (2004). A parametric study is carried out
to find the minimum buckling load for laminated composite plates which occurs at m = n = 1.
In the buckling analysis, it is assumed that the loads are in-plane forces only.
For simplicity

N̂xx = −N0 N̂yy = −kN0 k =
N̂yy

N̂xx

(3.1)

Therefore:
— for uniaxial compression k = 0

N̂xx = −N0 N̂yy = 0 (3.2)

— for biaxial compression k = 1

N̂xx = −N0 N̂yy = −N0 (3.3)

The critical buckling load is nondimensionalised by using

N = Ncr
a2

E2h2
(3.4)

here N is the nondimensionalised critical buckling load, Ncr is the critical buckling load, a is
length of the plate, E2 is Young’s modulus in the transverse direction and h is thickness of the
laminated composite plate.
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4. Buckling analysis

A proficient MATLAB code is developed for the buckling analysis using FSDT of carbon na-
notube reinforced polymer (CNRP) composite plates. A twofold validation is done to the code,
one for validating the elastic properties of CNRP and the other for validating the critical buc-
kling load of composite plates under FSDT. First, the elastic properties of CNRP obtained from
Mori-Tanaka micromechanics model are validated with the published results (Wuite and Adali,
2005) and presented in Fig. 2.

Fig. 2. Curves of the maximum deflection plotted against the fiber volume fraction for various stacking
sequences for a simply supported beam subjected to CPL

Further to validate the buckling with the published results, the effect of shear deformation
on the nondimensionalised critical buckling loads N of symmetric laminated plates with elastic
properties E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25, K = 5/6 is calculated for
uniaxial as well as biaxial compression and presented in Table 1 along with the corresponding
published results (Reddy, 2004).

Table 1. Comparison of the nondimensionalised critical buckling load with the published results

a/h
[0/90/0] [0/90/0/90/0]

N Reddy (2004) N Reddy (2004)

Uniaxial compression
10 15.248 15.289 16.254 16.309
20 20.602 20.628 21.094 21.125
25 21.552 21.568 21.893 21.917
50 22.971 22.978 23.071 23.078
100 23.361 23.363 23.384 23.389

Biaxial compression
10 7.569 7.644 8.070 8.154
20 10.293 10.314 10.522 10.562
25 10.771 10.784 10.930 10.958
50 11.486 11.489 11.531 11.539
100 11.681 11.682 11.692 11.695

The results obtained are found to be in excellent agreement with the published results.
Having validated the composite plate results, the MATLAB code is extended to the CNRP
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composite plate to make an attempt to analyze the buckling behavior of these plates under
FSDT.
An eight-layer simply supported symmetric square CNRP composite plate is subjected to

both uniaxial and biaxial compression to study the buckling behavior. For the CNRP composite
plate, the critical buckling load occurrs at m = n = 1, and the variation in critical buckling load
with respect to side-to-thickness ratio a/h of the plate and CNT volume fraction (fiber volume
fraction) for various stacking sequences is shown in Figs. 3 and 4.

Fig. 3. Curves of the nondimensionalised critical buckling load plotted against the plate side-to-thickness
ratio for various stacking sequences for a simply supported plate subjected to uniaxial compression

Fig. 4. Curves of the nondimensionalised critical buckling load plotted against the CNT volume fraction
for various stacking sequences for a simply supported plate subjected to uniaxial compression

From the above results, it is observed that the angle-ply stacking sequence [45/−45/45/−45] s
exhibits more resistance to buckling than the cross-ply laminating schemes [0/90/0/90] s and
[90/0/ − 90/0] s for the same percentage of CNT reinforcement. For all the stacking sequences,
the effect of shear deformation on the critical buckling load is clearly observed in thick plates
(0 < a/h ¬ 20), and it is insignificant in the case of thin plates (a/h > 20) (Reddy, 2004).
However, the effect of shear deformation across the thickness on the critical buckling load is the
same even the plate is subjected to biaxial compression (k = 1) with actual values lesser than
those of uniaxial compression (k = 0). The comparison between the nondimensionalised critical
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buckling loads of uniaxial and biaxial compression for the stacking sequence [90/45/ − 45/0] s
at CNT volume fraction 0.3 is shown in Fig. 5.

Fig. 5. Curves of the nondimensionalised critical buckling load plotted against the plate side-to-thickness
ratio for various loads and stacking sequences [90/45/− 45/0] s for a simply supported plate

It is knowledgeable that the nondimensionalised critical buckling load in biaxial compres-
sion is about 0.5 times lesser than that of uniaxial compression for various stacking sequences,
CNT radii and for various fiber volume fractions. So the results are presented only for uniaxial
compression hereafter.

Fig. 6. Curves of the nondimensionalised critical buckling load plotted against the plate
side-to-thickness ratio for fiber volume fractions and stacking sequences [90/45/− 45/0] s for a simply

supported plate subjected uniaxial compression

The effect of fiber volume fraction on the critical buckling load is presented in Fig. 6. It is
obvious that the critical buckling load increases as the fiber volume fraction in the composite
increases, as CNTs are stiffer and stringer. It is further investigated to discover the effect of
CNT radius on the critical buckling load, and it is observed from the following graph (Fig. 7)
that for the same stacking sequence, the effect of nanotube radius on the critical buckling load
issignificant. The same is observed for various stacking sequences, and the results are shown in
Fig. 8.
From the above results, it is noticeable that a higher stiffness can be obtained by reinforcing

CNTs with smaller diameters and, thereby, a decrease in the critical buckling load can also be
achieved.
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Fig. 7. Curves of the nondimensionalised critical buckling load plotted against the plate
side-to-thickness ratio for various CNT radii and stacking sequences [90/45/− 45/0] s for a simply

supported plate subjected uniaxial compression

Fig. 8. Curves of the nondimensionalised critical buckling load plotted against CNT radii for various
stacking sequences for a simply supported plate subjected uniaxial compression (k = 0)

5. Conclusions

The buckling behavior of a CNT reinforced polymer composite plate is studied by using a
MATLAB code. The Mori-Tanaka micromechanics model is adopted for determining the elastic
constants of the CNT reinforced polymer composite material in terms of nanotube volume
fractions. It is shown that they are in good agreement with the published results. The first order
shear deformation theory (FSDT) is considered for determination of the critical buckling loads
of plates.
A twofold validation is done to the code; one is to validate the elastic constants of the

CNRP composite and the second to validate the FSDT. In the case of CNRP composite plates
under FSDT, it is found that the effect of side to thickness ratio on the critical buckling load
of thick plates is phenomenal. The results markedly show the diminishing effect of transverse
shear deformation on the critical buckling load of thick plates, the effect being negligible for side
to thickness ratios greater than 20 i.e., for thin plates. It is also investigated that the stacking
sequence of the laminated plate is yet another important parameter for determination of the
buckling behavior of the plates. It is observed that the buckling resistance of the angle-ply
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laminating scheme is less than that of other stacking sequences considered in the study. The
influence of CNT radii is also examined on the buckling of the plates, and it is proposed to use
a smaller radius to obtain a higher buckling resistance. The effect of the volume fraction of the
CNT reinforcements on the buckling of the plate is studied, and it is found that the increase in
the fiber volume fraction decreases the critical buckling load.
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The problem of boundary layer flow and heat transfer of nanofluids over nonlinear stretching
of a flat sheet in the presence of a magnetic field and chemical reaction is investigated nume-
rically. In this paper, a new locally modified single-phase model for the analysis is introduced.
In this model, the effective viscosity, density and thermal conductivity of the solid-liquid mi-
xtures (nanofluids) which are commonly utilized in the homogenous single-phase model, are
locally combined with the prevalent single-phase model. Similarity transformation is used to
convert the governing equations into three coupled nonlinear ordinary differential equations.
These equations depend on five local functions of the nanoparticle volume fraction viz., local
viscosity ratio, magnetic, Prandtl, Brownian motion and thermophoresis functions. The equ-
ations are solved using Newton’s method and a block tridiagonal matrix solver. The results
are compared to the prevalent single-phase model. In addition, the effect of important go-
verning parameters on the velocity, temperature, volume fraction distribution and the heat
and mass transfer rates are examined.

Keywords: nanofluid, magnetohydrodynamic, nonlinear stretching sheet, similarity transfor-
mation, locally modified single-phase model

1. Introduction

The enhancement of heat transfer in an industrial process such as cooling of electronic devices,
guide or thrust bearings, high-speed sliding surfaces, strips or filaments, and etc., may create
energy savings, reduce the process time, increase efficiency and lengthen the working life of
equipment. Convective heat transfer can be improved by changing flow geometry, boundary
conditions, or by enhancing thermal conductivity of the fluid (Wang and Mujumdar, 2007).
One way to increase the thermal conductivity of base fluids is the use of nanoparticles (such as
Cu, Ag, Al, and etc. as metallic solid, CuO, Al2O3, TiO2 and etc., as metallic oxide particles,
multi walled nanotubes (MWNTs) and single wall nanotubes (SWNTs) (as metallic nanotubes)
suspended in the fluids. Indeed, the Brownian motion of the nanoparticles in these suspensions
is one of the potential contributors to this enhancement (Choi, 1995; Choi et al., 2001; Xie
et al., 2003; Li and Peterson, 2007; Aminossadati and Ghasemi, 2009; Hamad and Ferddows,
2012). Apparently, Choi (1995) was the first researcher who introduced the term nanofluids
to refer to the fluid with suspended nanoparticles, and up from this time, many researchers
focused on numerical or experimental studies in the field of thermophysical and also heat and
fluid flow properties of nanofluids such by Choi (1995), Choi et al. (2001), Xie et al. (2003), Li
and Peterson (2007), Aminossadati and Ghasemi (2009), Hamad and Ferddows (2012), Wen and
Ding Y. (2004), Heris et al. (2006), Abu-Nada and Chamkhac (2010), Sheikhzadeh et al. (2011)
and to name but a few.
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As aforesaid, cooling of continuous strips or filaments by drawing them through a motionless
fluid is one of the heat transfer processes in the industry. In these respects, the feature of the
final product (e.g. plastic and polymer sheets manufactured by extrusion, glass-fiber and paper
production, metal spinning, etc.) depends on the cooling rate and the process of stretching (Rana
and Bhargava, 2012). Therefore, simulation of boundary layer behavior of fluid flow over the
stretching surface (strips or filaments) can be useful for predicting heat transfer characteristics
of such a process. The basic and elementary works on Boundary Layer Flow (BLF) over a
continuous moving surface (with constant velocity) were reported by Sakiadis (1961a,b,c). After
that, Crane (1970) published a report about the exact temperature distribution of the steady
BLF of a viscous fluid caused by stretching a flat isothermal sheet (with a linearly variable
velocity). The temperature and concentration distributions of BLF over an isothermal moving
plate with blowing or suction were found by Gupta and Gupta (1977). The same problem was
studied by Chen and Char (1988) in which the sheet was subjected to a prescribed temperature
and heat flux.
The boundary layer and thermal characteristics of fluid flow over a nonlinear stretching sheet

were examined for the first time by Vajravelu (2001). Then, Vajravelu and Cannon (2006) in-
vestigated the existence of a solution for the nonlinear problem by using the Schauder theory.
Afterwards, Cortell (2007) analyzed flow and heat transfer over a nonlinear stretching sheet for
the prescribed and constant surface temperature as boundary conditions. Prasad et al. (2010)
presented a numerical solution for Magneto-Hydrodynamics (MHD) flow of an electrically con-
ducting viscous fluid over a stretching sheet with variable fluid properties. They assumed that the
stretching velocity and the transverse magnetic field varied as a power function of the distance
from the origin. Postelnicu and Pop (2011) explored steady 2D laminar BLF of a non-Newtonian
power-law fluid past a permeable non-linear stretching wedge. And recently, Vajravelu et al.
(2014) published a paper on the subject of MHD flow and heat transfer of a non-Newtonian
power-law fluid over an unsteady stretching isothermal sheet.
Since using nanofluids may improve heat transfer behavior of an engineering process, many

researchers examined the effect of those fluids on the boundary layer and thermal characteristics
of flow caused by stretching a surface. In this respect, Bachok et al. (2010) studied the steady
BLF of nanofluids over a continuous moving surface (with constant velocity). Khan and Pop
(2010) obtained the temperature distribution of steady BLF of nanofluids over a linear isothermal
stretching flat sheet. Gorder et al. (2010) presented the similarity solution for the nano-BLFs
over a linearly stretching sheet, in which on the surface sheet the velocity slip was assumed to
be proportional to the local shear stress. Hassani et al. (2011) obtained an analytical solution
for BLF of a nanofluid past a linearly stretching sheet using the homotopy analysis method
(HAM). Rana and Bhargava (2012) studied numerically flow and heat transfer of a nanofluid
over a nonlinearly stretching sheet. They used the finite difference, finite element, and variational
method in their computations. Nadeem et al. (2014) analyzed flow of a three-dimensional water-
-based nanofluid over an exponentially stretching sheet. And recently, Das (2015) investigated
the problem of BLF of a nanofluid over a non-linear permeable stretching sheet at a predestined
surface temperature in the presence of partial slip.
The study of Magneto-Hydrodynamics (MHD) flow of an electrically conducting fluid due

to a stretching sheet is important in modern engineering processes. Metallurgy, metalworking,
metal fusion in an electrical furnace, and etc., are some examples of such processes (Ibrahim
and Shanker, 2014). The MHD flow analysis over a stretching sheet with various aspects such
as types of fluids, magnetic effect, stagnation geometry and the temperature effect can be seen
in works of many researchers such as Ishak et al. (2008), Fadzilah et al. (2011), Mahapatra
et al. (2009), Prasad et al. (2010), and to name but a few. Ibrahim et al. (2013) studied the
MHD stagnation-point flow and heat transfer due to a nanofluid towards a stretching sheet
using the Runge-Kutta fourth order numerical method. They analyzed the effect of the velocity
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ratio parameter on both the local Nusselt number and local Sherwood number. In the same
year, Ibrahim and Shankar (2013) investigated MHD boundary layer flow and heat transfer of
a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary
conditions. Recently, Ibrahim and Shankar (2014) studied MHD boundary layer flow and heat
transfer of a nanofluid over a non-isothermal stretching sheet. Their analysis was done for two
different cases, namely a prescribed surface temperature and prescribed heat flux.
The above mentioned literature review shows that in order to investigate the heat transfer

characteristics of nanoparticles (or generally small solid particles) suspended in a fluid, two main
approaches have been adopted by researchers. The first approach is the two-phase model which
considers both the fluid phase and the solid particles behavior in the heat transfer process. The
second one is the single-phase model in which both phases are in thermal and hydrodynamic
equilibrium state (this approach is simpler and more computationally efficient). Generally in
nanofluids, there are several factors that affect heat transfer enhancement. Some of the mo-
re important factors are Brownian motion (including diffusion, sedimentation, and dispersion),
gravity, layering at the solid/liquid interface, particle clustering, friction between the fluid and
the solid particles, etc. Therefore, in the absence of any experimental data and suitable theore-
tical studies, the existing macroscopic two-phase model has not enough precision for analyzing
nanofluids. Consequently, the modified single-phase, considering some of the above factors, is
more convenient than the two-phase model if the main interest of analysis is the heat transfer
process (Khanafer et al., 2003). Therefore, in order to improve the results of the single-phase
model for analyzing the nanofluids flow, some modifications are needed. In this paper, a new
modified single-phase model for analyzing flow and heat transfer in nanofluids is introduced for
the first time. In this model, all effective properties of nanofluids such as density, viscosity and
thermal conductivity, which are normally used for the effective single-phase model (as constant
values), are incorporated locally with the governing equations (as non-constant values). This
approach is used for examining the BLF behavior and thermal characteristics of nanofluids flow
over a nonlinear stretching sheet in the presence of a magnetic field and chemical reaction.
The results for Cu and Al2O3 nanoparticles are compared to the prevalent single-phase model.
This comparison depicts that the prevalent single-phase model has a considerable deviation for
predicting the behavior of nanofluids flow, especially in dimensionless temperature and nano-
particle volume fraction. In addition, the effects of important governing parameters such as the
transverse magnetic field, chemical reaction strength, thermophoresis parameter, nanoparticle
volume fraction near the surface, etc., on the velocity, temperature, volume fraction distribution
and dimensionless heat and mass transfer rates are examined.

2. Mathematical governing equations

The steady-state two-dimensional BLF of a nanofluid past a stretching sheet is considered with
the nonlinear velocity uw = auxn, where au is a positive constant, n is the nonlinear stretching
parameter and x is the coordinate measured along the stretching surface, as shown in Fig. 1.
Because of the impermeability characteristic of the sheet, the vertical velocity of the fluid on
the surface is vw = 0. In this problem, the stretching surface is a non-isothermal face with the
relation of Tw(x) = T∞ + aTxr, where aT is a positive constant, r is the surface temperature
parameter in the prescribed surface temperature boundary condition and T∞ is the temperature
of the fluid far away from the stretching sheet. In addition, the fluid is under a transverse
magnetic field with strength B(x) which is applied in the vertical direction, given by the special
form of B(x) = B0xn−1, where B0 is a positive constant. Also, it is assumed that the first-order
homogeneous chemical reaction with the non-linear rate of K = K0x

n−1 occurs in the fluid
(K0 is the constant chemical reaction parameter). According to (Ibrahim and Shanker, 2014;
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Fig. 1. Physical model of the stretching sheet and the coordinate system

Buongiorno, 2006; Yazdi et al., 2011), the following four governing equations of BLF include the
continuity, momentum, energy, and nanoparticles concentration, respectively
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here, T is temperature of the fluid, u and v are velocity components along the x and y-axis
respectively, ϕ is the nanoparticle concentration (or volume fraction), DT is the thermophoretic
diffusion coefficient, DB is the Brownian diffusion coefficient, c is specific heat capacity, ρ is
density, α = k/(ρc) is thermal diffusivity, ν is kinematic viscosity, k is thermal conductivity,
and σ is electrical conductivity of the fluid. The subscripts p and nf refer to the nanoparticles
and nanofluid, respectively. In this study, a new local Modified Single-Phase Model (here it is
named as MSPM) for analyzing nanofluids flow and heat transfer is introduced. In this manner,
the parameters νnf , knf , ρnf , and cnf of the above governing equations may be introduced by
the following four relations (Oztop and Abu-Nada, 2008)

(ρc)nf
(ρc)f

= 1− ϕ+ ϕ (ρc)p
(ρc)f

ρnf
ρf
= 1− ϕ+ ϕρp

ρf

νnf
νf
=

1
(1− ϕ)2.5(1− ϕ+ ϕρp/ρf )

knf
kf
=
kp + 2kf − 2ϕ(kf − kp)
kp + 2kf + ϕ(kf − kp)

(2.2)

where, the subscript f refers to the base fluid. The associated boundary conditions for the
problem are

u(x, 0) = uw(x) = auxn v(x, 0) = vw(x) = 0

T (x, 0) = Tw(x) = aTxr + T∞ ϕ(x, 0) = ϕw
u(x,∞) = 0 v(x,∞) = 0 T (x,∞) = T∞ ϕ(x,∞) = ϕ∞

(2.3)

where ϕw and ϕ∞ are the nanoparticle volume fraction neighborhood to the surface and far away
from the stretching sheet, respectively. By considering the following similarity transformations
(Ibrahim and Shankar, 2013)

η = yβx
n−1
2 u = auxnf ′(η) v = −γxn−12

(
f +

n− 1
n+ 1

ηf ′
)

θ(η) =
T − T∞
Tw − T∞

ψ(η) =
ϕ− ϕ∞
ϕw − ϕ∞

(2.4)
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where, β =
√
au(n+ 1)/(2νf ) and γ =

√
auνf (n+ 1)/2, BLF governing equations (2.1) are

transformed into three non-linear ordinary differential equations as follows

f ′′′ + F (ϕ)
(
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n+ 1
f
′2
)
−G(ϕ) 2

n + 1
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1
Pr(ϕ)
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f ′θ +Nb(ϕ)ψ′θ′ +Nt(ϕ)θ
′2 = 0

ψ′′ + Lefψ′ +
Nt
Nb

θ′′ − 2R
n+ 1

Leψ = 0

(2.5)

where F (ϕ) is the local viscosity ratio function, G(ϕ), Pr(ϕ), Nb(ϕ) and Nt(ϕ) are the local
magnetic, local Prandtl, local Brownian and local thermophoresis functions are defined as

F (ϕ) = (1− ϕ)2.5
(
1− ϕ+ ϕρp
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G(ϕ) =M(1− ϕ)2.5
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Pr(ϕ) =
νf
αnf
= Prf

kp/kf + 2 + 2ϕ(1 − kp/kf )
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1− ϕ+ ϕ (ρc)p

(ρc)f

)
(2.6)

In the set of equations (2.6), M = σB0/(auρf ) is the magnetic parameter, Prf = νf/αf is the
fluid Prandtl number, Le = νf/DB is the Lewis number, Nb = [(ρc)pDB(ϕw − ϕ∞)]/[νf (ρc)f ]
is the Brownian motion number, Nt = [(ρc)pDT (Tw − T∞)]/[T∞νf (ρc)f ] is the thermophoresis
parameter and, finally, R = K0/au. It is clear that Nb is related to Le as follows

Nb =
(ρc)p(ϕw − ϕ∞)
Le(ρc)f

(2.7)

It should be noted that the enhancement of nanofluids thermal conductivity is because of four
major mechanisms: (1) Brownian motion of nanoparticles, (2) nanolayer, (3) clustering, and
(4) nature of heat transport in the nanoparticles. Also, some important parameters which affect
the thermal conductivity of nanofluids are particle volume fraction, temperature, particles size
and the size and property of the nanolayer. Therefore, a considerable number of studies can
be found on the modelling of thermal conductivity of nanofluids, such as the Maxwell model,
Hamilton-Crosser model, Bruggeman model, Wasp model, Maxwell-Garnett (MG) model, Gupta
model, and to name but a few. However, there is a lack of reliable and comprehensive model
which includes all mechanisms and influenced parameters for thermal conductivity of nanofluids
(Esfe et al., 2014; Kumar et al., 2015). As a matter of fact, the present study does not focus on
a comprehensive thermal conductivity model of nanofluids (so the Maxwell model (Eqs. (2.5)
is selected as the model). The novelty of this study can be found in Eqs. (2.5) and (2.6). In
Eqs. (2.5), F (ϕ), Pr(ϕ), Nb(ϕ), and Nt(ϕ) are not constant during the calculation and they
are updated locally based on the third relation of Eq. (2.5), which is more physical. It means
that three relations of Eqs. (2.5) should be solved together. By considering Eqs. (2.3), non-linear
ordinary differential equations (2.5) are solved subject to the following boundary conditions

f ′(0) = 1.0 θ(0) = 1.0 ψ(0) = 1.0 f(0) = 0

f ′(∞) = 0 θ(∞) = 0 ψ(∞) = 0
(2.8)

By introducing the local Reynolds number via Rex = uw(x)x/νf = aux
n+1/νf , the surface

heat flux through qw = knf (∂T/∂y)y=0, the surface mass flux via qm = DB(∂ϕ/∂y)y=0, the
local nanofluid Nusselt number through Nunf = xqw/[knf (Tw − T∞)] and the local nanofluid
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Sherwood number by means of Shnf = xqm/[DB(ϕw − ϕ∞)], the following relation can be
established

Nunf√
Rex
=

√
n+ 1
2
|θ′(0)| Shnf√

Rex
=

√
n+ 1
2
|ψ′(0)| (2.9)

where Nunf/
√
Rex and Shnf/

√
Rex are known as dimensionless heat and mass transfer rates,

respectively. Without loss of generality, one can assume that the nanoparticle volume fraction
far away from the stretching sheet is zero or ϕ∞ = 0. In this paper, the fluid is a water based na-
nofluid containing different types of prevalent nanoparticles: copper (Cu) and alumina (Al2O3).
Based on (Oztop and Abu-Nada, 2008), the thermophysical properties of the fluid (water) and
the mentioned nanoparticles are given in Table 1.

Table 1. Thermophysical properties of the fluid (water) and three nanoparticles

Properties Fluid phase (water) Cu Al2O3
c [J/kgK] 4179 385 765
ρ [kg/m3] 997.1 8933 3970
k [W/mK] 0.613 400 40
Prf 6.83 – –
(ρc)p/(ρc)f – 0.825 0.729
kp/kf – 652.53 65.25

3. Algorithm of numerical solution

The algorithm of numerical calculation (computer programming procedure) of non-linear dif-
ferential equations (2.5)-(2.7) with boundary conditions (2.8) is given via items (i) to (viii).
It should be noted that for step (ii), by assuming ϕ∞ = 0, the initial guess can be
ψ(η) = ϕ(η)/ϕw = [1 − exp(η − ηmax)]/[1 − exp(−ηmax)] as an example, where ηmax is the
maximum value of η in the numerical calculation.

(i) Specify input data of the base fluid and nanoparticles: ρp/ρf , (ρc)p/(ρc)f , kp/kf , Prf , Nb,
Nt, Le, ϕw

(ii) Set an initial guess for ϕ(η) or its dimensionless parameter, i.e. ψ(η)

(iii) Calculate F (ϕ), G(ϕ), Nb(ϕ), Nt(ϕ), and Pr(ϕ) based on step (i) and profile of ϕ

(iv) Solve the 1st relation of equation (2.5) to obtain f(η) by using Newton’s method

(v) Solve the 2nd relation of equation (2.5) to obtain θ(η) by using Newton’s method

(vi) Solve the 3rd relation of equation (2.5) to update ψ(η) or ϕ(η) by using Newton’s method

(vii) Check the error between the updated ψ(η) and the guessed one

(viii) If the maximum error ¬ 10−5 then the procedure is finished; else go to step (iii)

4. Validation of the numerical solution

With reference to many studies such as Khan and Pop (2010), Das (2015), Ibrahim and Shankar
(2013), Ibrahim and Shankar (2014) and etc., it is evident that the MSPM is reduced to the old
Prevalent Single-Phase Model (PSPM) by considering the relations: F (ϕ) = 1.0, G(ϕ) = M ,
Nb(ϕ) = Nb, Nt(ϕ) = Nt, and Pr(ϕ) = Pr. In order to check the validity of the present compu-
tational programming code, governing equations (2.5)-(2.7) subject to boundary conditions (2.8)
are solved numerically for some values of the governing parameters of the PSPM. The results
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for the reduced Nusselt number |θ′(0)| and the reduced Sherwood number |ψ′(0)| are compared
with those obtained by Khan and Pop (2010) in Table 2. In this simulation, the default values
of the parameters are considered as Pr = 10, Le = 10, n = 1, r = 0, M = 0, R = 0 and
ηmax = 20. Also, Table 3 shows the comparison of the magnitude of the velocity gradient at
the wall, |f ′′(0)|, between the present code results and that obtained previously by Fang et al.
(2009) for the case of n = 1, ηmax = 20, and M = 0.25-4.0. It can be seen from Tables 2 and 3
that the present results are in very good agreement with those reported by other researchers.
Therefore, it is clear that the results obtained in this study are accurate.

Table 2. Comparison of |θ′(0)| and |ψ′(0)| for Pr = 10, Le = 10, n = 1, r = 0, R = 0, M = 0,
ηmax = 20

Parameter
Present result Khan and Pop (2010)
|θ′(0)| |ψ′(0)| |θ′(0)| |ψ′(0)|

Nb = 0.1, Nt = 0.1 0.95238 2.12939 0.9524 2.1294
Nb = 0.1, Nt = 0.3 0.52007 2.52863 0.5201 2.5286
Nb = 0.1, Nt = 0.5 0.32105 3.03514 0.3211 3.0351
Nb = 0.3, Nt = 0.1 0.25215 2.41002 0.2522 2.4100
Nb = 0.3, Nt = 0.3 0.13551 2.60882 0.1355 2.6088
Nb = 0.3, Nt = 0.5 0.08329 2.75187 0.0833 2.7519
Nb = 0.5, Nt = 0.1 0.05425 2.38357 0.0.543 2.3836
Nb = 0.5, Nt = 0.3 0.02913 2.49837 0.0291 2.4984
Nb = 0.5, Nt = 0.5 0.01792 2.57310 0.0179 2.5731

Table 3. Comparison of results for |f ′′(0)| when n = 1, and ηmax = 20

Parameter
Present result Fang et al. (2009)
|f ′′(0)| |f ′′(0)|

M = 0.25 1.11803 1.1180
M = 4.0 2.23606 2.2361

5. Results and discussion

In this Section, the numerical results for profiles of dimensionless velocity f ′(η), temperatu-
re θ(η), nanoparticle concentration ψ(η), and etc., are presented for different values of the
governing parameters. The obtained results are displayed through graphs in Figs. 2-7. For all
simulations and their corresponding figures, the used governing parameters are given in Table 4.
It should be noted that the value of the Brownian motion number Nb for the MSPM is cal-
culated by equation (2.7), while for PSPM this is considered as the average of Nb for Cu and
Al2O3 nanoparticles. In order to compare the effect of using MSPM and PSPM on the results,
the linear and non-linear stretching sheet problems for two different nanoparticles (i.e. Cu and
Al2O3) are considered. These comparisons for six dimensionless profiles (i.e. f , f ′, θ, θ′, ψ and ψ′)
are presented in Fig. 2 (linear stretching sheet problem) and Fig. 3 (non-linear stretching sheet
problem). The illustrated results in both Figs. 2 and 3 confirm that the temperature and na-
noparticle volume fraction profiles (i.e. θ and ψ) converge quicker than the horizontal velocity
profiles (i.e. f ′) for both PSPM and MSPM. Nevertheless, it is evident from the figures that the
PSPM has a remarkable deviation for predicting the behavior of nanofluids flow, especially in
dimensionless temperature θ and nanoparticle concentration ψ. Also, the comparison between
the results presented in Figs. 2 and 3 displays that this deviation is intensified when the sheet is
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stretched nonlinearly. It should be noted that discussions about the PSPM and its effect on the
results of the stretching sheet problem were recently reported in many studies such as Khan and
Pop (2010), Hassani et al. (2011), Ibrahim and Shankar (2013), Ibrahim and Shanker (2014),
and to name but a few. Therefore, for the next simulations, the MSPM is only considered. Also,
based on the results shown in Figs. 2 and 3, one can observe that the boundary layer beha-
vior and thermal characteristics of both nanoparticle flows are approximately the same. Hence,
the further results and discussions are focused only on the Cu-water nanofluid flow (using the
MSPM).

Fig. 2. Effect of the MSPM and PSPM on the dimensionless profiles for n = 1 and r = 0

Table 4. The governing parameters for nanofluid flow simulations

Nb
Fig. n r Nt Le ϕw M R MSPM MSPM PSPM

(Cu) (Al2O3)

2 1 0 0.1 5 0.5 0.25 0.1 0.0825 0.0729 0.0777
3 5 5 0.1 5 0.5 0.25 0.1 0.0825 0.0729 0.0777
4 5 5 0.1 5 0.5 0.0-4.0 0.1 0.0825 – –
5 5 5 0.1 5 0.5 2.0 0.0-10 0.0825 – –
6 5 5 0.1 1 0.1-0.5 2.0 5 0.0825-0.4125 – –
7a 5 5 0.1 5 0.5 0.0-4.0 0.1 0.0825 – –
7b 5 5 0.1 5 0.5 2.0 0.0-10 0.0825 – –
7c 5 5 0.1 1 0.1-0.5 2.0 5 0.0825-0.4125 – –
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Fig. 3. Effect of the MSPM and PSPM on the dimensionless profiles for n = 5 and r = 5

Fig. 4. Effect of M on the dimensionless profiles for n = 5 and r = 5

The first analysis is related to the effects of the transverse magnetic field M on the flow
and thermal characteristics. By applying a transverse magnetic field, a Lorentz force is created,
which results in a retarding force on the velocity of the flow (Ibrahim and Shanker, 2014).
Therefore, as M increases (and, consequently, increasing the retarding force), the velocity of
the fluid decreases. This fact can be observed in Fig. 4a. In addition, Fig. 4b illustrates the
impact of the transverse magnetic field on the temperature profile. The results show that as
the magnetic parameter M increases, the temperature profile and the thermal boundary layer
thickness increase. Also, from Fig. 4c it is seen that the behavior of dimensionless concentration
is the same as the temperature profile when the values of the magnetic parameter M increase.
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Chemical reaction is an important process that should be considered in micro-mixing of
biological systems such as cell-activation and protein-folding, particularly when the mixing
of reactants for initiation is necessary. Lorentz forces produced by a magnetic field are able
to move nano-liquids in a mixing process. Hence, one of the active methods of micro-mixing
of biological samples is using a magnetic field in the presence of chemical reaction (Yazdi et
al., 2011). Therefore, the second examination belongs to the effects of the chemical reaction
strength R on the nanofluids BLF characteristics. Figure 5 demonstrates the influence of the
chemical reaction strength on the velocity, temperature and concentration graph. From Fig. 5a,
it is evident that the values of R has not any significant effect on the dimensionless veloci-
ty profile. But, by increasing the values of the chemical reaction parameter, the temperatu-
re gradient (Fig. 5b) and concentration gradient (Fig. 5c) on the wall intensify. In fact, for
the case of the higher nanoparticle concentration gradient near the wall, the nanoparticle con-
centration decreases rapidly as η increases. Therefore, the conductive heat transfer process is
weakened.

Fig. 5. Effect of R on the dimensionless profiles for n = 5 and r = 5

As the MSPM depends on the value of the nanoparticle volume fraction near the surface ϕw,
it is of great worth to investigate the effects of ϕw on dynamic and thermal characteristics of the
nanofluids flow. As it is predicted, when the value of the magnetic parameterM does not change,
variation of ϕw has no significant influence on the velocity graph (see Fig. 6a). However, as it
is noticed from Fig. 6b, increasing the nanoparticle volume fraction near the surface increases
the thermal boundary layer thickness. And finally for Fig. 6c, since ψ = ϕ/ϕw, comparing the
concentration graphs for various ϕw has no any important consequence.

Fig. 6. Effect of ϕw on the dimensionless profiles for n = 5 and r = 5
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The last results are about the effect of M , R, and ϕw on the dimensionless heat Nunf/
√
Rex

and mass transfer rates Shnf/
√
Rex on the wall. This information is presented in Fig. 7. Figure 7a

illustrates that the heat and mass transfer rates on the stretching wall decrease with an increase
in the transverse magnetic field M . In fact, the magnetic field generates more heat in the
boundary layer region and, hence, this reduces the wall heat transfer rate. Figure 7b depicts
that the wall mass transfer rate and the wall heat transfer rate increase with an increase in the
chemical reaction parameter R. In addition, a decrease in the dimensionless heat transfer and
an increase in the dimensionless mass transfer on the wall are observed with an increase in ϕw.
These are shown in Fig. 7c.

Fig. 7. Effect of M , R, and ϕw on the dimensionless heat and mass transfer rates for n = 5 and r = 5

6. Conclusion

The problem of boundary layer flow and heat transfer of nanofluids over a nonlinear stretching
sheet in the presence of a magnetic field and chemical reaction is examined numerically. In
this study, a modified single-phase model for analyzing nanofluids flow and heat transfer is
initiated. In this modified model, the effective density and viscosity of nanofluids and the effective
thermal conductivity of the solid-liquid mixture which are prevalently used in the effective single-
phase model (as constant values) are incorporated locally with the governing equations (as no-
constant values). A similarity solution is proposed which depends on the local Prandtl number,
local Brownian motion number, local Lewis number and the local thermophoresis number. The
results for Cu and Al2O3 nanoparticles are compared to the prevalent single-phase model. This
comparison shows that the prevalent single-phase model has a noticeable deviation for predicting
the behavior of the nanofluids flow, especially in dimensionless temperature and nanoparticle
volume fraction. In addition, the results exhibit that the heat and mass transfer rates on the
stretching surface decrease with increase in the transverse magnetic field. Also, the wall mass
transfer rate and the wall heat transfer rate increase with an increase in the chemical reaction
parameter.
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In this paper, the present exact solutions in the plate theory using the cylindrical deflection
method and represented by the Fourier series corresponding to the oblique or Cartesian
coordinates are given for a hingely supported triangular plate subject to a distributed load in
form of a hexagonal pyramid and for a rectangular hingely supported plate subject to loading
in form of a truncated octagonal pyramid. In the case of the rectangular hingely supported
plate under the truncated octagonal pyramid load, a series of parametric solutions has been
obtained. The solutions depend on the parameter ε. For various values of the parameter ε,
various load cases are found.

Keywords: plate, reference solution, cylindrical deflection, superposing, Fourier series

1. Introduction

Accuracy assessment of FEM results can be carried out by comparing it with results obtained
by using analytical methods. Comparative analysis between benchmark solutions and the FEM
results is of practical importance. “The benchmark should have some educational merit” (Becker,
1998). Performing comparative analyses is an excellent and timely topic. This is evidenced by
studies in different fields of mechanics. For example: within the framework of linear and non-
-linear plate and shell theories, particular attention shall be paid to research by Robinson (1985),
Kamoulakos et al. (1986), NAFEMS (1990), Prinja and Clegg (1993), Becker (2001), Sze et al.
(2004), within vibration theory see Abbassian et al. (1987), theory of composites – Hardy (2001),
thermal stresses – Burrows (1985), linear elastic fracture mechanics – Pang and Leggatt (2001),
etc. The benchmark reference solutions for thin and thick plates of various shapes can be found
in NAFEMS (1990), Davies et al. (1992) where linear analysis of bending a skew plate, thick
plate, free thin square plate, clamped thin rhombic plate, cantilevered thin square plate, simply-
-supported ’solid’ square plate is carried out. Finding benchmark solutions is of great importance
in the process of verification of the FEM results.
Within the framework of the plate theory, such benchmark solutions include closed form

solutions obtained by Z. Kączkowski in his doctoral thesis in 1953. The thesis of Zbigniew Kącz-
kowski On anisotropic plates bending analysis by superposing folded deflections, published in 1953
(Kączkowski, 1953, 1954) is an exceptional piece of work. Without any doubt, this is both valu-
able and pioneering research paper created with great imagination and cleverness. The proposed
method of superimposing the folded deflections (as called by the Author) makes it possible, by
appropriate superposition of cylindrical bending deflections referring to the infinitely long pla-
te, to arrive at closed form solutions of anisotropic plates in form of parallelograms, rectangles
and triangles resting on Winkler’s foundation, subject to some in-plane normal tractions and
subjected to transverse loading of a certain class. The majority of solutions refer to the plates

1For Dear Professor and my Master Zbigniew Kączkowski in his 96th Jubilee
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being hingely supported, yet Zbigniew Kączkowski showed some other boundary conditions that
could tackled as in the case of rectangular plates clamped at the opposite parallel edges or fully
clamped.
In his famous monograph Plates. Statical Analysis (1968), about which prof. Witold Nowacki

wrote that this had been the best world wide monograph on plates, prof. Kączkowski put forward
a series of examples of triangular plates, not solved in the pioneering work of 1953.
In this beautiful monograph, Professor wrote (p.191): “It is recommended to the reader to

find a closed form solution of the deflection of a triangular plate subject to the loading distributed
in form of a hexagonal pyramid, Fig. 1.”

Fig. 1. Scheme of a triangular plate subject to loading distributed in form of a hexagonal pyramid
(Kączkowski, 1968, p. 191)

In the available literature, I was not able to find the solution to this still open problem. This
and one similar solution will be presented here in closed form solutions and represented by the
Fourier series corresponding to the oblique or Cartesian coordinates.

2. A hingely supported triangular plate subject to a distributed load in form of a
hexagonal pyramid

Let us consider an infinite isotropic plate subject to normal load p1 that is a periodic function
of a variable x1 with the period c, antisymmetric with respect to both the original and central
points of each period. Due to the load of that kind, we obtain a folded surface that can be
represented by a function w1(x1) with the folds making the angle of 60◦ with the axis x. When,
apart from the aforementioned load, the plate is also subject to the load p2(x2) = −p1(x2) due
to which the plate deflection surface is w2(x2) = −w1(x2) as well as to the load p3(y) = p1(y)
due to which the plate deflection surface is w3(y) = w1(y). The “sum” of all three surfaces will
satisfy the conditions for the simple support along the edge of the equilateral triangle of side a
and height c = a

√
3/2 (Fig. 3).

For the resulting formulae to be more compact, let us introduce a new oblique co-ordinate
system x = x, y, the co-ordinates of which make the angle of 60◦ (Kączkowski, 1953).
The shape of the loading is shown in Fig. 2.
The plate domain parameterization is assumed as in Fig. 3. Let us introduce non-dimensional

coordinates, cf Fig. 3.

ξ1 =
x1
c
=
x

a
= ξ η =

x3
c
=
y

a

x2
c
= ξ + η ξ =

x

a

η =
y

a
ξ = ξ −

√
3
3
η η =

2
√
3
3
η

(2.1)
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Fig. 2. The shape of the loading

Fig. 3. Parameterization of the plate domain and the coordinates

Fig. 4. Decomposition of the hexagonal pyramid load

The loading in Fig. 2 can be viewed as a sum of three loadings acting on an infinite plate,
see Fig. 4, hence one can write down this decomposition as

q(ξ, η) = q1(ξ1)− q1(ξ1 + η) + q1(η) (2.2)

in which



98 G.E. Jemielita

q1(ξ1) =





q11 = q0ξ1 for 0 ¬ ξ1 ¬
1
3

q12 = q0(1− 2ξ1) for
1
3
¬ ξ1 ¬

2
3

q13 = −q0(1− ξ1) for
2
3
¬ ξ1 ¬ 1





= −q0
∞∑

n=1

16 cos nπ2 sin
3 nπ
6

n2π2
sin(nπξ1)

(2.3)

Depending on the subdomain considered, the loading function can be presented as below

q(ξ, η) = [qI , qII , qIII , qIV , qV , qV I , qV II , qV III , qIX ] (2.4)

where
qI
q0
= q11(ξ)− q11(ξ + η) + q11(η) = 0

qII
q0
= q11(ξ)− q12(ξ + η) + q11(η) = −1 + 3ξ + 3η

qIII
q0
= q12(ξ)− q12(ξ + η) + q11(η) = 3η

qIV
q0
= q12(ξ)− q13(ξ + η) + q11(η) = 2− 3ξ

qV
q0
= q13(ξ)− q13(ξ + η) + q11(η) = 0

qV I
q0
= q11(ξ)− q12(ξ + η) + q12(η) = 3ξ

qV II
q0
= q11(ξ)− q13(ξ + η) + q12(η) = 2− 3η

qIX
q0
= q11(ξ)− q13(ξ + η) + q13(η) = 0

qV III
q0
= q12(ξ)− q13(ξ + η) + q12(η) = 3(1 − ξ − η)

or in the form of the Fourier series referred to the Cartesian, yet non-orthogonal system (x, y)

q(ξ, η) = −q0
∞∑

n=1

16 cos nπ2 sin
3 nπ
6

n2π2
[sin(nπξ)− sin(nπ(ξ + η)) + sin(nπη)]

= −32q0
∞∑

n=1

cos nπ2 sin
3 nπ
6

n2π2

[
sin(nπξ) sin2

nπη

2
+ sin(nπη) sin2

nπξ

2

] (2.5)

or to the orthogonal system (x, y)

q(ξ, η) = −32q0
∞∑

n=1

cos nπ2 sin
3 nπ
6

n2π2

[(
cos

nπη√
3
− cos(nπξ)

)
sin

nπη√
3

]
(2.6)

The solution to the differential equations

d4w1(ξ1)
dξ4

=
q0c
4

D





ξ1 for 0 ¬ ξ1 ¬
1
3

1− 2ξ1 for
1
3
¬ ξ1 ¬ 23

−1 + ξ1 for
2
3
¬ ξ1 ¬ 1

(2.7)

reads

w1(ξ1) =
q0c
4

D





w11(ξ1) for 0 ¬ ξ1 ¬
1
3

w12(ξ1) for
1
3
¬ ξ1 ¬

2
3

w13(ξ1) for
2
3
¬ ξ1 ¬ 1

(2.8)
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where

w11(ξ1) = ξ1
10 − 60ξ21 + 81ξ41

9720
w12(ξ1) =

1− 5ξ1 + 90ξ21 − 330ξ31 + 405ξ41 − 162ξ51
9720

w13(ξ1) =
−31 + 235ξ1 − 630ξ21 + 750ξ31 − 405ξ41 + 81ξ51

9720

(2.9)

or it can be represented by the following Fourier series

w1(ξ1) = −16
q0c
4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6
sin(nπξ1) = −9

q0a
4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6
sin(nπξ1)

(2.10)

The plate deflection referring to the subdomains I to IX (Fig. 3) can be put in the form

w(ξ, η) =
q0c
4

D
[wI , wII , wIII , wIV , wV , wV I , wV II , wV III , wIX ] (2.11)

where

wI(ξ, η) = w11(ξ)− w11(ξ + η) + w11(η) =
ξη

216
(ξ + η)[4− 9(ξ2 + ξη + η2)]

wII(ξ, η) = w11(ξ)− w12(ξ + η) +w11(η) =
1
9720

{
(ξ + η)[15 − 90(ξ + η)

+ 330(ξ + η)2 − 405(ξ + η)3 + 162(ξ + η)4]− 1− 60(ξ3 + η3) + 81(ξ5 + η5)
}

wIII(ξ, η) = w12(ξ)− w12(ξ + η) + w11(η) =
η

3240
[81η4 − 135η3(1− 2ξ)

+ 90η2(1− 6ξ + 6ξ2)− 30η(1− 11ξ + 27ξ2 − 18ξ3) + 5(1− 12ξ + 66ξ2 − 108ξ3 + 54ξ4)]

wIV = w12(ξ)− w13(ξ + η) + w11(η) =
1
9720

{
(1− ξ)[405η4 − 810(1 − ξ)η3

− 45(1 − ξ)η(5 − 18ξ + 9ξ2) + 90η2(7− 18ξ + 9ξ2)] + (2− 3ξ)5
}

wV = w13(ξ)− w13(ξ + η) + w11(η)

=
η

216
(1− ξ)[−5 + 9η2(2ξ + η − 2) + ξ(23− 27ξ + 9ξ2) + 2η(7− 18ξ + 9ξ2)]

wV I = w11(ξ)− w12(ξ + η) + w12(η) =
ξ

3240
[5 + 270η4 − 540η3(1− ξ)

− 3ξ(10 − 30ξ + 45ξ2 − 27ξ3)− 30η2(11− 27ξ + 18ξ2)− 30η(1 − ξ)(2− 9ξ + 9ξ2)]

wV II = w11(ξ)− w13(ξ + η) + w12(η) =
1
9720
[30 + (1− η)(2 − 3η + 87η2 − 243η3 + 162η4)

+ ξ(10− 60ξ2 + 81ξ4)− 235(ξ + η) + 630(ξ + η)2 − 750(ξ + η)3

+ 405(ξ + η)4 − 81(ξ + η)5]

wV III = w12(ξ)−w13(ξ + η) + w12(η) =
1
9720
[31

+ (1− η)(2 − 3η + 87η2 − 243η3 + 162η4)− 2ξ − ξ(1− ξ)(3− 87ξ + 243ξ2 − 162ξ3)
− 235(ξ + η) + 630(ξ + η)2 − 750(ξ + η)3 + 405(ξ + η)4 − 81(ξ + η)5]

wIX = w11(ξ)− w13(ξ + η) +w13(η) =
ξ

216
(1− η)[(1 − ξ)(−5 + 9ξ − 9ξ2)

+ 9η2(−3 + 2ξ + η) + η(23− 36ξ + 18ξ2)]
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Alternatively, this function can be represented by the Fourier series corresponding to the oblique
coordinates

w(ξ, η) = −9q0a
4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6
[sin(nπξ)− sin(nπ(ξ + η)) + sin(nπη)]

= −9q0a
4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6

[
sin(nπξ) sin2

nπη

2
+ sin(nπη) sin2

nπξ

2

] (2.12)

or to the orthogonal coordinates

w(ξ, η) = −18q0a
4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6

[(
cos

nπη√
3
− cos(nπξ)

)
sin

nπη√
3

]
(2.13)

The maximum deflection for ξ = 1/3, η = 1/3 equals

wmax = wII
(1
3
,
1
3

)
=
13
29160

q0c
4

D
=
13
51840

q0a
4

D
≈ 0.000250772q0a

4

D
(2.14)

or

wmax = w
(
ξ =
1
3
, η =

1
3

)
= −36q0a

4

D

∞∑

n=1

cos nπ2 sin
5 nπ
6 sin

nπ
3

n6π6

= −72q0a
4

D

∞∑

n=2,4,6

sin6 nπ6 cos
nπ
6

n6π6
≈ 0.000250772q0a

4

D

wmax = w
(
ξ =
1
2
, η =

√
3
6

)
= −18q0a

4

D

∞∑

n=1

cos nπ2 sin
3 nπ
6

n6π6

[(
cos

nπ

6
− cos nπ

2

)
sin

nπ

6

]

≈ 0.000250772q0a
4

D

(2.15)

3. A rectangular hingely supported plate under loading in form of a truncated
octagonal pyramid

Let us find deflection of a hingely supported rectangular plate under the load shown in Fig. 5.
For various values of the parameters ε = e/c, 0 ¬ ε ¬ 1/2, we find various load cases, as shown
in Fig. 6, by making use of non-dimensional coordinates

ξ =
x

a
η =

y

b
0 ¬ ξ ¬ 1 0 ¬ η ¬ 1



 for ε = 0, ε =

1
4
, ε =

1
2

(3.1)

The same loading cases, represented by the Fourier series, are shown in Fig. 7
The loading shown in Fig. 6 is a sum of two loads acting on the infinite plate, cf Fig. 8.
The non-dimensional coordinates ξ1 = x1/c, ξ2 = x2/c are linked with ξ and η

ξ1 = ξ − η ξ2 = ξ + η (3.2)

The loadings q1(ξ1), q2(ξ2) are expressed by

q1(ξ1) =
q0
2





1 for 0 ¬ ξ1 ¬ ε
1− 2ξ1
1− 2ε for ε ¬ ξ1 ¬ 1− ε
−1 for 1− ε ¬ ξ1 ¬ 1

q2(ξ2) = −q1(ξ1) (3.3)
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Fig. 5. The load acting on the plate

Fig. 6. Various load cases, (a) ε = 0, (b) ε = 1/4, (c) ε = 1/2

Fig. 7. Load cases represented by the Fourier series, (a) ε = 0, (b) ε = 1/4, (c) ε = 1/2

Fig. 8. The loading shown in Fig. 6a
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while the loading q(ξ, η), composed of two loadings as shown in Fig. 8, is represented by

q(ξ, η) = q1(ξ − η)− q1(ξ + η) (3.4)

The function q1(x1) can be put in the form of the Fourier series

q1(x1) =





2
∞∑
n=1

cos[nπ(−1 + ε)]− cos(nπε)
n2π2(−1 + 2ε) cos(nπξ1) for 0 ¬ ε < 1

2

8
∞∑
n=1

cos
nπ

4
sin3

nπ

4
nπ

cos(nπξ1) for ε =
1
2

(3.5)

while the function q(ξ, η) is expressed as follows

q(ξ, η) =





4
∞∑
n=1

cos[nπ(−1 + ε)] − cos(nπε)
n2π2(−1 + 2ε) sin(nπξ) sin(nπη) for 0 ¬ ε < 1

2

16
∞∑
n=1

cos
nπ

4
sin3

nπ

4
nπ

sin(nπξ) sin(nπη) for ε =
1
2

(3.6)

Similarly, the plate deflection can be written down as

w(ξ, η) = w1(ξ − η)− w1(ξ + η) (3.7)

The function w1(ξ1) is of the form

w1(ξ1) =
q0c
4

D





w11(ξ1) for 0 ¬ ξ ¬ ε
w12(ξ1) for ε ¬ ξ ¬ 1− ε
w13(ξ1) for 1− ε ¬ ξ ¬ 1

(3.8)

where

w11(ξ1) =
ξ21
48
[−1 + ξ21 − 2ε(1− ε)]

w12(ξ1) =
−5ξ21 + 5ξ41 − 2ξ51 + 30ξ21ε2 − 20ξ31ε2 − 10ξ1ε4 + 2ε5

240(1 − 2ε)

w13(ξ1) =
1
240
[20ξ31 − 5ξ41 + 10ξ1(1− 2ε+ 2ε2)− 5ξ21(5− 2ε+ 2ε2)

− 2(1 − 3ε+ 4ε2 − 2ε3 + ε4)]

The deflection of the plate is expressed through functions defined on some subdomains, as
shown in Fig. 9.
The relevant functions are

w(ξ, η) =
q0c
4

D
[w11(ξ, η), w12(ξ, η), w13(ξ, η), w14(ξ, η), w21(ξ, η), w22(ξ, η),

w23(ξ, η), w24(ξ, η), w31(ξ, η), w32(ξ, η), w33(ξ, η), w34(ξ, η), w4(ξ, η)] (3.9)

=
q0c
4

D





4
∞∑
n=1

cos[nπ(−1 + ε)]− cos(nπε)
n6π6(−1 + 2ε) sin(nπξ) sin(nπη) for 0 ¬ ε < 1

2

16
∞∑
n=1

cos nπ4 sin
3 nπ
4

n5π5
sin(nπξ) sin(nπη) for ε =

1
2
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Fig. 9. The deflection of the plate in some subdomains

where

w11(ξ, η) = w1(ξ − eta)− w1(ξ + η) =
1
96
ξη[11 − 16(ξ2 + η2)]

w12(ξ, η) =
1
96
ξ(−1 + η)[5 + 16(ξ2 + η2)− 32η]

w13(ξ, η) =
1
96
(1 + ξ)(−1 + η)[21 + 16(ξ2 + η2)− 32(ξ + η)]

w14(ξ, η) =
1
96
(1− ξ)η[11 − 16(1− ξ)2 − 16η2]

w21(ξ, η) = w2(ξ − η)− w2(ξ + η) =
1
7680

η
[
5− 2560ξ3 + 1280ξ4 + 160η2

+ 256η4 − 160ξ(−5 + 16η2) + 160ξ2(3 + 16η2)
]

w22(ξ, η) = w2(−ξ + η)− w2(ξ + η) =
1
7680

ξ
[
256ξ4 + 160ξ2(1− 16η + 16η2)

+ 5(1 + 160η + 96η2 − 512η3 + 256η4)
]

w23(ξ, η) = w21(ξ, 1− η) =
1
7680
(1− η)

{
5 + 160ξ(5 + 3ξ − 16ξ2 + 8ξ3)

+ 32(1 − η)2[5 + 8(1− η)2 − 80ξ + 80ξ2]
}

w24(ξ, η) = w22(1− ξ, η) =
1
7680
(1− ξ)

{
5 + 160η(1 − η)(5 + 8η − 8η2)

+ 32(1 − ξ)2[5 + 8(1 − ξ)2 − 80η + 80η2]
}

w31(ξ, η) = w1(ξ − η)− w2(ξ + η) =
1
240

{5
8
(ξ − η)2

[
8(ξ − η)2 − 11

]
− 1
256

+
ξ + η
64

[
5 + 8(ξ + η)

(
50 + 20(ξ + η)− 80(ξ + η)2 + 32(ξ + η)3

)]}

w32(ξ, η) = w31(ξ, 1− η) =
1
240

{5
8
(ξ + η − 1)2[8(ξ + η − 1)2 − 11]− 1

256

+
1 + ξ − η
64

[
5 + 8(1 + ξ − η)

(
50 + 20(1 + ξ − η)− 80(1 + ξ − η)2 + 32(1 + ξ − η)3

)]}

w33(ξ, η) = w32(1− ξ, η) =
1
240

{5
8
(η − ξ)2[8(η − ξ)2 − 11]− 1

256

+
2− ξ − η
64

[
5 + 8(2 − ξ − η)

(
50 + 20(2 − ξ − η)− 80(2 − ξ − η)2 + 32(2 − ξ − η)3

)]}



104 G.E. Jemielita

w34(ξ, η) = w31(1− ξ, η) =
1
240

{5
8
(1− ξ − η)2[8(1− ξ − η)2 − 11] − 1

256

+
1− ξ + η
64

[
5 + 8(1− ξ + η)

(
50 + 20(1 − ξ + η)− 80(1− ξ + η)2 + 32(1 − ξ + η)3

)]}

w4(ξ, η) = w1(ξ − η)− w3(ξ + η) =
1
240

{121
128
+
5
8
(ξ − η)2[8(ξ − η)2 − 11]

− ξ + η
8

[
50 − 185(ξ + η) + 160(ξ + η)2 − 40(ξ + η)3

]}

The plate deflection for subsequent values of the parameter ε is shown in Fig. 10.

Fig. 10. The plate deflection for subsequent values of the parameter ε, (a) ε = 0, (b) ε = 1/4, (c) ε = 1/2

The maximum deflections wmax(ε) for ε = 0, ε = 1/4, ε = 1/2 are given by

wmax(0) =
256
30720

q0c
4

D
wmax

(1
4

)
=
361
30720

q0c
4

D

wmax
(1
2

)
=
400
30720

q0c
4

D

(3.10)

The exact solutions wmax(0) and wmax(1/2) are compatible with those reported by Kączkowski
(1968).
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The analytical solution of steady-state asymmetric thermo-electro-mechanical loads of a
hollow thick infinite cylinder made of porous piezoelectric materials (2D-PPMs) based on
two-dimensional equations of thermoelasticity is considered. The general form of thermal and
mechanical boundary conditions is considered on the inside and outside surfaces. A direct
method is used to solve the heat conduction equation and the non-homogenous system
of partial differential Navier equations using the complex Fourier series and the power-
exponential law functions method. The material properties are assumed to depend on the
radial and circumferential variable and are expressed as power-exponential law functions
along the radial and circumferential direction.

Keywords: piezoelectric, porothermoelastisity, 2D-PPMs, hollow cylinder, TEM

1. Introduction

Porous piezoelectric materials (PPMs) have lower acoustic impedance and can be incorporated in
medical ultrasonic imaging devices. They are widely used for applications such as low frequency
hydrophones, accelerometers, vibratory sensors and contact microphones. The classical method
of analysis is to combine equilibrium equations with stress-strain and strain-displacement rela-
tions to arrive at governing equations in terms of displacement components, namely the Navier
equations (Hetnarski and Eslami, 2009). Li et al. (2003) presented fabrication and evaluation
of porous piezoelectric ceramics and poroussity-graded piezoelectric actuators. Zielinski (2010)
discussed the fundamentals of multi physics modeling of piezo-poro-elastic structures. The pro-
cessing and properties of porous piezoelectric materials with high hydrostatic figures of merit
was given by Bowen et al. (2004).The porous piezoelectric composites with extremely high re-
ception was discussed by Topolov and Turik (2001). Ciarletta and Scarpetta (1996) gave some
results on thermoelasticity for porous piezoelectric materials. Batifol et al. (2007) presented a
finite-element study of a piezoelectric/poroelastic sound package concept. Zeng et al. (2007)
have discussed the processing and piezoelectric properties of porous PZT ceramics. Ivanov et al.
(2002) used the porous piezoelectric ceramics materials for ultrasonic flaw detection and medical
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diagnostics. Ding et al. (2004) presented an analytical solution of a special non-homogeneous
pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems.
Akbari Alashti et al. (2013) presented thermo-elastic analysis of a functionally graded spheri-
cal shell with piezoelectric layers by differential quadrature method. Jabbari et al. (2012, 2016)
studied mechanical and thermal stresses in FGPPM hollow cylinders. Meshkini et al. (2017)
studied a asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder. The
applied separation of variables and the complex Fourier series to solve the heat conduction and
Navier equations.
In this study, an analytical method is presented for mechanical and thermal stress analysis

for a hollow infinite cylinder made of fluid saturated porous piezoelectric materials (2D-PPMs).
In present study, the material properties are assumed to be expressed by power functions in
the radial and circumferential direction. The effects of compressibility, pore volume fraction
(porosity), and electric potential coefficient on displacements, electric potential and stresses
are studied. Temperature distribution is considered in the steady state asymmetric case and
mechanical and thermal boundary conditions by satisfying the stress and displacement boundary
condition.

2. Governing equations

2.1. Stress analysis

The strain-displacement relations and electric intensity are (Ding et al., 2004)

εrr =
∂u

∂r
εθθ =

1
r

∂v

∂θ
+
u

r
εrθ =

1
2

(1
r

∂u

∂θ
+
∂v

∂r
− v

r

)

Er =
∂ψ

∂r
Eθ =

1
r

∂ψ

∂θ

(2.1)

Stress-strain relations of a 2D-PPM cylinder for the asymmtric condition are (Meshkini et al.,
2017)

σrr = C11εrr + C12εθθ + e21Er − γp− CT1 T (r, θ)
σθθ = C12εrr + C22εθθ + e22Er − γp− CT2 T (r, θ)
σzz = C12(εrr + εθθ) + e23Er − γp− CT3 T (r, θ)
σrθ = 2C44εrθ + e24Eθ Drr = e21εrr + e22εθθ − ε22Er + g21T (r, θ)
Dθθ = 2e24εrθ − ε21Eθ + g22T (r, θ)

(2.2)

where p is related to Biot’s modulus, volumetric strain and the variation of the fluid content.
Considering the undrained conditions (ξ = 0) as (Jabbari et al., 2012)

p =M(ξ − γ(εrr + εθθ) = −Mγ(εrr + εθθ) (2.3)

Using relations (2.2) and (2.3), the stress-strain relations of the 2D-PPM for the asymmtric
condition are (Meshkini et al., 2017)

σrr = Ĉ11εrr + Ĉ12εθθ + e21Er − CT1 T (r, θ)
σθθ = Ĉ12εrr + Ĉ22εθθ + e22Er − CT2 T (r, θ)
σzz = Ĉ12(εrr + εθθ) + e23Er − CT3 T (r, θ)
σrθ = 2Ĉ44εrθ + e24Eθ Drr = e21εrr + e22εθθ − ε22Er + g21T (r, θ)
Dθθ = 2e24εrθ − ε21Eθ + g22T (r, θ)

(2.4)



An analytical investigation of a 2D-PPMs hollow infinite cylinder... 109

and

Ĉ11 = C11 + CM Ĉ12 = C12 + CM Ĉ22 = C22 +CM Ĉ44 = C44 (2.5)

where CM =Mγ2 and CTi are thermal moduli which can be expressed by elastic constants and
linear thermal expansion coefficients αi (Ding et al., 2004)

CT1 = C11αr + 2C12αθ CT2 = 2C12αr + C22αθ (2.6)

under consideration αr = αθ = α (Hetnarski and Eslami, 2009). Therefore,

CT1 = (C11 + 2C12)α CT2 = (2C12 +C22)α CT3 = C
T
1 (2.7)

The equilibrium equations in the radial and circumferential direction, disregarding the body
force and the inertia terms, are (Ding et al., 2004)

∂σrr
∂r
+
1
r

∂σrθ
∂θ
+
1
r
(σrr − σθθ) = 0

∂σrθ
∂r
+
1
r

∂σθθ
∂θ
+
2
r
σrθ = 0

∂Drr

∂r
+
1
r

∂Dθθ

∂θ
+
1
r
Drr = 0

(2.8)

To obtain the equilibrium equations in terms of displacement components for the 2D-PPM
cylinder, the functional relationship of the material properties must be known. Because the
cylinder material is assumed to be graded along the radial and circumferential direction, the
coefficient of thermal expansion and electric constants are assumed to be described with the
power-exponential laws as

α = α0r̃m1en1θ Cij = Cij r̃m2en2θ K = k0r̃m3en3θ

e2i = e2ir̃m4en4θ ε2i = ε2ir̃m5en5θ g2i = g2ir̃
m6en6θ

(2.9)

where r̃ = r/a and a is the inner radius.

Fig. 1. Geometric model of a 2D-PPM hollow cylinder under two dimensional inner and outer
Thermo-Electro-Mechanical (TEM) loads

Using relations (2.4) and (2.9) into (2.8), the Navier equations in terms of the displacement
components are
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u,rr +

(
m2 + 1 + (m2 − 1)

Ĉ12

Ĉ11

)
1
r
u,r +

m2Ĉ12 − Ĉ22
Ĉ11

1
r2
u+

n2C44

Ĉ11

1
r
v,r −

n2C44

Ĉ11

1
r2
v

+
C44

Ĉ11

1
r2
u,θθ +

n2C44

Ĉ11

1
r2
u,θ +

C12 + C44

Ĉ11

1
r
v,rθ +

m2C12 − C22 − C44
Ĉ11

1
r2
v,θ

+

(
e21

Ĉ11
ψ,rr +

(m4 + 1)e21 − e22
Ĉ11

1
r
ψ,r +

e24

Ĉ11

1
r2
ψ,θθ +

n4e24

Ĉ11

1
r2
ψ,θ

)
r̃m4−m2e(n4−n2)θ

=

(
(m1 +m2 + 1)C11 + 2(m1 +m2)C12 − C22

Ĉ11

1
r
T +

C11 + 2C12

Ĉ11
T,r

)
α0r̃

m1en1θ

v,rr + (m2 + 1)
1
r
v,r − (m2 + 1)

1
r2
v + n2

Ĉ22

C44

1
r2
v,θ +

Ĉ22

C44

1
r2
v,θθ

+

(
m2 + 1 +

Ĉ22

C44

)
1
r2
u,θ + n2

Ĉ12

C44

1
r
u,r +

(
1 +

Ĉ12

C44

)
1
r
u,rθ + n2

Ĉ22

C44

1
r2
u

+

(
n4

e22

C44

1
r
ψ,r +

e22 + e24
C44

1
r
ψ,rθ + (m4 + 2)

e24

C44

1
r2
ψ,θ

)
r̃m4−m2e(n4−n2)θ

=

(
(n1 + n2)

2C12 + C22
C44

1
r
T +
2C12 + C22

C44

1
r
T,θ

)
α0r̃

m1en1θ

(2.10)

ψ,rr + (m5 + 1)
1
r
ψ,r + n5

ε21
ε22

1
r2
ψ,θ +

ε21
ε22

1
r2
ψ,θθ −

(
e21
ε22

u,rr +
(m4 + 1)e21 + e22

ε22

1
r
u,r

+
m4e22
ε22

1
r2
u+

n4e24
ε22

1
r
v,r −

n4e24
ε22

1
r2
v +
(m4 + 1)e22 − e24

ε22
)
1
r2
v,θ

+
e24
ε22

1
r
v,rθ

)
r̃m4−m5e(n4−n5)θ =

(
(m6 + 1)g21 + n6g22

ε22

1
r
T +

g22
ε22

∂T

∂r

+
g22
ε22

1
r

∂T

∂θ

)
r̃m6−m5e(n6−n5)θ

Navier equations (2.10) are a non-homogeneous system of partial differential equations with
non-constant coefficients.

2.2. Heat conduction problem

The first law of thermodynamics for energy equation in the steady-state condition for the
2D-PPM two dimensional cylinder is

1
r
(krT,r),r +

1
r2
(kT,θ),θ = 0 a ¬ r ¬ b − π ¬ θ ¬ +π (2.11)

where T (r, θ) is temperature distribution, k(r, θ) is the thermal conduction coefficient and a
comma denotes partial differentiation with respect to the space variable.
The thermal boundary conditions are assumed as

S11T (a, θ) + S12T,r(a, θ) = f1(θ) S21T (b, θ) + S22T,r(b, θ) = f2(θ) (2.12)

we assume that the non-homogeneous thermal conduction coefficient k(r, θ) is a power function
of the radial and circumferential coordinates (r, θ) as k(r, θ) = k0r̃m3en3θ.
Using the definition for the material properties, the temperature equation becomes

T,rr + (m3 + 1)
1
r
T,r +

1
r2
(n3T,θ + T,θθ) = 0 (2.13)
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The solution to Eq. (2.13) is written in the form of complex Fourier series, as

T (r, θ) =
∞∑

q=−∞
Tq(r)eiqθ (2.14)

Substituting Eq. (2.14) into Eq. (2.13), the following equation is obtained

T ′′q (r) + (m3 + 1)
1
r
T ′q(r) +

1
r2
(iqn3 − q2)Tq(r) = 0 (2.15)

Equation (2.15) is the Euler equation and has solutions in the form of

Tq(r) = Aqrβ (2.16)

Substituting Eq. (2.16) into Eq. (2.15), the following characteristic equation is obtained

β2 +m3β + (iqn3 − q2) = 0 (2.17)

the roots of Eq. (2.17) are

βq1,2 =
−m3
2
∓
√
m23
4
+ q2 − iqn3 (2.18)

Thus

Tq(r) = Aq1r
βq1 +Aq2r

βq2 (2.19)

Substituting Eq. (2.19) into Eq. (2.14) gives

T (r, θ) =
∞∑

q=−∞
(Aq1r

βq1 +Aq2r
βq2 )eiqθ (2.20)

The constants Aq1 and Aq2 are presented in Appendix.

3. Solution of the Navier equation

u(r, θ) =
∞∑

q=−∞
uq(r)e(iq+n1)θ v(r, θ) =

∞∑

q=−∞
vq(r)e(iq+n1)θ

ψ(r, θ) =
∞∑

q=−∞
ψq(r)e(iq+n1)θ

(3.1)

Substituting Eqs. (2.20) and (3.1) into Eqs. (2.10) yields

u′′q + ζ1
1
r
u′q + (τ2 + iτ3)

1
r2
uq + (τ4 + iτ5)

1
r
v′q + (τ6 + iτ7)

1
r2
vq + τ8ψ′′q + τ9

1
r
ψ′q

+ (τ10 + iτ11)
1
r2
ψq =

1
am1

[
(τ12 + βq1τ13)Aq1r

m1+βq1−1 + (τ12 + βq2τ13)Aq2r
m1+βq2−1

]

v′′q + τ14
1
r
v′q − (τ15 − iτ16)

1
r2
vq + (τ17 + iτ18)

1
r
u′q + (τ19 + iτ20)

1
r2
uq + (τ21 + iτ22)

1
r
ψ′q

+ (τ23 + iτ24)
1
r2
ψq =

1
am1
(τ25 + iτ26)

(
Aq1r

βq1+m1−1 +Aq2r
βq2+m1−1

)

ψ′′q + τ27
1
r
ψ′q + (τ28 + iτ29)

1
r2
ψq − τ30u′′q − τ31

1
r
u′q − τ32

1
r2
uq + (τ33 + iτ34)

1
r
v′q

+ (τ35 + iτ36)
1
r2
vq =

1
am1

[
(τ37 + iτ38 + βq1τ39)Aq1r

βq1+m1−1

+ (τ37 + iτ38 + βq2τ39)Aq2r
βq2+m1−1

]

(3.2)
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Equations (3.2) are a system of ordinary differential equations having general and particular
solutions.
The general solutions are assumed as

ugq(r) = Dr
η vgq (r) = Er

η ψgq (r) = Fr
η (3.3)

Substituting Eqs. (3.3) into Eqs. (3.2) yields

[η(η − 1) + τ1η + τ2 + iτ3]D + [τ4η + τ5 + i(τ6η + τ7)
]
E

+ [η(η − 1)τ8 + τ9η + τ10 + iτ11]F = 0
[τ19 + τ17η + i(τ18η + τ20)]D + [η(η − 1) + τ14η − τ15 + iτ16]E
+ [τ21η + τ23 + i(τ22η + τ24)]F = 0

η(η − 1)τ30 − τ31η − τ32]D + [τ33η + τ35 + i(τ34η + τ36)]E
+ [η(η − 1) + τ27η + τ28 + iτ29]F = 0

(3.4)

The constants τi are presented in Appendix.
A nontrivial solution is obtained by setting the determinant of the coefficients of Eqs. (3.4)

equal to zero, where a six-order polynomial characteristic equation is obtained. It gives six
eigenvalues ηq1 to ηq6 . Thus, the general solutions are

ugq(r) =
6∑

j=1

Dqjr
ηqj ⇒ ugq(r) =

6∑

j=1

Dqjr
ηqj

vgq (r) =
6∑

j=1

Eqjr
ηqj ⇒ vgq (r) =

6∑

j=1

XqjDqjr
ηqj

ψgq (r) =
6∑

j=1

Fqjr
ηqj ⇒ ψgq (r) =

6∑

j=1

YqjDqjr
ηqj

(3.5)

whereXqj is the relation between constantsDqj and Eqj and Yqj is the relation between constants
Dqj and Fqj . It is obtained from Eqs. (3.4). The constants are presented in Appendix.
The particular solutions upq(r) and v

p
q (r) are assumed as

upq(r) = Iq1r
βq1+m1+1 + Iq2r

βq2+m1+1 vpq (r) = Iq3r
βq1+m1+1 + Iq4r

βq2+m1+1

ψpq (r) = Iq5r
βq1+m1+1 + Iq6r

βq2+m1+1
(3.6)

Substituting Eqs. (3.6) into the non-homogeneous form of Eqs. (3.2) gives Iq1 to Iq6 , as they are
presented in Appendix. The complete solutions for uq(r), vq(r) and ψq(r) are the sum of the
general and particular solutions

uq(r) =
6∑

j=1

Dqjr
ηqj + Iq1r

βq1+m1+1 + Iq2r
βq2+m1+1

vq(r) =
6∑

j=1

XqjDqjr
ηqj + Iq3r

βq1+m1+1 + Iq4r
βq2+m1+1

ψq(r) =
6∑

j=1

YqjDqjr
ηqj + Iq5r

βq1+m1+1 + Iq6r
βq2+m1+1

(3.7)
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Substituting Eqs. (3.7) into Eqs. (3.1) gives

u(r, θ) =
∞∑

q=−∞
q 6=0

(
6∑

j=1

Dqjr
ηqj + Iq1r

βq1+m1+1 + Iq2r
βq2+m1+1

)
e(iq+n1)θ

v(r, θ) =
∞∑

q=−∞
q 6=0

(
6∑

j=1

XqjDqjr
ηqj + Iq3r

βq1+m1+1 + Iq4r
βq2+m1+1

)
e(iq+n1)θ

ψ(r, θ) =
∞∑

q=−∞
q 6=0

(
6∑

j=1

YqjDqjr
ηqj + Iq5r

βq1+m1+1 + Iq6r
βq2+m1+1

)
e(iq+n1)θ

(3.8)

Substituting Eqs. (3.8) into Eqs. (2.1), the strains and electric intensity are obtained as

εrr =
∞∑

q=−∞
q 6=0

(
6∑

j=1

ηqjDqjr
ηqj−1 + (βq1 +m1 + 1)Iq1r

βq1+m1

+ (βq2 +m1 + 1)Iq2r
βq2+m1

)
e(iq+n1)θ

εθθ =
∞∑

q=−∞
q 6=0

(
6∑

j=1

(iq + n1)(Xqj + 1)Dqjr
ηqj−1 + [(iq + n1)Iq3 + Iq1]r

βq1+m1

+ [(iq + n1)Iq4 + Iq2 ]r
βq2+m1

)
e(iq+n1)θ

εrθ =
1
2

∞∑

q=−∞
q 6=0

(
6∑

j=1

[iq + n1 + (ηqj − 1)Xqj ]Dqjr
ηqj−1 + [(iq + n1)Iq1

+ (βq1 +m1)Iq3 ]r
βq1+m1 + [(iq + n1)Iq2 + (βq2 +m1)Iq4]r

βq2+m1

)
e(iq+n1)θ

Er =
∞∑

q=−∞
q 6=0

(
6∑

j=1

ηqjYqjDqjr
ηqj−1 + (βq1 +m1 + 1)Iq5r

βq1+m1

+ (βq2 +m1 + 1)Iq6r
βq2+m1

)
e(iq+n1)θ

Eθ =
∞∑

q=−∞
q 6=0

(
6∑

j=1

(iq + n1)YqjDqjr
ηqj−1 + (iq + n1)Iq5r

βq1+m1 + (iq + n1)Iq6r
βq2+m1

)
e(iq+n1)θ

(3.9)

Substituting Eqs. (3.9) into Eqs. (2.4), the stresses and electric displacement are obtained as

σrr =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

(
Ĉ11[ηqjDqjr

ηqj+m2−1 + (βq1 +m1 + 1)Iq1r
βq1+m1+m2

+ (βq2 +m1 + 1)Iq2r
βq2+m1+m2 ]− α0

am1
C11(Aq1rβq1+m1+m2 +Aq2rβq2+m1+m2)

+ Ĉ12[(iq + n1)(Xqj + 1)Dqjr
ηqj+m2−1 +

(
(iq + n1)Iq3 + Iq1

)
rβq1+m1+m2

+
(
(iq + n1)Iq4 + Iq2

)
rβq2+m1+m2 ]− 2α0

am1
C12(Aq1rβq1+m1+m2 +Aq2rβq2+m1+m2)

)
en2θ
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+ e21[ηqjYqjDqjr
ηqj+m2−1 + (βq1 +m1 + 1)Iq5r

βq1+m1+m2

+ (βq2 +m1 + 1)Iq6r
βq2+m1+m2 ]en2θ

}
e(iq+n1)θ

σθθ =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

(
Ĉ12[ηqjDqjr

ηqj+m2−1 + (βq1 +m1 + 1)Iq1r
βq1+m1+m2

+ (βq2 +m1 + 1)Iq2r
βq2+m1+m2 ]− α0

am1
C12(Aq1rβq1+m1+m2 +Aq2rβq2+m1+m2)

+ Ĉ22[(iq + n1)(Xqj + 1)Dqjr
ηqj+m2−1 +

(
(iq + n1)Iq3 + Iq1

)
rβq1+m1+m2

+
(
(iq + n1)Iq4 + Iq2

)
rβq2+m1+m2 ]− 2α0

am1
C22(Aq1rβq1+m1+m2 +Aq2rβq2+m1+m2)

)
en2θ

+ e22[ηqjYqjDqjr
ηqj+m2−1 + (βq1 +m1 + 1)Iq5r

βq1+m1+m2

+ (βq2 +m1 + 1)Iq6r
βq2+m1+m2 ]en2θ

}
e(iq+n1)θ

σrθ =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

C44

(
[(iq + n1) + (ηqj − 1)Xqj ]Dqjr

ηqj+m2−1 + [(iq + n1)Iq1

+ (βq1 +m1)Iq3]r
βq1+m1+m2 + [(iq + n1)Iq2 + (βq2 +m1)Iq4]r

βq2+m1+m2

)
en2θ

− e24[(iq + n1)YqjDqjr
ηqj+m2−1 + (iq + n1)Iq5r

βq1+m1+m2

+ (iq + n1)Iq6r
βq2+m1+m2 ]en2θ

}
e(iq+n1)θ

(3.10)

σzz =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

(
Ĉ12[ηqjDqjr

ηqj+m2−1 + (βq1 +m1 + 1)Iq1r
βq1+m1+m2

+ (βq2 +m1 + 1)Iq2r
βq2+m1+m2 +

(
(iq + n1)Iq3 + Iq1

)
rβq1+m1+m2

+
(
(iq + n1)Iq4 + Iq2

)
rβq2+m1+m2 − 3α0

am1
C12(Aq1rβq1+m1+m2 +Aq2rβq2+m1+m2)]

)
en2θ

+ e23[ηqjYqjDqjr
ηqj+m2−1 + (βq1 +m1 + 1)Iq5r

βq1+m1+m2

+ (βq2 +m1 + 1)Iq6r
βq2+m1+m2 ]en2θ

}
e(iq+n1)θ

Drr =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

(
e21[ηqjDqjr

ηqj+m2−1 + (βq1 +m1 + 1)Iq1r
βq1+m1+m2

+ (βq2 +m1 + 1)Iq2r
βq2+m1+m2 ] + e22[(iq + n1)(Xqj + 1)Dqjr

ηqj+m2−1

+
(
(iq + n1)Iq3 + Iq1

)
rβq1+m1+m2 +

(
(iq + n1)Iq4 + Iq2

)
rβq2+m1+m2 ]

)
en2θ

− ε22[ηqjYqjDqjr
ηqj+m2−1 + (βq1 +m1 + 1)Iq5r

βq1+m1+m2

+ (βq2 +m1 + 1)Iq6r
βq2+m1+m2 ]en2θ

+
g21
am1
(Aq1r

βq1+m1+m2 +Aq2r
βq2+m1+m2)e(n1+n2)θ

}
e(iq+n1)θ
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Dθθ =
1
am2

∞∑

q=−∞
q 6=0

{
6∑

j=1

e24

(
[iq + n1 + (ηqj − 1)Xqj ]Dqjr

ηqj+m4−1 + [(iq + n1)Iq1

+ (βq1 +m1)Iq3 ]r
βq1+m1+m4 + [(iq + n1)Iq2 + (βq2 +m1)Iq4 ]r

βq2+m1+m4

)
en4θ

− ε21
(
(iq + n1)YqjDqjr

ηqj+m5−1 + (iq + n1)Iq5r
βq1+m1+m5

+ (iq + n1)Iq6r
βq2+m1+m5

)
en5θ +

g22
am1
(Aq1r

βq1+m1+m6 +Aq2r
βq2+m1+m6)en6θ

}
e(iq+n1)θ

To determine the constants Dqj, any general from of boundary conditions for displacements,
stresses and potential electric is considered as

u(a, θ) = w1(θ) u(b, θ) = w2(θ) v(a, θ) = w3(θ)

v(b, θ) = w4(θ) σrr(a, θ) = w7(θ) σrr(b, θ) = w8(θ)

σrθ(a, θ) = w9(θ) σrθ(b, θ) = w10(θ) ψ(a, θ) = w5(θ)

ψ(b, θ) = w6(θ) Drr(a, θ) = w11(θ) Drr(b, θ) = w12(θ)

(3.11)

It is recalled that Eqs. (3.9) and (3.10) contain six unknowns, Dq1 ,Dq2 , . . . ,Dq6 . Assume that
the six boundary conditions are specified from list of Eqs. (3.11). The boundary conditions may
be either the given displacements and electric potential or stresses, or combinations. Expanding
the given boundary conditions in complex Fourier series gives

wj(θ) =
∞∑

n=−∞
Wj(q)e(iq+n1)θ j = 1, . . . , 6 (3.12)

where

Wj(q) =
1
2π

π∫

−π

wj(q)e−(iq+n1)θ dθ j = 1, . . . , 6 (3.13)

Using the selected six boundary conditions of Eqs. (3.11) with the help of Eqs. (3.12) and (3.13),
the six unknown coefficients Dq1 to Dq6 are calculated.

4. Results and discussion

Consider a thick hollow cylinder of inner radius a = 1m and outer radius b = 1.2m of
Ba2NaNb5O15 material with properties given in Table 1.
The thermal boundary conditions are substituted into Eq. (2.12) to obtain the temperature

distribution, where the constants of integration are obtained from the equations given in Ap-
pendix. The stress and displacement and electric potential boundary conditions are assumed
to be selected such that the mathematical strength of the proposed method can be examined.
These type of boundary conditions may not be handled with the potential function method.
The constant coefficients of the series expansions are obtained from Eq. (3.13). Here, B is the
compressibility coefficient, sometimes named the skempton pore pressure coefficient, and φ is the
pore volume fraction and is pore per total volume, respectively, which are given in Appendix.
Using Eqs. (3.11) and (3.12), the boundary conditions given in terms of the radial and shear
stresses as well as electric potential appear in Table 2. These boundary conditions are expanded
by the integral series and the unknown coefficients Dqj are determined.
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Table 1. Material constants of Ba2NaNb5O15 for 2D-PPM (Akbari Alashti et al., 2013; Jabbari
et al., 2012)

Parameter Value Parameter Value Parameter Value

α0 [1/◦C] 1.2 · 10−6 C11 [GPa] 239 e22 [C/m2] −0.3
γ 0.75 C12 [GPa] 104 e24 [C/m2] 3.4
ν 0.25 C22 [GPa] 247 ε21 [C2/Nm2] 1.96 · 10−9
νu 0.3 C44 [GPa] 76 ε22 [C2/Nm2] 2.01 · 10−9

k0 [W/mK] 13.9 e21 [C/m2] −0.4 g21 [C/m
2K] 5.4 · 10−5

m1,m2, . . . ,m6 m n1, n2, . . . , n6 n g22 [C/m
2K] 5.4 · 10−5

Table 2. Boundary condition for 2D-PPM (Jabbari et al., 2012)

T (a, θ)
T (b, θ)

σrr(a, θ) σrθ(a, θ) u(b, θ) v(b, θ)
ψ(a, θ)

[◦C] [MPa] [MPa] [W/A]

60 sin(2|θ|) 0 400 sin
(
θ2

4 − |θ|
)
50θ2 cos θ 0 0 ψ0θ

2 cos(2θ)

Fig. 2. Temperature distribution in the (a) radial at θ = π/3 and (b) circumferential direction at r = r

Fig. 3. (a) Circumferential distribution of radial thermo-electro-mechanicalal stresses σrr at r = r.
(b) Radial distribution of shear thermo-electro-mechanicalal stresses σrθ at θ = π/3
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Figure 2a and 2b shows the effect of the power-exponential law index on the temperature
distribution in the wall thickness along the radial and circumferential directions. The effect of the
power-exponential law index on the distribution of the radial thermo-electro-mechanical stresses
is shown in Fig. 3a. It is shown that as m,n increases, the radial, hoop, shear and axial thermal
stresses are increased. This figure is a plot of stresses versus θ at r = r = 1.1, where r is the avrege
inner radius a and the outer radius b. Figure 3b shows the shear thermo-electro-mechanical
stresses in the cross section of the cylinder, where the pore compressibility coefficient B is
changed and the other parameters are fixed. Figure 4a shows the radial displacement in the
cross section of the cylinder, where the based on the pore volume fraction φ is changing. Also
the electric potential constant in Figs. 1 to 4a is ψ0 = 60V. Figure 4b shows the circumferential
displacements in the cross section of the cylinder, where the based on the versus electric potential
coefficient ψ0 is changing.

Fig. 4. (a) Radial distribution of u with diffrent porosity cofficient at θ = π/3. (b) Circumferential
distribution of v with electric potential coefficient at r = r

5. Conclusions

In the present work, an attempt is made to study the problem of analitical solution for the
Thermo-Electro-Mechanical (TEM) in a thick 2D-PPM hollow infinite cylinder where the two-
dimensional asymmetric steady-state loads are implied. The method of solution is based on
the direct method and uses the power series, rather than the potential function method. The
advantage of this method is its mathematical power to handle both simple and complicated ma-
thematical functions for the thermal and mechanical stresses boundary conditions. The potential
function method is capable of handling complicated mathematical functions as the boundary
conditions. The proposed method does not have mathematical limitations to deal with general
types of boundary conditions, which usually occur in the potential function method.

Appendix

d1 = (βq1 +m1 + 1)(βq1 +m1) +
(
(m2 + 1) + (m2 − 1)

Ĉ12

Ĉ11

)
(βq1 +m1 + 1)

+
m2Ĉ12 − Ĉ22

Ĉ11
+ [(n1 + n2)n1 + iq(2n1 + n2)− q2]

C44

Ĉ11
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d2 = (βq2 +m1 + 1)(βq2 +m1) +
(
(m2 + 1) + (m2 − 1)

Ĉ12

Ĉ11

)
(βq2 +m1 + 1)

+
m2Ĉ12 − Ĉ22

Ĉ11
+ [(n1 + n2)n1 + iq(2n1 + n2)− q2]

C44

Ĉ11

d3 =
(
(iq + n1)

Ĉ12

Ĉ11
+ (iq + n1 + n2)

C44

Ĉ11

)
(βq1 +m1 + 1)

+ (iq + n1)
m2Ĉ12 − Ĉ22

Ĉ11
− (iq + n1 + n2)

C44

Ĉ11

d4 =
(
(iq + n1)

Ĉ12

Ĉ11
+ (iq + n1 + n2)

C44

Ĉ11

)
(βq2 +m1 + 1)

+ (iq + n1)
m2Ĉ12 − Ĉ22

Ĉ11
− (iq + n1 + n2)

C44

Ĉ11

d5 =
e21

Ĉ11
(βq1 +m1 + 1)(βq1 +m1) +

(m4 + 1)e21 − e22
Ĉ11

(βq1 +m1 + 1)

+ [(n1 + n4)n1 + iq(2n1 + n4)− q2]
e24

Ĉ11

d6 =
e21

Ĉ11
(βq2 +m1 + 1)(βq2 +m1) +

(m4 + 1)e21 − e22
Ĉ11

(βq2 +m1 + 1)

+ [(n1 + n4)n1 + iq(2n1 + n4)− q2]
e24

Ĉ11

d7 =
((m1 +m2 + 1)C11 + 2(m1 +m2)C12 − C22

Ĉ11
+
C11 + 2C12

Ĉ11
βq1

) α0
am1

Aq1

d8 =
((m1 +m2 + 1)C11 + 2(m1 +m2)C12 − C22

Ĉ11
+
C11 + 2C12

Ĉ11
βq2

) α0
am1

Aq2

d9 = (βq1 +m1 + 1)(βq1 +m1) + (m2 + 1)(βq1 +m1 + 1)

− (m2 + 1) + [(n1 + n2) + iq(n2 + 2)− q2]
Ĉ22

C44

)

d10 = (βq2 +m1 + 1)(βq2 +m1) + (m2 + 1)(βq2 +m1 + 1)

− (m2 + 1) + [(n1 + n2) + iq(n2 + 2)− q2]
Ĉ22

C44

d11 =
(
(iq + n1) + (iq + n1 + n2)

Ĉ12

C44

)
(βq1 +m1 + 1)

+ (iq + n1)(m2 + 1) + (iq + n1 + n2)
Ĉ22

C44

d12 =
(
(iq + n1) + (iq + n1 + n2)

Ĉ12

C44

)
(βq2 +m1 + 1)

+ (iq + n1)(m2 + 1) + (iq + n1 + n2)
Ĉ22

C44

d13 =
(
(iq + n1)

e24

C44
+ (iq + n1 + n4)

e22

C44

)
(βq1 +m1 + 1) + (iq + n1)(m4 + 2)

e24

C44
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d14 =
(
(iq + n1)

e24

C44
+ (iq + n1 + n4)

e22

C44

)
(βq2 +m1 + 1) + (iq + n1)(m4 + 2)

e24

C44

d15 = (n1 + n2 + iq)
2C12 + C22

C44

α0
am1

Aq1

d16 = (n1 + n2 + iq)
2C12 + C22

C44

α0
am1

Aq2

d17 = (βq1 +m1 + 1)(βq1 +m1) + (βq1 +m1 + 1)(m5 + 1)

+ [(n1 + n5)n1 + iq(n5 + 2n1)− q2]
ε21
ε22

d18 = (βq2 +m1 + 1)(βq2 +m1) + (βq2 +m1 + 1)(m5 + 1)

+ [(n1 + n5)n1 + iq(n5 + 2n1)− q2]
ε21
ε22

d19 = −
e21
ε22
(βq1 +m1 + 1)(βq1 +m1)−

(m4 + 1)e21 + e22
ε22

(βq1 +m1 + 1)−
m4e22
ε22

d20 = −
e21
ε22
(βq2 +m1 + 1)(βq2 +m1)− (

(m4 + 1)e21 + e22
ε22

(βq2 +m1 + 1)−
m4e22
ε22

d21 = (iq + n1 + n4)
e24
ε22
(βq1 +m1 + 1) + (iq + n1)(m4 + 1)

e22
ε22
− (iq + n1 + n4)

e24
ε22

d22 = (iq + n1 + n4)
e24
ε22
(βq2 +m1 + 1) + (iq + n1)(m4 + 1)

e22
ε22
− (iq + n1 + n4)

e24
ε22

d23 =
(
(m6 + 1)

g21
ε22
+ (iq + n6 + βq1)

g22
ε22

) 1
am1

Aq1

d24 =
(
(m6 + 1)

g21
ε22
+ (iq + n6 + βq2)

g22
ε22

) 1
am1

Aq2

N̂lqj = ηqj(ηqj − 1) + τ1η + τ2 + τ3 + iτ4 N̂2qj = τ5ηqj + τ7 + i(τ6 + τ8ηqj )

N̂3qj = ηqj(ηqj − 1)τ9 + τ10ηqj + τ11 + iτ12 N̂4qj = τ16 + τ18ηqj + i(τ19ηqj + τ21)

N̂5qj = ηqj(ηqj − 1) + τ15ηqj − τ16 + iτ17 N̂6qj = τ26ηqj + τ28 + i(τ27ηqj + τ29)

N̂7qj = ηqj(ηqj − 1)τ35 − τ36ηqj − τ37 N̂8qj = τ38ηqj + τ40 + i(τ39ηqj + τ41)

N̂9qj = ηqj(ηqj − 1)− τ32ηqj + τ33 + iτ34

N̂1qj N̂2qj N̂3qj
N̂4qj N̂5qj N̂6qj
N̂7qj N̂8qj N̂9qj






Dqj

Eqj
Fqj


 =



0
0
0


 ⇒

∣∣∣∣∣∣∣

N̂1qj N̂2qj N̂3qj
N̂4qj N̂5qj N̂6qj
N̂7qj N̂8qj N̂9qj

∣∣∣∣∣∣∣
= 0

Xqj =
Eqj
Dqj

=
N̂1qjN̂6qj − N̂3qjN̂4qj
N̂3qjN̂5qj − N̂2qjN̂6qj

Yqj =
Fqj
Dqj

=
N̂4qj N̂8qj − N̂5qj N̂7qj
N̂5qj N̂9qj − N̂6qj N̂8qj

j = 1, . . . , 6

Iq1 =
d7d9d17 − d3d15d17 − d5d9d23 − d7d13d19 + d3d13d23 + d5d15d19
d1d9d17 − d3d11d17 − d1d13d19 − d5d9d21 + d5d11d19 + d3d13d21

Iq2 =
d8d10d18 − d4d16d18 − d6d10d24 − d8d14d20 + d4d14d24 + d6d16d20
d2d10d18 − d4d12d18 − d2d14d20 − d6d10d22 + d6d12d20 + d4d14d22

Iq3 =
d1d15d17 − d7d11d17 − d1d13d23 − d5d15d21 + d5d11d23 + d7d13d21
d1d9d17 − d3d11d17 − d1d13d19 − d5d9d21 + d5d11d19 + d3d13d21

Iq4 =
d2d16d18 − d8d12d18 − d2d14d24 − d6d16d22 + d6d12d24 + d8d14d22
d2d10d18 − d4d12d18 − d2d14d20 − d6d10d22 + d6d12d20 + d4d14d22

Iq5 =
d1d9d23 − d1d15d19 − d3d11d23 − d7d9d21 + d7d11d19 + d3d15d21
d1d9d17 − d3d11d17 − d1d13d19 − d5d9d21 + d5d11d19 + d3d13d21

Iq6 =
d2d10d24 − d2d16d20 − d4d12d24 − d8d10d22 + d8d12d20 + d4d16d22
d2d10d18 − d4d12d18 − d2d14d20 − d6d10d22 + d6d12d20 + d4d14d22



120 M. Meshkini et al.

τ1 = (m2 + 1) + (m2 − 1)
Ĉ12

Ĉ11
τ2 =

m2Ĉ12 − Ĉ22 + [(n21 + n1n2)− q2]C44
Ĉ11

τ3 =
(2n1 + n2)C44

Ĉ11
q τ4 =

n1Ĉ12 + (n1 + n2)C44

Ĉ11
τ5 =

Ĉ12 + C44

Ĉ11
q

τ6 =
(m2Ĉ12 − Ĉ22)n1 − (n1 + n2)C44

Ĉ11
τ7 =

m2Ĉ12 − Ĉ22 − C44
Ĉ11

q

τ8 =
e21

Ĉ11
τ9 =

(m4 + 1)e21 − e22
Ĉ11

τ10 = [(n21 + n1n4)− q2]
e24

Ĉ11

τ11 = (2n1 + n4)
e24

Ĉ11
q τ12 =

α0[(m1 +m2 + 1)C11 + 2(m1 +m2)C12 − C22]
Ĉ11

τ13 = α0
C11 + 2C12

Ĉ11
τ14 = m2 + 1 τ15 = (m2 + 1)− [(n1 + n2)− q2]

Ĉ22

C44

τ16 = (n2 + 2)
Ĉ22

C44
q τ17 = n1 + (n1 + n2)

Ĉ12

C44
τ18 =

(
1 +

Ĉ12

C44

)
q

τ19 = (m2 + 1)n1 + (n1 + n2)
Ĉ22

C44
τ20 =

(
(m2 + 1) +

Ĉ22

C44

)
q

τ21 =
(n1 + n4)e22 + n1e24

C44
τ22 =

e22 + e24
C44

q τ23 = (m4 + 2)n1
e24

C44

τ24 = (m4 + 2)q
e24

C44
τ25 = α0(n1 + n2)

2C12 + C22
C44

τ26 = α0
2C12 + C22

C44
q τ27 = m5 + 1 τ28 = [(n21 + n1n5)− q2]

ε21
ε22

τ29 = (2n1 + n5)q
ε21
ε22

ζ30 = −
e21
ε22

τ31 =
(m4 + 1)e21 + e22

ε22

τ32 =
m4e22
ε22

τ33 = (n1 + n4)
e24
ε22

τ34 =
e24
ε22

q

τ35 =
(m4 + 1)n1e22 − (n1 + n4)e24

ε22
τ36 =

(m4 + 1)e22 − e24
ε22

q

τ37 =
(m6 + 1)g21 + n6g22

ε22
τ38 =

g22
ε22

q τ39 =
g22
ε22

Also

B =
3(νu − ν)

(1− 2ν)(1 + νu)
0 ¬ B ¬ 1 φ =

γ(B − kf )
B[(1− α) + k]

where kf and k are the bulk modulus of the fluid phase and the bulk modulus of the porouselastic
medium under the drained condition, respectively

M =
2G(νu − ν)

γ2(1− 2ν)(1 − 2νu)

where M and γ are Biot’s modulus, Biot’s coefficient of the porouselastic medium, respectively.
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Using the boundary conditions (2.12) to determine the constants Aq1, Aq2

∞∑

q=−∞

[
(S11aβq1 + S12βq1a

βq1 − 1)Aq1 + (S11aβq2 + S12βq2aβq2 − 1)Aq2
]
eiqθ = f1(θ)

∞∑

q=−∞

[
(S21bβq1 + S22βq1b

βq1 − 1)Aq1 + (S21bβq2 + S22βq2bβq2 − 1)Aq2
]
eiqθ = f2(θ)

(S11aβq1 + S12βq1a
βq1 − 1)Aq1 + (S11aβq2 + S12βq2aβq2 − 1)Aq2 =

1
2π

π∫

−π

f1(θ)e−iqθ dθ

(S21bβq1 + S22βq1b
βq1 − 1)Aq1 + (S21bβq2 + S22βq2bβq2 − 1)Aq2 =

1
2π

π∫

−π

f1(θ)e−iqθ dθ

Aq1 =
1
2π

π∫

−π

1

Ŝ1 − Ŝ2

[
(S21bβq2 + S22βq1b

βq2−1)f1(θ)

− (S11aβq2 + S12βq2aβq2−1)f2(θ)
]
e−iqθ dθ

Aq2 =
1
2π

π∫

−π

1

Ŝ1 − Ŝ2

[
(S11aβq1 + S12βq1a

βq1−1)f2(θ)

− (S21bβq1 + S22βq1aβq1−1)f1(θ)
]
e−iqθ dθ

Ŝ1 = (S11aβq1 + S12βq1a
βq1 − 1)(S21bβq2 + S22βq2bβq2 − 1)

Ŝ2 = (S11aβq2 + S12βq2a
βq2 − 1)(S21bβq1 + S22βq1bβq1 − 1)
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To detect and to diagnose, the localized defect in rolling bearings, a statistical model based
on the sequential Wald test is established to generate a “hypothetical” signal which takes
the state zero in absence of the defect, and the state one if a peak of resonance caused by the
defect in the bearing is present. The autocorrelation of this signal allows one to reveal the
periodicity of the defect and, consequently, one can establish the diagnosis by comparing the
frequency of the defect with the characteristic frequencies of the bearing. The originality of
this work is the use of the Wald test in the signal processing domain. Secondly, this method
permits the detection without considering the level of noise and the number of observations,
it can be used as a support for the Fast Fourier Transform. Finally, the simulated and
experimental signals are used to show the efficiency of this method based on the Wald test.

Keywords: diagnosis, detection, rolling element bearing, defect, Wald sequential test

1. Introduction

In the industry, a great attention has been given to monitoring conditions and maintenance
for the purpose to improve the quality of production. Edwards et al. (1998) and Tandon and
Choudhury (1999) showed the importance of maintenance as the best way to avoid maintenance
problems that are often very expensive. And also how the predictive maintenance techniques
have evolved to keep a check of mechanical health by generating information on the machine
condition. In rotating machines, the transmission elements: belts, gears and bearings are of major
interest in industrial maintenance as the operation of a mechanical system heavily depends on
health of these elements. Particularly, the rolling bearing is one of the most critical components
that determine machinery health and its remaining life time in modern production machinery
(Jayaswal et al., 2008). Robust Predictive Health Monitoring tools are needed to guarantee
the healthy state of rolling bearings during the operation. A predictive health monitoring tool
indicates upcoming failures which provide sufficient lead time for maintenance planning, as
showed by El-Thalji and Jantunen (2015), Mann et al. (1995) and Renwick and Babson (1985).
Over the past two decades, several methods have been the subject of studies and develop-

ments. Visibly noticed are revolution methods based on mechanical signal processing, which
are divided into two main categories, detection and diagnosis, and are based on time-frequency
methods and temporal methods or a combination of both. Thus, many methods are born, the
scalar indicators such as kurtosis, skew, crest factor (Dron et al., 2004; Pachaud et al., 1997),
demodulation and detection of the envelope (Sheen, 2004, 2008), amplitude modulation (Stack
et al., 2004), detection of vibration modes (Rizos et al., 1990), de-noising vibratory signals (Bo-
laers et al., 2004), the spectral density analysis (Krejcar and Frischer, 2011), the Fast Fourier
Transform (Lenort, 1995), the statistical model based on hypothesis test as KS-test Kolmogorov
and Smirnov (Kar and Mohanty, 2004; Dong et al., 2011; Yang et al., 2005), scalar and vector
statistical time series methods (Kopsaftopoulos and Fassois, 2011), neural networks (Samanta
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and Al-Balushi, 2003), wavelets (Bendjama and Boucherit, 2016), blind source separation (Wang
et al., 2014), fuzzy logic (Liu et al., 1996). El-Thalji and Jantunen (2015) and Rai and Upadhyay
(2016) reviewed almost all the techniques used in the domain predicting defects.
Typical defects in bearings are localized defects that occur generally in form of tiredness

cracking under cyclic pressure of contact (El-Thalji and Jantunen, 2015; Fajdiga and Sraml,
2009; Glaeser and Shaffer, 1996; Ismail et al., 1990; Tauqir et al., 2000). Thus, the detection of
cracking is frequently based on detection of the attack. During an abnormal operation, a series
of wide band impulses will be generated when the rolling element of the bearing (ball or roller)
(Brie, 2000; Ou et al., 2016) goes above the defect at a frequency determined by the shaft speed,
geometry of the bearing and the site of the defect (Barkov, 1999; Dyer and Stewart, 1978; Feng
et al., 2016; Ma and Li, 1995; Tandon and Choudhury, 1999). The site of the defect depending
on the characteristic frequencies gives the possibility of detecting the presence of the defect and
performing the diagnosis of the defective part.
The difficulty of detection of localized defects (Niu et al., 2015) is related to the bearing

energy which will diffuse through a wide band of frequency and hence it can be easily immersed
in the noise (Ma and Li, 1995; Van et al., 2016). Thus, under various operating regimes (varying
loads and speeds), many methods remain inefficient for the prediction (El-Thalji and Jantunen,
2015), because it may happen that an excited resonance mode at the beginning of the attack may
not be excited later when the defect has developed (Ma and Li, 1995; Mikhlin and Mytrokhin,
2008). In this paper, and to refer on the sequential analysis developed by Wald in the 1940s
(Schneeweiss, 2005; Wald, 1943, 1945, 1947, 1949; Wald and Wolfowitz, 1943, 1948), a composite
hypothesis test is used for the detection and diagnosis of localized defects in rolling bearings. To
this end, it is necessary to be provided with a significant and exact variance without any need
to estimate when the resonances modes occur.

2. Problem position

2.1. Probability Density Function (PDF) of vibrations of rolling bearings

To characterize vibration of rolling bearings, which is supposed to be a stationary stochastic
process, and the PDF can describe the percentage in time when the signal reaches a given
amplitude x. For the given amplitude, the PDF is estimated by

P (x) = lim
∆x→0

Pr {x ¬ x(t) ¬ x+∆x}
∆x

= lim
∆x→0

1
∆x

j∑

i=1

∆ti
T

(2.1)

where T is the total time of observation and ∆ti is the i-th duration while x(t) is inside the
interval [x, x + ∆x]. For vibration without a defect, which represents healthy functioning, the
distribution of the amplitude can be considered as a Gaussian process. This vibratory signature
will have a well-defined variance σ20 which is different from the variance σ

2
1 of a signal with a

localized fault (Fig. 1) and, consequently, the overall vibration of the bearing will be constituted
by two alternately periodic parts with different variances (Ma and Li, 1995).

2.2. Sequential Probability Test (SPRT)

Introduce now the sequential probability test (SPRT) of a simple null hypothesis H0 which
indicates the good operating condition and a simple alternative hypothesis H1 which indicates
the presence of a defect, based on N independent observations x1, x2, . . . , xN having a common
probability density function developed by Wald (1945, 1949) and Weiss (1956).
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Fig. 1. Real signal of the rolling bearing with a defect

The hypotheses are

H0 : P (x/H0) =
1√

(2π)NσN0
exp

(
−

N∑

i=1

x2i
2σ20

)

H1 : P (x/H1) =
1√

(2π)NσN1
exp

(
−

N∑

i=1

x2i
2σ21

) (2.2)

where x = [x1, x2, . . . , xN ] and σ2i are the variances with σ
2
0 < σ21 .

For the analysis of any vibratory signal, certainly one of the two variances will be retained
outside the test hypothesis H1 and one will have information whether or not it occurs with one
of the characteristic frequencies of the rolling bearings (inner race, outer race, ball and cage). In
the case of healthy rolling bearings, during a time ∆t for the signal x(t), all measurements of M
observations will have a Gaussian distribution given by relation (2.2)1, In the case of a defective
bearing given by (2.2)2 and by varying the number M of observations in the time ∆t, and as
soon asM is sufficiently large, and it is always possible to calculate the estimated variance σ21 of
the acquired vibratory signal with the defect in the rolling bearing. The variances σ20 for healthy
rolling bearings could be calculated by

σ20 =
1
M

M∑

1

x2i (2.3)

and σ21 = M−1
∑M
1 x2i is considered as an estimated variance of the defect signal. Such an

estimate will lead to a test for probability of both detection or false alarm (Ma and Li, 1995).

3. Sequential test

3.1. The likelihood ratio test with simple choice

The likelihood ratio test (PRT) of the σ21 measurement could then be expressed as follows
(Ma and Li, 1995; Paulson, 1947)

{
if ξ(x) > µ choose H1

if ξ(x) < µ choose H0
(3.1)

where ξ(x) is the likelihood ratio, which is defined by

ξ(x) =
P (x/H1)
P (x/H0)

=
σN1
σN0
exp

(
σ21 − σ20
2σ20σ

2
1

N∑

i=1

x2i

)
(3.2)
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By taking the natural logarithm of the two parts, the test can be simplified into
{
if f(x) > γ choose H1

if f(x) < γ choose H0
(3.3)

where

f(x) =
N∑

i=1

x2i γ =
2σ20σ

2
1

σ21 − σ20
ln
(σN1
σN0

µ
)

(3.4)

Then probability Pf of the false alarm and the detection probability Pd of the PRT are

Pf = P (f(x) > γ/H0) = P
(∑

x2i > γ/H0
)
=

∫

∑
x2
i
>γ

P (x/H0) dx

Pd = P (f(x) > γ/H1) = P
(∑

x2i > γ/H1
)
=

∫

∑
x2
i
>γ

P (x/H1) dx
(3.5)

From equations (2.2) and (3.5)1, the Pf is a decreasing monotone function of the parameter γ.
Integration of equations (3.5) leads to

Pf = exp
(−γ
2σ20

)
Pd = exp

(−γ
2σ21

)
(3.6)

where σ20 is the variance measured during healthy operation, σ
2
1 –variance measured during

unspecified operation and γ – the threshold of the test determined by

γ = −2σ20 lnPf (3.7)

while combining Pd with Pf we will have

Pd = P

σ20
σ2
1

f (3.8)

Using equation (3.5)1 to determine the probability of the false alarm Pf which corresponds to
threshold equation (3.7) on the one hand and, on the other, using this same threshold will give
the maximum probability of detection Pd defined by equation (3.5)2 related to the variance σ21
which is an unknown parameter estimated in one duration of the previously signal fixed. It can
be deduced that the uniformly most powerful test (UMP) exists in the sense of Neyman-Pearson
criterion which maximizes Pd (3.8) for a given Pf because the optimal probability rate test
(PRT) (3.3) for each σ21 > σ20 could be completely defined apart from the knowledge of the
true variance σ21 of the signal defect. Finally, the UMP test is defined by system (3.3) and is
constructed by equations (3.1), (3.2) with a determined γ by the pre-established false alarm
probability α, where α is the threshold of significance

Pf (γ) = α (3.9)

3.2. Wald sequential test

Contrarily to the classical test (test with a simple choice), one is not obliged to make a choice
between the two hypotheses H0 and H1, consequently, one deals with another type of test. If the
size of observations is fixed, the construction of the test leads to the sharing of possible values
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of the statistical domain in three regions (Wald, 1945; Berger and Wald, 1949; Wolfowitz, 1949;
Sobel and Wald, 1949)

Ψ (n) = Ψ(x1, x2, . . . , xn) (3.10)

that is the region of probable values and the region of improbable values (knowing that the basic
hypothesis H0 is true). If a given value of Ψ(x1, x2, . . . , xn) falls into the region of improbable
values, the basic hypothesis is rejected. The sequential test, that is, the test based on a sequential
procedure of observation, is built up as follows. For each value of

ν = 1, 2, . . . , n, n+ 1 (3.11)

the domain Γν of possible values of the critical statistics Ψ(x1, x2, . . . , xn) is divided into three
disjoined regions: ΓH0ν – region of probable values, Γ

H1
ν – region of improbable values and Γ

∗
ν –

region of doubtful values (knowing that H0 is true)

Γν = ΓH0ν ∪ ΓH1ν ∪ Γ ∗ν (3.12)

where ν = 1, 2, . . . with each step ν of the sequential procedure of observation. After having
recorded the observations x1, . . . , xν , ν = 1, 2, . . . one makes a decision relying on the following
rule which defines the Wald test: if Ψ(x1, x2, . . . , xn) ∈ ΓH0ν one accepts H0; if Ψ(x1, x2, . . . , xn) ∈
ΓH1ν one accepts H1 and if Ψ(x1, x2, . . . , xn) ∈ Γ ∗ν the problem remains open until the ν-th
observation. For this reason, the region Γ ∗ν is called the region of indetermination or the region
of the observation pursuit.
For the establishment of the Wald test of probability, one considers two simple hypotheses

of the following form, see Wald (1945, 1947) and Wald and Wolfowitz (1948)

H0 The observation is extracted from a density population f(x, θ0)

H1 The observation is extracted from a density population f(x, θ1)
(3.13)

The critical statistics of this test is defined by the relation (Wald, 1945, 1947; Paulson, 1947)

Ψ (ν) = ln
f(x1, θ1) · · · f(xi, θ1)
f(x1, θ0) · · · f(xi, θ0)

=
ν∑

i=1

ln
f(xi, θ1)
f(xi, θ0)

(3.14)

where: f(xi, θ0) = P (x/H0) with θ0 = σ20 and f(xi, θ1) = P (x/H1) with θ1 = σ
2
1 .

P (x/H0) and P (x/H1) could be drawn from equation (2.2). So, one establishing the likeli-
hood ratio, the critical statistics would be expressed as follows

Ψ (ν) = ln

{[exp
(
− 1
2σ21

∑ν
i=1 x

2
i

)

√
(2π)νσν1

]/[exp
(
− 1
2σ20

∑ν
i=1 x

2
i

)

√
(2π)νσν0

]}
(3.15)

After simplification of equation (3.15) and arrangement of the logarithmic term, one gets

Ψ (ν) =
σ21 − σ20
2σ20σ

2
1

ν∑

i=1

x2i +
ν

2
ln
σ21
σ20

(3.16)

The three regions are defined roughly by relations (3.11), (3.12), (3.13) and (3.16) that define
the completely Wald test (WT) (Aı̈vazian, 1986; Wald, 1947; Weiss, 1956)

ΓH0ν =
{
Ψ : Ψ (ν) ¬ ln β

1− α
}

ΓH1ν =
{
Ψ : Ψ (ν) ¬ ln 1− β

α

}

Γ ∗ν =
{
Ψ : ln

β

1− α ¬ Ψ
(ν) ¬ ln 1− β

α

} (3.17)

Wald test (3.17) is more optimal than all tests between hypotheses (3.13) with risks of the first
and second species lower than the respective given values α and β.
Values of α and β (Aı̈vazian, 1986) are: 0.1, 0.05, 0.025, 0.01, 0.005, 0.001, 0.002.
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4. Rolling element bearings defects detection

4.1. Detection procedure

The detection procedure is divided into many steps which can be stated as follows:

1 – Take the discrete vibration for M samples, which is larger than the amount of the
characteristic period of the defect.

2 – Select a window of size N for the test.

3 – Estimate the variance σ20 by using equation (2.3).

4 – Suggest a choice of α and β.

5 – Position the window at the beginning of recording of the vibration.

6 – Compute Ψ (N) by using equation (3.16).

7 – Define the intervals of the three regions by the terminals a = ln[β/(1 − α)] and
b = ln[(1− β)/α].
8 – Make the test by using equation (3.17).

9 – Generate a hypothetical signal defined by

h(i) =

{
0 if H0 is true (Ψ ¬ a)
1 if H1 is true (Ψ  b)

If a ¬ Ψ ¬ b, carry on with pursue for data opening another window (here, one does not
make a decision but only increases the size of the window).

10 – After generation of the hypothetical signal, if a defect is present, there will be a data
vector composed of two values 0 and 1. If 1, then appears periodically with a period of the
characteristic frequency of the bearing and is considered defective.

11 – To compare the detected frequency with the main characteristic frequencies of the rolling
bearings, it would be very easy to locate the defect so the diagnosis could be established
by comparing the multiple of this frequency detected with that of the most well-known
defects.

4.2. Test plan

Based on the detection procedure described in Section 4.1, a test plan can be established
which is shown by the procedure diagram shown in Fig. 2. So that the experiment is valid,
one chooses N as a small fraction of the characteristic period of the defect, that is to say one
fifth (Ma and Li, 1995). By examining step 10 in the detection procedure in Section 4.1 (to
show if there is periodicity), one uses autocorrelation of the signal, a peak in the autocorrelation
function reveals the periodicity of the signal, and the value of the time of this peak will give
the period of the defect Td. Consequently, one can determine the frequency of the defect fd, and
comparing it with the characteristic frequency fc, one can establish the diagnosis.

5. Validation of the model by simulated and experimental signals

5.1. Validation of the model by simulated signals

5.1.1. Generation of the simulated signals

To simulate the defect, a bearing of the type NJ2204ECP has been used. The shaft speed is
n = 1500 rpm, the characteristic frequencies are determined by the relations from Appendix A1,
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Fig. 2. Test plan

where the frequency of the cage is: fcage = 0.39fr (9.74Hz), the frequency of the outer race:
for = 0.39Zfr (87.68 Hz), the frequency of the inner race fir = 0.61Zfr (137.32 Hz), and the
frequency of the ball: fre = 4.754fr (118.85 Hz); where: fr = 25Hz, Z is the number of balls.
For NJ2204ECP: Z = 9, d = 7.5mm, D = 34mm, α = 0. The reference signal (Fig. 3a) is
taken as a sinusoid of frequency 25Hz, amplitude equal to unit and a null phase. The simulated
defect signal (Fig. 3b) is considered as the sum of a sinusoid of frequency 25Hz, amplitude
equal to unit and the null phase, a sinusoid of frequency 87Hz of amplitude 10 times the unit
(representing a defect of frequency 87Hz, which corresponds to the frequency of the outer race,
as one can use the function pulstran available in Matlab which generates a series of impulses),
and a Gaussian white noise centered with variance equal to 1 generated by the function “randn”
available in Matlab with a signal noise ratio SNR = 20 dB. The thresholds of significances are
fixed at α = 0.05 and β = 0.002.

Fig. 3. (a) Reference signal, (b) defect signal

5.1.2. Interpretation

One can say that periodicity of a hypothetical signal (h-signal, Fig. 4a) appeared in the
function of autocorrelation (Fig. 4b) reveals the existence of a defect. To determine its frequency,
one carries out Fourier fast transform (FFT) of the hypothetical signal, which reveals visually
the frequency of the defect (87Hz) which corresponds indeed to the characteristic frequency of
the outer race (Fig. 4c). Consequently, one can affirm that the plan suggested for detection and
diagnosis of the defect in the bearing has succeeded and to made diagnosis of the defective part.
During healthy running, the hypothetical signal will be zero, the autocorrelation of the h-signal
will not reveal any periodicity, and the FFT will confirm the absence of the defect.
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Fig. 4. (a) Hypothetical signal, (b) autocorrelation of hypothetical signal, (c) FFT of hypothetical signal

5.2. Validation of the model by experimental signals

5.2.1. Generation of the experimental signals

The test stand consists of a reinforced concrete frame, isolated from the ground by shock-
absorbing studs. Two rows of shafts each having diameter of 60mm and length of 680mm are
mounted in an open loop and fixed to the chassis by four rolling bearings with an average stiffness
of 3 · 107 daN/m as shown in Fig. 5.

Fig. 5. Architecture of the teststand (RB – roller bearing, BB – ball bearing)

The bearings in the vicinity of the test gear pair have ball bearings of the type 6012, while the
outer bearings are roller bearings of the type NU1013. The shaft lines are connected in rotation
by test gears. The applied speed and torque are measured by an electronic device composed of
a motor and a brake.
The dynamic behavior of the system can be studied using measurements of the acceleration,

transmission error and noise. The accelerations are measured using piezoelectric accelerometers
ENDEVCO 224C whose resonance frequency is 32 kHz. The accelerometers are mounted by
gluing small duralumin pellets onto the accelerometers which are screwed. The tests are carried
out on a spur gear with helical teeth. The gear ratio is 36/38 with modulusm = 2. The geometric
characteristics of the ball and roller bearing are given in Table 1.

Type of defect: To simulate the scaling on the bearings, a notch of 1.7mm and depth of 0.088mm
is made using a fine grinder as shown in Fig. 6. The roller bearing is removable without “NU
type” destruction or specialized tooling.
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Table 1. Geometric characteristics of the ball and roller bearing

Geometric characteristics Ball bearing Roller bearing

Middle diameter to center of balls D [mm] 77.7 80.55
Diameter of ball d [mm] 9 7
Number of balls Z 14 21
Angle of contact α 0 0

Fig. 6. Defective inner race geometry of the roller bearing

Monitoring conditions: The applied load is equal to 12 daNm and 4300 rpm speed test. The cha-
racteristic frequencies of the ball bearing and the roller bearing are calculated by the geometrical
formulas given in Appendix A1.

Table 2. Characteristic frequencies of the ball and roller bearings

Bearing type Fr [Hz] Fcage [Hz] For [Hz] Fir [Hz] Fer [Hz]

6012 71.67 31.68 443.56 559.77 627.02
NU1013 71.67 32.72 687.11 817.89 830.91
Fr – rotating frequency, Fcage – frequency of the cage,
For – frequency of the outer race, Fir – frequency of the inner race,
Fer – frequency of the ball or roller

Experimental signals: The acquired reference signal and the acquired signal defect are shown in
Fig. 7a and 7b.

5.2.2. Interpretation

The detection and diagnostic plan applied to the experimental signals shown in Fig. 7a and
Fig. 7b is able to detect the fault frequency applied to the bearing inner ring shown in Fig. 8a.
It shows the presence of state “1” of the hypothetical signal and Fig. 8b shows a frequency of
814Hz very close to the fault frequency which is equal to 817.89 Hz. It indicates that the plan
has reacted well in establishing a correct diagnosis.

6. Diagnosis plan

To establish a good diagnosis of defects, it is necessary to know a significant number of defects.
Thus, by comparing the frequency detected by the Wald test presented before with the charac-
teristic frequencies we can locate the defect. By comparing the defect frequency with the main
defects of the rolling bearings (Barkov, 1999), we can establish the diagnosis by using the fre-
quency of modulation presented in the work of Barkov (1999). For the plan suggested by Fig. 2
it is possible to establish the diagnosis of the bearing defective part and its nature.



132 A. Chiter et al.

Fig. 7. (a) Experimental reference signal, (b) experimental defect signal

Fig. 8. (a) Experimental hypothetical signal, (b) FFT of the experimental hypothetical signal

7. Conclusion

The detection and diagnosis plan based on the Wald test is described. This plan can be applied
to measurements of the bearings vibration signals with and without defects under various loads
and speeds. The effectiveness of the suggested detection plan is illustrated in Fig. 4 for the simu-
lated signal and in Fig. 8 for the experimental signal. The plan works very well with vibratory
signals of wide bands. Finally, the plan is very promising for automatic detection and diagnostic
applications.
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Appendix 1

Characteristic frequencies of the bearing (Barkov, 1999):
— frequency of the cage

fcage =
fr
2

(
1− d

D
cosα

)

— frequency of the outer race

for = Z
fr
2

(
1− d

D
cosα

)
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— frequency of the inner race

fir = Z
fr
2

(
1 +

d

D
cosα

)

— frequency of the ball

fre = fr
d

D

[
1 +

(D
d

)2
cosα

]

where α is the angle of contact, d [mm] – diameter of the ball, D [mm] – middle distance to the
center of balls, Z – number of balls, fr [Hz] – rotating frequency (fr = n/60), n [rpm] – shaft
speed.
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In the present study, research is carried out on deriving modified analytical equations for
finding shear stress distribution and known as Modified Shear Stress models (SSM) beneath
plain wheels (small and large) on TRI-1 lunar soil simulant. In all four models, the Reece
model, Bekker model, Wong-Reece model and Iagnemma model, normal stress and shear
stress are determined, and the shear stress determination is based on the Janosi and Hana-
moto (1961) model. There exists ample scope for modifying this model. A modified model
for shear stress distribution is developed and the same is discussed in this paper.

Keywords: TRI-1, lunar soil simulant, modified model, shear stress distribution

1. Introduction

Investigating mobility performance of planetary rovers is a very difficult task due to presence of
more obstacles, sloping conditions (steep, adverse) and environmental conditions that exist on
the Moon/Mars. In such a case, knowing the performance and overcoming the problem (by means
of optimizing wheel parameters, introducing sensors, etc.) result in giving a better performance.
This can be done by calculating the performance parameters (drawbar pull DP, sinkage, torque,
rolling resistance) for planetary rovers. This involves terrain parameters and wheel parameters
which have to be determined in advance. In the present study, two plain wheels of different
sizes are considered. The experiments were carried out in a fabricated single wheel test bed
(Sreenivasulu, 2014) on TRI-1 lunar soil simulant.
Wheel-soil interaction has a vital role in vehicle-terrain mobility (Bekker, 1969). A rover

moving (travelling) on various terrains will have different mobility characteristics. Normally, the
mobility level can be determined in terms of relative performance indices (entry angle, drawbar
pull coefficient, resistance coefficient, drawbar pull efficiency, tractive coefficient and tractive
efficiency) and absolute performance indices (drawbar pull, driving torque and sinkage) (Liu
et al., 2008; Ishigami et al., 2011). For example, the drawbar pull is very important and a
positive drawbar pull indicates that the rover can generate forward motion on the terrain it is
travelling (traversing), whereas a negative drawbar pull implies that forward motion is difficult
or impossible, which is one of the reasons for mission failure (Wong and Reece, 1967; Iagnemma
et al., 2004). Determination of absolute performance indices depends on normal stress and shear
stress.
Many research works are carried out on study of grousers on motion performance (Liu et al.,

2008), study of motion dynamics and control of planetary rovers (Yoshida et al., 2001), study on
stability control of a wheel-lugged rover (Grand et al., 2002), terrain parameter estimation for
planetary rovers (Iagnemma et al., 2004) and study on motion performance of a rover which is
evaluated by its drawbar pull, driving torque which is related to normal stress and shear stress
distribution produced by the wheel at the wheel-soil interface (Wong, 2001; Sutoh et al., 2010).
Hence, determination of normal stresses and shear stresses plays a major role in the wheel-soil
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interaction. There are several models available, out of which four models are considered for the
study (Reece, Bekker, Wong-Reece and Iagnemma model) for normal stress and shear stress
distribution analysis that develops beneath the wheel when it interacts with the soil and moving
on the terrain. The objective of this paper is to develop a model called the modified Shear Stress
Model (SSM). A preliminary comparative study on these models resulted in refinements and
culminated in the Modified Shear Stress Model (Modified SSM)

2. Stress distribution models

When a wheel travels over a loose soil, normal stress and shear stress develops beneath the
surface. These stresses are used in the calculation of forces. The motion performance of a rover
is usually evaluated by its Drawbar Pull (DP) and Driving Torque (DT), which are related to
the normal and shear force distributions produced by the wheel at the wheel-soil interface. In
the present study, four models are considered for analysis of wheel (small and large) that travels
on TRI-1 soil simulant, and modified SSM for shear stress distribution is derived. The models
considered are explained in Sections 2.1, 2.2, 2.3 and 2.4.

2.1. Reece normal stress model

When a wheel travels over a loose soil, normal stress and shear stress develop beneath the
surface as shown in Fig. 1.

Fig. 1. Wheel-soil interaction

The maximum normal stress is found to occur at the transition point between two zones,
the forward and rearward zones.
Normal stress is given as

σ(θ) =





σmax(cos θ − cos θf )n for θm ¬ θ ¬ θf

σmax
[
cos
(
θf −

θ − θr
θm − θr

(θf − θm)
)
− cos θf

]n
for θr ¬ θ ¬ θm

(2.1)

where

σmax = (ckc + ρkφb)
(r
b

)n
(2.2)
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where h, b, r is the wheel sinkage, width and radius, respectively, n – sinkage exponent,
c – cohesion stress of the soil, ρ – soil bulk density, kc, kφ – pressure-sinkage moduli. θf is
the entry angle (the angle from the vertical to the point at which the wheel initially makes
contact with the soil)

θf = cos−1
(
1− h

r

)
(2.3)

θr – departure angle (the angle from the vertical to where the wheel departs from the soil, and
this value is generally assumed to be zero), i.e., θr ∼= 0, θm – maximum angle (the specific wheel
angle where the normal stress is maximum)

θm = (a0 + a1s)θf (2.4)

a0 and a1 are parameters depending on the wheel-soil interaction (a0 ∼= 0.4, 0 ¬ a1 ¬ 0.3, are
assumed values as given by Wong (1965)).
Estimation of the maximum specific angle at which normal stress and shear stress are ma-

ximum can be found using Eq. (2.4) for the other models (Bekker and Wong-Reece).
The shear stress distribution model was given by Janosi and Hanamoto (1961) and the same

was considered by Reece (1965) to find the shear stress developed beneath the wheel, as shown
in Fig. 1.
Shear stress is given as

τx = [c+ σ(θ) tanφ]
[
1− exp

(
−j(θ)

k

)]
(2.5)

where

j(θ) = r[θf − θ − (1− s)(sin θf − sin θ)] (2.6)

and φ is the internal friction angle of the soil, k – shear deformation modulus (depending on the
shape of the wheel surface), j – soil deformation, s – wheel slip (given as the ratio of the wheel
width to the wheel radius).
Similarly, the same Janosi shear stress distribution model was used to determine shear stres-

ses for the normal stress distribution models considered by Reece, Bekker, Wong-Reece and
Iagnemma.

2.2. Bekker normal stress model

When a wheel rolls on a loose soil, normal and shear stresses are generated under the wheel.
These stresses are used in the calculation of the forces. The stresses are modeled as shown in
Fig. 1.
Normal stress is given as

σ(θ) =





σmax
( cos θ − cos θf
cos θm − cos θf

)n
for θm < θ < θf

σmax
[ cos

(
θf− θ−θr

θm−θr
(θf−θm)

)
−cos θf

cos θm−cos θf

]n
for θr < θ < θm

(2.7)

where

σmax = (ck + c+ ρkφb)
(r
b

)n
(cos θm − cos θf )n (2.8)

and h, b, r are the wheel sinkage, width and radius, respectively, n – soil sinkage exponent,
c – cohesion stress of the soil, ρ – soil bulk density, kc, kφ – cohesion and friction modulus
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coefficients. θf and θr are the entry and exit angles along the wheel surface, and are functions
of the soil compaction and recovery. The values for θf and θr are obtained as

θf = cos
−1
(
1− h

r

)
θr = cos−1

(
1− kh

r

)
(2.9)

where h defines how much the wheel initially compacts the soil when it contacts with the soil
surface, kh defines how much the soil recovers in height following the wheel when it departs the
soil surface, k is the wheel sinkage ratio (which denotes the ratio between the front and rear
sinkages of the wheel).
The value of k depends on the wheel surface pattern, slip ratio and soil characteristics. The

value of k lies below 1.0 when soil compaction occurs, but can be more than 1.0 when the soil
is dug by the wheel and transported to the region behind the wheel (Bekker, 1969; Yoshida and
Hamano, 2001).

2.3. Wong-Reece normal stress model

When a wheel rolls on a loose soil, normal and shear stresses are generated under the wheel.
These stresses are used in the calculation of the forces. The stresses are modeled as shown in
Fig. 2.

Fig. 2. Stress distribution model of plain wheel

Normal stress is given as

σ(θ) =





(kc
b
+ kφ

)
rN(cos θ − cos θ1)N for θm ¬ θ ¬ θ1

(kc
b
+ ρkφ

)
rN
[
cos
(
θ1 −

θ − θ2
θm − θ2

(θ1 − θm)
)
− cos θ1

]N
for θ2 ¬ θ ¬ θm

(2.10)

where

N = n0 + n1s

and n0 and n1 are parameters related to the wheel-soil interaction, b denotes wheel width,
r – wheel radius, c – cohesion stress of the soil, z – sinkage, kc, kφ – cohesion and friction
modulus coefficients.
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For wheels without lugs, the entry and exit angles can be calculated using the following
equations. θ1 is the entry angle (the angle from the vertical to the point at which the wheel
initially makes contact with the soil)

θ1 = cos−1
(
1− z

r

)
(2.11)

θ2 is the departure angle (the angle from the vertical to where the wheel departs from the soil,
and this value is generally assumed to be zero). In this model, it is not assumed as zero, hence
it can be calculated as

θ2 = cos−1
(
1− kz

r

)
(2.12)

2.4. Iagnemma normal stress nodel

When a wheel rolls on a loose soil, radial and tangential stresses are generated under the
wheel. These stresses are used in the calculation of the forces. The stresses are modeled as in
Fig. 2.
Radial stress is given as

σ(θ) =

{
σ1(θ) for θm < θ < θ1

σ2(θ) for θ2 < θ < θm
(2.13)

where

σ1(θ) =
(kc
b
+ kφ

)
[r(cos θ − cos θ1)]n

σ2(θ) =
(kc
b
+ kφ

)[
r
(
cos
(
θ1 −

θ − θ2
θm − θ2

(θ1 − θm)
)
− cos θ1

)]n (2.14)

and z, b, r are the wheel sinkage, width and radius, respectively, n is the sinkage exponent,
c – cohesion stress of the soil, ρ – soil bulk density, kc, kφ – coefficient of cohesion and friction
modulus, σ1 – radial stress profile between θ1 and θm, σ2 – radial stress profile between θm
and θ2, θ – angular location of the wheel rim, θ1 – entry angle (the angle from the vertical to
the point at which the wheel initially makes contact with the soil)

θ1 = cos−1
(
1− z

r

)
(2.15)

θ2 is the departure angle (the angle from the vertical to where the wheel departs from the soil,
and this value is generally assumed to be zero), i.e., since θ2 is generally small in practice for
low cohesion soils, θ2 ∼= 0. θm is the maximum angle (angular location of the maximum normal
stress). The location of the point of the maximum radial stress is at

θm =
θ1 + θ2
2

(2.16)

3. Modified stress distribution models

Using the above normal stress models and the shear stress model for plain wheels, small wheels
(160mm×32mm) and large wheels (210mm×50mm), the normal stress and shear stresses are
determined and the modified shear stress distribution model is developed from the obtained
results of previous models. The shear stress distribution model was given by Janosi and Ha-
namoto (1961) and the same model was used by Reece, Bekker, Wong and Iagnemma normal
stress distribution (where the shear stress was a function of the normal stress).



142 S. Jayalekshmi, P. Gireesh Kumar

Hence, there exists space in deriving modified shear stress distribution models. The deve-
loped mathematical model for the shear stress distribution is based on the Janosi and Hana-
moto (1961) model which has been used for both wheels (small: 160mm×32mm and large:
210mm×50mm) moving on TRI-1 (Tiruchirappalli-1) soil simulant. An analytical method for
predicting the shear stress distribution beneath the wheel when it interacts with the soil has
been found based on the results obtained from all four models which are considered in the stu-
dy. The derived shear stress model for TRI-1 soil simulant predicts the shear stress very well
and close to the Janosi model. The modified shear stress model (SSM) is not a function of
the normal stress, whereas the earlier one is a function of the normal stress. In this modified
SSM, the constants like A, B and F are introduced and the model expressed is in terms of b/R
and the maximum specific angle θm. The modified SSM for all models considered are given as
below.

Model 1 (Reece model)

Table 1. Equation for the modified SSM, A = 3.409k − 0.112, B = −90.90k + 2.2361
No. Condition F Equation for shear stress

1 max ss k1 S bd

W

(
64.84

b

R
− 9.635

)

τ = F
w

bd

(
A
θm
θref
+B

)

θref = 1◦ (assumption)

2 L
3 min ss k1 S bd

W

(
39.25

b

R
− 5.51

)
4 L
5 max ss k2 S bd

W

(
164.60

b

R
− 49.58

)
6 L
7 min ss k2 S bd

W

(
101.40

b

R
− 30.38

)
8 L
9 max ss k3 S bd

W

(
188.30

b

R
− 59.03

)
10 L
11 min ss k3 S bd

W

(
113.40

b

R
− 35.18

)
12 L

In Table 1, A and B are shear deformation constants (depending on k, shear deformation
modulus obtained from a direct shear test, k for TRI-1 soil simulant is 1.02 ± 0.76 cm) and are
given in the above table. S denotes small wheel, L – large wheel, ss – shear stress, W – wheel
weight, b – wheel width and d – wheel diameter. Similarly, for other modified SSM also, it is
same (k remains the same for TRI-1 soil simulant and varies for different types of simulants,
A and B varies, W , b and d also vary).
For both small (160mm×32mm) and large wheels (210mm×50mm), the modified SSM is

the same, where A and B for each model are given separately. The modified SSM is given for
both minimum and maximum density. The model is the same for each case but it changes with
respect to the shear deformation modulus k and a factor F (Table 1). Similarly, for other models,
the modified SSM are as follows.

Model 2 (Bekker model)

Findings of the shear stress coefficient F and shear deformation constants A and B are
explained in Figs. 3 to 8. The shear deformation constants are derived in terms of the shear
deformation modulus for different models and are presented in these figures.
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Table 2. Equation for the modified SSM, A = 3.623k − 0.116, B = −90.90k + 2.236
No. Condition F Equation for shear stress

1 max ss k1 S bd

W

(
85.94

b

R
− 18.08

)

τ = F
w

bd

(
A
θm
θref
+B

)

θref = 1◦ (assumption)

2 L
3 min ss k1 S bd

W

(
52.25

b

R
− 10.70

)
4 L
5 max ss k2 S bd

W

(
171.50

b

R
− 52.36

)
6 L
7 min ss k2 S bd

W

(
105.50

b

R
− 32.01

)
8 L
9 max ss k3 S bd

W

(
191.00

b

R
− 60.15

)
10 L
11 min ss k3 S bd

W

(
117.40

b

R
− 36.79

)
12 L

Model 3 (Wong-Reece model)

Table 3. Equation for the modified SSM, A = 5.655k − 0.167, B = −116.80k + 2.770
No. Condition F Equation for shear stress

1 max ss k1 S bd

W

(
8.755

b

R
− 12.36

)

τ = F
w

bd

(
A
θm
θref
+B

)

θref = 1◦ (assumption)

2 L
3 min ss k1 S bd

W

(
3.473

b

R
− 8.803

)
4 L
5 max ss k2 S bd

W

(
70.29

b

R
− 12.27

)
6 L
7 min ss k2 S bd

W

(
42.58

b

R
− 6.839

)
8 L
9 max ss k3 S bd

W

(
85.77

b

R
− 18.48

)
10 L
11 min ss k3 S bd

W

(
52.17

b

R
− 10.67

)
12 L

The modified shear stress models have been determined and are shown in Tables 1 to 3.
The modified shear stress model (SSM) is a function of F , A, B and F . The shear deformation

constants A and B shown in Figs. 3 to 8.

Fig. 3. Reece model – determination of F
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Fig. 4. Bekker model – determination of F

Fig. 5. Wong-Reece model – determination of F

Fig. 6. Reece model – (a) determination of A, (b) determination of B

Fig. 7. Bekker model – (a) determination of A, (b) determination of B

Fig. 8. Wong-Reece model – (a) determination of A, (b) determination of B
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4. Results and discussions

• The shear deformation constants A and B, F are introduced as a function of the shear
stress. The derived modified shear stress models (SSM) are presented from Tables 1 to 3,
for the Reece, Bekker and Wong-Reece models, respectively.

• The modified shear stress model (SSM) is derived based on the results obtained for both
small (160mm×32mm) and large wheels (210mm×50mm) from the Reece, Bekker and
Wong-Reece models.

• Initially, the SSM was found for each case, later the equations were minimized by doing
an extensive work and are presented in Section 3 in Tables 1 to 3.

• From Tables 1 to 3, it is found that the modified shear stress model is the same for
all models (Reece, Bekker and Wong-Reece) but it varies with F and shear deformation
constants A, B. Hence, for various simulants, F , A, B will be different.

• From Figs. 3 to 5, it is found that the shear stress coefficient F depends on the b/R and
bd/W ratio, and it changes for each case in all models (Reece, Bekker and Wong-Reece)
with respect to a change in the b/R and bd/W ratios.

• From Tables 1 to 3, it is inferred that for the maximum and minimum density, the derived
equation for the modified shear stress model remains the same, but F varies with respect
to density irrespective of the type of wheel (both wheels – small 160mm×32mm and large
210mm×50mm).

• From Figs. 6a and 6b, it is found that the shear deformation modulus k is a function of the
shear deformation constants A and B. A is plotted versus k and B versus k to determine
expressions for the shear deformation constants A and B in terms of k. This expression is
the same and applicable to various types of simulants where A and B vary with respect
to k. The obtained expression for the shear deformation constants is for the Reece model.

• Similarly, from Figs. 7 and 8, the shear deformation constants A and B are derived in
terms of k (TRI-1 soil simulant) for the remaining models (Bekker and Wong-Reece).

• From Tables 1 to 3, it is found that the shear deformation constants A and B remains the
same for a particular k value in all models but change with respect to a change in k.

• The modified shear stress model (SSM) is given by the authors of this paper in the followin
form

τ = F
w

bd

(
A
θm
θref
+B

)

where A and B are constants for both wheels (small – 160mm×32mm and large –
210mm×50mm) with respect to density (minimum (1.15 g/cc) and maximum (1.88 g/cc)
– TRI-1 soil simulant) and varying with respect to k, whereas F is the same for both
wheels (small – 160mm×32mm and large – 210mm×50mm) with respect to k but varies
with respect to density (minimum and maximum – TRI-1 soil simulant), see Tables 1 to 3.

5. Conclusions

An analytical model has been developed for shear stress distribution based on the Janosi and
Hanamoto (1961) shear stress distribution model. An extensive work has been carried out
to derive a modified shear stress model (SSM) for small (160mm×32mm) and large wheels
(210mm×50mm) moving on TRI-1 soil simulant to find the maximum shear stress generated
beneath the wheel when it interacts with the soil. Shear deformation constants A, B are in-
troduced along with a shear stress coefficient F , and expressions are derived for both shear
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deformation constants and F for the SSM in all models. The modified shear stress model (SSM)
has been derived for three models (Reece, Bekker, Wong-Reece) to determine shear stress on
TRI-1 soil simulant. The results of SSM satisfy the Janosi model considered in the study. The
SSM presents an alternative approach to analysis based on geometrical parameters of the wheel.
The study can be extended to other simulants and wheel-soil interactions conducted on them.
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The technique of integral Hankel transform to find the solution of heat conduction in half-
-space coated by a multilayered package of homogenous laminae is applied. The half-space
is heated by the given heat flux on the boundary surface. The temperature and heat flux
distribution in the radial direction is analyzed for two types of coatings: 1) when the heat
conductivity coefficient is described by a power or exponential function of the distance to
the boundary surface; 2) multilayered coating has a periodic structure.

Keywords: temperature, heat flux, FGM, composite, homogenized model

1. Introduction

Modern engineering construction require the use of materials with appropriate thermal and me-
chanical properties which make them more and more complicated structures. To such materials
belong media with functionally changing gradation properties (i.e. gradient materials). Further-
more, the surface coverage of gradient materials significantly affect the behaviour of the bodies
under the influence of mechanical and thermal loads.
The formulations of the problems lead to boundary value problems of partial differential

equations with varying coefficients. For the power (or exponential) law of variation of the heat
conduction coefficient (or Young’s modulus), the analytical methods of solutions are known
(Guler and Erdogan, 2004, 2006; Liu and Wang, 2008; Matysiak et al., 2011; Kulchytsky-Zhyhailo
and Bajkowski, 2015). If the thermal and mechanical properties are described by other functions,
obtaining analytical solutions encounters considerable mathematical difficulties. Parallel with the
application of analytical methods for the solution of partial differential equations, inhomogeneous
layers are also modeled by using an approach according to which the coating is replaced by
a package of homogeneous or inhomogeneous layers (Ke and Wang, 2006, 2007; Kulchytsky-
-Zhyhailo and Bajkowski, 2012, 2015; Liu T.-J. et al., 2008; Liu and Wang, 2009; Liu J. et al.,
2011, 2012). Most studies are based on two-dimensional problems of elasticity or thermoelasticity
(Barik et al., 2008; Choi and Paulino, 2008; Diao, 1999; Diao et al., 1994; Liu J. et al., 2011,
2012). However, the axisymmetric and three-dimensional problems are dealt with in a much
lesser degree.
A special type of graded coating is the multilayered coating with periodic structure (Farhat et

al., 1997; Vevodin et al., 2001). In the modeling of laminated half-spaces or coatings with periodic
structures, it is customary to use two different approaches. In the first of these approaches the
layers are considered as separate continuous media. The second approach is based on the analysis
of a homogenized uniform coating whose properties are determined on the basis of the material
properties and geometric characteristics of the strip of periodicity (Matysiak and Woźniak,
1987; Woźniak, 1987). The solution obtained for the laminated half-space is compared with
Kulchytsky-Zhyhailo and Matysiak (2005).
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In the present work, we consider an axisymmetric problem of heat conductivity for half-space
with a multilayered coating. The boundary surface is heated by the given heat flux. In parallel, we
obtain: 1) analytical solutions of the problems for the coating whose heat conductivity coefficient
is described by a continuous function of the distance to the boundary surface; 2) the solution for
the multilayered coating with a periodic structure which is described by a homogenized uniform
layer (Matysiak and Woźniak, 1987; Woźniak, 1987). We analyze the difference between the
temperature and heat flux in the non-homogeneous half-space caused by the use of two different
models of nonuniform coatings. The obtaining of the smallest deviations in consideration of the
heat conduction problem will be a strong argument in favor for application of the proposed
methods for solving axisymmetric and three-dimensional problems of thermoelasticity for the
functionally graded coated half-space.

2. Formulation of the problem

Assume that the surface z = h of the non-homogeneous half-space is heated by a heat flux q(r)
on the circle of radius a, where r, z are dimensionless cylindrical coordinates referred to the
linear size a, h = H/a, H is thickness of the coating (Fig. 1).

Fig. 1. The scheme of the body

The non-homogeneous half space is formed by the homogeneous half-space with the heat
conductivity coefficient K0 and a system of non-homogeneous layers with thicknesses Hi and the
heat conductivity coefficients Ki, i = 1, 2, . . . , n, respectively, where the value of the parameter n
corresponds to the number of the layer in the package. Assume that the conditions of perfect
thermal contact are realized between the layers of the coating and between the coating and the
base.
The analyzed problem of theory of heat conduction is reduced to the solution of the following

partial differential equations

∂2Ti
∂r2
+
1
r

∂Ti
∂r
+
1
Ki

∂

∂z

(
Ki
∂Ti
∂z

)
= 0 i = 0, 1, . . . , n (2.1)

with boundary conditions imposed on the surface of the non-homogeneous half-space

∂Tn
∂z
=
q(r)a
Kn

H(1− r) z = h (2.2)

conditions of perfect thermal contact between the components of the considered half-space

Ti = Ti+1 Ki(h∗i )
∂Ti
∂z
= Ki+1(h∗i )

∂Ti+1
∂z

z = h∗i i = 0, . . . , n− 1
(2.3)

and conditions imposed at infinity

Ti → 0 r2 + z2 →∞ i = 0, 1, . . . , n (2.4)
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where Ti is the temperature in the i-th component of the non-homogenous medium, the index
i = 0 describes the parameters and functions of state in the homogeneous half-space, h∗i is
the coordinate z of the upper surface of the i-th component of the non-homogenous half-space,
h∗0 = 0, h

∗
i = h

∗
i−1 + hi, hi = Hi/a, i = 1, . . . , n, h∗n = h, H(r) – Heaviside step function.

3. Method of solution

The solution of the boundary value problem is sought by applying the Hankel integral transfor-
mation (see Sneddon, 1966)

T̃i(s, z) =
∞∫

0

Ti(r, z)rJ0(sr) dr (3.1)

where J0(sr) is the Bessel function. The solution to equation (2.1) was determined by Hankel
integral transformation technique (3.1). The temperature for the homogeneous half-space in the
Hankel transform space which satisfies the regularity conditions at infinity (2.4) can be written
in the form

T̃0(s, z) = t0(s) exp(sz) (3.2)

where t0(s) is the unknown function.
We considered the following cases.

Case A

Let n = 1. The dependence of the heat conductivity coefficient on the coordinate z is described
by the formula

K1(z) = K0 exp(αz) α =
1
h
ln
(KS

K0

)
0 ¬ z ¬ h (3.3)

where KS is the heat conductivity coefficient on the surface of the inhomogeneous half-space.
The general solution to differential equation (2.1) in the Hankel transform space specified in the
coating can be written in the form

T̃1(s, z) = t1(s) exp(α(−)z) + t2(s) exp(α(+)z) (3.4)

where 2α(±) = −α±
√
α2 + 4s2, t1(s) and t2(s) are the unknown functions.

Case A’

Let n = 1. The dependence of the heat conductivity coefficient on the coordinate z is described
by the power function

K1(z) = K∗(c± z)α c = ±h
((KS

K0

)1/α
− 1

)−1

K∗ =
K0
cα

0 ¬ z ¬ h
(3.5)

In equation (3.5) for the case K0 < KS , we take sign “+”, when K0 > KS – sign “−”.
The Hankel transform of temperature in the coating can be written in the form

T̃1(s, z) = t1(s)ζpIp(sζ) + t2(s)ζpKp(sζ) (3.6)

where 2p+ α = 1, ζ = c± z, Ip(sζ), Kp(sζ) are modified Bessel functions.
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Moreover, if the analytical solution of partial differential equation with variable coefficient
(2.1) is not known, the non-homogeneous coating can be replaced by a multilayered system of
homogeneous layers. Their thermal properties are described by their heat conductivity coeffi-
cients

Ki =
1
hi

h∗
i∫

h∗
i−1

K1(z) dz (3.7)

Case B

The coating composed of n homogeneous layers. The general solution to equations (2.1) expressed
in the Hankel transform domain takes the form

T̃i = t2i−1(s) sinh[s(h∗i − z)] + t2i(s) cosh[s(h∗i − z)] i = 1, 2, . . . , n (3.8)

where ti(s), i = 1, . . . , 2n are the unknown functions.

Case C

The multilayered coating with a microperiodical structure. Assume that the repeated fundamen-
tal layer comprises two homogeneous elastic sublayers with different thicknesses (hI and hII) and
thermal conductivities (KI and KII). A large number of equations and boundary conditions on
the interfaces complicates the solution of the problem. Another approach is using a homogenized
model (Choi and Paulino, 2008; Diao, 1999) in which properties of the homogenized coating are
determined on the base of properties of the components.
Applying the homogenized model to the coating, we solve the boundary value problem de-

scribed by the equation (Matysiak and Woźniak, 1987; Woźniak, 1987)

∂2T1
∂r2
+
1
r

∂T1
∂r
+
1
p21

∂2T1
∂z2
= 0 (3.9)

where T1 is the temperature in the homogenized coating

p21 = K̃K
−1
c Kc =

KIKII

(1− η)KI + ηKII

K̃ = ηKI + (1− η)KII η =
hI

hI + hII

(3.10)

the boundary condition imposed on the surface of the non-homogeneous half-space

∂T1
∂z
=
q(r)a
Kc

H(1− r) z = h (3.11)

and boundary conditions of perfect thermal contact between the homogenized coating and the
substrate

T0 = T1 K0
∂T0
∂z
= Kc

∂T1
∂z

z = 0 (3.12)

Boundary conditions (2.4) stay without change. The general solution to equation (3.9) in the
Hankel transform takes the form

T̃1 = t1(s) sinh[(h− z)sp1] + t2(s) cosh[(h− z)sp1] (3.13)
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Equations (3.2), (3.4), (3.6), (3.8) and (3.13) contain the unknown functions ti(s). These
functions are obtained satisfying boundary conditions (2.2) and (2.3) (or (3.11)) and (3.12) in
Case C. Satisfying the boundary conditions, the functions ti(s) may be written as

ti(s) =
q̃(s)a

K̂s
t̂i(s) (3.14)

where the functions t̂i(s) are obtained from the solution to linear equations (see Appendix A),
q̃(s) is the Hankel transform of heat flux, K̂ = Kn in Case A, A’, B and K̂ = Kcp1 in Case C.
Applying the inverse Hankel transform to equations (3.2), (3.4), (3.6), (3.8) and (3.13),

temperature can be find at the desired location (see Sneddon, 1966)

Ti(r, z) =
∞∫

0

sT̃i(s, z)J0(sr) ds (3.15)

At internal points of the non-homogeneous half space (z < h) the integrals are evaluated nume-
rically using the Gaussian quadrature (Abramowitz and Stegun, 1964). On the surface z = h,
we take into account the asymptotic behaviour of the functions t2n−1(s) and t2n(s) as s → ∞.
The continuity of the results when z → h has been also verified.

4. Numerical results and discussion

Assume that the heat flux is elliptically distributed as follows

q(r) =

{
Q0
√
1− r2 for r < 1

0 for r  1
(4.1)

where r = r∗/a = 1 is radius of the circle heat zone and the heat flux (4.1) in the Hankel
transform space takes the form (Gradshteyn and Ryzhik, 2015)

q̃(s) =
√
π

2
Q0

J3/2(s)

s3/2
(4.2)

where J3/2(s) is the Bessel function.
The analysis of the original relations in Case A (or A’) shows that the solution of the problem

of modeling of the inhomogeneous coating by the package of homogeneous layers depends on
three (Case A) or four (Case A’) dimensionless parameters: thickness of the coating h, ratio of
heat conductivity coefficients on the surfaces of the non-homogeneous half space and the substra-
te KS/K0, parameter α (only for Case A’) and the number of layers in the package n. A similar
solution obtained for an inhomogeneous coating with regard to the continuous dependence of
thermal properties on the coordinate is independent of the parameter n. In what follows, we
assume that h = 0.4, K0/KS = 2, 4, or 8, α = 1 (only for Case A’), and n = 10, 20, 40, or 80.
The temperature and the heat flux in the radial direction r on the considered nonhomo-

geneous surface are shown in Figs. 2 and 3 ((a) – Case A, (b) – Case A’). In this figures, the
continuous lines correspond to the solution of the problem with continuous variation of the
thermal properties. The rhombi correspond to the results obtained for the package formed by
40 homogeneous layers. The results of calculations presented in Fig. 2 show good agreement
between the solutions obtained using the analyzed two models of the coating. As follows from
Fig. 3, the maximum absolute error of calculation of the radial heat flux component can be
observed on the end of the heated zone for r = 1.
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Fig. 2. The dimensionless temperature distribution on the surface z = h: (a) – Case A, (b) – Case A’;
1 – K0/KS = 2, 2 – K0/KS = 4, 3 – K0/KS = 8; h = 0.4

Fig. 3. The dimensionless radial heat flux on the surface z = h: (a) – Case A, (b) – Case A’;
1 – K0/KS = 2, 2 – K0/KS = 4, 3 – K0/KS = 8; h = 0.4

The values of the radial heat flux in this point are presented in Table 1. The analytical
solution is presented in the rows of Table 1 with n →∞. The relative error of their evaluation
with the help of modeling of the inhomogeneous coating by the package of n homogeneous layers
is given in columns with n = 10, 20, 40, and 80. It is easy to see that as the number of layers
becomes twice larger, the corresponding error becomes almost twice lower. In the case where
there are 80 layers in the package and K0/KS ¬ 8, the error of finding the heat flux at the point
r = 1, z = h does not exceed 2.2%.
Estimating the original relations, we conclude that the distributions of temperature and heat

flux in the problem of homogenized coating (Case C) depend on four dimensionless parameters:
thickness of the coating h, ratios of heat conductivity coefficients KI/K0 and KII/K0 and the
ratio of the thicknesses of layers in the strip of periodicity hI/hII . Similar distributions for the
non-uniform coating additionally depend on the number of layers in the coating n. To decrease
the number of input parameters, we assume that the thermal properties of one layer in the strip
of periodicity coincide with the thermal properties of the base (KI/K0 = 1 or KII/K0 = 1)
and the thicknesses of all layers in the stack are identical (hI/hII = 1). We also assume that
K0/KI(or K0/KII) = 4, h = 0.2, 0.4, or 0.8, and n = 10, 20, 40, or 80.
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Table 1. The dimensionless radial heat flux at the point r = 1, z = h (n → ∞) and the
errors of their evaluation as a result of modeling of the inhomogeneous coating by the package
of n homogeneous layers n = 10, 20, 40, and 80

K0/KS n = 10 n = 20 n = 40 n = 80 n→∞
Case A

2 2.79% 1.43% 0.68% 0.29% 0.6169
4 5.40% 2.73% 1.29% 0.54% 0.5021
8 7.79% 3.90% 1.82% 0.71% 0.4236

Case A’
2 3.95% 2.03% 0.98% 0.43% 0.6022
4 11.00% 5.68% 2.72% 1.14% 0.4562
8 23.00% 11.97% 5.65% 2.18% 0.3435

The dimensionless temperature at the centre of the heating area for different thicknesses
of the coating and different numbers of layers is presented in Table 2. The temperature cal-
culated for the homogenized model is in the last column. The relative differences between the
temperature in the non-homogeneous coating and the temperature in the homogenized coating
are presented in columns with n = 10, 20, 40, and 80. The upper numbers in cells have been
calculated for the case K0/KI = 4, K0/KII = 1, the lower numbers were obtained for the case
K0/KI = 1, K0/KII = 4. It can be seen that as the number of layers becomes twice larger,
the errors become twice lower then. For the same value of the parameter δ = h/n (for example:
h = 0.2, n = 10; h = 0.4, n = 20; and h = 0.8, n = 40), these errors are in the same order of
magnitude.

Table 2. The dimensionless temperature at the centre of the heating zone at the point r = 0,
z = h (n→∞) and the errors of their evaluation as a result of modeling of the inhomogeneous
coating by the package of n homogeneous layers n = 10, 20, 40, and 80

h n = 10 n = 20 n = 40 n = 80 n→∞

0.2
1.12% 0.56% 0.28% 0.14%

1.0841−1.13% −0.56% −0.28% −0.14%

0.4
3.35% 1.67% 0.83% 0.41%

1.2481−3.26% −1.64% −0.83% −0.42%

0.8
7.99% 3.92% 1.94% 0.96%

1.3887−7.31% −3.76% −1.90% −0.96%

Figures 4a and 4b show the dimensionless radial heat flux as functions of z for r = 1 and
two numbers of layers (n = 20 and n = 40). In Fig. 4, the rhombi mark the numerical results
obtained for the non-homogeneous laminated coating, whereas the solid lines correspond to the
homogenized coating. It should be emphasized that in the case of homogenized coating, we do
not know which layer of the slip of periodicity is located at the analyzed point of the coating.
Hence, the radial heat flux at every point of the coating is described by the two curves. Curves 1
and 2 correspond to the heat flux acting in the layers with smaller and larger heat conductivity
coefficients, respectively. In the homogeneous substrate, curves 1 and 2 coincide.
Comparing the heat flux obtained in both analyzed problems, we conclude that only in the

case of the heat flux acting in the homogeneous substrate we get deviations comparable with
the deviations of temperature. In the layers of the coating, the deviations of heat flux vary from
1%-5% (K0/KI ¬ 4, n = 20) up to 10%-20% for the heat flux acting on the boundary of the
region of heating. The indicated deviations strongly depend on the gradient of the analyzed
parameter in the investigated layer of the slip of periodicity, which explains the following obse-
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Fig. 4. The dimensionless radial heat flux on the line r = 1: (a) – n = 20, (b) – n = 40; K0/KI = 4,
h = 0.4, hI/hII = 1

rvations: in the layers with lower heat conductivity coefficients, the deviations are much smaller
(Fig. 4) and the maximum deviations are observed at the point (1, h). As could be expected,
the agreement between the solutions improves as the number of layers in the coating increases.

5. Conclusions

This paper provides the solution to the problem of the inhomogeneous half-space heated by the
heat flux. It is shown that the solution to the problem for a package of 20-80 homogeneous layers
is in good agreement with the analytical solution to the problem for the coating whose depen-
dence of the heat conductivity coefficient on the coordinate z is described by an exponential (or
power) function. This is a strong argument for the possibility of modeling of the gradient coating
with continuous variation of thermal and mechanical properties by a package of homogeneous
layers.
It is shown that the solution of the axisymmetric problem of heat conductivity for the half-

-space with a laminated coating of the periodic structure heated by heat flux is in good agreement
with the solution of the problem in which the coating is modeled by a homogenized coating. The
smallest deviations are obtained while finding the temperature and heat flux in the homogeneous
substrate.

A. Appendix

A system of linear equations for determination of the functions t̂i(s), i = 0, 1, 2:
— Case A

− t̂0(s) + t̂1(s) + t̂2(s) = 0
− t̂0(s) + α(−)s−1t̂1(s) + α(+)s−1t̂2(s) = 0
α(−)s−1t̂1(s) exp(α(−)h) + α(+)s−1t̂2(s) exp(α(+)h) = 1

(A.1)

— Case A’

− t̂0(s) + t̂1(s)cpIp(sc) + t̂2(s)cpKp(sc) = 0

t̂0(s)∓ t̂1(s)cpIp−1(sc)± t̂2(s)cpKp−1(sc) = 0

t̂1(s)(c± h)pIp−1
(
s(c± h)

)
− t̂2(s)(c± h)pKp−1

(
s(c± h)

)
= ±1

(A.2)
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— Case C

− t̂0(s) + t̂1(s) sinh(sp1h) + t̂2(s) cosh(sp1h) = 0

K0(Kcp1)−1t̂0(s) + t̂1(s) cosh(sp1h
)
+ t̂2(s) sinh(sp1h) = 0

t̂1(s) = −1

(A.3)

A system of linear equations for determination of the functions t̂i(s), i = 0, 1, . . . , 2n in Case B

− t̂0(s) + t̂1(s) sinh(sh1) + t̂2(s) cosh(sh1) = 0
K0K

−1
1 t̂0(s) + t̂1(s) cosh(sh1) + t̂2(s) sinh(sh1) = 0

− t̂2i(s) + t̂2i+1(s) sinh(shi+1) + t̂2i+2(s) cosh(shi+1) = 0 i = 1, . . . , n− 1
−KiK

−1
i+1t̂2i−1(s) + t̂2i+1(s) cosh(shi+1) + t̂2i+2(s) sin(shi+1) = 0 i = 1, . . . , n− 1

t̂2n−1(s) = −1

(A.4)
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A new method has been developed for predicting the load distribution along the thread
portion of a bolt and nut connection. The calculated results were validated by comparison
with three-dimensional finite element analysis and Yamamoto’s method. It was shown that
the load distribution predicted by the model in this paper was in good agreement with the
results from finite element model, and the load ratio on the first thread by the prediction
model and finite element model was slightly larger than the results from Yamamoto’s me-
thod. In addition, the results of calculation and finite element analysis indicated that the
decreasing of the lead angle could improve the load distribution, the increasing of the length
of thread engaged could significantly improve the load bearing capacity of the first thread,
and the adopting of a material with low stiffness for the nut with respect to the bolt could
improve the load distribution slightly.

Keywords: load distribution, threaded connections, finite element analysis

1. Introduction

The bolted joint is a typical connection that is widely used for construction of structures from
components. In order to ensure functionality of the joint, the load distribution in threaded
connections is of concern.
The load distribution in threaded connections has been studied since the beginning of the

century, but only a few of the most essential papers are referenced here (Goodier, 1940; Hetenyi,
1943; Motosh, 1975; Kenny and Patterson, 1985; Brutti and D’Eramo, 1987; Patterson and
Kenny, 1986). The Sopwith (1948) theory for predicting the load distribution of thread fasteners
is the most well known analytical model. The action of a number of strains is formulated by the
axial extension of the bolt and compression of the nut. These strains include bending deflection
of the thread, axial recession due to radial compression of the threads, and axial recession
due to axial contraction of the bolt and expansion of the nut caused by radial pressure of the
joints. Alternatively, Yamamoto (1980) proposed a procedure for calculating the deflection due
to bending moment, shear loading and radial contraction and expansion on the bolt and the
nut.
Due to the progress of the modern finite element method, the solution of contact problem

becomes possible by using finite element software. Grosse and Mitchell (1990), Wileman et al.
(1991), Lehnhoff and Wistehuff (1996), Chaaban and Muzzo (1991) and Chaaban and Jutras
(1992) studied stresses in threaded connections by axisymmetrical finite element models by
ASME Code. In order to investigate the helical effect on the thread connection, Chen and Shih
(1999) built a three-dimensional bolt-nut assembly by ABAQUS. But there was a small hole on
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the center of the bolt, which slightly reduced the area of the applied load. Moreover, Eraslan
and Inan (2010) built 3D finite element models of screws by Solidworks.
In order to achieve a more convenient prediction for the load distribution in screw threads,

we developed a new analytical model to calculate the load distribution in the thread connection.
Comparing the previous methods, especially Yamamoto’s method which includes five deflections,
there are only two main thread deflections in our method. In addition, we fully consider the
ununiformity of load distribution on thread and use unit deflection per unit width under unit
force. Meanwhile, a three-dimensional finite element model of the bolt-nut assembly is built to
validate the prediction method.

2. The new analytical model

According to Sopwith’s theory, the ISO triangle thread can be simplified into a cantilever beam
with a variable cross section. The strain in the thickness direction is considered to be zero,
namely, it is a plane strain problem. A coordinate system for the thread under axial concentrated
load is established. The length direction of the thread is the y-axis, the depth direction is the
x-axis, and the origin is located at the root of the thread, as shown in Fig. 1a. The original cross
section of the thread is a triangle. The semi-angle of the thread is α, the thread length is 2a,
and the pitch diameter is D, as shown in Fig. 1b.

Fig. 1. (a) Thread structure and coordinate system, (b) bolt structure

The geometric equation of the upper half of the thread is

y = a− kx (2.1)

where k = tanα and α = 30◦.
The geometric equation of the lower half of the thread is

y = kx− a (2.2)

The moment of inertia of one thread is

I(x) =
∫∫

S(x)

y2(x) dS =
2πD
3
(a− kx)3 (2.3)
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where a = kh, h is depth of the thread (as shown in Fig. 1a), therefore

I(x) =
∫∫

S(x)

y2(x) dS =
2πD
3

k3(h− x)3 (2.4)

2.1. The elastic deflection of thread

According to Sopwith’s theory, the thread under axial loading will deform due to several
reasons. Owing to the above assumption, these deflections mainly include bending and shearing
deflection of the thread. An ISO triangle thread can be seen as a cantilever beam under a
concentrated load P at x = l1, which is shown in Fig. 2. The bending deflection δ1 and shearing
deflection δ2 along the axial direction at x = l1 can be obtained by the following functions.

Fig. 2. Bending deflection and shearing deflection

2.1.1. The deflection due to bending moment

For a thread shown in Fig. 2, according to the theory of mechanics of materials, the static
bending equation is

EI(x)
∂2w

∂x2
= P1(l1 − x) x < l1 (2.5)

where P1 is the axial force on one thread, I(x) is the moment of inertia, l1 is the distance from
the action point of the force to the root of the thread, E is Young’s modulus and w is the
bending deflection. Substituting Eq. (2.4) into (2.5) leads to

∂2w

∂x2
=
3P1
2πDEk3

l1 − x
(x− l)3 x < l1 (2.6)

where l is height of the thread as shown in Fig. 2.
Primary integration of Eq. (2.6) is conducted in accordance with the assumption that the

deflection angle at the root of the thread is zero, i.e., the boundary condition ∂w/∂x = 0 at
x = 0 and the deflection angle can be expressed as

∂w

∂x
=
−3P1
2πDEk3

( 1
x− l +

l − l1
2(x− l)2 +

1
l
− l − l1
2l2

)
x < l1 (2.7)
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Primary integration of Eq. (2.7) is conducted on the assumption that the displacement at
the root of the thread is zero, i.e., the boundary condition w = 0 at x = 0 is

w =
−3P1
2πDEk3

[
ln
l − x
l
− l − l1
2(x− l) +

(1
l
− l − l1
2l2

)
x− l − l1

2l

]
x < l1 (2.8)

Under the unit force, the bending deflection of one thread at x = l1 is

δ1 =
−3

2πDEk3
[
ln
l − l1
l
+
1
2
+
(1
l
− l − l1
2l2

)
l1 −

l − l1
2l

]
(2.9)

Because the deformation of thread is treated as a plane deformation, under the unit force, the
unit deflection due to bending moment can be expressed as

δ1 =
−3(1− ν2)
2πDEk3

[
ln
l − l1
l
+
1
2
+
(1
l
− l − l1
2l2

)
l1 −

l − l1
2l

]
(2.10)

2.1.2. The deflection due to shear loading

At x = l1, the shear stress for the thread can be expressed as

τ(x) =
P1
πD

1
2(a− kx) (2.11)

Therefore, the shearing deflection of one thread should be

∆(x) =
τ(x)
G

L (2.12)

where the L is total length of the thread as shown in Fig. 1b.
The shearing deflection of the unit length (L ≡ 1) is

δU (x) =
τ(x)
G

(2.13)

where G is shear modulus, and G = E[2(1 + ν)]. Therefore, the unit shearing deflection of one
thread under the unit force (P1 ≡ 1) can be expressed as

δ(x) =
1 + ν
EπD

1
a− kx (2.14)

According to the boundary condition δ(x) = 0 for x = 0 and δ(x) = δ2 for x = l1, integration
of Eq. (2.14) leads to

δ2 =
1 + ν
EπD

l1∫

0

dx

a− kx =
1 + ν
kEπD

ln
a

b
(2.15)

According to Yamamoto (1980), the load P is located at the center of the original triangle
of the thread, namely

l1 =
1
2
l b =

1
2
a (2.16)

Therefore, for the bolt and nut under the unit force, substituting of Eqs. (2.16) into Eqs.
(2.10) and (2.15), respectively, the elastic deformation of unit length thread in the direction of
the helix is

δb = δ1b + δ2b =
0.5(1 − ν2b ) + 1.2(1 + νb)

πDEb

δn = δ1n + δ2n =
0.5(1 − ν2n) + 1.2(1 + νn)

πDEn

(2.17)
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where δ1b and δ2b represent the bending and shearing deflection of bolt, respectively, δ1n and
δ2n represent the bending and shearing deflection of the nut. For the ISO triangle thread, there
is k = tan 30◦. For the threaded connection structure composed of the bolt and nut, the total
elastic deformation of the unit length thread in the direction of the helix is

δy = δb + δn (2.18)

where δb and δn represent the total deflection of the bolt and nut, respectively.

2.2. Thread stiffness

For the thread on the bolt, the stiffness of the unit length thread under the unit force in the
direction of the helix is

kbu =
1
δb

(2.19)

Because the total length of the thread is πD, the total axial stiffness of the thread on the
bolt under the unit force is

Kb = πDkbu =
πD

δb
(2.20)

Similarly, for the thread on the nut, the stiffness of the unit length under the unit force in
the direction of the helix is

knu =
1
δn

(2.21)

The thread stiffness of the thread on the nut under the unit force is

Kn = πDknu =
πD

δn
(2.22)

If one thread is considered to be a spring, the threaded connection that consists of several
threads is a parallel spring. Thus, for the bolt, the total stiffness of n thread is nKb. If the pitch
is p, then the stiffness of the unit axial length under the unit force is regarded as

kby =
Kb

p
=
πDkbu
p

(2.23)

If the lead angle of the helix is β, then tan β = p/(πD). For the bolt and nut, the stiffness
of the unit axial length under the unit force is respectively

kby =
kbu
sin β

=
1
δb
sin β kny =

knu
sin β

=
1
δn
sinβ (2.24)

For the threaded connection structure composed of the bolt and nut, the total stiffness of
the unit axial length is

ky =
1

1
kby
+ 1

kny

=
1

(δb + δn) sin β
=

1
δy sin β

(2.25)

Because the stiffness is the ratio of the force to deflection, the axial deflection of the thread
body is

∆y =
1
ky

∂P

∂y
(2.26)

where ∂P/∂y is the axial force on the unit length thread. The preceding equation indicates that
the axial deflection of the thread body varies directly with load distribution.
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2.3. Axial load distribution in threaded connection

Figure 3 shows that the threaded connection structure includes a fixed nut body and a bolt
body. In the bolt body under a compressing force fB , the force will be transferred to the nut
body through the threads. The structure is elastic. Thus, the bolt body, the nut body or the
thread body will exhibit deflection under the force. However, the forms of forces on the bolt body
and the nut body differ from those on the thread body. Furthermore, their load distributions
also vary. Thus, the deformation modes of the bolt body and the nut body differ from those of
the thread body. However, the bolt body and the nut body are joined by the thread body. Thus,
their deformations are compatible.

Fig. 3. Threaded connection structure

The region of the compressing force on the thread body ranges from 0 to l, where l is the
engaged length of the bolted joint. Thus, the strain εb generated by the bolt body under the
compressing force f(y) at the location y is

εb =
f(y)
SbEb

(2.27)

where Sb is the cross-sectional area of the bolt body.
Similarly, strain εn generated by the bolt body under the compressing force f(y) is

εn =
f(y)
SnEn

(2.28)

where Sn is the cross-sectional area of the nut body.
For the thread body, the load f is distributed along the direction of the helix and along the

axial direction y. The thread deformation analysis indicates that the deflection and displacement
of threads on the bolt body is related to the gradient of force distribution, i.e.,

δb =
1
kby

∂f

∂y
(2.29)

Similarly, the deflection of the thread body on the nut body is

δn =
1
kny

∂f

∂y
(2.30)
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Their displacement gradients are respectively

∂δb
∂y
=
1
kby

∂2f

∂y2
∂δn
∂y
=
1
kny

∂2f

∂y2
(2.31)

In order to make the deformation compatible, εb, εn, δb and δnmust meet the following
relationship

εb + εn =
∂δb
∂y
+
∂δn
∂y

(2.32)

Substitution of Eqs. (2.27), (2.28) and (2.31) into Eq. (2.32) leads to

λ2f =
∂2f

∂y2
(2.33)

where

λ =

√√√√
1

SbEb
+ 1

SnEn
1
kny
+ 1

kby

The solution to Eq. (2.32) is

f = C1 sinhλy +C2 coshλy (2.34)

By the boundary conditions f(y) = fB for y = 0 and f(y) = 0 for y = l, we can obtain

C2 = fB C1 = −
coshλl
sinhλl

fB

Substituting C1 and C2 into Eq. (2.34) leads to

f(y) = fB
(
−coshλl
sinhλl

sinhλy + cosh λy
)

(2.35)

where fB is the load on the first thread of the bolt. The load along the axial direction y can be
calculated by Eq. (2.35). This distribution is more precise than Yamamoto’s method because we
considered the load distribution along the helix of the screw.

3. Finite element model

A group of ISO metric screw threads M36 are used to study the load distribution and the effect
of pitch, material and length of the thread engagement. The parameters of all screws are listed
in Table 1. Commercial finite element software ANSYS is used for modeling and analysis. The
model geometry is meshed by 8 node hexahedron elements (SOLID185). The contact and target
elements are TARGE169 and CONTA172, respectively. The friction coefficient changes between
0.15 0.2 according to the material of the thread. Figure 4 shows 3-D finite element models of the
standard bolt assembly and the stress distribution on the screw under the external load. There
is no sliding between the bolt and nut threads because friction coefficients are large enough to
prevent sliding. In the models, the axial loading is applied to the top surface of the bolt, and
the outer bottom surface of nut is assumed fixed. Convergence study is carried out on the initial
finite element model by decreasing the element size near the threads. The smallest element size
is 0.25mm by 0.25mm and the total number of element is about 80000. There is no significant
improvement in the accuracy by using smallest elements.
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Table 1. Parameters of the thread

Speci- Nominal diameter Pitch
p
[mm]

Engaged length
Materials

men of thread of bolted joints
No. d [mm] l [mm] bolt nut

1 36 4 28

steel steel

2 36 3 28
3 36 2 28
4 36 1.5 28
5 36 4 24
6 36 4 20
7 36 4 16
8 36 4 12
9 36 4 28 steel copper
10 36 4 28 steel brass
11 36 4 28 steel aluminum
12 36 4 28 aluminum steel

Fig. 4. 3-D model mesh of standard threaded connection: (a) bolted joint assembly, (b) bolt, (c) contour
plot of the screw stress
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Table 2. Parameters of material

Material
Young’s modulus Poisson’s ratio Density

E [GPa] ν [–] ρ [kg/m3]

Steel 211 0.269 7890
Copper 137 0.310 8980
Brass 105 0.320 8500
Aluminum 69 0.330 2700

An elastic material is used throughout this work. A uniform pressure loading p is applied to
the top root surface of the bolt. So, the total force due to the applied pressure can be expressed
as

fB = p
πd2

4
(3.1)

where d is the nominal diameter of the bolt.

4. Result and discussion

For thread No. 1, the result of the load distribution on each thread by Yamamoto’s method,
finite element model and the prediction model developed in this paper can be shown in Fig. 5.

Fig. 5. The load ratio on each thread for bolted joints No. 1

Figure 5 shows that the load distribution obtained from the model in this paper are in a close
agreement with the finite element analysis. It is a load corresponding to the pitch section of the
thread. The load distribution with prediction from the analytical model and finite element model
is shown to be slightly larger than the results of Yamamoto’s method. For the FEM calculation,
the axial component of stress is utilized for the load on thread and the load ratio is the ratio of
the load on thread to the load on the surface of the bolt. The load on thread can be calculated
by equation (2.32) for the prediction model, and it is the average value of some element (all
the elements along the thread edge) for the FEM calculation. From the figure, we can see that
the loading ratio is quite similar on each thread in the case of the analytical model and finite
element model for all specimens.
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There are four pitches which have been used in this Section, namely 4mm, 3mm, 2mm,
1.5mm, and the corresponding lead angles are 2.1804◦, 1.6068◦, 1.0511◦, 0.7810◦, respectively.
The load ratio of the prediction model in this paper with different pitch in Fig. 6 shows that
the decreasing of the pitch can improve the load distribution and reduces the load bearing on
the first thread.

Fig. 6. The load ratio on each thread for bolted joints No. 1, 2, 3, and 4

Figure 7 is the load ratio of the prediction model and finite element model with length of
thread engagement 28mm, 24mm, 20mm, 16mm, 12mm, respectively. The figures show that
the load ratio is modified greatly with the increasing of thread engagement length. And the
longer the length of thread engagement, the smaller the load bearing on the first thread. But
when the length is more than 20mm, the effect is very slight.

Fig. 7. The load ratio on each thread for bolted joints No. 1, 5, 6, 7 and 8

In addition, when Young’s modulus the of bolt Eb is larger than that of the nut En, the load
distribution is improved slightly. The calculation result by the prediction model for specimens
No. 1, 9, 10, 11, 12 whose bolts and nuts are made of different materials, are shown in Fig. 8.
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Fig. 8. The load ratio on each thread for bolted joints No. 1, 9, 10, 11 and 13

5. Conclusions

The load distributions on the thread connection by the analytical model and finite element
model have been studied. The results can be concluded as follows.
1. The load distributions obtained from the model in this paper are in good agreement with
finite element analysis and Yamamoto’s method.

2. The results of the analytical model in this paper are nearer to the finite element analysis
than Yamamoto’s method, because we considered the load distribution along the helix of
the screw.

3. The effect of pitch on the load distribution of the threaded assembly is very obvious. A
decrease in the pitch not only can improve the load distribution, but also can reduce the
load ratio in the first thread.

4. The load distribution of the first thread is significantly decreased by a properly increased
length of the thread engagement.

5. Adopting a material with low stiffness for the nut with respect to the bolt can improve
the load distribution slightly.
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The present work examines damped oscillations of a chisel, represented as a distributed
parameters system. The system is discretized with the finite element method. Rayleigh’s
law is used for the modelling of the resistance. The internal resistance of the mechanical
system has been determined by an experiment, then enshrined in the numerical model.
Comparison and analysis of the results have been made.
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1. Introduction

Precise determination of the internal resistance is a crucial point in the research on the di-
stributed parameter dynamics of mechanical systems. Without knowing its value, it would be
impossible to study numerically different processes, such as free damped or forced oscillations,
nonlinear oscillations, shock occurrences and others. The Rayleigh law is most commonly used
to describe the internal resistance

C = αM+ βK (1.1)

where C is the Rayleigh damping matrix, α is a coefficient taking into account the influence
of the mass distribution on the resistance, β is a coefficient accounting for the influence of
the system elasticity on the resistance, while M and K are, respectively, mass and stiffness
matrices. According to many researchers (Stelzmann et al., 2008), the coefficients α and β are
to be determined for each specific structure. It turns out that by varying these two coefficients,
certain oscillation frequencies could be supressed, while others prevail. A number of studies have
shown (Man and Corman, 1995) that the α-damping affects low frequencies, and the β-damping
affects high frequencies, as shown in Fig. 1. A great advantage when using the Rayleigh law is
that after orthogonal transformation the system of n differential equations, describing motion of
the system, can be represented by n independent equations (Chowdhury and Dasgupta, 2003),
i.e. it can break the connection between the equations.
Different methods could be used for determining the α and β (Craig and Kurdila, 2006;

Alipour and Zareian, 2008; Adhikari, 2001). If ω∗1 and ω
∗
2 are the first two frequencies of the

system damped oscillations, then for the most common method it is assumed that at both ends
of the frequency range [ω∗1 ;ω

∗
2] the damping ratio ξ has equal values (Fig. 1). When a mechanical

system is dominated by free oscillations with frequencies within the mentioned range, the values
of α and β are determined by the equations

α = ξ
2ω∗1ω

∗
2

ω∗1 + ω
∗
2

β = ξ
2

ω∗1 + ω
∗
2

(1.2)
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Fig. 1. Rayleigh damping

The damping ratio ξ depends on the material and the studied structure. Information about the
value of ξ for steel can be found in the bibliography. For example, the following intervals from
0.02 to 0,08; from 0.02 to 0.03 and from 0.0008 to 0.0025 are given respectively in (Chowdhury
and Dasgupta, 2003; Chopra, 1995; Dresig and Holzweissig, 2006). In (Mevada and Patel, 2016)
ξ was experimentally determined and the obtained value was 0.0069. It was found by Stevenson
(1980) that ξ depended on the dynamic values of the stresses and strains, and the value for steel
was set to 0.01. In (Zare et al., 2011) ξ has the value of 0.03 and in (Sangeetha et al., 2014)
ξ has the value of 0.2. It appears that for each structure the resistance is strictly individual and
it often depends even on the operation mode.
The purpose of the present work is to model damping oscillations of the mechanical system

once the internal resistance has been experimentally determined.

2. Research object

A schematic drawing of a hammer drill is shown on Fig. 2. It is well known that this type
of machine use a set of working tools with different shape, size and weight. As parts of the
mechanical system, these working tools also affect the force of the impact. Therefore, the working
tools, just like the operating modes, are subject to optimization in order to maximize the machine
efficiency. The present study is focused only on the chisel.

Fig. 2. Schematic drawing of a hammer drill

A suitable dynamic model has to be developed in order to give a numerical representation
of the law for amending the force of impact. All parameters involved should be set down with
their real values, preferably determined by an experiment.
After being created, the model should be validated with experimental data from the actual

working process of the machine. The present study is the first step to the creation of such a
model. It is aimed at determining the coefficients α and β of the working tool of the hammer
drill.
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3. Dynamic model

Drilling machines whose tool performs complex motion including rotation are examined in (Khu-
lief et al., 2005; Yigit et al., 1998; Zare et al., 2011). In our case, the chisel moves only in the
axial direction and it is assumed that the oscillations along this axis will be the most significant.
Bending and twisting vibrations due to additional factors at this stage are neglected. Figure 3
shows the studied mechanical system which consists of a chisel and support. The latter is a pair
of metal jaws clenching the chisel.

Fig. 3. Mechanical system: (a) sections and dimensions of the chisel, (b) fixing of the chisel

Figure 4 shows the dynamic model of the mechanical system. For the purpose of the model-
ling, the system is presented as a rod, fixed at its lower end, oscillating in the axial direction.
The movement of each section of the rod with constant cross-section is described with the

following partial differential equation

E

ρ

∂2ui(x, t)
∂x2

− ∂2ui(x, t)
∂t2

= 0 (3.1)

where E is the elasticity modulus, ρ – density of the material, ui(x, t) – coordinate, describing
oscillations of the i-cross section of the rod. Since the cross section of the chisel is variable, it is
divided into four sections, as shown in Fig. 3a (the dimensions are given in mm):

• upper part of the shank, with diameter 10mm and cut out channels,
• lower part of the shank, cylindrical, with diameter 10mm,
• ram – hexagonal, with diameter of the inscribed circle 15mm,
• tip with a relatively complex shape and cross section, decreasing from the ram to the end.

The finite element method has been used for solving equation (3.1). The rod is represented by
15 finite elements, shown in Fig. 4. The tip is discretized with 3 finite elements and all the other
areas – with 4 elements. The cross section of the upper part of the shank is reduced by 20%
compared to its lower part, due to fixing channels. The lengths of the ram elements are chosen
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Fig. 4. Dynamic model with finite elements: (a) arrangement of the finite elements,
(b) single finite element

in such a way as to obtain a node at the place of bonding of the strain gauges, as shown in
Fig. 3b. The elements of the tip are 10mm long and thus its lower part (No. 15 in Fig. 4a)
reaches the support. The cross section area of each element at the top is set according to the
actual geometry.
All finite elements are of type shown in Fig. 4b (Reddy, 1984; Rao, 2004; Stelzmann et al.,

2008). Each node has one degree of freedom, i.e. the finite element has two local degrees of
freedom (u(i)1 and u

(i)
2 ). The mass and stiffness matrices for the finite element used are as follows

M(e) =
ρAili
6

[
2 1
1 2

]
K(e) =

EAi
li

[
1 −1
−1 1

]
(3.2)

It is more convenient to work with global coordinates for the formation of global matrices. The
following connections between local and global coordinates should be taken into account during
the transition to such global matrices

u
(1)
1 = u1 u

(1)
2 = u

(2)
1 = u2 etc.

where u(i) (i = 1, 2, . . . , 15) are the global coordinates (Reddy, 1984). Thus, equations (3.1) turn
into a system of 15 ordinary differential equations of the second order, which take into account
the boundary conditions.
The differential equation describing motion of the mechanical system is

Mq̈+Cq̇+Kq = 0 (3.3)

where M is the mass matrix (15 × 15), K is the stiffness matrix (15 × 15), C = αM + βK is
the Rayleigh damping matrix, q = [u1, u2, . . . , u15]T is the coordinate vector, 0 is zero matrix
(15 × 1).
The natural frequencies of the system are calculated in Matlab by solving equation (3.3) and

without taking into account the internal resistance, i.e.

Mq̈+Kq = 0 (3.4)
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Equation (3.4) is brought into a normal appearance (Genov et al., 2007)

Ẋ = ÃX (3.5)

by introducing the following vector

X = [q, q̇]T (3.6)

and the matrix Ã is

Ã =

[
O15×15 E15×15
−MK −MO15×15

]
(3.7)

In equation (3.7), O15×15 is the zero matrix, E15×15 is the identity matrix.
The natural frequencies of the system are obtained by determining the eigenvalues of the

matrix Ã by Q-R algorithm – orthogonal projections (Watkins, 2004).
The first four values of the natural frequencies of the system thus obtained are given in

Table 1.

Table 1. Natural frequencies

Natural fi ωi
frequencies [Hz] [rad/s]

1 5640 35419
2 16920 106257
3 26810 168366
4 39530 248248

4. Influence of the internal resistance

It has been assumed that the occurrence of the first two natural frequencies at free oscillations in
the longitudinal direction is physically possible in the research model. The interval in Fig. 1 has
been chosen to be from 35419 to 106257 rad/s (according to Table 1). According to equations
(1.1), different values of the coefficients α and β have been obtained for different values of the
damping ratio ξ, as given in Table 2.

Table 2. Values of α and β depending on ξ

ξ α β

0.001 53.1288 1.41 · 10−8
0.010 531.288 1.41 · 10−7
0.100 5312.88 1.41 · 10−6

Differential equations (3.3) describing motion have been solved numerically by Matlab-
-Simulink, using the scheme in Fig. 5. For that purpose, the dimensions from Fig. 2 as well
as the following values of the physical constants: E = 2.1 · 1011 Pa and ρ = 7850 kg/m3 have
been taken.
The numerical solution of the problem using the values from Table 2, returned the results

shown in Fig. 6. The figure shows the relative deformation variation in time ε = (u11−u10)/l10.
Figure 6 shows that for the three values of ξ, the movement differs considerably (the time of
damping is different), i.e. for successful modelling, it is of particular importance to set the exact
value of ξ.
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Fig. 5. Scheme for solving the differential equations in Matlab-Simulink

Fig. 6. Damped oscillations for different values of ξ

5. Experimental determination of the chisel internal resistance by the method of
damping oscillations

One of the future goals of this project will be to measure the impact force of the machine under
real operating conditions. Therefore, a decision has been taken to make tensometrical (strain)
measurements. Free damped oscillations of the chisel arising from shock impact, have been thus
registered in the course of the present study.
Figure 7 shows a scheme of the experimental installation. Strain gauges have been glued at

two opposite points in the middle of the ram (Fig. 3b). Two equal half bridge T-rosettes have
been used, each with two serially connected strain gauges, one of them in the longitudinal and the
other – in the transverse direction to the chisel axis. The rosettes are connected in a full bridge
circuit. The oscillation frequencies of the studied object are high, which makes the standard
tensometric equipment inapplicable for strain registration. It has been, therefore, decided to use
a high-frequency universal system for data acquisition (DAQ system) – National Instruments NI
USB-6211 (250 kS/s, 16 bit). Excitation voltage is applied to the bridge circuit with a suitable
12V Li-ion rechargeable battery. The incoming information from the DAQ system is processed
and recorded using software package LabVIEW R○. Calibration with reference weights has been
made before the experiment. The chisel has been consecutively loaded with increasing weights
of pure pressure in order to check the linearity and establish the conversion factors stress/strain.
In Fig. 7, the T-rosettes are not in their actual positions.
Figure 8 shows the recordings of damped oscillations after the impact on the studied system.

Three recordings have been made with random forces of the impact, designated as FDO1, FDO2
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Fig. 7. Experimental installation scheme for registering strain upon impact

Fig. 8. Measurement results and frequency analysis

and FDO3 (FDO – free damping oscillations). On the left, the relative strain ε is shown as a
function of time and on the right – frequency analysis determining the damped oscillations
frequency. Fast Fourier Transform (FFT) algorithm in Matlab is used for frequency analysis.
The values obtained for the first and second frequency of the damped oscillations are given in
Table 3. The results from the processing of all three recordings are similar.

Table 3. Frequencies of the damped oscillations

Recording
f∗e1 f∗e2
[Hz] [Hz]

FDO1 5682 15882
FDO2 5495 16483
FDO3 5618 16854

Let us consider the first recording from Fig. 8 – FDO1. Damped oscillations have been obse-
rved with frequencies (f∗e1 = 5682Hz and f

∗
e2 = 15882Hz) close to the first two natural frequen-

cies of the mechanical system (Table 1). It is assumed that the specific resistance coefficient ξ of
the damped oscillations is the same for the first and second frequency of the damped oscillations
found from the experiment (ω∗e1 = 2πf

∗
e1 = 35683 rad/s and ω

∗
e2 = 2πf

∗
e2 = 99739 rad/s). Then

its value can be determined on the basis of the lower frequency ω∗e1.
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The differential equation, describing the damped oscillations with frequency ω∗e1, is

ü+ 2ξωe1u̇+ ω2e1u = 0 (5.1)

The relationship between ξ and ωe1 is given by the equation

ωe1 =
ω∗e1√
1− ξ2

(5.2)

where ω∗e1 is the first frequency of the damped oscillations, determined by Fig. 8. Figure 9 shows
four consecutive oscillations from the record, given in Fig. 8.

Fig. 9. Determining the resistance of damped oscillations

From Fig. 9 it can be determined that the ratio of the amplitudes a1 and a7 is 3.2. The
following relation is valid for the amplitudes i and i+ 2k (i and k being positive integers)

ai
ai+2k

= exp(kξωe1τ∗) (5.3)

Equation (5.3) can be resolved in relation to ξ, assuming that: a1/a7 = 3.2, i = 1, k = 3, ω∗e1 is
expressed by (5.2), and the period τ∗ = 2π/ω∗e1. The result is ξ = 0.06. Replacing ξ with 0.06,
ω∗e1 with 35683 rad/s and ω

∗
e2 with 99739 rad/s in (1.1), we obtain the Rayleigh law coefficients

α = 3153.7 β = 8.86 · 10−7 (5.4)

Setting the values from equations (5.4) in numerical model (3.3) and applying the Q-R algorithm
– orthogonal projections (Watkins, 2004), we obtain the damped oscillation frequencies shown
in Table 4.

Table 4. Frequencies of the damped oscillations

Natural f∗i ω∗i
frequencies [Hz] [rad/s]

1 5616 35270
2 16837 105737
3 26630 167238
4 39135 245769

The solution to differential equation (2.3) with these coefficients is shown in Fig. 10.
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Fig. 10. Simulated and experimentally determined damped oscillations

6. Summary

Free damped oscillations of the chisel represented as a distributed parameters system have
been studied in the present work. The dynamic model of the chisel was discretized with FEM
and the problem was solved numerically with Matlab. The values of the coefficients α and β
(5.4), forming the Rayleigh damping matrix, have been experimentally determined in the given
frequency range, after which they have been set in the numerical model. A comparison of the
modelled oscillations with a real record has been made – see Fig. 10. The resulting close match
shows that the proposed numerical model is acceptable and that the constants set in it have
been correctly determined.
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The aim of this study is to investigate the fatigue crack growth behavior with post weld heat
treatments (T4) on transverse tungsten inert gas-welded Aluminum alloy 6013. All fatigue
tests have been carried out using center cracked tension specimens at ambient temperature
under a stress ratio of R = 0.3. The results revealed that various time of aging in T4
affects its mechanical properties, also the fatigue crack growth behavior as well. It has been
observed that in the heat treated samples the crack growth rate is lower than that in the
as-welded sample, but higher than the rate in the base metal. To be more specific, samples
with 18 hours aging exhibit the highest tensile strength and fatigue resistance compared to
the other heat treated samples. The probability assessment has also been used to determine
the fatigue crack growth rate and a good linearity has been found.

Keywords: fatigue crack growth, Aluminum alloy 6013-T4, post welding heat treatment, TIG
welding

1. Introduction

The aircraft and automotive industries have been long using Aluminum alloys for the prime
material construction. This material is normally used in the aerospace industry (for fuselage
skins and other applications) and automotive industry (for body panels and bumpers) due to its
excellent properties such as preferential strength, corrosion resistance, weld ability and low cost.
Various structural components in machines, pressure vessels, transport vehicles, earthmoving
equipment and spacecraft are made of welded joints. The butt welds are the most common ones
in the fabrication and construction of many structures. The wide applications of butt welds in
various structures including offshore and nuclear ones give a large scope for researches to analyze
the behavior under different types of loading conditions. This concept was introduced after the
works of Yakubovski and Valteris (1989). However, as it is well known, welded joints can exhibit
poor fatigue properties. Thus, detail design guidelines are necessary to prevent fatigue failures
in welded Aluminum alloy structures. Apart from the basic design of new structures, there is
also an increase of interest in methods for assessing the remaining life of existing structures. The
previous author’s work also revealed the fatigue crack growth behavior of the studied material
using longitudinal direction of tungsten inert gas (TIG) welding (Haryadi and Kim, 2011).
Prompted by difficulties experienced in reaching a consensus on fatigue performance of welded
Aluminum alloys, an animated discussion has been undertaken over the past 10 years (Maddox,
2003).
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To produce a high quality weldment component, TIG welding is preferred rather than the
other arc welding processes due to the temperature distribution on the welded plate, which may
induce distortion. Also the TIG welding process is one of the most well established processes
which has capabilities to weld all metals of industrial use. Therefore, many efforts have been
done to investigate the fatigue behavior on TIG welded Aluminum alloy joints. The weldment
components have lower impact energy and fracture tenacity compared to its parent material. It is
well known that the welded structures are also less superior to the parent material as the welding
process (thermal interaction) results in microstructure heterogeneity, which brings differences to
mechanical properties (Manti et al., 2008). Failure analysis of the weldment indicates that fatigue
damage have to be considered to account for most of the disruptive failures. The main problem
is that there is an abrupt change in section due to the excess weld reinforcement, undercut,
slag inclusion and lack of penetration, and nearly 70% of fatigue cracking occurs in the welded
joint (Pakusiewicz et al., 2006). It is also well known that the heat treatment process after
welding, i.e. solution treatment and aging, can possibly overcome the degradation of mechanical
properties.
To determine the fatigue tendency of the weld structure, the test matrix of tests is more

complex as welded joints present microstructure variations over small distances, not to mention
complex distributions of residual stresses. The fatigue and fracture tests are performed in ac-
cordance with standards and codes devised by the American Society for Testing and Materials
(ASTM) E647 based on the concepts of a−N and (da/dN) −∆K for fatigue design curves.
This work deals with the dependence of constant-amplitude fatigue crack growth rates on

the center cracked tension (CCT) specimens of a material for a variety of heat-treatable thin-
-sheet Aluminum alloys. The TIG welded 6013 Aluminum alloy transverse joint is of particular
interest. A better understanding of the relatively high variability of these rates and the role of
material parameters based on the analysis of experimental data are explored and discussed for
assessing the remaining lives of existing structures.

2. Experimental section

The material studied is Aluminum alloy 6013 with sheet thickness of 2.5mm. The chemical
composition of Aluminum alloy 6013-T4 and its filler wire Al 5356 can be found in Table 1
(Rooy, 2000). The welding process by using the TIG method on specimens has been performed
by Al 5356 filler with 3.2mm diameter, and the welding was done in the transverse direction. The
welding conditions and process parameters can be found in (Haryadi and Kim, 2011). Tensile
test specimens were made with dimensions according to the standard test ASTM B-557, and
crack propagation tests specimens according to the standard test ASTM E-647 proposed by
American Society of Mechanical Engineers (ASME) (ASTM E 647-08, 2008). The specimens
were grouped into three kinds of fracture conditions, i.e. cracks without heat treatment, cracks
in the welding simulation, and cracks in the welding simulation continued with various T82
artificial aging. The surfaces of the specimens were polished to prevent the formed notches. The
geometry and dimensions of specimens are specified in Fig. 1.

Table 1. Chemical composition of Al 6013-T4 and filler wire Al 5356 [wt%]

References Si Fe Cu Mn Mg Cr Zn Ti Al

Al 6013 0.66 0.09 0.80 0.39 1.04 0.07 0.06 0.02 Bal
Al 5356 0.25 0.40 0.10 0.10 5.55 0.20 0.10 0.20 Bal

The heat treatment (T4) on the specimen is hereafter referred to as the specimen experien-
cing the process of solution treatment (the specimen is heated until it reaches the temperature
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Fig. 1. Specimen configuration for tensile and fatigue crack propagation tests (all units in millimeters)

of 420◦C), followed by a process of strain hardening of 2%, and the final process is the artificial
aging in temperature of 175◦C and the aging time of 6 hours, 18 hours, and 24 hours, respec-
tively. Microhardness measurements have been conducted through fusion boundaries using a
Vickers microhardness tester. Vickers hardness measurement was carried out by using a dia-
mond indenter on a metallographically polished section of the welded joint along the central line
at a loading of 0.2 kg and loaded time of 5 s. The indentations were set at an interval of 1mm
along the weld center, transverse to the direction of the base metal. The schematic illustration
of hardness testing distribution is shown in Fig. 2. The microstructures of all material types
are shown in Fig. 3. The as-welded material has a larger grain size compared to the other heat
treated samples. Coarser grained by 24 hours aging time samples relatively contained a lower
amount of grain boundary areas than the finer grained microstructure.

Fig. 2. Welding profiles and a schematic illustration of the hardness testing distribution

Initial cracks for the fatigue crack propagation CCT samples were made using EDM (Electric
Discharge Machine) with 12mm length and 0.9mm width. The fatigue crack growth tests were
carried out using side grooves to ensure the crack propagation occur along a single plane. Five
different stress levels (345MPa, 225MPa, 138MPa, 202MPa, and 170MPa) were applied under
a stress ratio of R = 0.3 with a constant frequency of 5-11Hz. A travelling microscope was used
to monitor the crack growth with an accuracy of 0.01mm. In this work, the applied stress cycle
was in the pull mode as the compressive mode usually near the fatigue crack. The data points
measured with an accuracy of 0.01mm were fitted with a smooth curve as in the form of crack
length against the number of cycles.



182 G.D. Haryadi et al.

Fig. 3. Microstructures of as-welded and 6013-T4 samples (BM: base metal and WM: Weld metal)

3. Results and discussions

3.1. Tensile properties of 6013-T4

The tensile test results were performed on the base metal, welding without T4, and welding
with T4 aging time variations. The results of the tensile tests are mean values of minimum three
tests. All tensile test failures occurred in the heat affected zone (HAZ) due to coarser grains
as the cast structure of the base material. As such, the reduced section and notched specimens
were made to characterize the failure from the welded metal. The yield strength results based on
0.2% offset in the load-elongation diagram and the peak maximum (ultimate tensile) strength
are reported in Fig. 4. The unwelded base metal indicates yield strength and tensile strength
values of 243MPa and 346MPa, respectively. These results are comparable to other literature
data (Heinz and Skrotzki, 2002) for 6013-T4 base metal having the yield and ultimate strength
approximately 220 and 320MPa, respectively. Thus, the transverse as-welded sample shows the
yield strength and tensile strength values of 141MPa and 227MPa, respectively. From this result,
we can point out that there is a 52% reduction in strength values due to the TIG welding process
in the transverse direction. The as-welded material possesses higher strength or embrittlement,
therefore, very slight lateral displacement will result in shearing off the structure. In the case
of the as-welded samples, the transverse TIG welded samples with 6 hours aging exhibit the
lowest yield strength and tensile strength of 82MPa and 160MPa, respectively. This suggests
that there is a 42% reduction in strength due to T4with a 6 hours aging process compared to
the transverse as-welded samples. The heat treated specimens with 18 hours aging indicate the
highest yield strength and tensile strength of 107MPa and 202MPa, respectively. Though these
values are lower than those for the base metal and as-welded samples, the strength values are
comparatively higher than those of the other samples with T4 process. The 24-hour aged samples
show the yield strength and tensile strength of 102MPa and 194MPa, respectively, which is 20%
higher than the heat treated samples by 6 hours aging. To conclude all those cases, no significant
influence of the welding direction compared to the previous study (Haryadi and Kim, 2011) has
been reported.
The percentage of elongation in the cross sectional area of the base material and transverse

as-welded samples can be seen in Fig. 5. The elongation in the cross sectional area of the base
metal and the transverse as-welded samples are 19.42% and 5.83%, respectively. According to
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Fig. 4. Results of tensile tests on the strength of various transverse TIG welded 6013-T4 samples

Fig. 5. Reduction in area in terms of elongation [%] of transverse TIG welded 6013-T4

the literature (Heinz and Skrotzki, 2002), the elongation for 6013-T4 base metal is comparable,
approximating 20%. The increase of strength of the as-welded samples has been expected as
the microstructure hardens due to the solidification process during welding. The transverse TIG
welded samples with T4 of 6, 18, and 24 hours exhibit 2.24%, 7.51% and 4.16% of elongation in
the cross sectional area, respectively. This suggests that there is a 60% reduction in ductility due
to T4 with 6 hours aging with respect to the transverse as-welded samples. Again, the heat aged
specimens for 18 hours indicate the highest elongation of 7.51%. The heat treatment process,
especially the 18-hour aging, can improve ductility properties significantly.

3.2. Microhardness analysis

The exact extension of the HAZ and welded region are not easily measurable, thus, each
indentation of microhardness profiles was drawn based on three average points for the best
condition obtained. Hence the mechanical characteristics of heat-treatable Aluminum alloy are
largely determined by characteristics of precipitates (i.e. size, volume fraction, composition,
distribution, etc.). Precipitates and second phase particles act as obstacles to dislocation mo-
vement, which in turn increases hardness and strength but also limits ductility of the material.
Precipitation hardening of Al-Mg-Si alloys has also been reported to occur due to increased ener-
gy requirement to break Mg-Si bond rather than coherency strains (Haryadi and Kim, 2011).
The TIG welding process has proven to affect the original state and distribution of those pre-
cipitates. The base metal in its initial number 4-6 condition has the average hardness of about
91HV approximately, which starts to slightly increase in the HAZ to a minimum of 100HV. The
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hardness is greatly reduced in the welded region irrespective of the welding processes (Fig. 6).
This is one of the reasons for location of the failure invariably at the welded region. The closer
to the center of the weld, the higher the temperature is reached, which may lead to coarsening
of the grain structure. The coarsening becomes an important aspect in the welded region due
to the thermally activated phase in this particular zone. Thus, the softening phase caused by
precipitation coarsening will also soften the material. The time aging by T4 possesses limits
the strength due to high temperatures resulting in finer grains (Effertz et al., 2016), and re-
precipitation accompanied by aging. The ductility of this Aluminum alloy can be enhanced by
a proper heat treatment process. The T4 sample aged by 6 hours indicates the lowest hardness
profiles about 50HV at the weld center. The T4 sample with 18 hours aging shows the highest
hardness of about 71HV at the welded region. It is important to emphasize that the transverse
as-welded sample has the highest hardness of about 77HV at the welded region.

Fig. 6. Vickers microhardness profile distribution across the welded zone

With the combination of tensile properties and microhardness profiles, it is also possible
to determine mechanical properties of the transverse welded butt joint with 18 hours aging,
which are the most superior compared to other aging processes. The aging by 18 hours is more
appropriate for more brittle materials (high strength). After this time of aging, the detriment
of the mechanical properties can be observed due to the over aging process.

3.3. Fatigue crack growth properties

It is well known that the growth of the fatigue crack of many materials can be divided into
three regimes as shown in Fig. 7. Region I is the fatigue threshold region where ∆K is too low to
propagate the crack. Region II involves the rate of crack growth changes roughly linearly with
a change in the stress intensity factor (SIF). Lastly, region III with a small increase in the SIF,
produces a relatively large increase in the crack growth rate.
Considering the power law region, the experimental results for the crack length a are plot-

ted in da/dN versus ∆K, with N and ∆K being the number of cycles and SIF, respectively,
according to the following Paris equation (Paris and Erdogan, 1963)

da

dN
= C(∆K)m (3.1)

where the correlation between the exponent m and the coefficient C in the Paris equation
determines the material constants. The crack growth exponent m, which is derived from the
relationship existing between the crack growth rate da/dN and the SIF range, is an important
parameter to evaluate the fatigue crack growth behavior of materials since it decides about the
fatigue crack propagation life of the materials (Dieter, 1988).
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Fig. 7. Fatigue crack propagation curve

The loading variables R, ∆K, and Kmax are related in accordance with the range of the
SIF with the following relationship (Malarvizhi et al., 2008), where σ is a uniform tensile stress
perpendicular to the crack plane and Y depends on the geometry of samples

∆K = Y
√
πa N =

af∫

ai

1
C(∆K)m

da (3.2)

where ai and af are initial crack length and crack length at the fracture point, respectively. The
crack growth rate, da/dN for the propagation stage is calculated for the steady state growth
regime at different intervals of crack length increment, against the associated number of cycles
to propagation. The SIF values are calculated for different values of the growing fatigue crack
length 2a using the following expression for the middle tension specimen refering to the ASTM
Standard. The measured variation in the crack length 2a and the corresponding number of
cycles N endured under the action of particular applied stress range are plotted in Fig. 8.

Fig. 8. Fatigue crack propagation curve of transverse TIG welded 6013-T4
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The relationship between the SIF and ∆K range and the corresponding crack growth rate
da/dN in terms of the best fit lines is shown in Figs. 9a and 9b for all samples. The data points
plotted in the graph mostly correspond to the second stage of the Paris sigmoidal relationship
(10E-6 to 10E-3mm/cycle). The exponent m, which is the slope of the line on log-log plot and
the intercept C of the line, are determined and presented in Table 2.

Fig. 9. (a) Fatigue crack growth for Al 6013-T4 (base metal) and the transverse as-welded sample.
(b) Measured fatigue crack growth for the transverse TIG welded 6013-T4

Table 2. Fatigue crack growth parameters of transverse TIG welded samples

References
Crack growth Coefficient
exponent m C

Al 6013 base metal 3.09 4.98E10-13
Transverse TIG welded 4.81 1.38E10-15
After 6 hours aging 10.36 2.62E10-23
After 18 hours aging 5.55 1.14E10-16
After 24 hours aging 6.74 9.09E10-21

It can be seen from those figures that at higher crack growth rates, the measured fati-
gue crack growth rate for the base metal is 5.03E-7mm/cycle (∆Kcr = 84.2MPa

√
m), and

the measured fatigue crack growth rate for transverse as-welded samples is 1.55E-6mm/cycle
(∆Kcr = 73.49MPa

√
m). On the other hand, in Fig. 9b for all T4 samples, at higher crack growth

rates for 6 hours aging, 18 hours aging and 24 hours aging samples exhibit 2.2E-6mm/cycle
(∆Kcr = 42.66MPa

√
m), 9.27E-7mm/cycle (∆Kcr = 60.07MPa

√
m), and 1.31E-6mm/cycle

(∆Kcr = 68.36MPa
√
m), respectively. The unstable crack growth phase occurred and, hence,

the corresponding ∆K value is taken as the critical SIF range ∆Kcr. Furthermore, the crack
growth at a lower rate is found to be dormant, and the corresponding ∆K value is taken as
the threshold SIF (∆Kth). At a lower crack growth rate, the measured fatigue crack growth
rate for the base metal is 6.73E-8mm/cycle (∆Kth = 42.8MPa

√
m) and the measured fatigue

crack growth rate for transverse as-welded samples is 1.3E-7mm/cycle (∆Kth = 42.2MPa
√
m).

Thus, at a lower crack growth rate for all T4 samples with 6 hours aging, 18 hours aging
and 24 hours aging results in 7.52E-8mm/cycle (∆Kth = 31.9MPa

√
m), 1.1E10-7mm/cycle

(∆Kth = 42.73MPa
√
m), and 3.6E-8mm/cycle (∆Kth = 43.01MPa

√
m), respectively.

The fatigue crack growth exponent of the Al 6013-T4 Aluminum alloy base metal is lower
than that of the transverse TIG samples. On the three heat treated samples with various aging,
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the 18 hours aging samples exhibit a very low fatigue crack growth exponent compared to the
other heat treated samples. Although, the fatigue crack growth exponent of 18 hours aging
samples is approximately 44% higher than in the base metal. It is understood that the 18 hours
aging samples exhibit superior fatigue crack growth resistance compared to the other heat treated
samples. If this exponent has a larger value, then the slope of the curve is higher what explains
lower resistance of the material to the growing fatigue crack and reduction the lifespan (Ambriz
et al., 2010; Sivaraj et al., 2014). The reasons for better fatigue crack growth resistance of the
18 hours aging samples is due to superior of mechanical properties. The crack tip plasticity is
also the reason of the higher crack growth rate, since the deformation is controlled by the yield
strength of the material and mainly concentrated in the welded metal zone. The extension of
the plastic zone size (PZS) is limited within the welded metal. This relationship indicates that
the local fatigue crack growth rate decreases when the SIF is increased, and can be estimated
by the following equation (Sohn et al., 2014)

PZS (cycle) = 0.033
(∆K
σys

)2
(3.3)

Eripret and Hornet (1994) reported that as soon as the plastic zone reaches the fusion line,
plasticity keeps on developing along the interface between the parent material and the weld
metal. The triaxial state of stress is high in the weld metal and the relaxation of this stress
is poor. The crack driving force needed for this crack extension is small. Hence, the fracture
toughness of the lower strength weld metal is not high. On the other hand, if the strength of
the weld metal is more or less equal to the base metal, the plastic zone can easily extend into
the parent material.
An extensive research by Zhang et al. (2016) did not deal with probabilistic viewpoints

that define the probability of fracture. In this circumstance, a quantifiable method based on a
statistical and probabilistic approach is proposed for assessing fatigue crack growth rate data.
As mentioned above, the fatigue crack growth data followed the lognormal distribution well if
using the standard deviation σ and mean value µ obtained from the lognormal distribution. The
probability density functions (PDF) for this distribution is

P (N, loc, scale) =
1

σ
√
2π
exp

[
−1
2

( lnN − µ
σ

)2]
(3.4)

As an example of application, Fig. 10 shows the probability distribution on the fatigue crack
growth data for 18 hours aging samples. The fatigue crack growth life was estimated from
the initial crack length of 8.5mm to 17.6mm. To the author’s best knowledge, the lognormal
distribution provides a good agreement for the statistical distribution of fatigue crack growth
life. The confidence intervals of 90% and 10 % will be the upper and lower limits of conventional
prediction for the fastest and lower fatigue crack growth rate according to the concept in the
literature (Kim et al., 2011).
To probabilistically predict the fatigue crack growth rate, the probabilistic distributions

of da/dN have been determined for various materials. Figure 11 shows a typical result for
the probability distribution of the da/dN for various materials. The relationships between the
probability and fatigue crack growth life data revealed a linear relationship in the lognormal
plot. Although, there are some variability linear equations between material types. The most
scattered and widely distributed values are revealed for the 6 hours aging samples. This also
proves that the TIG welded microstructure and the heat treatment time process could greatly
affect the fatigue crack growth life. Using these fatigue crack growth rate data, it is possible
to probabilistically predict the fatigue crack growth rate lines for this class of materials at the
operational temperature when the fatigue crack growth data is absent.
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Fig. 10. Probability distribution of the fatigue crack growth life N for 18 hours aging samples

Fig. 11. Log-normal distribution of the fatigue crack growth rate for all tested samples at
average N values

4. Concluding remarks

This paper presents results of tensile, hardness profile, fatigue crack growth behavior and proba-
bilistic analysis of transverse TIG welded Al 6013-T4. However, some aspects deserve attention
and are discussed in this Section. The following conclusions can be drawn:

• A 52% reduction in strength values due to the TIG welding process in the transverse
direction with respect to the base material has been observed. Thus, the heat treatment
process also can reduce the strength by about 20% in average despite the percentage of
elongation of the respected T4 materials has been increased with respect to the as-welded
material.
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• The fatigue crack growth resistance and fatigue life of Al 6013-T4 are generally reduced
by the TIG welding process. Of the three types of T4 samples, the 18 hours aging samples
exhibit a higher fatigue crack growth resistance compared to other heat treated samples.

• The effect of 18 hours aging showed a crack growth exponent m of 5.55 which is the
lowest value compared to the other heat treated samples. With a high ∆K (SIF), it causes
a dramatic increase in the crack growth resistance compared to the other heat treated
samples.

• The relationships between probability and fatigue crack growth life data exhibit linearity
of the lognormal plot. The variability of the fatigue crack growth life is influenced by the
TIG welded microstructures and T4 aging time.
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The aim of this paper is to propose an algorithm for fatigue life determination with the
use of widely-known criteria for the fatigue life considering proper determination of material
characteristics, which are a function of the number of cycles to failure. The application of the
modified algorithm has been presented within the criteria of Findley, Matake, Papadopoulos
and Dang Van, and the results of calculations have been compared with test results for
steels S355J2G3 and Ck45. For both materials analysed, the application of the modified
algorithm in the fatigue criteria makes it possible to obtain much more precise results of the
calculations for all types of the loading analysed.

Keywords: mean value, bending with torsion, multiaxial fatigue

1. Introduction

One of the research areas are the criteria for the multiaxial fatigue life, which aim at the asses-
sment of fatigue damage of the material to any loadings. The fundamental part of the multiaxial
fatigue life is the suggested function that reduces the multiaxial state of stress to the uniaxial
state. Among many functions suggested, one group features the assumption that the components
of the stress state are responsible for fatigue crack initiation associated with the plane at a spe-
cified orientation. This suggestion, called the concept of the critical plane, has attracted a lot of
attention (Karolczuk and Macha, 2005a,b; Skibicki, 2007; Skibicki and Pejkowski, 2012; Kluger
and Łagoda, 2014; Kluger, 2015). The reduction functions, suggested in the criteria, are used to
calculate the fatigue life by comparison of the reduced value of stress σeq to stress σ(Nf ) from
a fatigue curve (e.g. of Wöhler or Basquin). The reduction functions based on the critical plane
are most often linear or nonlinear functions of material characteristics and the shear stress τns,
normal stress σn (on the critical plane), or hydrostatic stress σh (stress state invariant). The
reduction function properly suggested and applied to any case, but of the same fatigue life,
of the uniaxial loading, e.g. torsion, compression, or bending, brings these stress states to the
equivalent state. The fatigue criteria in the original form are usually suggested in order to as-
sess the limit state, hence for the so-called fatigue limit. Therefore, the material characteristics
are relationships of the fatigue limits from the uniaxial stress states. Unfortunately, the fatigue
criteria, or rather reduction functions, applied in order to calculate the so-called limited fatigue
life (for steel Nf < 2 · 106), are usually applied with coefficients which are functions of the
fatigue limits (Findley et al., 1956; Dang Van et al., 1989; Papadopoulos, 1994; Papuga, 2011;
Carpinteri et al., 2013). Such an approach is correct only for materials that have parallel fatigue
curves (mσ

∼= mτ ). This fact has been noticed in, among others, papers (Kurek and Łagoda,
2012; Karolczuk and Kluger, 2014; Karolczuk et al., 2016).
The aim of this paper is to suggest an algorithm for fatigue life determination with the

use of widely-known criteria for the fatigue life considering proper determination of material
characteristics which are the functions of the number of cycles to failure.
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2. Short description of the analysed criteria for multiaxial fatigue life

2.1. Findley’s criterion

Findley’s criterion (Findley et al., 1956) in the form considering the impact of the mean
value of stress has been presented in the following form

τns,a + kσn,max ¬ τaf (2.1)

where k is a material constant that takes into account the impact of the normal stress and,
according to Findley, depends on the number of cycles to failure, and σmax = σm + σa. Findley
assumed that the main directions under the proportional loadings do not change. He also drew
attention to the fact that the constant k depends on the number of cycles to failure Nf , and
this formula is in the following form for reduction of the stress state according to (2.1)

σf (Nf )
τf (Nf )

=
2

1 + k√
1+k2

(2.2)

where σf (Nf ) and τf (Nf ) are fatigue curves for symmetrical bending and symmetrical torsion,
respectively.

2.2. Papadopoulos’ criterion

Papadopoulos (Papadopoulos, 1998) offered a form of the criterion being a linear combination
of the maximum amplitude of the generic shear stress Ta on the critical plane and the maximum
value of the hydrostatic stress σH in the mesoscopic scale, which may be written as

maxTa + kσH,max ¬ τaf (2.3)

where k is a coefficient determined by uniaxial fatigue tests in the form of

k = 3
( τaf
σaf
− 1
2

)
(2.4)

The maximum value of the generic shear stress amplitude of Ta is defined as the following

Ta(ϕ, θ) =

√√√√√ 1
π

2π∫

x=0

τ2a (ϕ, θ, χ) dχ (2.5)

where τa is the shear stress amplitude in the direction of ~s determined by the angle x on the
normal plane ~n defined by angles ϕ and θ according to the formula

τa(ϕ, θ, χ) =
1
2
[
max
t
τ(ϕ, θ, χ, t)−min

t
τ(ϕ, θ, χ, t)

]
(2.6)

2.3. Matake’s criterion

Matake (Matake, 1977) simplified criterion (2.1) by changing the definition of the critical
plane. According to Matake, the critical plane is the maximum shear stress plane

τns,a + kσn,max ¬ τaf (2.7)

Under this approach, there is only one coefficient in the criterion, which is determined using the
following formula

k = 2
τaf
σaf
− 1 (2.8)
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2.4. Dang Van’s criterion

The Dang Van’s criterion (Dang Van, 1983; Dang Van et al., 1989) is based on the analysis
of stress in the mesoscopic scale, which differs from the stress in the macroscopic scale with
“the deviatoric part of the stabilized residual stress tensor”. The Dang Van’s criterion in the
macroscopic scale has been applied in this paper

τns + kσH,max ¬ τaf k = 3
τaf
σaf
− 3
2

(2.9)

3. Enhanced algorithm for calculating the fatigue life

The algorithm for calculating the number of cycles to failure Ncal for both proportional and non-
-proportional loadings considering the variability of the coefficient k according to the number of
cycles N is presented in Fig. 1 (Karolczuk et al., 2016).

Fig. 1. Algorithm for calculating the fatigue life for proportional loadings considering the variability of
the coefficient k according to the number of cycles N

In the first phase, the loading of stress state amplitudes σij,a takes place for the global
coordination system Oxyz and for material constants that define two fatigue curves: σf (Nf )
and τf (Nf ). Additionally, a set of unit vectors n normal to the analysed plane is generated,
among which the critical plane orientation is sought. On the basis of σij,a and for each vector n,
the vector of stress T = σ ·n is calculated by the inner product of the tensor σ and vector n. The
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normal stress amplitude σn,a is calculated by the inner product of the vector T and vector n.
The shear stress amplitude τns,a results from adding the normal and shear stress vectors, that
is τns,a(n) =

√
T · T − σ2n,a. In the second path of the algorithm, looped and optimised for

the assumed number of cycles N , the value of the coefficient k is calculated on the basis of
the assumed fatigue curves σf (Nf ) and τf (Nf ). In the next phase, a set of equivalent stress
amplitudes σeq,a (in set n) for the assumed N is calculated. Then the set σeq,a(n) is browsed in
order to determine the orientation nc of the critical plane according to the criterion adopted.
The determined value σeq,a(nc) is substituted to fatigue curves σf (Nf ) or τf (Nf ) to determine
a possible number of cycles to failure Nf . With the use of the objective function

(
log

N

Nf

)2
= Er (3.1)

the concurrence of the number of cycles N andNf is determined. If the error Er is less than 10−6,
the algorithm is terminated by adopting Ncal = N . In another case, the value N is altered and
the second path of the algorithm is repeated.

4. Experimental data

The suggested algorithm has been verified on the basis of the experimental data concerning
steels S355J2G3 (Pawliczek and Prażmowski, 2015; Kluger and Łagoda, 2014) and Ck45, which
were taken from the literature (Simbürger, 1975).
Based on the data, the coefficients of fatigue curves have been calculated under uniaxial

loadings according to the ASTM standards (ASTM E1049 - 85(2011)e1, 2003):
— for bending

σf (Nf ) : logNf = Aσ −mσ log σf (4.1)

— for torsion

τf (Nf ) : logNf = Aτ −mτ log τf (4.2)

where Nf is the estimated number of cycles to failure, Aσ, mσ, Aτ , mτ are parameters of the
linear regression equation. The basic strength and fatigue parameters of the materials analysed
are presented in Table 1. Types of analysed loadings for steel S355J2G3 and Ck45 are presented
in Table 2.

Table 1. The basic strength parameters and material constants for fatigue curves (4.1) and
(4.2) with the confidence intervals for a probability of 0.95

Material E Re Rm ν Aσ mσ Aτ mτ(EN) [GPa] [MPa] [MPa]

S355J2G3 213 394 611 0.31 23.8± 4.0 7.2± 1.6 32.8 ± 8.7 11.7 ± 3.8
Ck45 210 704 850 0.30 28.5± 3.9 9.0± 1.5 77.0± 13.5 29.3 ± 5.5

The evaluation of the effectiveness of criteria for the multiaxial fatigue of materials for a
limited number of cycles to failure typically involves comparison of the calculated strength Ncal

with the experimental one Nexp on a log-log diagram with additionally calculated parameters
of the scatter of results (Karolczuk and Kluger, 2014; Kluger, 2015). In order to assess the
effectiveness of the algorithm suggested, an original function Pr(T ) has been proposed

Pr(T ) = Prob
(Nexp

T
¬ Ncal ¬ TNexp

)
for T  1 (4.3)
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Table 2. Types of the analysed loading for steel S355J2G3 and Ck45

S355J2G3 Ck45

Zero mean stress
σa 6= 0 σa 6= 0
τa 6= 0 τa 6= 0
σa = τa 6= 0, ϕ = 0◦ σa = τa 6= 0, ϕ = 0◦
σa = 2τa 6= 0, ϕ = 90◦ σa = 1.7τa, ϕ = 60◦

σa = 3τa 6= 0, ϕ = 90◦ σa = 1.7τa, ϕ = 90◦

Non-zero mean stress
σa 6= 0, σm 6= 0 σa 6= 0, σm 6= 0
τa 6= 0, τm 6= 0 σa = 1.7τa, τm 6= 0, ϕ = 0◦
σa = τa 6= 0, σm = τm 6= 0, ϕ = 0◦ σa = 1.7τa, σm 6= 0, ϕ = 0◦

σa = 1.7τa, σm 6= 0, ϕ = 90◦

and

T (Pr) = 0.95 (4.4)

Function (4.3) describes the probability that the calculated fatigue life Ncal is within the scatter
band with the coefficient of T , wherein T  1, which means that T = Ncal/Nexp for Ncal  Nexp

or T = Nexp/Ncal for Ncal < Nexp. This is an increasing function, based on which one can
estimate (through interpolation) the scatter band T , which includes, for example, 95% of the
specimens, see equation (4.4).

5. Results of calculations and their analysis

The number of cycles to failure Ncal has been calculated with the use of two algorithms, which,
for the sake of their presentation clarity, have been marked as:NA – the new algorithm suggested
in this paper that takes into account the variability of the coefficient k according to the number
of cycles N ; CA – the classical algorithm in which the coefficient k is constant and corresponds
to the theoretical limit fatigue, i.e. for Nf = 2 · 106 cycles. Figures 2 to 9 show a comparison
of the experimental number of cycles Nexp with the calculated number of cycles to failure.
Additionally, each of these figures features dispersion parameters T (0.95) calculated for each
type of the loading. The dotted line represents the scatter band for the coefficient equal to 3,
and the solid line represents the ideal correspondence. In the case of the parameter T exceeding
the value of 50, the precise value of T has not been given since such a high value of dispersion
renders the given approach unusable. The scatter band T (0.95) is calculated separately for each
type of the loading (σa – bending, τa – torsion, σa-τa-proportional bending-torsion and σa-τa-
non-proportional bending-torsion, etc.) and also for the results from all types of the loading
treated as a set (a total scatter band). In such a case, not all points Nexp-Ncal are within the
boundaries of graphs in the figure. Such a scattering is due to the imperfections of the analyzed
fatigue criteria for some types of the load.
In order to estimate the level of improvement, a proportion between the scatter bands

T (NA)/T (CA) is calculated for computations with the use of both the new and classical al-
gorithms. The correlation improvement is achieved for T (NA)/T (CA) < 1. The results of the
comparison of the scatter bands are presented in Fig. 10.
The graphical comparison of the results obtained with the use of selected comparative fatigue

criteria with the experimental results, which are presented in Figs, 2 to 9, has enabled a more



196 K. Kluger, T. Łagoda

Fig. 2. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Findley criterion and for S355J2G3 steel, according to: (a) classical algorithm CA,

(b) new algorithm NA

Fig. 3. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Papadopoulos criterion and for S355J2G3 steel, according to: (a) classical algorithm CA,

(b) new algorithm NA

profound assessment of the capacity of applying the algorithms being described in the fatigue
criteria, and also given insight into their usefulness for the estimation of the fatigue life of selected
construction materials. A considerable increase in the calculation results has been achieved for
all materials analysed and for most types of the loading.

The higher scatter bands achieved for loadings in the presence of nominal stress is caused
by an insufficient consideration of the nominal stress in the fatigue criteria.
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Fig. 4. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Matake criterion and for S355J2G3 steel, according to: (a) classical algorithm CA,

(b) new algorithm NA

Fig. 5. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Dang Van criterion and for S355J2G3 steel, according to: (a) classical algorithm CA,

(b) new algorithm NA

6. Conclusions

On the basis of the analyses performed, the following conclusions may be drawn:

• The suggested algorithm for calculating the fatigue life that takes into account the varia-
bility of the coefficients occurring in the fatigue criteria according to a number of cycles is
concurrent in the analysed proportional ranges of proportional and non-proportional cyc-
lic loadings, with non-zero mean stress, both in the presence and absence of the nominal
stress.
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Fig. 6. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Findley criterion and for Ck45 steel, according to: (a) classical algorithm CA, (b) new algorithm NA

Fig. 7. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Papadopoulos criterion and for Ck45 steel, according to: (a) classical algorithm CA,

(b) new algorithm NA
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Fig. 8. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Matake criterion and for Ck45 steel, according to: (a) classical algorithm CA, (b) new algorithm NA

Fig. 9. Comparison of the experimental fatigue life Nexp with the calculated fatigue life Ncal for the
Dang Van criterion and for Ck45steel, according to: (a) classical algorithm CA, (b) new algorithm NA
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Fig. 10. Comparison of the scatter bands of the new and classical algorithms for the materials and types
of the loading analysed: (a) Findley criterion, (b) Papadopoulos criterion, (c) Matake criterion,

(d) Dang Van criterion

• By the variability of the coefficients used in the fatigue criteria according to the num-
ber of cycles, a considerable increase in the correspondence between the calculation and
experimental results for steel S355J2G3 and Ck45 has been achieved.

• The discrepancies in the results of the experiment and calculations in the presence of the
nominal stress are caused by neglecting the shear stress in the criteria analysed.

• The modified algorithm described here may be applied to most criteria in the literature
that are based on the concept of the critical plane.
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Numerical results are presented for aerodynamic unsteady and steady airfoil characteristics
of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical
model of the Darrieus-type wind turbine and the rotor operating parameters used for nume-
rical simulation are taken from the literature. Airfoil characteristics are investigated using
the same mesh distribution around the airfoil edges and two turbulence models: the RNG
k-ε and the SST Transition. Computed results for the SST Transition model are in good
agreement with the experiment, especially for static airfoil characteristics.

Keywords: airfoil characteristics, vertical-axis wind turbine, computational fluid dynamics

1. Introduction

Generally, with respect to the orientation of the rotor shaft, wind turbines can be divided into
two main groups: horizontal-axis wind turbines (HAWTs, or axial flow turbines) and vertical-
-axis wind turbines (VAWTs, or cross-flow turbines) (Maroński, 2016). Wind turbines can al-
so be divided with respect to the principle of operation: lift-driven and drag-driven machines
(Rogowski, 2014). Although, HAWTs are now widely used in the industry, large-scale VAWTs
are designed as offshore units – floating wind turbines (Madsen et al., 2013; Borg et al., 2014).
Aerodynamic efficiency (power coefficient) of drag-driven wind turbines is low, therefore, they
are used relatively rarely (Rogowski and Maroński, 2015). In 1931, Georges J.M. Darrieus, a
French aeronautical engineer, patented his invention – a new type of windmill designed for po-
wer generation (Blackwell, 1974). The Darrieus wind turbine is a lift-driven wind turbine having
two or more blades. The rotor of the Darrieus wind turbine can achieve relatively high aero-
dynamic efficiency (Hau, 2006). Originally, the Darrieus wind turbine had curved blades with
a symmetrical airfoil in their cross sections. The curved blade shape, so-called troposkien, was
designed to avoid large bending stresses of the blades, especially when applied to large units
(Paraschivoiu, 2009). Darrieus-type wind turbines are designed both as large- and small-size
wind turbines with both curved and straight blades. The characteristics of the Darrieus-type
wind turbines are: slightly lower power coefficient than HAWTs (Amet et al., 2009); the gearbox
and the power generator can be installed at the ground level; the yaw system is not needed
because the rotor operates regardless of the wind direction. The main shortcomings of these
wind turbines are: low starting torque and vibrations of the structure during rotor operation
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(Paraschivoiu, 2009). The growing demand for decentralized electricity generation in urban and
rural areas is the motivation for studying wind turbines in a small scale.
Darrieus-type vertical-axis wind turbines are relatively simple devices. The movement of a

single wind turbine blade is similar to the movement of the pitching blade. During rotation of
the rotor, the blade angle of attack, the local Reynolds number and the relative wind velocity
vary according to the rotor azimuthal angle. These variations also depend on the relationship
between the tangential velocity of the wind turbine blade and wind velocity. For these reasons,
many nonlinear phenomena occur in a single cycle of the blade (Laneville and Vittecoq, 1986).
The rotor power coefficient defined as the ratio of the power absorbed by the rotor shaft divided
by the power available from the air stream flowing through the rotor swept area (Hansen, 2008),
depends on the tip speed ratio defined as the ratio of the tangential blade velocity to the wind
speed. Typical Darrieus wind turbine achieves the maximum power coefficient of about 0.4 at
the tip speed ratio of 5-6 (Hau, 2006). Dynamic effects associated with dynamic stall phenomena
occur at low tip speed ratios (below 4). Aerodynamic effects of the rotor elements such as blades,
tower, struts, etc., play important role in reduction of the rotor power coefficient at high tip
speed ratios (above 6) (Paraschivoiu, 2009).
Although, measurement techniques have been improved in the recent years, only a few experi-

mental tests of unsteady aerodynamic blade loads have been performed. Measurement difficulties
are particularly associated with the tangential blade load component (tangential to the rotor
swept area) which is responsible for creation of the rotor torque. This is because the tangential
blade load is very low compared with the normal blade load component (normal to the rotor
swept area). Experiments referring to aerodynamic blade loads of the Darrieus-type vertical-axis
wind turbines were performed in a water towing tank at Texas Tech University (Strickland et
al., 1979, 1981). Laneville and Vittecoq (1986) conducted investigations of lift and drag airfoil
characteristics of a small-size vertical-axis Darrieus-type wind turbine in a wind tunnel. Ferre-
ira et al. (2011) showed that it was possible, though crudely, that the blade loading could be
extracted from velocity flow fields using a method that they had developed.
Streamtube models and single-wake vortex models are often used in simulations of aero-

dynamic blade loads of VAWTs (Paraschivoiu, 2009; Ferreira, 2009). Nowadays, computational
methods of fluid dynamics (CFD) have become popular in many areas of engineering as they can
provide very accurate results when referring to the experiments performed on a full-scaled object
(Lichota, 2013; Lichota, 2016). The incorporated turbulence models are in numerical computa-
tions a compromise between the available hardware capabilities and accuracy of computations.
In order to resolve all scales of turbulence, it is necessary to apply an appropriate mesh with
very small grid elements. Using a space-time mesh fine enough to compute all scales of turbulen-
ce is still a very difficult task for modern supercomputers. However, the increase in computing
power of modern computers has led to the development of computationally expensive turbulence
models (Ferreira et al., 2007). Ponta and Jacovkis (2001) investigated the Darrieus-type wind
turbine using a combined method consisting of a classic free vortex model and finite element
techniques. Amet et al. (2009) performed CFD analysis of the two-bladed rotor basing on the
experiment of Laneville and Vittecoq (1986) at tip speed ratios of 2 and 7. Many numerical
simulations of two-dimensional Darrieus-type wind turbines using different turbulence models
were made by Rogowski (2014). 3D simulations of a straight-bladed vertical axis tidal turbines
were performed by Marsh et al. (2013) using the SST k-ω turbulence model.
Generally, Darrieus wind turbines operate at low Reynolds numbers. The range of the blade

angle of attack is very large. Streamtube models and vortex models require CL and CD airfoil
characteristics in order to compute aerodynamic blade loads. Aerodynamic characteristics can be
computed using CFD methods (Rogowski, 2014; Sarlak et al., 2014) or performed experimentally
(Sheldahl and Klimas, 1981; Laneville and Vittecoq, 1986).
The three main objectives of this work are as follows:
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• Determination of aerodynamic coefficients for unsteady flow around the wind turbine using
a hybrid mesh consisting of a structured quadrilateral mesh close to airfoil edges and an
unstructured triangle mesh elsewhere.

• Investigation of steady characteristic of the NACA 0018 airfoil using the same mesh di-
stribution as during the unsteady flow simulation of the VAWT.

• Comparison of the aerodynamic characteristics for two turbulence models: the RNG k-ε
and the SST Transition.

2. Wind turbine parameters

In this paper, the authors present computed airfoil characteristics of a rotating wind turbine
blade and of a stationary airfoil. Computed airfoil characteristics are compared with the expe-
riment of Laneville and Vittecoq (1986). The experiment was conducted in an open jet wind
tunnel at the Universite de Sherbrooke. The main objective of Laneville and Vittecoq was to
measure aerodynamic blade loads for a two-bladed rotor with zero offset pitch angle using strain
gauges. Basic geometrical parameters of the investigated wind turbine are given in Table 1. In
the central part of the rotor, a torsion-free steel shaft supported by two ball bearings was moun-
ted. The rotor blades made of balsa wood were supported by horizontal arms at the lower part
of the rotor and by two guitar wires stretched between the shaft and the blades at the upper
part of the rotor. Measuring devices such as force transducers and amplifiers were placed in the
lower horizontal arms. During the experiment, a special variable-speed electric motor was used
to maintain the correct rotational velocity. The effect of centrifugal forces on aerodynamic blade
loads were removed from experimental data. The experimental measured data was not correc-
ted for blockage effects. The method of measurement of aerodynamic blade load components is
presented in Fig. 1.

Table 1. Basic parameters of the investigated wind turbine

Parameter Value

Rotational speed n [rpm] 300
Rotor radius R [m] 0.3
Chord c [m] 0.061
Airfoil NACA 0018
Number of blades N 2
Tower diameter d [m] 0.0381
Tip speed ratio TSR 5
Wind velocity V∞ [m/s] 1.88

The static NACA 0018 airfoil characteristics CL and CD were measured in the experiment
using the same wind turbine and using the same measuring system as described above (Laneville
and Vittecoq, 1986).

3. Lift and drag coefficients

In this paper, the angle of attack is an angle between the tangential velocity of the rotor blade VT
(VT = ωR, where ω is angular velocity of the rotor, R – rotor radius) and relative velocity VR
which is a resultant of the wind speed V∞ and the tangential velocity VT taken with the minus
sign (Fig. 2)

VR = V∞ −VT (3.1)
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Fig. 1. Silhouette of the turbine rotor and the method of measurement of aerodynamic blade loads
(Laneville and Vittecoq, 1986)

Fig. 2. Geometrical parameters of the rotor. Velocity vectors, angles and aerodynamic loads

From geometrical considerations (Fig. 2), the vector components VR in the tangential and
normal directions to the blade trajectory are respectively

VRt = VT + V∞ cos θ VRn = V∞ sin θ (3.2)

where θ is the azimuth angle. The tangent angle of attack α is

tanα =
VRn
VRt
=

V∞ sin θ
VT + V∞ cos θ

(3.3)

Dividing the numerator and denominator of this equation by V∞ we get

tanα =
sin θ

VT
V∞
+ cos θ

(3.4)

TSR is the tip speed ratio defined as

TSR =
VT
V∞
=
ωR

V∞
(3.5)
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Taking into account the above formula in equation (3.4), the angle of attack is

α = tan−1
( sin θ
cos θ + TSR

)
(3.6)

The relative velocity VR can be defined as

VR =
√
(ωR+ V∞ cos θ)2 + (V∞ sin θ)2 (3.7)

During wind turbine operation, the blade angle of attack varies with the azimuth θ, whereas
the relative wind velocity is associated with a variation in the angle of attack (Fig. 3). The lift
and drag coefficients are given by

CL =
L

1
2ρc(ωR)

2
CD =

D
1
2ρc(ωR)

2
(3.8)

where L is the lift force, D – drag, ρ – air density, c – chord.

Fig. 3. Evolution of the angle of attack and the relative velocity vs azimuthal angle at the tip
speed ratio of 5

The definitions of the lift and drag coefficients contain the tangential velocity of the blade
VT = ωR instead of the relative velocity VR. In the case of VAWTs, the relative velocity is
constantly changing in both magnitude and incidence. The use of the constant reference velocity
in the dynamic pressure is desirable since it is possible to compare force coefficients for different
airfoils (Danao et al., 2012; Amet et al., 2009).

4. Numerical model

One of the main objectives of this study is to investigate unsteady aerodynamic characteristics
of the wind turbine airfoil and steady aerodynamic characteristics of the same airfoil. The
numerical two-dimensional model of the vertical-axis Darrieus-type wind turbine consists of two
NACA 0018 airfoils and a tower which has been modeled as a circle (Fig. 2). Simulations of the
steady airfoil characteristics have been performed using only a single NACA 0018 airfoil with
the same chord.
The model of the wind turbine rotor has been enclosed in a square area of a virtual wind

tunnel. According to the previous investigations of the authors (Rogowski, 2014; Rogowski and
Maroński, 2015), the length of the virtual wind tunnel should be at least equal to ten rotor
diameters. The static characteristics of NACA 0018 have been obtained using one airfoil placed
in a square area of the virtual wind turbine with the same length as in the case of the rotating
rotor.
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The mesh near airfoils has been created using structural quadrilateral elements. The height
of the first layer of the structural grid is 7 · 10−7m giving y+ ¬ 1. The growth rate of each layer
of the structured mesh is 1.13. The airfoil edges are divided into small parts with lengths of
2 ·10−4m. The growth rate of the unstructured mesh is 1.06. The mesh for unsteady simulations,
presented in Fig. 4 contains of 133 366 elements. In the case of the stationary airfoil, the same
mesh distribution around the NACA 0018 is used and the number of mesh elements of the virtual
wind tunnel is 74 834.

Fig. 4. Mesh distribution

In this paper, two turbulence models are taken into account: the two-equation RNG
k-ε and the four-equation SST Transition. The RNG k-ε turbulence model closes the average
Navier-Stokes equations introducing two transport equations: one for turbulent kinetic energy
and one for turbulent dissipation. The SST Transition turbulence model solves the transport
equations for the turbulence kinetic energy, the specific dissipation rate, the intermittency and
the transition onset criteria. More detailed description of these turbulence models can be found
in the ANSYS, Inc.15.0 documentation.
Turbulence parameters of the wind tunnel of the Universite de Sherbrooke are unknown.

However, in the case of open jet wind tunnels, the turbulence intensity of the incoming flow is
usually high. Therefore, in this simulation, the value of the turbulence intensity is assumed to
be 5%.

5. Results

5.1. Unsteady airfoil characteristics of the wind turbine blade

Figures 5a and 5b present drag and lift coefficients as functions of the angle of attack. The
airfoil characteristics are computed using two turbulence models: the RNG k-ε and the SST
Transition. The numerical results are compared with the experiment of Laneville and Vittecoq
(1986). As it can be seen from Figs. 5a and 5b, the computed results of the drag coefficients are
more similar to the experimental results than in the case of the lift coefficient. The differences
can be caused by the accuracy of measuring devices. According to Laneville and Vittecoq (1986),
with the increasing tip speed ratio, the precision of experimental data decreases, especially for
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the lift coefficient. The precision of experimental data has been estimated as follows: CD ± 5%
and CL ± 12%. Even though the experiment was considered as a two-dimensional (large aspect
ratio of the blades), the 3D aerodynamic effects such as tip vortices can reduce the efficiency
of the device (Paraschivoiu, 2009; Scheurich et al., 2011). Analyzing the obtained numerical
results of airfoil characteristics, hysteresis loops both of the lift and drag coefficients are visible
(Figs. 5a and 5b). In the upwind part of the rotor, for the azimuth from 0 deg to 90 deg, a
significant increase in the lift and drag coefficients can be observed. Moreover, at the azimuthal
angle of zero, which corresponds to the zero angle of attack, the lift coefficients are 0.23 and 0.37
for the SST Transient and the RNG k-ε turbulence models, respectively. The non-zero value
of the lift force may have several reasons. Firstly, the definition of the angle of attack assumed
in this paper does not take into account effects associated with the slowdown of the flow close
to the rotor. Secondly, during rotation of the rotor the virtual camber of the airfoil occurs at
the zero angle of attack caused by curved flow around the rotor blade. This means that the
symmetrical airfoil of the vertical-axis wind turbine behaves as a cambered airfoil (Akimoto et
al., 2013). Moreover, in the case of the airfoil oscillating around the zero average angle of attack,
CL cannot be equal to zero because of the momentum and the inertia of the fluid (Laneville
and Vittecoq, 1986). With the increasing azimuth from 90 deg to 180 deg, the lift and the drag
force coefficients decrease. In the downwind part of the rotor, the computed lift coefficients are
still positive while experimental results are negative. The values of the lift force coefficients
obtained by the SST Transition turbulence model are much better compared with the RNG k-ε
turbulence model.

Fig. 5. (a) Drag and (b) lift force coefficient versus the angle of attack at TSR of 5

Figure 6 presents vorticity fields computed using the SST Transition turbulence model at
three azimuth positions: 0 deg, 60 deg and 120 deg. Analyzing these figures, it can be noticed
that at the azimuthal angle of 0 deg two interactions between the blades and the aerodynamic
wake occur. At the azimuth of 120 deg, the rotor blade located at the downwind part of the
rotor interacts also with the aerodynamic wake from the rotor shaft.

5.2. Airfoil characteristics of NACA 0018

The second part of this paper concerns the analysis of static airfoil characteristics using the
same mesh distribution close to the airfoil and the same turbulence models as during unsteady
analysis. The obtained results of aerodynamic loads are compared with the experimental data
taken from two independent sources (Laneville and Vittecoq, 1986; Sheldahl and Klimas, 1981).
The experimental data from the report of Sheldahl and Klimas (1981) are commonly used
in simplified aerodynamic models for Darrieus vertical-axis wind turbines applications. The
experiments were performed for the Reynolds numbers of 3.8 · 104 in the Laneville and Vittecoq
experiment (1986) and 4 · 104 in the experiment of Sheldahl and Klimas (1981).
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Fig. 6. Evolution of the vorticity field, ω [1/s] – the SST Transition model

The results of aerodynamic force coefficients as a function of the angle of attack are presented
in Figs. 7a and 7b. The aerodynamic derivatives ∂CL/∂α at the angle of attack range between
0 deg and 5 deg are: 6.0144 for the SST Transition model; 5.78 for the RNG k-ε turbulence
model; 6.19 for the experiment of Laneville and Vittecoq (1986) and 4.72 for the experiment
of Sheldahl and Klimas (1981). The maximum values of CL are: 0.71 at the angle of attack of
8.57 deg for the experiment of Laneville and Vittecoq; 0.473 at the angle of attack of 6 deg for the
experiment of Sheldahl and Klimas; 0.91 at the angle of attack of 12.5 deg for the SST Transition
model and 1.22 at the angle of attack of 15 deg for the RNG k-ε model. The minimum values
of the drag coefficient at the zero angle of attack are: 0.034 for the experiment of Laneville and
Vittecoq; 0.0214 for the experiment of Sheldahl and Klimas; 0.042 for the SST Transition model
and 0.032 for the RNG k-ε model. The largest difference of CL data between all data series
(Fig. 7b) is observed in the static-stall region. Lower drag coefficients by Sheldahl and Klimas
(1981) in comparison with those by Laneville and Vittecoq (1986) can be caused by turbulence
parameters of the wind tunnel. It is worth noting that the characteristics, both the lift and
the drag coefficients, obtained using the SST Transition turbulence model are more comparable
with the experimental results of Laneville and Vittecoq (1986) than the experimental results of
Sheldahl and Klimas (1981).

Fig. 7. (a) Drag and (b) lift force coefficients versus the angle of attack

6. Conclusions

The main purposes of this paper are the investigation of steady and unsteady lift and drag
coefficients of NACA 0018 airfoil using the same mesh distribution around the airfoil and two
turbulence models: the RNG k-ε and the SST Transition. The analysis shows that:
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• For the same mesh around the airfoils, consisting of structural quadrilateral elements near
the blades and triangle elements elsewhere, the steady airfoil characteristics are in good
agreement with the experimental results. However, 3D effects may cause errors in the
experiment.

• The SST Transition turbulence model gives more realistic results of aerodynamic force
coefficients than the RNG k-ε model.

• Comparison of the results of the lift force coefficient obtained during two independent
experiments shows significant differences in the static stall zones.

This paper gives some preliminary results of steady RANS modeling of the flow past a turbine
rotor. The presented simulations are a part of a more extensive numerical study of vertical-axis
wind turbines. The results of simulations presented in the paper can be a database for other
investigations.
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Lattice materials (LM) are a novel concept stemming from the combination of crystallo-
graphy and structural optimisation algorithms. Their practical applications have become
real with the advent of versatile additive layer manufacturing (ALM) techniques and the
development of dedicated CAD/CAE tools. This work critically reviews one of the major
claims concerning LMs, namely their excellent stiffness-to-weight performance. First, a brief
literature review of spatially uniform LMs is presented, focusing on specific strength of stan-
dard engineering materials as compared with novel structures. An original modelling and
optimisation is carried out on a flat panel subject to combined shear and bending load. The
calculated generalised specific stiffness is compared against reference values obtained for a
uniform panel and the panel subjected to topological optimisation. The monomaterial, a spa-
tially repetitive solution turns out to be poorly suited for stiff, lightweight designs, because
of suboptimal material distribution. Spatially non-uniform and locally size-optimised struc-
tures perform better. However, its advantage over manufacturable, topologically-optimised
conventional designs can at best be marginal (< 10%). Cubic-cell lattices cannot replace
conventional bulk materials in the typical engineering use. The multi-cell-type and multi-
-material lattice structures, albeit beyond the scope of this article, are more promising from
the point of view of mechanical properties. The possibility of approaching the linear scaling
reported in the recent litterature can make them an attractive option in ultra-low weight
designs.

Keywords: lattice materials, additive layer manufacturing, specific stiffness, topological opti-
misation

1. Introduction

1.1. Definition and classification

The Lattice Material is a structure generated with the aid of Additive Layer Manufacturing
consisting of branched beams usually forming repetitive primitive cells having internal structures
derived from crystallography (Face-Centered Cubic, Diamond-like, etc.). The edge of a typical
cell does not exceed 10mm, and the beams cross section tends to be of the order of a 1/10 up
to 1mm square. Smaller diameters are difficult to manufacture, except for very sophisticated
low-series techniques (Bauer et al., 2016).
LMs feature an open structure, and their fabrication method (ALM) naturally allows free

modulation of the material effective density.
A rigorous classification of LM (also known as: periodic cellular solids, metamaterials, pe-

riodic trusses) is difficult, although claimed by Zok et al. (2016) to be possible. Several criteria
have to be employed, including (but not limited to):
• the material used to form beams: polymer/metal
• the external shape of the primitive cell: hex/wedge/tetra, or compound (more than one
cell type)
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• the internal “crystallographic” layout: BCC, FCC, diamond, Kelvin-cell, etc.
• the fabrication technology: SLS (Selective Laser Sintering) or FDM (Fused Deposition
Modelling).

The spatial, long-range configuration of LM introduces further classes:

• fully uniform (cells are reproduced 1:1, and their properties are quasi-isotropic)
• uniform-directional (cells are reproduced 1:1, but their internal structure produces long-
-range anisotropy)

• beam-optimised (each beam can have a different diameter).

Table 1 represents schematically the mentioned spatial configurations, adding a “blended” struc-
ture in which some design regions are solid while some others created from the lattice structure.
Both the diameter-optimised and blended designs require a dedicated calculation algorithm (size
+ topology optimisation). Their generation requires a case-by-case approach tailored for a given
component shape and loading conditions.

Table 1. Basic options for the cubic cell Lattice Material spatial layout

(a) Fully uniform (b) Uniform-directional
• Repetitive cell topolo-
gy

• Repetitive cell topolo-
gy

• Repetitive beam cross
sections

• Repetitive beam cross
sections

• Quasi-isotropic • Designed as anisotro-
pic

(c) Diameter-optimised (d) Blended
• Repetitive cell topolo-
gy

• Repetitive cell topo-
logy with added “void”
and “solid” cell options

• Beam cross sections
differing from one cell to
another (optimised)

• Beam cross sections
differing from one cell to
another (optimised)

• Inherently anisotro-
pic: tailored for a given
set of load conditions

• Inherently anisotro-
pic: tailored for a given
set of load conditions

The multi-cell-type and multi-material lattice structures (with further ramifications, as
shown in Table 1) remain largely unexplored. This stems from the difficulties in their optimal
design and still very limited access to adequate manufacturing technologies. These solutions,
promising as they seem, will not be discussed in this paper.

1.2. Lattice material properties and range of potential applications

LMs are remarkable for their potential multi-functionality, namely the combination of tune-
able or even programmable mechanical, thermal, mass-transport and electromagnetic properties.
The word “potential” has to be emphasised, because apart from decorative objects, no inherently
“lattice-based” technical designs have so far emerged on the market.
Several authors have studied the sensitivity analysis of various thermomechanical properties

of LMs including: static stiffness and strength, energy absorption capacity, vibration properties,
effective Poisson’s ratio, effective thermal dilatation coefficient and the active surface. In many
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cases, the main stake is mass reduction, or more precisely, optimisation of specific stiffness,
specific energy absorption (SEA) or other mentioned parameters.
Some authors have been systematically exploring the design space of varying cell configura-

tions and sizes. Mazur et al. (2016) focused on strength and stiffness of Ti-6Al-4V lattices. Junyi
and Balint (2016) added dispersion properties to monitored variables. Lopatin et al. (2017) stu-
died both the intensive (cell structure) and extensive (plate dimensions) parameters in search
for the maximum critical buckling load.
Messner (2016) came up with a complete algorithm for generating homogeneous lattice mi-

crostructures optimisable from the point of view of the stiffness-to-density ratio. He took the
degree of anisotropy into account as well.
The static specific stiffness of LMs has been explored in the context of its:

• maximisation (Messner, 2016; Bauer et al.,2016)
• tuning (for reproduction of human bone stiffness) (Serra-Garcia et al., 2016)
• minimisation (supercompressibility) (Zhu et al., 2015; Jiang and Wang, 2016).

This parameter will be the main focus of this study.
Lattice-type materials have also been discussed in the context of auxetics, i.e. structures

with negative Poisson’s ratio.
Controlled buckling behaviour, usually studied for fail-safe design or maximisation of energy

absorption has been put forward by Lopatin et al. (2017), Paulose et al. (2015), Yin et al.
(2017), Hawreliak et al. (2016). Vibration characteristics (selective damping) have been studied
by Bacigalupo et al. (2015), Srivastava (2016) and Pasternak et al. (2016).
Thermal and thermo-mechanical properties remain a prominent area of research. Especially,

thermal dilatation tuning (e.g. zero CTE for elimination of thermal stresses) has been reported
in (Pasternak et al., 2016; Xu and Pasini, 2016; Wang et al., 2016; Toropova and Steeves, 2016).
Maximisation of the effective themal conductivity (heat sinks) appeared in works by Wadley
and Queheillalt (2007), Kumar et al. (2009), Tian et al. (2007). The list is not exhaustive.
Notably, there have been attempts to characterise lattice material durability (Hawreliak et al.,
2016), mass-transport properties for possible application in electrodes (Bauer et al., 2016; Zhu et
al., 2015). A high surface-to-mass ratio allows the development of more efficient energy-storage
structures (Zhu et al., 2015; Sullivan et al., 2016). Last but not least, a still active major research
area involves interaction of electromagnetic waves with periodic structures (meta-materials)
(Srivastava, 2016 and many others).

1.3. Goal of this study

Among several possible functions of LMs, one of the fundamental mechanical properties,
namely the stiffness-to-density ratio, is selected for close examination. Several scientific papers
hint on the outstanding specific stiffness (and alternatively specific strength) of LMs:

• Mazur et al. (2016) – “One can reach properties beyond the capacity of solid material”
• Yin et al. (2017) – “Hybrid designs can populate vacant regions in mechanical property
charts”

• Messner (2016) – “Previous work demonstrates that lattice materials have excellent
stiffness- and strength-to-weight scaling, outperforming natural materials (...) making the-
se structures efficient for lightweight structural applications” (quoted after Zheng et al.,
2014).

In the above statements it is implied that the specific stiffness of LMs can be significantly maxi-
mised by appropriate selection of their internal layout. These claims are even more pronounced
in informal reports:
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• Dias (2015) – “LMs also have desirable weight characteristics, and are used as an ap-
proach to target weight reduction” (this feature is listed in the third place, after “better
performance for stability and larger surface area”)

• Krassenstein and Lyles (2014) – “As we know, lattice structures have been shown to
increase strength while reducing weight (...) Without a doubt, there could be hundreds
or even thousands of uses for lattices such as this for designing and engineering a whole
range of products and architectural designs”.

However, there are some recent papers (e.g. Zok et al., 2016) where the above claims are put at
doubt.
The community of structural mechanics indeed awaits novel stiff and light materials. The

red contour, sketched by the author on one of the Ashby-plots (Fig. 1, taken from Ashby and
Cebon, 1993), encompasses the area of highly desirable specific stiffness levels with 4-sub-areas
corresponding to:

A: structures with a relatively high absolute stiffness, as light as possible, dedicated to a broad
engineering use

B: specialised low and ultra-low density structures exhibiting as little stiffness loss as possible

C: hybrid area between A and B

D: most probably infeasible materials.

Another simplified criterion can be set at a straight line corresponding to a constant E1/2/ρ =
1/100, with E expressed in GPa and ρ expressed in kg/m3.

Fig. 1. Material selection chart (Ashby and Cebon, 1993) with sub-areas marked by the author
of this article

The key question is: can LMs perform better, at least in terms of increased specific stiff-
ness, than the existing materials, either homogeneous or composite? The areas of the potential
widespread engineering use (A and C in Fig. 1) are addressed in this paper.
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A brief literature review is carried out first in order to quantify the best solutions hitherto
found.
Apart from the literature review, the original contribution of this study consists in the design

and numerical optimisation of a series globally and locally optimised lattice structures in search
for their actual specific stiffness.
In particular, the sensitivity analysis is carried out on a panel of constant external dimensions

and varied internal LM configuration. The finite element computations are performed using
OptiStruct 14.0 software by Altair. The modelling is supposed to compare the “latticed” design
as compared to the best conventional topologically optimised design.

2. Uniform lattice materials: specific stiffness and strength

Several authors, as shown in the previous Section, have claimed that LMs are very promising in
terms of pushing the limits of specific stiffness and strength. It is relevant to quantify and verify
the obtained results by comparing them to the representatives of various material families.
At the beginning, it is necessary to note that in the traditional structural design more

than one “specific stiffness” can be defined for a given material (for demonstration, see Ash-
by and Cebon, 1993). Notably, E/ρ is recommended for pure 1D loading (as in struts, stret-
ched cables), E1/2/ρ is adequate for beams carrying bending loads, E1/3/ρ characterizes the
shells/plates/panels.
Consequently, if both the stiffness and density decrease proportionally (e.g. both by a factor

of 10 typical for LMs as compared with the bulk material), the parameters: E1/2/ρ and E1/3/ρ,
increase, which is beneficial for lightweight design of beam/plate structures. In the further di-
scussion, special emphasis is put on the “beam-optimised” specific stiffness.
Table 2 puts together selected typical data from metal, polymer and ceramic engineering

materials. As expected, the costly carbon-fibre composite turns out to be the best. However,
cheap and widely accessible wood comes the second, being particularly well suited for beam-
optimised designs. Young’s modulus E is here expressed in GPa and ρ expressed in kg/m3. These
units shall be kept further on in this study.

Table 2. Juxtaposition of specific strengths for standard engineering materials (source: Cam-
bridge, 2003)

Material
E ρ E/ρ E1/2/ρ E1/3/ρ
[GPa] [kg/m3] (pure stretch) (beam) (plate)

Flex. polymer
0.001 35 3E-5 9E-4 3E-3

foam (VLD)
Polypropylene 1.2 900 1E-3 1E-3 1E-3
WC 650 15600 4E-2 2E-3 6E-4
Plain steel 200 7850 3E-2 2E-3 7E-4
Rigid polymer

0.3 300 1E-3 2E-3 2E-3
foam (HD)
Alu 75 2700 3E-2 3E-3 2E-3
Typical wood

12 700 2E-2 5E-3 3E-3
(longitudinal)
CFRP 120 1500 8E-2 7E-3 3E-3

What is the performance of LMs in this aspect? Table 3 and corresponding Fig. 2 (data taken
from Mazur et al., 2016) shows that one the best type of cubic basic cell behaves on average
2 times better than the bulk base material and slightly outperforms pure aluminium. On the
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other hand, the worst case exhibits properties equal to those of polypropylene, which is a very
poor outcome for a specialised Ti-Al-V alloy. In terms of beam-optimised specific stiffness, the
best LM shows roughly a twofold superiority over plain steel while its absolute stiffness is lower
by a factor of 200. As long as such a low stiffness is acceptable in a given design, LM can thus
be a valuable alternative to conventional materials.

Table 3. Juxtaposition of specific stiffnesses of the best/worst lattice materials (Mazur et al.,
2016)

Material
E ρ E/ρ E1/2/ρ E1/3/ρ
[GPa] [kg/m3] (pure stretch) (beam) (plate)

Ti-6Al-4V bulk 115 4430 3E-2 2E-3 1E-3
Ti-6Al-4V LM
(1%E, 6%ρ), 1.15 266 4E-3 4E-3 4E-3
FCCZ-S3 (best)
Ti-6Al-4V LM
(1%E, 24%ρ), 1.15 1063 1E-3 1E-3 1E-3
FBCCZ0-S2 (worst)

Fig. 2. Juxtaposition of specific stiffnesses of the best/worst lattice materials according to
(Mazur et al., 2016)

The recent work by Zheng et al. (2014) has revealed a new solution based on lattices made of
hollow tubes with average E/ρ of 3E-3 and outstandingly high E1/2/ρ of 3E-2 (with E expressed
in GPa and ρ in kg/m3). However, they applied a special octet-truss, a non-cubic structure, and
focused on ultra-low density materials which are outside the scope of this research.
It is notable that only few quantitative assessments of specific stiffness (or alternatively

specific strength) can be found in literature. Some reports, especially informal ones, are simply
misleading. For example, a Purdue researcher working for a commercial 3D printing company
(Krassenstein and Lyles, 2014) claims that his “incredible” Kelvin-cell-based aluminium cube
supports about 100 000 times its weight. The number can be true, but when closely examined,
it turns out to be no better than the natural performance of the bulk aluminium for the same
cube dimensions.
Some authors hint on scaling the LM structures down as a method for increasing their stiff-

ness and strength. Jiang and Qang (2016) declares that under large-strain tension, their moduli
follow a linear scaling relationship with their densities regardless of architecture types, which is
in sharp contrast to the architecture-dependent modulus power-law of the existing engineering
materials. Mazur et al. (2016) and Messner (2016) reported a convergence of mechanical pro-
perties with the increasing number of unit cells. The quantitative data produced by Bauer et al.



Old materials – new capabilities... 219

(2016) (concerning strength only) did not, however, provide convincing proofs of the superiori-
ty over the bulk base material. They aim at exploiting material strengthening size effects and
achieving strength-to-density ratios of “nanolattices” 6 times those of other reported microlat-
tices. However, their 1 micrometer-long struts with 200-nanometer diameters made of pyrolysed
carbon exhibit compressive specific strength inferior to those of diamond (1.2GPa at 600 kg/m3

as compared with > 110GPa at 3500 kg/m3). Thus the carbon-based microlattice is 20× less
stress-resistant (and probably just as less stiff) than the diamond while much more expensive
to manufacture.
Again, it has to be emphasised, that the best structurally optimised LMs can be beneficial

uniquely in very-low-weight designs, where their stiffness can decrease proportionally to the
decreasing density, as compared to much more unfavourable scaling relationship of stochastic
foams.
Judging from the literature data, the spatially uniform Lattice Materials, regardless of

the scale of their structure (meso/micro/nano), are not significantly superior to the existing
non-lattice materials in terms of specific stiffness as long as relatively stiff structures (e.g.
E > 100MPa) are required. Even if some carefully selected structures show an increased E1/2/ρ
over the bulk base material, they do not penetrate deep into the desirable zones on the Ashby
plot. It is partly reflected in the conclusion of the paper by Zok et al. (2016): “numerous trusses
that have been studied in recent years do not appear to be particularly well-suited for use as
stiff and strong lightweight structures on their own”.

3. Single-material lattices vs topologically optimised base material:
original modelling

The literature review suggests that spatially uniform Lattice Materials are not likely to achieve
outstanding specific stiffness. However, spatial variation of the cell type and beam diameters
is intuitionally beneficial, and has been suggested by some authors (e.g. Messner, 2016). Some
simple solutions can be directly borrowed from the classic design rules, e.g. adding of solid skins
atop of LM panels in order to increase their bending stiffness. On the other hand, Additive Layer
Manufacturing (ALM), costly as it is, offers in exchange almost unlimited freedom in structural
shaping, so it is natural to look for arbitrarily “free” non-standard designs often inspired by
biological systems. Automatic optimisation procedures including topology and size optimisation
have reached maturity, and now are widely used in industry as witnessed by the author in his
engineering practice. It is possible that both these approaches are applicable to design of light
and stiff LMs. However, such a hybrid methodology has not been widely used yet. The only
quantitative data of the beneficial LM effect comes from commercial presentation (Dias, 2015),
where a 12% increase in the of stiffness of an actual automotive part is reported as compared
with the topologically optimised manufacturable design without a lattice structure. More data
is definitely needed.
In this paper, the author generates a relatively simple model which is useful in studying the

impact of Topological Optimisation (TO) and LM techniques, separately or in combination.
The model (Fig. 3) involves a 2mm thick plate made of Nylon12PA, typical for 3D-printing

applications, dimensioned 240×32mm. The plate is supported along its shorter edges and is
loaded with a field of uniform concentrated forces at its geometrical centre. The supports are
designed so that the mechanism is avoided, but there are no singularities due to overconstraining
at the same time.
A series of FEA calculations have been carried out in order to examine the variation of the

specific stiffness. No stress constraints have been applied. The studied solutions are presented
in Table 4.
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Fig. 3. A schematic view of the design space for specific strength analysis

Table 4. List of structural variants selected for specific strength comparison

100 Starting design: a full plate
200 Topological optimisation with a volume constraint set at 30% of the initial

design region volume and objective defined as compliance minimisation
400 A series of LM designs with the total plate volume uniformly transformed into

lattice; the beam diameter (equal for every element) is made variable
600 Hybrid, “blended” solution

The analyses refer to the case-specific “generalised” metrics of compliance and stiffness,
typical for numerical studies of engineering components. The simplest definition of a generalised
compliance is a vector product F ·u summed over all nodes, where F is the applied force vector,
and u – vector of resultant displacements. Such a function represents equally strain energy of
the component.
Additionally, it is practical to replace the density with the component mass, so that the

generalised specific stiffness (GSS) is equal to the generalised stiffness/component mass or alter-
natively: 1/(generalised compliance·component mass). So defined GSS will be the key parameter
in the following discussion.

3.1. Design 100 – starting design, full plate

Standard linear-static analysis has been performed. The displacements plot is presented in
Fig. 4.

Fig. 4. The magnitude of displacement for the starting, full-plate design (100)

The bulk plate weighs 6.8 g. The behaviour of the plate, both in terms of deflection and stress
distribution (not shown here), is consistent with the expectations derived from the classical beam
theory. The Generalised Specific Stiffness (GSS) has been calculated, and set as a 100% reference
for the subsequent options. The numerical data are presented at the end of the article, in Table 6.
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3.2. Design 200 – topological optimisation (TO)

The design space has been subjected to a typical topological optimisation procedure based
on the SIMP (Solid Isotropic Material with Penalisation) algorithm. A mass constraint has been
set so as to finally reduce the mass of the design region by 30%. The TO algorithm converged
after 20 iterations, producing pseudo-density distribution as in Fig. 5. The red areas represent
the material which needs to be kept while dark blue zones indicate the redundant material to
be removed. The uneven contour boundaries can be manually or automatically smoothened out.
An automatic, rough, yet meaningful interpretation of the final design is shown in Fig. 5.

Fig. 5. Element pseudo-density distribution at the final iteration of the topological optimisation
process (200)

Fig. 6. Rough automatic interpretation of the topologically optimised structure for subsequent
reanalysis or manufacturing

The normalised Generalised Specific Stiffness (GSS) for this design is slightly below the
reference value and amounts to its 86%. The topological optimisation, it this particular case,
does not bring benefits in terms of specific stiffness. However, it allows identifying weakly stressed
areas and results in mass reduction which is an obvious advantage in industrial applications as
long as constraints on allowable displacements are not violated.

3.3. Design 400 – uniform lattice with variable beam diameter

The entire plate has been transformed into a LM, except for its constrained edge bounds.
The elementary cell dimensions are directly inherited from the finite element mesh. The beams
are assigned with an arbitrary, constant diameter with the starting value of 0.1mm.
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Fig. 7. The plate transformed into an uniform lattice structure (400)

Table 5. Influence of variation of the beam diameter on the generalised specific stiffness

Relative density [%] GSS

400 LM-uniform diameter 0.1mm 12 0.0009
400 LM-uniform diameter 0.2mm 26 0.0015
400 LM-uniform diameter 0.3mm 51 0.0018
100 bulk 100 0.0069

Fig. 8. The influence of variation of the beam diameter on the generalised specific strength: plot related
to relative density

The sensitivity analysis is summarised in Table 5 and Fig. 8. Two adverse effects are notice-
able:

1) Calculation at 50% of the relative density is visibly biased. If beam diameters are significant
as compared with their lengths, the problem of overlapping at beam joints arises, and the
nominal mass is overestimated. An actual 3D-printed object shall be lighter than the sum
of masses of beams included in the FE model.

2) The specific stiffness definitely does not improve when replacing the bulk material with
a LM. On the contrary, for this design space and set of loads the effect of “latticing” is
detrimental. As compared with the starting simple bulk plate, the GSS (for 0.1mm beams)
drops by a factor of 7, which entails about a 60× decrease in the absolute stiffness.

3.4. Design 600 – hybrid (blended) solution

This design combines the results from Topology Optimisation with the partial Lattice trans-
formation according to the lower and upper bounds arbitrarily set by the user. Here the bounds
are 0.15 and 0.6, which entails that relative densities below 0.15 are removed (a void remains)
while the elements exhibiting densities beyond 0.6 remain as solid.
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Fig. 9. An example of a “blended” design, combining the TO – resultant core structure
and auxiliary lattice

The obtained solution has several remarkable features:

1) The GSS for this solution is very close to the one from pure Topological Optimisation,
however it can possibly be increased if beam-by-beam size optimisation is employed.

2) The entire structure is a “composite” with locally varying stiffnesses and densities, altho-
ugh it is actually made of a single base material.

3) The design after smoothening and cleaning up can be manufactured in a single-pass FDM
or SLS technology.

4) Although in this hybrid solution the lattice does not play a significant role in terms of
stiffness or strength, it can serve as a filler or a supportive structure for additional func-
tionalities (e.g. heat exchange, cabling, sensor arrays, etc.).

5) The similar, automotive structure redesigned with a “blended” technique has been reported
to be ∼ 10% stiffer than the solution by Topological Optimisation only with the imposed
manufacturing constraints.

The summary of calculated GSS is presented in Table 6.

Table 6. Complete comparison of generalised specific sttiffnesses for the studied design options

Mass
[g]

Generalised
Generalised
stiffness

Generalised
Normalised
GSS [%]

compliance spec. stiffness
[N·mm] (GSS)

100 Bulk material 7.3 19.8 0.05 0.0069 100
200a TO, volumic goal of

2.5 67.5 0.01 0.0059 86
design space set to 30%
200b TO, volumic goal of

3.2 48.3 0.02 0.0065 93
design space set to 40%
400 LM-Uniform diameter 0.1 0.84 1370 0 0.0009 13
400 LM-Uniform diameter 0.2 1.9 343 0 0.0015 22
400 LM-Uniform diameter 0.3 3.7 153 0.01 0.0018 26
600 LM-blended 2.5 67.4 0.01 0.0059 86

4. Conclusions and perspectives

The literature review and original modelling focused on the stiffness performance of lattice
materials have led to the following conclusions:
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• In the studied case, a simple conversion of the bulk material into a lattice results in a
significant decrease of its stiffness; the best uniform LM cases reported in the literature
show stiffnesses comparable to that of the bulk base material, however they do never exceed
it. The claims of superiority of LMs in terms of light and stiff designs have to be refuted.

• In spite of the literature reports on the beneficial scale effect, one should not expect
lattice-related specific strength higher that for the bulk base material, probably even if
micrometre-scale elementary cells are produced.

• Some (but not dramatic) improvement of LM-related GSS can be aimed at when perfor-
ming beam-by-beam size optimisation; such algorithms are already available in scientific
and commercial contexts.

• The only convincing report on GSS increase due to application of the LM base on a
hybrid (blended) design, in which the topologically optimised “backbone” made of the
bulk material plays a dominant role in providing stiffness. In the areas of intermediate
resulting densities (30%-70%) it is replaced with lattices. Even if such hybrid optimisation
is employed, the reported gain is of the order of 10% as compared with pure topological
optimisation with manufacturing constraints. Still the gain requires sophisticated, blended
solid/LM designs, based on two-stage optimisation (Topological+Size). The final solution
is of the order of magnitude more costly in production than the standard design (bulk
material after TO).

• To meet the engineering goals and be economically viable, lattice materials should be:
– structurally non-uniform to exploit the inherent freedom of design provided by ALM,
– multifunctional, similarly to foams (cf. Banhart, 2005).

Stiffness and/or strength can only constitute an auxiliary function in lattice-material
designs. The primary function can be thermal (e.g. embedded efficient heat exchange),
thermo-mechanical (e.g. stress-free intermaterial adapters) or electromagnetic (integrated
cables, sensors, screening systems).

• LMs do not deliver a break-through in the area of stiff lightweight design. At present, there
are only very limited “hi-tech” fields of their application (aerospace, biomedical, military).

The search for light and stiff micro/macro-optimised solution continues. Interestingly, some
authors (Zimińska et al., 2016; Dong and Wadley, 2015) hint on CFRP lattices as being capable
of crossing the present limits of available specific stiffnesses. LM multi-material composites can
possibly fill the gap of the material selection charts. This, however, is a subject for another
study.
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The paper is focused on the identification of mechanical properties of a sail technical woven
fabric (yacht sailcloth polyester) style 480 AP with MTO (Medium Tempered Optimized)
finish. The non-linear elastic behaviour of the fabric applied for sails is investigated under
uniaxial and biaxial tensile tests. Comparison of non-linear elastic parameters with others
polyester coated fabrics is made. This paper is intended to be an introduction to a compre-
hensive investigation on sail technical woven fabrics.
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1. Introduction

The applications of composites materials are widespread in various branches of industry. Among
others, coated woven fabrics (named architectural fabrics or technical woven fabrics) are widely
applied. The coated woven fabrics are usually manufactured from polyester fibres, glass fibres or
carbon fibres (generally, woven of two families of threads called the warp and weft) covered by
a coating material (e.g.: PTFE, PVC) for greater strength and/or environmental resistance. In
civil engineering, the technical woven fabrics are applied as membranes, pneumatic and hanging
roofs (see e.g. Fig. 1). On the other hand, technical woven fabrics are used also for sailing ships
(see Fig. 2). Analysis of sails as flexible membranes with two-dimensional theory started in
the sixties of the XX century (see e.g. Nielsen, 1963). In the modern literature one find can
papers regarding experimental studies (see e.g. Triki et al., 2011) and the numerical background
(see e.g. Gasser et al., 2000; Badel et al., 2008). Only a few papers regarding the experimental
analysis of sail cloths can be found, see e.g. Benfratello and Palizzolo (2010), Benfratello et al.
(2013), where behaviour of the Dacron 360 woven fabric under uniaxial tensile tests with and
without finish was investigated. On the other hand, Blicblau et al. (2008) investigated the forces
applied resultant material deformations and stresses on a novel windsurfer sail. Spalatelu-Lazar
et al. (2008) improved the quality and performances of sails by using an orthotropic membrane
model, numerical experimentation and optimization methods. Le Mâıtre et al. (1996) proposed
an elastic string network model of sails. The equilibrium equation for this model was written in
form of a minimization problem.
The parameters given by sailcloth manufactures in order to describe orthotropic and non-

linear behaviour of the sail fabric are insufficient for full description of its characteristics. An
engineer who is supposed to perform the sail analysis should collect as well all information about
the mechanical properties. From the naval engineer’s point of view, a material to be used in sail
manufacture should, first of all, have a smooth surface, have zero porosity ensuring effective air
flow around the sail and be sea water resistant. On the other hand, the fabric of the sail must
hold its shape over a wide wind range, and it must achieve long-term durability and ultra violet
resistance.



228 A. Ambroziak, P. Kłosowski

Fig. 1. Factoria amphitheatre in Pruszcz Gdański, Poland

Fig. 2. Sailing vessels in Gdynia harbour, Poland

The aim of the present paper is to analyse, through experimental tests, the behaviour of the
yacht sailcloth polyester style 480 AP with MTO finish under uniaxial and biaxial tensile tests
and specify the non-linear elastic properties in form of sets of parameters.

2. Material and methods

The yacht sailcloth style 480 AP belongs to the polyester type of base fabric. The sailcloth
weight is about 11.2 Sm-oz. (11.2 sailmakers per square yards is equal to about 4.8N/m2).
Material parameters necessary to design new shapes of sails and analyse their behaviour are not
provided in technical specification. In order to perform the relevant assessment of the material,
laboratory tests have been carried out.
A special set of constitutive equations must be applied for description of the fabric behaviour.

The authors have good experience with the dense net model (see e.g. Ambroziak and Kłosowski,
2011), in which the behaviour of each family of threads is treated individually and is described
by the individual longitudinal stiffness Fi. The threads stress increment of the warp ∆σ1 or weft
direction ∆σ2 are calculated from the following equations

∆σ1 = F1(ε1)∆ε1 ∆σ2 = F2(ε2)∆ε2 (2.1)

where F1(ε1) and F2(ε2) are material functions of the threads and are called the longitudinal stif-
fnesses. Several constitutive elastic, viscoplastic or viscoelastic approaches can be used to define
these functions. They are usually specified on the basis of the uniaxial, or during more complex
investigation, like e.g. biaxial laboratory tests. It should be noted that stress of a technical fabric
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is generally given in [N/m] or [kN/m], due to difficulties with thickness measurement, see e.g.
Żyliński (1965). In such an approach, the results are thickness independent.
Basing on the geometrical relationship, the threads stress σi and threads strain εi can be

expressed by the stress σx and strains εx components in the plane stress state as follows

εξ =

{
ε1
ε2

}
=

[
1 0 0
cos2 α sin2 α sinα cosα

]


εx2
εx2
γx1x2




= Txξεx

σx =





σx1
σx2
τx1x2




=



1 cos2 α
0 sin2 α
0 sinα cosα



{
σ1
σ2

}
= (Txξ)

Tσξ

(2.2)

where α is the inclination angle between the thread families during the deformation process.
The angle between the thread families α changes during deformation is calculated in accordance
with the current values of stress components σx2 and τx1x2 in the fabric from the relation

α = arctan
σx2
τx1x2

(2.3)

Next, the relation between stress and strain in the plane stress state is written in the form

σx = (Txξ)
TFTxξεx = Dxεx (2.4)

where

Dx =



F1(ε1) + F2(ε2) cos4 α F2(ε2) sin2 α cos2 α F2(ε2) sinα cos3 α
F2(ε2) sin2 α cos2 α F2(ε2) sin4 α F2(ε2) sin3 α cosα
F2(ε2) sinα cos3 α F2(ε2) sin3 α cosα F2(ε2) sin2 α cos2 α


 (2.5)

In uniaxial and biaxial tests, the stiffness values Fi of the families can be determined. These
values can be compared with the values obtained from both types of tests.

3. Experimental tests

The uniaxial and biaxial tensile tests with a constant displacement rate are chosen from a large
group of experimental tests to model the material behaviour of a technical woven fabric. The
uniaxial tensile experiments are the basic group of tests used for determination of mechanical
properties of technical fabrics. One of the advantages of such tests is simplicity of preparation
and cutting out of specimens which are generally cut along two orthogonal directions of the
warp and weft threads. In basic uniaxial tensile tests, it is possible to specify stress and strains
along investigated directions. In more sophisticated uniaxial tests, one can additionally specify
Poisson’s ratio. On the other hand, the biaxial tests are more complicated, and the application of
specially designed stands is necessary. The test machines should apply tension in two directions
with a different force ratio, constant in time. Good quality of the results depends on the type
of an extensometer used to measure deformation in two directions simultaneously. Generally,
the feature extraction method or digital image correlation based on artificial marks is used in a
video extensometer for strain calculations (see e.g. Bathurst and Shinoda, 2004). In the feature
extraction method, on the specimen surface, a non-destructive circles marks are made and then
the distance between them is traced during the deformation process. When the specimen is
deformed, its image changes accordingly. Following the changes of the marks coordinated on the
specimen and the displacements, the strains can be calculated. In the biaxial tests, cross-shaped



230 A. Ambroziak, P. Kłosowski

specimens are preferred. The biaxial tests reflects well an anisotropic character of technical
fabrics.
Uniaxial tensile laboratory tests have been made using the computer-controlled Zwick 020

testing machine (Fig. 3). The experiments have been carried out according to the national stan-
dard PN-EN ISO 1421 (2001). Specimens from the same batch of fabric in three directions:
along warp, along weft and with an angle of 45◦ to both threads directions have been prepared.
For each direction, five samples have been tested. Their dimensions were: width 50mm, length
900mm. The specimens have been subjected to tension with a displacement rate of grip equal
to 100mm/min (constant grip displacement rate). The tests have been controlled by a video
extensometer with the base about 50mm. The gauge length of each specimen (separation of cu-
rved grips) has been 100mm. All tests have been performed at room temperature (about 20◦C).
All tests have been carried out up to specimen failure.

Fig. 3. Uniaxial laboratory test stand

Fig. 4. Biaxial laboratory test stand

The biaxial tensile tests performed on the Zwick system BIAX 020 with a video extensometer
attached (see Fig. 4), have been made for the cross-shaped specimens. There is no standard
regulation on the method the tests should be performed. The arm width is 100mm, therefore,
on the testing area of 100mm×100mm the gage length of about 50mm in both directions has
been chosen. In all tests, the initial grip separation of 300mm has been used. The specimens
have been subjected to tension (base constant force rate of 100N/s) in the warp, weft and bias
directions with load (stress) ratios 1:1, 1:2, 2:1 (σwarp : σweft). For each stress ratio, two samples
up to failure have been tested. In the uniaxial and biaxial tensile tests, the measurements data
(time, elongation and force) has been stored by every 0.01 s or force increment of 1N.



Polyester sail technical woven fabric behaviour... 231

4. Results and discussion

The stress-strain curves under uniaxial tensile tests are shown in Fig. 5. In general, mechanical
properties in the weft and warp direction are different. The value of the Ultimate Tensile Strength
(UTS) of specimens and the strain at rupture εR are collected in Table 1. The UTS is the final
stress sustained in a tensile test at the exact moment of rupture of fabric specimens. The results
given in Table 1 are presented in the form x ± sx, where x is the mean value and sx is the
standard error of the mean value. The UTS values for the weft and warp are comparable, but
the elongation and strain at break for the weft direction is about 50% higher than for the warp
direction. The bias direction (45◦) has the highest elongation and the smallest UTS value. In
this case, the main threads (warp and weft) are angled for the load direction and are not going
from one grip to the other.

Fig. 5. Uniaxial test results

Table 1. Values of strain at break εR and UTS

εR [–] UTS [kN/m]

Weft 0.40± 0.01 101± 1
Warp 0.27± 0.01 99.2 ± 0.9
45◦ 0.64± 0.01 74 ± 5

Looking at the stress-strain curves (Fig. 5), the characteristic points of the curvature change
can be specified. Then, for the strain range, a piecewise linear model (see e.g. Ambroziak,
2015a) can be used. In this concept, it is necessary to specify the longitudinal modules Fi
and the intersection points Pj (j = 1, 2) for the specified strain values εPj which define the
range of applicability of a certain longitudinal modulus. The Marquardt-Levensberg algorithm
(Marquardt, 1963) has been used to find the parameters that give the best fit between the
constitutive equation and the experimental data. The parameters (and their standard deviation)
for the piecewise linear model based on the uniaxial tensile test are given in Table 2. The
parameters F1 and F3 are about 100% higher for the warp than for the weft direction. For the
parameter F2, the weft and the warp differences of 10% can be observed. These parameters can
be easily applied in the dense net model (see e.g. Ambroziak and Kłosowski, 2011) to describe
the coated woven fabric behaviour in FEM calculations of structures.
The results of the biaxial tensile tests for 1:1, 1:2, 2:1 load ratios are presented in Figs. 6

and 7. It should be pointed that up to 10 kN/m stress range, the behaviour of the technical
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Table 2. Non-linear model parameters – uniaxial tests

Warp Weft 45◦

F1 [kN/m] 967± 25 491± 4 122 ± 2
F2 [kN/m] 159 ± 2 140± 2 60± 1
F3 [kN/m] 633 ± 7 344± 4 275 ± 3
εP1 [–] 0.0146 ± 0.0009 0.0297 ± 0.0004 0.004 ± 0.001
εP2 [–] 0.146 ± 0.002 0.203 ± 0.003 0.475 ± 0.003

Fig. 6. Biaxial test results: 1:1, 1:2, 2:1

Fig. 7. Biaxial test results: 1:1, 1:2, 2:1 – stress range to 10 kN/m

fabric under biaxial tensile tests is very similar. Biaxial bias direction tests results are given
in Fig. 8. The load ratios 1:2 45◦ and 2:1 45◦ exhibit contraction for thread directions which
have the smallest stress values. The highly loaded threads straighten while other ones become
folded. For the 1:1 45◦ stress ratio, the strains are positive in both directions (expanded in both
directions).
The stress and strain values at rupture of the specimens (see Figs. 9 and 10) are given in

Table 3. The mean stress value at brake for 1:1 load ratio is about 40 kN/m and is about 40%
of the mean uniaxial tensile strength (see Table 1). The bias direction for 1:1 45◦ load ratio
reaches a stress value of 18.6 kN/m. It is about 50% of the 1:1 biaxial stress and about 25%
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Fig. 8. Biaxial bias directions test results: 1:1 450, 1:2 450, 2:1 450

Fig. 9. Damaged specimens – biaxial test results

Fig. 10. Damaged 45◦ specimens – biaxial test results

of the uniaxial bias tensile strength. It should be noted that when the load ratio is 1:2 and
2:1, the strength of the fabric increases by 10%-20% up to 44 kN/m and 49 kN/m, respectively.
This result can be explained by the failure mode of the specimen, see Figs. 9 and 10. For the
1:1, 1:2 and 2:1 load ratios, one of the cross arms is damaged. On the other hand, for the bias
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directions 1:1 45◦, 1:2 45◦, 2:1 45◦ tear of the cross specimen in the central region is observed.
The parameters for the piecewise linear model based on the biaxial tensile test are given in
Tables 4 and 5. The value of F1 parameter in the bias direction is about 100% higher than for
the 1:1 load ratio in the warp and weft direction.

Table 3. Values of stress and strain at break

Load ratios σwarp [kN/m] εwarp [–] σweft [kN/m] εweft [–]

1:1 39.8 ± 0.3 0.1257 ± 0.0005 39.6 ± 0.4 0.1561 ± 0.0006
1:1 45◦ 18.6 ± 0.1 0.0198 ± 0.003 18.6 ± 0.1 0.0321 ± 0.003
1:2 22.1 ± 0.3 0.0594 ± 0.0003 44.0 ± 0.6 0.167 ± 0.002
1:2 45◦ 12.1 ± 0.1 −0.1264 ± 0.0001 24.3 ± 0.2 0.185 ± 0.001
2:1 49.3 ± 1 0.139 ± 0.004 24.6 ± 0.5 0.086 ± 0.003
2:1 45◦ 25.2 ± 0.2 0.1649 ± 0.0001 12.5 ± 0.2 −0.103 ± 0.005

Table 4. Non-linear model parameters – warp

1:1 1:1 45◦ 1:2 2:1

F1 [kN/m] 1140 ± 2 2240 ± 130 1429 ± 23 1228 ± 6
F2 [kN/m] 178 ± 1 – 193± 1 181± 3
F3 [kN/m] 326 ± 6 – – 439± 6
εP1 [–] 0.0136 ± 0.0001 – 0.0094 ± 0.0003 0.0141 ± 0.0001
εP2 [–] 0.0975 ± 0.0003 – – 0.102 ± 0.002

Table 5. Non-linear model parameters – weft

1:1 1:1 45◦ 1:2 2:1

F1 [kN/m] 595 ± 2 1110 ± 13 613 ± 14 606 ± 7
F2 [kN/m] 190 ± 2 – 199± 5 219 ± 1
εP1 [–] 0.0248 ± 0.0002 – 0.026 ± 0.001 0.0164 ± 0.0005

Additionally, it can be shown in Fig. 11 that the biaxial tensile tests are comparable with
the uniaxial tensile behaviour of the sailing technical fabric in a specific range of load. This
characteristic is observed for a polyester type coated fabrics (see e.g. Ambroziak, 2015b). In
Figs. 12 and 13 and Tables 6 and 7, uniaxial and biaxial test results for the chosen coated
fabrics (AF 9032, FR 8540 and Precontraint 1202S) are compared with the tested 480 AP sail
fabric. Detailed investigation on the FR 8540 and Precontraint 1202S coated fabrics are given
by Ambroziak (2015a,b), respectively.

The shape and characteristic of the stress-strain curves from the warp and weft under uniaxial
tensile tests (see Fig. 12) and 1:1 biaxial tensile tests (see Fig. 13) for the 480 AP fabric are
similar to the Precontraint 1202S fabric. It can be concluded that bidirectional tension is applied
during the manufacturing (coating) process of both these fabrics, because the shapes of stress-
-strain curves in the warp and weft directions are similar. For the AF 9032 and FR 8540 fabrics,
the shape of stress-strain curves in the warp and weft direction are different. UTS values for
the 480 AP, AF 9032 and Precontraint 1202S are comparable. The longitudinal stiffness F1 in
the warp direction for the 480 AP is comparable with the other fabrics. On the other hand, it
should be noted that total weights of the AF 9032 and Precontraint 1202S fabrics are two times
bigger than the weight of the 480 AP fabric. It can be concluded that a different way of thread
weaving of both fabrics has been applied.
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Fig. 11. Comparison of biaxial and uniaxial test results

Fig. 12. Comparison of uniaxial test results for polyester fabrics

Fig. 13. Comparison of biaxial test results for polyester fabrics
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Table 6. Non-linear model parameters – uniaxial tests

Total weight
480 1085 890 1050

[g/m2]

Weft 480 AP AF 9032 FR 8540 Precontraint 1202S

F1 [kN/m] 491 ± 4 193 ± 5 241 ± 12 650± 26
F2 [kN/m] 140 ± 2 465 ± 15 437 ± 11 288 ± 3
F3 [kN/m] 344 ± 4 105 ± 2 183 ± 2 841 ± 8
F4 [kN/m] – 880 ± 20 444 ± 5 –
εP1 [–] 0.0297 ± 0.0004 0.034 ± 0.002 0.018 ± 0.002 0.030 ± 0.001
εP2 [–] 0.203 ± 0.003 0.064 ± 0.004 0.035 ± 0.002 0.1144 ± 0.0007
εP3 [–] – 0.168 ± 0.005 0.124 ± 0.004 –

UTS [kN/m] 101 ± 1 104 ± 2 67.5 ± 0.5 102 ± 1
Warp 480 AP AF 9032 FR 8540 Precontraint 1202S

F1 [kN/m] 967± 25 1280 ± 15 1070 ± 5 1170 ± 20
F2 [kN/m] 159 ± 2 197 ± 1 257 ± 2 300 ± 4
F3 [kN/m] 633 ± 7 1075 ± 5 482 ± 4 897± 12
εP1 [–] 0.0146 ± 0.0009 0.0142 ± 0.0004 0.0105 ± 0.0002 0.0164 ± 0.0002
εP2 [–] 0.146 ± 0.002 0.0981 ± 0.0003 0.100 ± 0.001 0.1002 ± 0.0004

UTS [kN/m] 99.2 ± 0.9 116 ± 2 65± 1 108 ± 1

Table 7. Non-linear model parameters – biaxial tests (1:1)

Weft 480 AP AF 9032 FR 8540 Precontraint 1202S

F1 [kN/m] 595 ± 2 192± 4 241± 12 1300 ± 10
F2 [kN/m] 190 ± 2 462± 12 437± 11 300 ± 5
F3 [kN/m] – 167± 1 183± 2 675± 50
F4 [kN/m] – 875± 12 444± 5 –
εP1 [–] 0.0248 ± 0.0002 0.034 ± 0.002 0.018 ± 0.002 0.0145 ± 0.0005
εP2 [–] – 0.064 ± 0.004 0.035 ± 0.002 0.095 ± 0.001
εP3 [–] – 0.168 ± 0.005 0.124 ± 0.004 –

Warp 480 AP AF 9032 FR 8540 Precontraint 1202S

F1 [kN/m] 1140 ± 2 1732 ± 20 1070 ± 5 1500 ± 10
F2 [kN/m] 178 ± 1 236± 2 257± 2 335 ± 5
F3 [kN/m] 326 ± 6 1045 ± 3 482± 4 750± 25
εP1 [–] 0.0136 ± 0.0001 0.0142 ± 0.0004 0.0105 ± 0.0002 0.012 ± 0.001
εP2 [–] 0.0975 ± 0.0003 0.0981 ± 0.0003 0.100 ± 0.001 0.095 ± 0.001

5. Conclusions

The study presents test methods to investigate mechanical properties of a sail technical woven
fabric. Additionally, several non-linear model parameters for polyester coated fabrics have been
collected and compared. The identification of non-linear elastic properties has been successfully
performed on the basis of uniaxial and biaxial tension tests for the dense net model. The material
parameters, determined above, can be used in a direct way in FE analysis, where the problem
of geometric nonlinearity is supplemented by physical nonlinearity of the fabric material. Based
on the presented results, it can be concluded that it is possible to indicate the same types
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of technical woven fabrics for which the behaviour under biaxial stress state can be described
by a uniaxial response (compare Fig. 11 and Fig. 7). One of the deciding factors is the type
of textile weave (generally two orthogonal families of warp and weft threads). For engineering
calculations in the preliminary design stage, one can apply the dense net model with uniaxial
nonlinear parameters to describe biaxial behaviour of a technical woven fabric in the range 1:2 –
1:1 – 2:1 of load ratios. A modern laboratory equipment allows testing in different variants and
computer storage of the results, important for a future identification process. Examples of such
tests have been presented in the paper in order to understand the behaviour of the sail technical
woven fabric better. The investigation confirms that the quality of the yacht sailcloth polyester is
sufficiently high. The obtained results encourage the authors to continue the outlined research,
also on the basis of extended experiments and to apply other types of constitutive models.
This study may provide naval engineers and designers with a theoretical basis for a wide use
of sail coated fabrics. Examples of presented laboratory tests and comparison of mechanical
parameters make a step towards a better understanding of the behaviour of polyester coated
fabrics.
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The paper presents dynamic simulation and experimental identification of a human forward
fall model describing the process of “falling like a broomstick” on the outstretched arms.
The model implemented in Mathematica allows one to estimate time histories of the ground
reaction force in different scenarios of the fall process. These time series are applied as
time-varying load conditions to the numerical analysis of the human radial bone model
created from the computed tomography data. Finally, the obtained numerical results indicate
that the strain criterion seems to be more useful for estimating the radius fracture site in
comparison to the stress criterion.

Keywords: forward fall, ground reaction force, bone strength, fracture, distal radius

1. Introduction

Falls are common accidents in human daily life. They are severe and inevitable threats during
the walking process of the bipedal movement. Despite all population groups are exposed to
these risk factors, falls are the most serious social health problem among the elderly (Heijnen
and Rietdyk, 2016). As a result, the risk of injuries to hands, torso, head/neck and/or other
parts of the human body is possible. These injuries can eventually lead to death, chronic pain,
disability and/or loss of independence (Robinovitch et al., 2013).
The vast majority of cases of upper extremity injuries occur as a result of a fall with a

direct impact on the extended arms which are exposed to dynamical impact forces (Nevitt and
Cummings, 1993; Palvanen et al., 2000). Distal radius fractures are common in eldery women
with osteoporosis due to their compromised bone density/quality as well as probably due to the
increased risk of falling in this population group. Fractures of the forearm bones represent nearly
20% of all reported fractures worldwide, and the most common type of fracture is the so-called
Colles’ fracture as an injury of distal radius of the forearm (Johnell and Kannis, 2006).
The aforementioned upper extremity injuries may be a result of forward falls, backward

falls or side falls. Colles’ fracture, as an injury of the radius, is a direct result of exceeding the
maximum value of the force allowable for this bone. For instance, distal radius fractures at a
mean force equal to 2260±1010 N were observed by Frykman using 48 cadaveric bones of average
age of 65 years (Frykman, 1967). Spadaro and his co-investigators obtained the mean strength
of a bone fracture at the level of 1640 ± 980N (Spadaro et al., 1994). Kim and Ashton-Miller
(2009) adopted the value equal to 2400N as a distal radius fracture threshold. Also in one of
the recent papers by Burkhart et al. (2013), the estimated values of force causing fracture of the
studied bones derived from cadavers were approximately equal to 2150N.
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2. Literature review of the forward fall models

A forward fall is known as the most frequent type of fall, and more than a half of all falls
among the elderly occur in the forward direction (Nevitt and Cummings, 1993; O’Neill et al.,
1994; Vellas et al., 1998). Recent decades have brought different models related to the impact
of the upper extremities to the ground as a result of a forward or backward fall. One of the
simplest effective mechanical models of the human falling motion is a single-degree-of-freedom
(DoF) linear mass-spring-damper mechanical system subjected to a sudden velocity input or
an impulse force input. Such a model can be readily extended to systems with many DoFs.
Below we are focused only on the three most well-known, widely available and cited forward fall
models.
A fall model proposed by Chiu and Robinovitch (1998) applies to the human forward fall

from a low height on the outstretched and fully extended upper extremities as the worst-case
scenario of such a fall. It is constructed based on a 2-DoFs lumped-parameter mechanical system
containing elastic and damping elements responsible for the operation of human muscles. David-
son et al. (2006) completed a study with the aim of developing a “risk factor” value in order to
determine whether someone will sustain the radius fracture based on the characteristics of their
fall. The mentioned study used a two mass-spring-damper model, referring to the experimental
data obtained from 45 clinical cases of children falling off of playground equipment.
DeGoede and Ashton-Miller (2003) employed Adams software to devolop a half-body sym-

metric model of the human forward fall consisting of five segments (legs, torso with head and
neck, upper arm, forearm and hand). In that model, the movement of the hand and the pivot
point in the ankle toe are fixed, and friction is not taken into account. Moreover, the wrist, elbow
and hip joints are adopted as flat joints without friction, whereas the shoulder joint connecting
the arm to the body via massless blades is modelled as a linear frictionless sliding joint with the
movement axis perpendicular to the longitudinal body axis. The main goal of the authors was
to study the possibility of injury in older women. Therefore, to determine the model parameters,
baseline height and weight equal to 1.63m and 62 kg, respectively, were used (Kroemer et al.,
1997).
Kim and Ashton-Miller (2009) proposed another flat model of the forward fall as a two DoFs

system constructed based on a mechanical model of a double pendulum rotating freely around
a pivot corresponding to the ankles of the lower human extremities. To provide a mathematical
model, the mechanical system was reduced to a system of linear translational movements with
2-DoFs with spring-damper elements responsible for attenuation action of the human muscles.
Numerical simulation for the fall height of 1.5m showed that the maximum impact force was
doubled from 1250N to a value of 2610N, depending on the fall scenario. In this way, the authors
showed that for the same fall conditions (the same faller falling from the same height), too rapid
movement of the arms in comparison to the rest of the body could cause the occurence of an
excessive force acting on the upper extremity more than 2350N, which caused a fracture of the
distal radius.
To conclude, it can be stated that, in general, the considered falling process was usually

mathematically modelled based on flat and linear mechanical systems consisting of two rigid
bodies with masses moved by transverse motion connected by linear spring-damper elements.
These models were usually presented as a set of the second-order ordinary differential equations
of motion (Chiu and Robinovitch, 1998), but also the appropriate equations were written in the
state space (Kim and Ashton-Miller, 2009). On the other hand, in the case of a more complex
mechanical model, numerical simulations were performed only using commercial Adams software
(DeGoede and Ashton-Miller, 2003). In the present paper, we propose our own mathematical
model of the human forward fall on the outstretched arms. In addition, unlike previous models
met in the literature, our model takes into account a direct influence of different human speed
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just before the trip over an obstacle and starting the falling process, which affects the final force
of impact of the upper extremity on the ground.

3. The proposed “broomstick” forward fall model

3.1. Mathematical modelling

The human “like a broomstick” forward fall on the outstretched arms is schematically shown
in Fig. 1a. Equations of motion of the analysed system have been obtained by the Newton-Euler
method, and Free Body Diagrams of the system are shown in Fig. 1b.

Fig. 1. Mechanical modelling of the forward fall process: (a) the proposed forward fall biomechanical
model as a planar mechanical system with 2-DoFs embedded in the Cartesian coordinate system;

(b) Free Body Diagrams of the system

The model consists of two rigid bodies, 1 and 2, with masses m1, m2 and moments of inertia
I1, I2 around centres of gravity of the bodies, respectively. Body 1 corresponds to the human
torso with legs, neck and head, whereas body 2 corresponds to the human upper extremities
(including arms, forearms and hands). The parameters a1 and a2 represent the distances between
the gravity centres of individual bodies and their rotation axes, whereas l1 and l2 denote the
total lengths of the mentioned bodies, respectively. The angle θ1(t) denotes the angle between the
horizontal x axis and the longitudinal axis of body 1. The angle θ2(t) is the angle measured from
the axis of body 1 to the axis of body 2. The ground with non-linear contact law is characterised
by stiffness and damping coefficients ky and by, respectively.
In this model, we take the vectors θ1(t) = [0, 0, θ1(t)]T, θ2(t) = [0, 0, θ2(t)]T of the angles in

the joints j1 and j2, vectors rC1(t), rC2(t) of displacements of gravity centres of the first and
the second body, as well as the vectors l1(t), l2(t) of displacements of the joint j2 and the end
of body 2 which can impact to the ground, respectively, in the following form

rC1(t) = [x1(t), y1(t), 0]T = [a1 cos θ1(t), a1 sin θ1(t), 0]T

rC2(t) = [x2(t), y2(t), 0]T = [l1 cos θ1(t) + a2 cosα(t), l1 sin θ1(t)− a2 sinα(t), 0]T

l1(t) = [l1 cos θ1(t), l1 sin θ1(t), 0]T

l2(t) = [l1 cos θ1(t) + l2 cosα(t), l1 sin θ1(t)− l2 sinα(t), 0]T

(3.1)

where α(t) = 180◦− θ1(t)− θ2(t). The forces Q1 = [0,−m1g, 0]T and Q2 = [0,−m2g, 0]T are the
gravity forces acting on the gravity centres of bodies 1 and 2, respectively, with the acceleration



242 D. Grzelczyk et al.

of gravity g (g = 9.81m/s2). The force R(t) = [Rx(t), Ry(t), 0]T is the reaction force in the
joint j1. The unknown force in the joint j2 and presented in the Free Body Diagrams (see
Fig. 1b) is denoted as P(t) = [Px(t), Py(t), 0]T. Finally, the force F(t) = [Fx(t), Fy(t), 0]T is the
ground reaction force acting on body 2 at the moment of its impact to the ground.
Let M1(t) = [0, 0, 0]T and M2(t) = [0, 0,M2(t)]T denote the torques generated in the joints

j1 and j2, respectively. As a result, for the two considered free bodies presented in Fig. 1b, we
can write the following equations of motion in the vector form

m1r̈C1(t) = R(t) +Q1 +P(t)

I1θ̈1(t) =M1(t)−M2(t)− rC1(t)×R(t) + [l1(t)− rC1(t)]×P(t)
m2r̈C2(t) = −P(t) +Q2 + F(t)
I2θ̈2(t) =M2(t)− [l1(t)− rC2(t)]×P(t) + [l2(t)− rC2(t)]× F(t)

(3.2)

Equations (3.2) can be reduced to the scalar form

I1θ̈1(t) = −M2(t) + a1Rx(t) sin θ1(t)− a1Ry(t) cos θ1(t)
+ (l1 − a1)Py(t) cos θ1(t)− (l1 − a1)Px(t) sin θ1(t)

I2θ̈2(t) =M2(t) + a2Py(t) cosα(t) + a2Px(t) sinα(t)

+ (l2 − a2)Fy(t) cosα(t) + (l2 − a2)Fx(t) sinα(t)

(3.3)

where

Px(t) = Fx(t)−m2ẍ2(t)
Py(t) = Fy(t)−m2ÿ2(t)−m2g
Rx(t) = m1ẍ1(t)− Px(t) = m1ẍ1(t) +m2ẍ2(t)− Fx(t)
Ry(t) = m1ÿ1(t) +m1g − Py(t) = m1ÿ1(t) +m2ÿ2(t) +m1g +m2g − Fy(t)

(3.4)

At the time of tripping over an obstacle, a human instinctively and quickly pulls his arms
to the front in order to arrest and/or to absorb the fall. This process is described by the time
histories of the angle θ2(t), which can be estimated based on the kinematics of the falling
process registered with the use of a digital camera. Based on the second equation of (3.3) and
the function θ2(t) obtained in this way, we can calculate the torque M2(t) generated by arms in
the joint shoulder during the falling process. Taking the torque M2(t) in the first Eq. of (3.3),
one obtains eventually the following equation of motion around the joint j1

I1θ̈1(t) + I2θ̈2(t) = a1Rx(t) sin θ1(t)− a1Ry(t) cos θ1(t) + (l1 − a1)Py(t) cos θ1(t)
− (l1 − a1)Px(t) sin θ1(t) + a2Py(t) cosα(t) + a2Px(t) sinα(t)
+ (l2 − a2)Fy(t) cosα(t) + (l2 − a2)Fx(t) sinα(t)

(3.5)

with the function θ1(t) as a solution to this equation of motion.

3.2. Ground reaction force

To predict the vertical ground reaction force (GRF) Fy(t), a non-linear model of impact at
the wrist-ground interface has been employed in the form

Fy(t) = ky|y(t)|3(1− by ẏ(t))J(−y(t)) (3.6)

where parameters ky, by denote the ground stiffness and damping coefficients in the vertical
direction, respectively, y(t) = l1 sin θ1(t) − l2 sinα(t), and the function J(−y(t)) is the step
function defined as

J(−y(t)) =
{
1 if y(t) < 0

0 if y(t)  0
(3.7)
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For instance, this formulation of GRF had been used previously to model the heel strike in
running (Gerritsen et al., 1995) and to model GRF at the hand-ground interface (DeGoede and
Ashton-Miller, 2003). In our model, we have not included the horizontal force component Fx(t)
which is required to prevent the hand from sliding. However, the total GRF is less than 5%
greater than the vertical GRF (DeGoede and Ashton-Miller, 2003).

3.3. Initial conditions

The considered model has been reduced to a single DoF model with the function θ1(t) as
the solution and the following initial conditions: θ1(0)-initial angular position, and θ̇1(0)-initial
angular velocity. At the beginning of the trip (t = 0), a human is usually in the standing position,
and thus we take θ1(0) = 90◦ (see Fig. 1a). The initial angular velocity θ̇1(0) is estimated based
on the transverse human speed during walking just before the moment of the trip. For this
reason, we assume that the linear speed of the human gait decreases from v0 to 0, and the
rotational velocity θ̇1(t) increases from 0 to θ̇1(0) at the same time. Taking into account the
principle of conservation of momentum, rotary motion of the human body around the pivot axis
is governed as

I
∆θ̇1(t)
∆t

= rF ⇒ ∆θ̇1(t) = −
(m1 +m2)v0r

I
= θ̇1(0) (3.8)

where F∆t is a force impulse causing rotation of the human body around the rotation axis
placed in feet (ankles), I is the moment of inertia of the human body around the pivot axis and
r is the distance between the human gravity centre and the pivot axis with the upper extremities
adjusted along the body (typical position of the human body during walking). On the contrary
to the previous investigations met in the literature, the assumption adopted in this paper allows
one also to study kinematic and dynamic parameters during the falling process for different
walking speeds of the faller just before the moment of the trip over an obstacle.

4. Identification of the fall model parameters

4.1. GrabCAD model of the human body

To determine the human body parameters required in the proposed fall model, the full 3D
scanned human body model based on GrabCAD (2016) (see Fig. 2) as well as the appropria-
te AutoDesk Inventor commands have been used. The mass of the whole body is calculated
assuming that the average density equals to ρ = 1050 kg/m3, and the model parameters are:
a1 = 1.01m, a2 = 0.22m, l1 = 1.4m, l2 = 0.53m, r = 1.03m, m1 = 61.0 kg, m2 = 7.4 kg,
I1 = 9.9 kg·m2, I2 = 0.232 kg·m2, I = 82.86 kg·m2.

4.2. Kinematics of the fall process

The kinematic analysis of the faller between the moment of tripping over an obstacle and
hitting his hands to the ground were observed using an Optitrack optoelectronic motion analysis
system installed at the Department of Automation, Biomechanics and Mechatronics, Lodz Uni-
versity of Technology, Lodz, Poland. The front panel of the computer program used to operate
this system with the location of the individual markers on the faller’s body is presented in Fig. 3,
where the process of forward fall from the standing position to the ground is shown. Before the
experimenal test, the volunteer (one of the authors of this paper) has been instructed to safely
fall “like a broomstick”. The fall of the human body was performed using a certificated soft
insurance mattress with the full size 2m×2m×0.3m, and thus there was no a direct threat of
injury to the upper extremities and other body parts.
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Fig. 2. Three-dimensional scanned human body model used for the estimation of its geometrical and
mechanical properties (GrabCAD, 2016)

Fig. 3. Forward fall from the standing position to the soft mattress observed by Optitrack system using
37 passive reflective markers distributed on the faller’s body

Using Optitrack system we observed that the faller extends his arms from initial position
θ20 ≈ 5◦ to the final position θ2max ≈ 80◦ at the moment of the impact to the ground. That is
why, in all further presented investigations we use the time history of angle θ2(t) described by
the formula

θ2(t) =

{
θ20 + (θ2max − θ20) sin2(λt) if t ¬ T
θ2max if t > T

(4.1)

where T denotes duration of the fall (the time between tripping and hitting the ground), whereas
λ corresponds to the speed of movements of the faller’s arms. The parameters λ and T strongly
depend on the walking speed of the faller before the trip. The averaged time history of the
angle θ2(t) obtained from the experiment for v0 = 1.5m/s and its approximation are presented
in Fig. 4.

4.3. Hand-ground contact parameters

Figure 5a shows the schematics (the first frame of our animation created in Mathematica) of
the initial configuration of the subject falling in the forward direction from the initial shoulder
height of 1m (DeGoede and Ashton-Miller, 2003). The red line represents the torso with legs,
the blue line represents upper extremities, whereas the green circle is the head of the faller.
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Fig. 4. Time history of the angle θ2(t) (red points and red curve) obtained from the experiment and its
approximation by an analytical smooth function (green curve). In this experiment, the faller started to

fall from not a fully standing position (θ1(0) < 90◦)

The presented initial position was obtained for the following initial conditions: θ1(0) = 45◦,
θ̇1(0) = 0 and θ2(t) = 83.5◦ = const . During numerical experiments we tested different values
of the parameters ky and by to obtain GRF which corresponds (both from a qualitative and
quantitative point of view) to the GRFs presented by DeGoede and Ashton-Miller (2003). In
that paper, the authors tested five healthy young male volunteers aged between 22 and 28 years
with the average body mass of 72 ± 7 kg and the overall height of 173 ± 3 cm (DeGoede and
Ashton-Miller, 2002). Finally, the best degree of fit was obtained for ky = 50000N/m3 and
by = 0.6 s/m (the obtained results are shown in Fig. 5b).

Fig. 5. Initial configuration of the faller’s body, i.e. the fall from the shoulder height of 1m (a), and the
time history of GRF obtained numerically for the proposed forward fall model for ky = 50 000N/m3

and by = 0.6 s/m, which corresponds to the GRF obtained experimentally for a representative fall from
the shoulder height of 1m (b) (DeGoede and Ashton-Miller, 2003)

5. Numerical simulation of the forward fall model

5.1. Parameters and relationships used in simulation

Experimental observations confirmed that with an increase in the walking speed v0, the
human instinctively faster pulls his arms in the forward direction and the value of the mentioned
parameter λ also increases. This is why in all our numerical simulations we use the time histories



246 D. Grzelczyk et al.

of the angle θ2(t) governed by Eq. (4.1) with different parameters θ2max and λ, depending on
the angle φArm (the angle between the arm and the vertical axis of the Cartesian coordinate
system at the moment of the impact to the ground) and the speed v0 of the human walking just
before the trip. Table 1 presents the dependence of the angle θ2max on the angle φArm , while
Table 2 presents the dependence of parameters λ and T on the speed v0 of the faller before the
trip. The parameters of the proposed fall model (identified in Section 4) allow one to conduct
broader analysis for different parameters and different fall scenarios.

Table 1. Values of the angle θ2max corresponding to different values of the angle φArm

φArm [◦] 0 5 10 15 20 25 30
θ2max [◦] 67.75 72.85 78.11 83.55 89.16 94.93 100.86

Table 2. Values of parameters T and λ corresponding to different values of walking speed v0

v0 [m/s] 0.5 1.0 1.5 2.0 2.5 3.0
T [s] 1.0 0.7 0.58 0.5 0.4 0.35
λ [1/s] 1.58 2.23 2.70 3.15 3.92 4.50

5.2. Time histories of ground reaction forces

Figure 6 shows the time history of GRF obtained for a fall from the full standing position
(θ1(0) = 90◦), v0 = 1.5m/s and φArm = 15◦, which corresponds to the most common falls met
in real situations. In this case, the maximum value of GRF reaches 2400N, which corresponds
to the distal radius fracture threshold (Kim and Ashton-Miller, 2009). Thus, we demonstrated
that the taken typical and the most common falling conditions are enough to cause compressive
fracture of the distal radius. The investigated falling process has been also observed by using
the animation created in Mathematica (see Fig. 7).

Fig. 6. Time histories of GRF from the standing position and v0 = 1.5m/s

Fig. 7. Animation snapshots of the faller’s body plotted in regular time intervals in different phases of
the fall from the full standing position and walking speed v0 = 1.5m/s (obtained in

Mathematica software)
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Figure 8 illustrates times histories of the force Fy(t) acting on a single hand for v0 = 1.5m/s
and for different values of the angle φArm . For all three presented cases, the plotted time histories
of GRF are similar. However, it can be noticed that the maximum value of GRF increased from
2374N for φArm = 0 to 2486N for φArm = 30◦.

Fig. 8. GRFs for v0 = 1.5m/s and different values of angle φArm : (a) time histories Fy(t),
(b) maximum values Fy max

The results in Fig. 9 show the influence of different values of the velocity v0 on time histories
of the force Fy(t). For larger values of the parameter v0, the duration of the fall is smaller while
the maximum value of GRF is greater. The value of GRF increases from 2246N for v0 = 0.5m/s
to 2534N for v0 = 2.0m/s. It means that for a smaller speed v0 (i.e. v0 < 1.5m/s), the GRF is
less than the distal radius fracture threshold, whereas for larger values of v0 (i.e. v0 > 1.5m/s),
this threshold is exceeded.

Fig. 9. GRFs for φArm = 15◦ and different values of the velocity v0: (a) time histories Fy(t),
(b) maximum values Fy max

Figure 10 presents maximum values of GRF as a function of the velocity v0 for different
values of the angle φArm . The maximum value of GRF increases with the increasing speed v0
as well as the angle φArm . For the lowest presented value of v0 equal to 0.5m/s, the maximum
value of GRF increases from 2217N for φArm = 0 to 2335N for φArm = 30◦. For the largest
value of v0 equal to 3.0m/s, the maximum value of GRF increases from 2898N for φArm = 0
to 3000N for φArm = 30◦. If one considers the case φArm = 0, the maximum value of GRF
increases from 2217N for v0 = 0.5m/s to 2898N for v0 = 3.0m/s. In the case of φArm = 30◦,
the maximum value of GRF increases from 2335N for v0 = 0.5m/s to 3000N for v0 = 3.0m/s.
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For small values of v0 (v0 ¬ 1m/s), the maximum value of GRF is less than the distal radius
fracture threshold, regardless of the angle φArm . In the case of v0 = 1.5m/s, the maximum value
of GRF is less than the mentioned fracture threshold when 0 ¬ φArm ¬ 10◦, whereas GRF
exceeds this threshold for φArm > 15◦. For v0  2.0m/s, the maximum of GRF exceeds the
distal radius fracture threshold regardless of the angle φArm . Concluding, for a small walking
speed before the falling process, the value of the angle φArm does not have a great influence.
At a higher speed of human gait, the distal radius fracture threshold is usually exceeded, finally
leading to injuries and/or fractures of the upper extremities. In the case of v0 = 1.5m/s, the
correct configuration of the human body (the correct value of the angle φArm ) at the moment of
the impact to the ground can reduce the maximum value of GRF and, as a result, can protect
the faller from potential injuries or fractures of the upper extremity bones.

Fig. 10. Maximum values Fy max of GRF as a function of the velocity v0 for different values of
the angle φArm

6. Finite element analysis of the radial bone

6.1. Geometry and material properties of the radial bone model

The DICOM data used in this paper come from cadavers of 35-years-old man with a height of
1.73m and weight of 75 kg. These data have been obtained using a Siemens 64 Slice computed
tomography (CT) Scanner in the Department of Forensic Medicine, Jagiellonian University
Medical College, Cracow, Poland. The DICOM file of all upper extremity bones composed of
the total number of 274 slices with the slice thickness equal to 1.5mm, pixel size equal to
0.977mm and resolution 512×512 was imported to Mimics. During the next steps, the radius
was separated, the computer model of this bone was obtained, and the computational mesh of
the radius was corrected to avoid further numerical errors. As a result, the mesh of the radius
was reduced to 3444 surface elements, and the correctness of the constructed computational
mesh was verified using a Fix Wizard function. Finally, a realistic 3D FE model of the radius
consisting of 15751 FEs was obtained and used for the strength analysis in Ansys. We used the
SOLID185 FE-shaped tetrahedron element. The assumed in this paper isotropy of the material is
not ideal, but the CT data provided only scalar information, and the determination of principal
material directions had to be inferred (Neuert et al., 2013).
Material inhomogeneity of the radius was modelled in Mimics based on the CT images. First,

we tested three different density-elasticity relationships describing human long bones to obtain
the correct range of Young’s modulus of the radius based on the CT images and the Hounsfield
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Unit scale. Finally, mechanical properties of the considered radial bone were calculated based
on the density-elasticity relationships proposed by Rho et al. (1995)

ρ = 1.067HU + 131 E = 0.004ρ2.01 (6.1)

where ρ expressed in [kg/m3] represents density of the bone, HU is the nondimensional Hounsfield
Unit, E expressed in [MPa] denotes Young’s modulus, whereas ν is Poisson’s ratio. The obtained
range of Young’s modulus of the radial bone is close to the range of the appropriate values for this
bone presented in the literature. Young’s moduli of the radius vary in the range 600-12000MPa
(see Fig. 11), whereas Poisson’s ratio equals 0.3 for all FEs.

Fig. 11. Histogram and cross-sections of the radius showing quantitive distributions of FEs characterised
by different Hounsfield Units and spatial distribution of inhomogeneous material properties

6.2. Load and boundary conditions

Numerical results presented in Fig. 6 were applied as the load conditions of the developed FE
upper extremity model analysed in Ansys. These time histories of GRFs correspond to the GRF
for the standing position and the walking speed v0 = 1.5m/s. As far as the boundary conditions
applied in the analysed numerical FE model of the radius were concerned, all six spatial DoFs
in the proximal radius (region of the elbow joint) were fixed. The angle between the longitudinal
axis of the radius and axis of the gravity field was equal to φArm , while the GRF was applied
in the region of the radial neck in the vertical direction (direction of the gravity field). In all
the investigated cases, we considered the same time-varying load condition (see Fig. 6), but the
analysis was conducted for different directions of the GRF acting on the radius (i.e. for different
angles φArm).

6.3. Stress and strain analyses

To predict bone fracture sites, we decided to measure the maximum von Mises stresses as
the main criterion first. Moreover, we also measured maximal strains of the bones as another
criterion leading to the additional information useful for a better understanding of the upper
extremity behaviour under the applied load conditions, i.e. the assessment of the radius fracture
site and failure load. The determination of the moment of time when the maximum stresses and
strains were the highest enabled finding the fracture site and to investigate the state of the rest
of the bones. The mentioned results are presented in Figs. 12 and 13 in the form of von Mises
stress and strain distributions.
Values of both the maximal von Mises stress and bone strains significantly depend on the

value of the angle φArm . Namely, with an- increase in the angle φArm , von Mises stresses and
strains also increase. It should be noted that in the case of axial compression of the bone
(φArm = 0), there are no bending torques and the bone itself is more resistant in such a configu-
ration in comparison to the nonaxial compression. In the case of nonaxial GRF, bending torques
are significant and, therefore, there are considerable values of both stresses and strains. For all
the considered cases, the maximum values of stress and strain occur for φArm = 30◦.
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Fig. 12. Stress distributions in the radius for different angles φArm

Fig. 13. Strain distributions in the radius for different angles φArm

The results presented in Figs. 12 and 13 show also other regularity. Namely, the maximum
stresses occur on the medial side (diaphysis) of the radius bone while the maximum strains occur
in the distal region of this bone. As it is known, Colles’ fracture is the most common type of
injury related to the forward fall on the outstretched upper extremities. Therefore, the presented
results indicate that the strain criterion can be more useful for estimating the radius fracture
site (the maximum strains are concentrated in the distal radius, see Fig. 13).

Table 3. Maximum von Mises stress and maximum strains for three different angles φArm

Radius Time [s]

φArm = 0
von Mises stress [MPa] 65.54 0.122

Strain [–] 0.0154 0.126

φArm = 15◦
von Mises stress [MPa] 78.88 0.132

Strain [–] 0.0186 0.132

φArm = 30◦
von Mises stress [MPa] 148.58 0.124

Strain [–] 0.0363 0.124

In contrast to previous numerous papers dealing usually with resting conditions in our studies
we carried out also a transient state analysis in Ansys. Values of maximum stresses and strains
of the radius bone for different angles φArm are presented in Table 3. The maximum values of
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the von Mises stress and strains do not occur at the moment of the maximum peak of GRF but
later, i.e. at the time about 0.12-0.13 s.

7. Conclusions

The forward fall model proposed in this paper enables one to estimate the vertical ground reac-
tion forces acting on the hands in various scenarios of the human falling process. The obtained
numerical simulations fit with other results presented in the literature (Kim and Ashton-Miller,
2009), both from a qualitative and quantitative point of view. Moreover, the simulations show
that the parameters describing the human body and parameters modelling biomechanical pro-
perties between the palmar cartilages and the ground have an essential influence on the obtained
results.
It should be emphasized that the developed model has some limitations. First of all, the

movement of the shoulder grid with respect of the torso and stiffness/damping properties of the
shoulder joint have not been implemented in our model. Moreover, the horizontal component
of the ground reaction force has not been considered. Nevertheless, the mentioned limitations
may be of interest for our future study. On the other hand, our further modifications and
improvements of the proposed model can be oriented on the increase of the number of DoFs of
the mechanical model describing the human body as well as taking into consideration the rotary
stiffness and damping properties in each of the human joints.
The choice of a linear material law is justified by small displacements of the radius bone

observed during compressive tests presented in the literature (Bosisio et al., 2007). Although
all bones have been modelled as a linear elastic isotropic material, in our opinion, the applied
simplification should not significantly affect the ability of the proposed model to predict fracture
sites and failure load of the radius bone under loads resulting from a forward fall. The variability
of Poisson’s ratio has not been evaluated in our investigations.
The performed numerical investigations with the time history of the GRF that occur during

the falling process in the forward direction on the outstretched arms are sufficient to determi-
ne potential fracture sites and the obtained results agree with numerical/experimental results
presented in the literature (Edwards and Troy, 2012). In addition, the obtained results indicate
that the angle φArm and, consequently, the direction of load applied to the radius have a strong
impact on the fracture strength of this bone. It means that falls from a standing position on the
outstretched arms generate the value of GRF which can exceed the mean human distal radius
fracture threshold. Moreover, we have also shown that the maximal strain criterion seems to be
more useful for the estimation of the fracture site than the appropriate von Mises stress crite-
rion. Although we obtained various numerical results, unfortunately we were unable to compare
these results with own experimental studies from a quantitative point of view. However, the
obtained numerical results show that our model provides a realistic estimation of radius bone
strain, fracture strength and fracture side estimation under various loading scenarios simulating
a forward fall.
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In this paper, the Hamiltonian approach is extended for solving vibrations of nonlinear
conservative oscillators with general initial conditions. Based on the assumption that the
derivative of Hamiltonian is zero, the frequency as a function of the amplitude of vibration
and initial velocity is determined. A method for error estimation is developed and the accu-
racy of the approximate solution is treated. The procedure is based on the ratio between the
average residual function and the total energy of the system. Two computational algorithms
are described for determining the frequency and the average relative error. The extended
Hamiltonian approach presented in this paper is applied for two types of examples: Duffing
equation and a pure nonlinear conservative oscillator.

Keywords: nonlinear dynamics, Hamiltonian approach, error estimation

1. Introduction

In 2010, the method denominated “Hamiltonian approach” was introduced by He (2010) for
solving strong nonlinear oscillatory systems. Since that time, a significant number of papers,
where the suggested method is extended and applied, have been published. In the papers of
Akbarzade and Kargar (2011a) and Akbarzade and Kargar (2011), the Hamiltonian method is
applied for obtaining accurate analytical solutions to nonlinear oscillators. Using this method, He
et al. (2010) and Bayat et al. (2014) obtained the solution for the Duffing-harmonic equation,
and Cveticanin et al. (2010a, 2012) derived solutions for the generalized nonlinear oscillator
with a fractional power. Belendez et al. (2011) pointed out that if a first-order trigonometric
approximation function was used then there was an equivalence between the Hamiltonian ap-
proach and the first-order harmonic balance method. Yildirim et al. (2011b) and Belendez et
al. (2011) specified the method for oscillators with rational and irrational elastic terms. Xu
and He (2010) used the Hamiltonian approach to determine the limit cycle motion for stron-
gly nonlinear oscillators. The method was applied for solving some practical problems, such as
nonlinear oscillations of a punctual charge in the electric field of a charged ring (Yildirim et
al., 2011a), nonlinear vibrations of micro electro mechanical systems (Sadeghzadeh and Kabiri,
2016), nonlinear oscillations in an engineering structure (Akbarzade and Khan, 2012), among
others. The Hamiltonian approach has also been applied to improve the accuracy of the solution
for nonlinear oscillators, such as higher order approximations (Durmaz et al., 2010; Yildirim et
al., 2011c), multiple coupled nonlinear oscillators (Durmaz et al., 2012) and multiple-parameter
ones (Khan et al., 2011), among others.
In this study, the accuracy of the Hamiltonian approach is presented by comparing an ana-

lytically obtained solution with the numerical solution. Navarro and Cveticanin (2016) used the
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method in oscillators with integer or non-integer terms. The authors proposed an error estima-
tion method based on the ratio between the square root of the averaged residual function and
the initial constant of energy.
The aim of this paper is to extend the Hamiltonian approach for solving a conservative

nonlinear oscillator

ẍ+ f(x) = 0 (1.1)

with the generalized initial conditions

x(0) = A ẋ(0) = v (1.2)

where f(x) is a conservative force. The authors also propose an error procedure to measure
the quantitative difference between approximate and numerical solutions. In the present work,
the error treatment described by Navarro and Cveticanin (2016) is extended for general initial
conditions.
This paper is divided in five Sections. After the Introduction, an extended Hamiltonian

approach is considered, in Section 2. In that Section, Algorithm 1, called FREQUENCY, is
developed. In Section 3, a method for error estimation is introduced. The error is estimated as
the integral of the square of the residual function over the period of vibration. Special attention is
given to the computation of relative errors. The error calculation is performed using Algorithm 2,
called DELTA. In Section 4, a comparison between approximate and numerical solutions is
shown. The suggested method of the Hamiltonian approach and error estimation are applied
for a Duffing equation and for a pure nonlinear conservative oscillator with various orders of
nonlinearity. Finally, conclusions of the numerical experiments are presented.

2. The approximate solution

Equation (1.1) describes a conservative oscillator with kinetic energy

K =
ẋ2

2
(2.1)

and potential energy, F (x), is given by

dF (x)
dx

= f(x) (2.2)

The total mechanical energy of the oscillator corresponds to its Hamiltonian

H =
1
2
ẋ2 + F (x) (2.3)

For the conservative oscillator, the total mechanical energy keeps unchanged during motion and,
consequently, the Hamiltonian of the system is constant, i.e., H = H0 = const , and due to initial
conditions (1.2)

H0 =
1
2
v2 + F (A) (2.4)

For nonlinear oscillators, it is generally impossible to obtain a closed form analytical solution
to (2.3). Consequently, to obtain an approximate solution, we assumed a trigonometric trial
solution in the form

x(t) = C cos(ωt− φ) (2.5)
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where ω is the unknown frequency of vibration, C is the amplitude of the oscillator, and φ is
the phase of the oscillator. Using Eq. (2.5) and initial conditions (1.2), we find the maximum
value of x(t) and the phase given, respectively, by

C =

√

A2 +
( v
ω

)2
(2.6)

and

φ = tan−1
( v

ωA

)
(2.7)

Substituting (2.5) into (2.3), we have

H̃ =
1
2
C2ω2 sin2(ωt− φ) + F (C cos(ωt− φ)) (2.8)

Usually, the frequency ω is determined from the derivative of Eq. (2.8)

∂H̃

∂C
= 0 (2.9)

Unfortunately, the obtained result is far from being accurate. To overcome this problem, He
(2010) developed the so called Hamiltonian approach. He introduced a new function, H that
has a similar form of

H =

t1+T∫

t1

H̃ dt (2.10)

where T is the period of vibration and t1 is an arbitrary initial integration time. After integration,
it is H = H̃T , i.e.

H̃ =
∂H

∂T
(2.11)

According to (2.9) and T = 2π/ω, it is

∂

∂C

(∂H
∂T

)
=

∂

∂C

( ∂H

∂ω−1

)
=

∂

∂C

(∂H
∂ω

)
= 0 (2.12)

Solving algebraic equation (2.12), the approximate frequency of the conservative nonlinear oscil-
lator is obtained in function of the amplitude C (see He, 2010). In most cases, by using relations
(2.6) and (2.7), we can expressed an explicit relationship for approximate frequency in function
of A, v, and other parameters of the system. Thus, for

H(x, ẋ) =

t1+T∫

t1

(1
2
ẋ2 + F (x)

)
dt (2.13)

and trial function (2.5), we can express H as

H(C,ω) =

t1+T∫

t1

[1
2
C2ω2 sin2(ωt− φ) + F (C cos(ωt− φ))

]
dt (2.14)
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Substituting in Eq. (2.14) the variable ψ = ωt and the period of vibration T = 2π/ω, and
defining ψ∗ = t1/T , we have

H(C,ω) =

2π(1+ψ∗)∫

2πψ∗

[1
2
C2ω sin2(ψ − φ) + ω−1F (C cos(ψ − φ))

]
dψ (2.15)

where ψ∗ is an arbitrary value that can be defined as ψ∗ = n/m, with n ∈ N and m ∈ N
∗, to

avoid numerical errors. The trivial choice for ψ∗ is ψ∗ = 0 (t1 = 0) so that Eq. (2.15) becomes

H(C,ω) =
2π∫

0

[1
2
C2ω sin2(ψ − φ) + ω−1F (C cos(ψ − φ))

]
dψ (2.16)

Equations (2.12) and (2.16) can be used to determine a relationship for approximate frequency
in function of C.
We can see that Eq. (2.5) reaches its maximum value when ωt − φ = 2πn, where

n = 0,±1,±2, . . .. The maximum value for n = 0 occurs when t = φ/ω. Adopting the ini-
tial time t1 = φ/ω and substituting the variable τ = t− t1 into Eq. (2.14), we obtain

H(C,ω) =
T∫

0

[1
2
C2ω2 sin2(ωτ) + F (C cos(ωτ))

]
dτ (2.17)

As before, substituting into Eq. (2.17) the variables ψ = ωτ and T = 2π/ω, we have

H(C,ω) =
2π∫

0

[1
2
C2ω sin2(ψ) + ω−1F (C cos(ψ))

]
dψ (2.18)

We can note that Eq. (2.18) is the common expression used for determining the frequency-
-amplitude relationship with particular initial conditions x(0) = A, ẋ(0) = 0 in works developed
by several authors (e.g., Akbarzade and Kargar, 2011a,b; He, 2010; Akbarzade and Khan, 2012;
Askari, 2013; Belendez et al., 2011; Bayat et al., 2014; Cveticanin et al., 2010a, 2012; Durmaz et
al., 2010, 2012; He et al., 2010; Khan et al., 2011; Navarro and Cveticanin, 2016; Sadeghzadeh
and Kabiri, 2016; Xu and He, 2010; Yildirim et al., 2011a,b,c, 2012), i.e, when C = A and φ = 0.
Comparing Eq. (2.16) with Eq. (2.18), it is observed that both can be used with Eq. (2.12) to
determine a relationship for the approximate frequency in function of C and of other parameters
of the system. Therefore, it is recommended to use Eq. (2.18) because of the following reasons:
(a) it is simpler; (b) it is easy to determine the variation of the signal of the function potential F
with the angle ψ, i.e., depending on the signal of F , the limits of integration can vary, for
example, from 0 to π or 0 to π/2.
In some cases, an explicit relationship for the approximate frequency (that is a function of

the initial amplitude A, the initial velocity v and parameters of the system) can be derived by
Eq. (2.18) (frequency in function of C and parameters of the system) and Eq. (2.6). When it
is not possible to derive an explicit relation, the values of the frequency, for specific values of
A and v, can be obtained numerically by Algorithm 1, where cs are generic parameters of the
system. After computation of the variables ω and C by Algorithm 1, the phase φ is determined
by Eq. (2.7).
The approximate solution, Eq. (2.5), can also be represented by

x(t) = C sin(ωt+ φ1) (2.19)

where the phase is given by φ1 = π/2− φ, i.e,

φ1 = tan−1
(ωA
v

)
(2.20)
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Algorithm 1 Frequency
1: procedure Frequency(A, v, cs)
2: C2 ←

√
A2 + v2

3: repeat
4: ω1 ← ω(C2, cs) ⊲ Using Eqs. (2.12) and (2.18)
5: C1 ←

√
A2 + ( vω1 )

2 ⊲ Using Eq. (2.6)

6: ω2 ← ω(C1, cs) ⊲ Using Eqs. (2.12) and (2.18)
7: C2 ←

√
A2 + ( vω2 )

2 ⊲ Using Eq. (2.6)

8: until |ω2−ω1ω2
| < Tolerance

9: return ω2, C2

3. Error estimation

The Hamiltonian calculated for approximate solution (2.5) differs from the total mechanical
energy H0. The difference between H̃ and H0 gives us the instantaneous residual

R(t) = H̃ −H0 =
1
2
C2ω2 sin2(ωt− φ) + F (C cos(ωt− φ))−

(1
2
v̇2 + F (A)

)
(3.1)

As the residual varies in time, to determine the average value, the error is estimated as the inte-
gral of the square of the residual function over the period of vibration. The following functional
is introduced for error estimation

∆2 =
1
T

t1+T∫

t1

R(t)2 dt =
1
T

t1+T∫

t1

(H̃ −H0)2 dt (3.2)

Substituting (3.1) into (3.2), we have

∆2 =
1
T

t1+T∫

t1

[1
2
C2ω2 sin2(ωt− φ) + F (C cos(ωt− φ))−

(1
2
v̇2 + F (A)

)]2
dt (3.3)

using t1 = φ/ω and τ = t− t1

∆2 =
1
T

T∫

0

[1
2
C2ω2 sin2(ωτ) + F (C cos(ωτ))−

(1
2
v̇2 + F (A)

)]2
dτ (3.4)

and for ψ = ωτ , T = 2π/ω, and Eq.(2.6)

∆2 =
1
2π

2π∫

0

[1
2
(A2ω2 + v2) sin2(ψ) + F

( 1
ω

√
A2ω2 + v2 cos(ψ)

)
−
(1
2
v̇2 + F (A)

)]2
dψ (3.5)

The obtained solution is a function of the initial amplitude, initial velocity and coefficients
of the system: ∆2 = ∆2(A, v, ck). The relative error is calculated as the ratio between the square
root of the average residual function and the initial constant energy function H0

∆ =
√
∆2
H0

(3.6)

The relative error is suitable to be presented in the percent form: ∆% = (
√
∆2/H0)100%.

When the explicit relation for the frequency is not available, the average relative error ∆ can
be determined numerically by Algorithm 2, where cs are generic parameters of the system.
Algorithm 2, DELTA, calls Algorithm 1 and uses the integral given by Eq. (3.4).
Next, we apply the procedure proposed in Sections 2 and 3 in two examples: Duffing equation

and a pure nonlinear conservative oscillator.
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Algorithm 2 Delta
1: procedure Delta(A, v, cs)
2: ω = f(A, v, cs) ⊲ Analytically or using Algorithm 1
3: Compute C ⊲ Eq. (2.6)
4: Create vector: τi ← 0 : ∆τ : T
5: yi ← C cos(ωτi)
6: ẏi ← Cω sin(ωτi)
7: Compute H0 ⊲ Eq. (2.4)
8: H̃i ← 1

2 ẏ
2
i + F (yi) ⊲ F is obtained using Eq. (2.2)

9: Ri ← H̃i −H0
10: ∆2 ← 1

n

∑n
i=1Ri

2 ⊲ Eq. (3.4)

11: ∆←
√
∆2
H0

12: return ∆

4. Comparison between approximate and numerical solutions

Consider an oscillator represent by the Duffing equation

ẍ+ c21x+ c
2
2x
3 = 0 (4.1)

with initial conditions (1.2). The origin of the name of this equation is shown by Cveticanin
(2013). Translation of sections from Duffing’s original book Duffing (1918) is found in the work
of Kovacic and Brennan (2011). Considering Eq. (4.1), the potential energy is written as

F (x) =
1
2
c21x
2 +
1
4
c22x
4 (4.2)

and the Hamiltonian of the oscillator is expressed by

H =
1
2
ẋ2 +

1
2
c21x
2 +
1
4
c22x
4 (4.3)

For an approximate solution (2.5), function (2.18) becomes

H(C,ω) = 4

π/2∫

0

[1
2
C2ω sin2(ψ) + ω−1

(1
2
c21C

2 cos2(ψ) +
1
4
c22C

4 cos4(ψ)
)]
dψ

=
C2π(8c21 + 3C

2c22 + 8ω
2)

16ω

(4.4)

setting Eq. (2.12)

∂

∂C

(∂H
∂ω

)
= 2πC − 3πc

2
2C
3

8ω2
− πC(8c21 + 3c

2
2C
2 + 8ω2)

8ω2
= 0 (4.5)

we obtain an approximate frequency relationship with the maximum amplitude

ω =

√
c21 +
3
4
c22C

2 (4.6)

In this case, we can write an explicit relationship for the approximate frequency in function of
the initial amplitude A, initial velocity v, and parameters c1 and c2. Thus, using Eqs. (2.6) and
(4.6), the approximate frequency is given by

ω =

√√√√c21
2
+
3
8
c22A
2 +

√
(c21
2
+
3
8
c22A
2
)2
+
3
4
c22v
2 (4.7)
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and according Eq. (2.7), the phase is

φ = tan−1
(

v

A

√
c21
2 +

3
8c
2
2A
2 +

√(
c21
2 +

3
8c
2
2A
2
)2
+ 34c

2
2v
2

)
(4.8)

If v = 0, the approximate frequency and phase become, respectively,

ω =

√
c21 +
3
4
c22A
2 φ = 0 (4.9)

and for A = 0

ω =

√
2
2

√
c21 +

√
c41 + 3c

2
2v
2 φ =

π

2
(4.10)

The approximate period is computed by

T =
2π
ω
=

2π√
c21
2 +

3
8c
2
2A
2 +

√(
c21
2 +

3
8c
2
2A
2
)2
+ 34c

2
2v
2

(4.11)

Now, we compare approximate period (4.11) with the numerically obtained one. The ‘exact’
numerical period of vibration Tn is calculated using the numerical solution of Eq. (4.1) with
initial conditions (1.2) by the Runge-Kutta method. The vibration period Tn is computed for
the time in the interval 0 ¬ t ¬ T with a time-step of ∆t, where T is the approximate period,
see Eq. (4.11). The relative error in percentage is given by

∆T =
∣∣∣
Tn − T
Tn

∣∣∣ · 100% (4.12)

Figure 1 illustrates the variation of the relative error in percentage versus the initial am-
plitude A for three values of the initial velocity, i.e., v = 0 (solid line), v = 10 (dashed line)
and v = 100 (dotted line). In Fig. 1, the parameters of the system are c21 = c22 = 1 and the
amplitude A varies in the interval 0 ¬ A ¬ 50 with an increment ∆A = 0.5. The time-step is
∆t = 10−5T . We can note that for v = 0 the relative error has a monotonic growth, while for
v = 10 and v = 100 the relative error starts with a higher value and then oscillates converging
to A = 50.
Table 1 shows the relative errors in percentage, Eq. (4.12), for the parameters c21 = c22 = 1

and for several values of initial conditions, amplitude A and velocity v. In Table 1 the time-
step used is ∆t = 10−7T . The numbers in Table 1 are rounded to three decimal places. The
same behavior obtained in Figure 1 is shown in Table 1. We can also see a monotonic growth
for v = 0. For values of v > 0, the relative error starts in higher values for A = 0 and then,
increasing A, the relative error decreases up to a minimum value. After that, the relative error
starts to increase converging to 2.172% when A→∞. We can also observe that for high values
of v and A = 0, the error is larger and this error converges to 8.264% (A = 0, v →∞).
Now, an estimative for the average error between the approximate and exact solutions is

computed. For the initial conditions x(0) = A and ẋ(0) = v, the Hamiltonian of the system is

H0 =
1
2
v2 +

1
2
c21A
2 +
1
4
c22A
4 (4.13)
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Fig. 1. Relative errors ∆T , Eq. (4.12), versus the amplitude A for v = 0 (solid line),
v = 10 (dashed line) and v = 100 (dotted line)

Table 1. Relative errors ∆T , Eq. (4.12), for c21 = c
2
2 = 1 and various initial conditions A, v

❍
❍
❍
❍
❍❍

v
A

0 1 5 10 50 100 500 1000

0 — 0.385 1.949 2.113 2.170 2.172 2.172 2.172
1 1.354 1.010 1.972 2.115 2.170 2.172 2.172 2.172
5 5.861 2.807 2.431 2.152 2.170 2.172 2.172 2.172
10 6.977 5.070 3.179 2.263 2.170 2.172 2.172 2.172
50 7.993 7.542 0.106 3.615 2.176 2.172 2.172 2.172
100 8.127 7.898 3.294 2.873 2.196 2.173 2.172 2.172
500 8.237 8.190 7.108 4.180 2.707 2.212 2.172 2.172
1000 8.250 8.227 7.675 6.067 3.494 2.327 2.172 2.172

Substituting approximate solution (2.5) into (4.3) and using relations (3.2), (4.13), the error
function, according to (3.5), is

∆2 =
2
π

π/2∫

0

[1
2
C2ω2 sin2(ψ) +

1
2
c21C

2 cos2(ψ) +
1
4
c22C

4 cos4(ψ)

−
(1
2
v2 +

1
2
c21A
2 +
1
4
c22A
4
)]2

dψ

(4.14)

Using Eqs. (2.6) and (4.7) and after some calculation, ∆2 is written as

∆2 =
A4c41
6
+
23c81
1296c42

+
A2c61
12c22

+
1
8
A6c21c

2
2 +
135A8c42
4096

+
85
576

A2c21v
2 +
23c41v

2

432c22

+
107
768

A4c22v
2 +
23v4

1152
− 263A

4c21R

9216
− 23c

6
1R

5184c42
− 121A

2c41R

6912c22
− 121A

6c22R

12288

− 49A
2v2R

4608
− 23c

2
1v
2R

3456c22

(4.15)

where

R =
√
16c41 + 24A2c

2
1c
2
2 + 9A4c

4
2 + 48c

2
2v
2 (4.16)
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and according to Eqs. (3.6) and (4.13), the error ∆ is given by

∆ =
√
∆2

1
2v
2 + 12c

2
1A
2 + 14c

2
2A
4

(4.17)

As before, Fig. 2 illustrates the relative errors ∆, Eq. (4.17) versus the initial amplitude
0 ¬ A ¬ 50 (∆A = 0.1) for three values of the initial velocity, i.e., v = 0 (solid line), v = 10
(dashed line) and v = 100 (dotted line), with c21 = c

2
2 = 1. The same pattern shown in Fig. 1 is

also obtained for the average relative error ∆.

Fig. 2. Relative errors ∆, Eq. (4.17), versus the amplitude A, for v = 0 (solid line), v = 10 (dashed line)
and v = 100 (dotted line)

4.1. Pure nonlinear conservative oscillator

Considering the following equation for a pure nonlinear conservative oscillator

ẍ+ c21x|x|α−1 = 0 (4.18)

where α is the order of nonlinearity, integer or non-integer. There are several studies of oscillators
where the nonlinearity has an order which is any rational number (integer or non-integer) (see,
for example, Cveticanin et al., 2010a,b, 2012; Herişanu and Marinca, 2010; Kovacic et al., 2010;
Cveticanin, 2014; Cveticanin and Pogany, 2012). According to (2.5), the approximate solution
is

x(t) = C cos(ωt− φ) (4.19)

and using Eqs. (2.12) and (2.18), the frequency is

ω2 = c21|C|α−1Kα (4.20)

with

Kα =
2
π
B
(1
2
,
α+ 2
2

)
(4.21)

where B is the Euler beta function. If v = 0, the approximate frequency and phase become,
respectively,

ω =
√
c21|A|α−1Kα φ = 0 (4.22)
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for A = 0

ω =
(
c21|v|α−1Kα

) 1
α+1 φ =

π

2
(4.23)

and for general values of A and v, the frequency is calculated using Eq. (4.20) and Algorithm 1.
Then, the amplitude C and phase φ are determined by Eqs. (2.6) and (2.7), respectively. The
approximate period is given by T = 2π/ω, where the frequency is determined by Algorithm 1.
The approximate period T is compared with Tn obtained numerically solving Eq. (4.18) with
initial conditions (1.2) by the Runge-Kutta method in the time interval 0 ¬ t ¬ T with a
time-step ∆t = 10−7T . The relative error ∆T is computed by Eq.(4.12). The average relative
error ∆ is calculated by Algorithm 2. In Table 2, the value of relative errors ∆T and ∆ for
various values of α and for c21 = 1 are shown. When the initial velocity is zero, the errors ∆T

and ∆ are independent of the initial amplitude A and of the constant c21. Table 2 shows that
for α < 1 the error decreases with an increase in α, and for α > 1 occurs the reverse, i.e., the
error increases with α. For the linear case, α = 1, the approximate solution corresponds to the
exact solution, x(t) = C cos(|c1|t− φ) and, apart from this value (α = 0 or α = 3), the relative
errors increase due to nonlinear effects. Navarro and Cveticanin (2016) studied the solutions
when v = 0 and showed that for high values of α the relative errors diverge. We can also note
that ∆T (A, 0) = ∆T (A → ∞, v) and ∆(A, 0) = ∆(A → ∞, v) for a specific value of α. These
equalities can be observed in Table 2 for v = 10.

Table 2. Values of relative errors ∆T (A, v) and ∆(A, v) for various values of the power α

α 0 1/2 1 3/2 2 5/2 3

∆T (A, 0) 1.5649 0.3103 0 0.2117 0.7203 1.3987 2.1723
∆(A, 0) 0.11096 0.05957 0 0.06079 0.12047 0.17823 0.23385
∆T (0, 10) 23.370 2.7389 0 1.1411 3.3583 5.8275 8.2642
∆(0, 10) 0.52475 0.17855 0 0.11022 0.18556 0.24056 0.28260
∆T (1, 10) 22.164 2.5547 0 0.9867 2.7627 4.5399 6.0783
∆(1, 10) 0.49605 0.16669 0 0.09817 0.16116 0.20409 0.2379
∆T (5, 10) 17.866 1.3809 0 0.1548 1.1174 2.4310 3.4975
∆(5, 10) 0.39674 0.09721 0 0.05788 0.13734 0.21773 0.28097
∆T (10, 10) 13.516 0.3133 0 0.3714 1.0361 1.6631 2.3273
∆(10, 10) 0.30175 0.05655 0 0.07108 0.13361 0.18736 0.23881
∆T (20, 10) 7.4054 0.4490 0 0.2667 0.7731 1.4251 2.1824
∆(20, 10) 0.18253 0.06318 0 0.06402 0.12251 0.17910 0.23417
∆T (50, 10) 0.1732 0.5300 0 0.2181 0.7238 1.3998 2.1725
∆(50, 10) 0.10583 0.06565 0 0.06115 0.12060 0.17826 0.23386
∆T (A→∞, 10) 1.5649 0.3103 0 0.2117 0.7203 1.3987 2.1723
∆(A→∞, 10) 0.11096 0.05957 0 0.06079 0.12047 0.17823 0.23385

Figures 3 and 4 show, respectively, the period relative errors ∆T and the average relative
errors ∆ (Algorithm 2) versus the initial amplitude 0 ¬ A ¬ 50 (∆A = 0.1) for the initial
velocity v = 10, parameter c21 = 1, and three values of the power, i.e., α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line). We can see that in both figures the errors start
in a higher value and then oscillate converging when A = 50. The minimum values of the relative
errors occur for lower values of A with the increase of the power α.
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Fig. 3. Relative errors ∆T , Eq. (4.12) versus the amplitude A for v = 10, and α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line)

Fig. 4. Relative errors ∆ (Algorithm 2) versus the amplitude A for v = 10, and α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line)

5. Conclusions

The Hamiltonian approach is extended for nonlinear conservative oscillators with general initial
conditions. A method is proposed for obtaining a relationship for the frequency as a function
of the initial amplitude, initial velocity and parameters of the system. An error estimation
procedure is investigated. Computational algorithms are proposed as an alternative procedure
to determine the frequency, amplitude, phase and relative errors in the adopted approximate
solution. Considering the obtained results, we have concluded the following:

• In the case of oscillators governed by the Duffing equation, the relative error for the
vibration period ∆T converges to 2.172% for (A → ∞, v) and to 8.264% for (A = 0, v →
∞). The average relative error ∆ converges to 0.233854 for (A → ∞, v) and to 0.282597
for (A = 0, v →∞).

• In pure nonlinear conservative oscillators, the relative errors for the vibration period ∆T ,
and for the average solution ∆ decrease with the increasing α up to α = 1, where the
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errors are zero. Beyond this point α > 1, the relative errors start to increase. According
to Table 2, when the velocity v = 0, there is a limit or maximum values for the errors,
i.e., ∆T (A, 0) = ∆T (A→∞, v) and ∆(A, 0) = ∆(A→∞, v). The minimum values of the
relative errors occur for lower values of A with an increase in the power α.
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The results of numerical simulations presented in this paper are concerned with instability
of a three member slender system subjected to Euler load. The investigated column is built
up as a flat frame composed of three rods. In the internal one, the defect is present in form
of a crack. The boundary problem has been formulated on the basis of a static criterion of
instability. The boundary conditions associated with different types of supports are obtained
by proper selection of parameters of the generalized load. On the basis of these results, the
magnitude of bifurcation load can be determined.

Keywords: column, divergence, conservative load, crack

1. Introduction

Numerical investigations on slender complex systems composed of beam elements with different
rigidities have been presented in the papers (Godley and Chilver, 1970; Lueschen et al., 1996;
Tomski and Uzny, 2008, Tomski et al.; 2014; Uzny, 2011a,b). In those papers, different types
of conservative and non conservative loads have been considered. The most common type of a
conservative load is the Euler load. The loading force has a constant line of action regardless
of the deflection of the system. All known types of conservative loads can be expressed by
means of the generalized load (Bochenek and Życzkowski, 2004; Gajewski and Życzkowski,
1970). It is induced by simultaneous actions of longitudinal and transversal forces and bending
moments. The generalized load is a theoretical loading, because authors of the papers in which
it is used do not present the design of loading heads. When the system is composed of elements
with different bending and compression rigidities, the rectilinear and curvilinear forms of static
equilibrium are present (Tomski and Uzny, 2008). The compressed system keeps the rectilinear
form of static equilibrium up to the bifurcation load magnitude. An increase of the external
load causes a change of the equilibrium form from the rectilinear into a curvilinear one. The
maximum magnitude of the compressive force is called the critical one. If the constant total
bending stiffness of the investigated system is used the change in relation of the bending stiffness
between rods, it has no influence on critical load magnitude (Tomski et al., 2007). Only the
change of bifurcation load can be observed because of asymmetry of the bending stiffness of
the rods. The magnitude of the bifurcation load can be controlled by means of the following
parameters: prestressing, additional elements responsible for transversal displacements, loading
heads configuration – Tomski load (Tomski and Uzny, 2008; Uzny, 2011a). The change of the
bifurcation load magnitude in relation to the rigidity of the system elements has influence on the
occurrence of the local instability phenomenon (Tomski and Uzny, 2008; Uzny, 2011a,b). The rod
with the lower rigidity is responsible for local instability (it deflects from the rectilinear form of
static equilibrium and causes deflection of the whole system). In some cases, the rage of external
load which corresponds to the curvilinear form of static equilibrium (from the bifurcation load
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magnitude up to the critical one) can be greater than the range of external load in the rectilinear
form. The phenomenon of local instability of the discussed systems has a completely different
nature than in thin walled structures.

In this paper, the instability of a complex system with consideration of the crack presence
in the rod with the lowest rigidity is presented. Cracks in beam elements or columns have been
investigated by many scientists (Anifantis and Dimarogonas, 1983; Chati et al., 1997; Kim and
Kim, 2000; Krawczuk, 1992; Kukla, 2009; Masoud et al., 1999; Ostachowicz and Krawczuk, 1991;
Sokół, 2014). In the literature, different methods of crack modeling can be found. The crack can
be modeled as a rotational spring with properly chosen stiffness (Anifantis and Dimarogonas,
1983; Chati et al., 1997; Hjelmstad and Shin, 1996; Kim and Kim, 2000; Krawczuk, 1992; Ma-
soud et al., 1999; Narkis, 1994; Ostachowicz and Krawczuk, 1991; Rizos et al., 1990; Shen and
Taylor, 1991). In such a case, the system is composed of two beams or rods connected by a
rotational spring in the point of crack location. The stiffness of the spring depends on relation
of the crack depth to transverse dimensions and is being calculated with consideration of the
fracture mechanics principles (Ostachowicz and Krawczuk, 199). Identification of characteristic
parameters of cracks can be done on the basis of the vibration frequency, shape modes (Tomski
et al., 2014) and the amplitude of vibration (Rizos et al., 1990).

A different method of crack modeling is presented in Chandros et al. (1998) according to
which Crack Disturbance Functions are used. This method is more advanced because stress,
strain and displacement are modified in the whole area of the damaged element (not only locally
in the point of crack presence). The mentioned crack model is more accurate but at the same
time more complex and time consuming. However, when the crack is being modelled by means
of a rotational spring, good accuracy of the simulation and experimental results can be found
(Chandros et al., 1998). On the basis of the analysis of the natural vibration frequency curves
presented in (Chandros et al., 1998), it can be concluded that the difference between the two
models (continuous cracked beam model and lumped crack flexibility model) is getting greater
with an increase of the crack size. When small cracks are considered (crack smaller than half
of the cross section), those differences are insignificant. Taking into account a comparison of
experimental data with numerical simulations shown in (Chandros et al., 1998), there is a good
foundation to use rotational springs in the modelling process of a small crack.

Zamorska et al. (2015) proposed analytical simulations done with the Green function of a
cracked beam with a variable cross-sectional area and numerical results in CATIA software.
Zhang et al. (2009) revealed a crack identification method by means of wavelet analysis with a
transform matrix. While Ghadami et al. (2013) detected cracks with the use of natural frequen-
cies.

The rotational spring has been used in (Sokół and Uzny, 2015) to simulate a crack in a
multi-member slender system composed of three rods (symmetrically placed in relation to the
axis of the system) in form of a flat frame. In the internal element, the crack was present. In
that study, the investigations of the influence of crack location and size on the natural vibration
frequency were done in systems with different boundary conditions subjected to the Euler load.
The results presented in (Sokół and Uzny, 2015) can be used in a diagnostic process of supporting
systems.

In this paper, a continuation of studies started in (Sokół and Uzny, 2015) is presented. On the
basis of those results, it has been stated that detailed studies on the bifurcation load should be
done because of presence of discontinuity of curves that describe the change of static equilibrium
form. The results shown here are focused on the bifurcation load magnitude at which the change
of form of static equilibrium from a rectilinear into curvilinear one takes place. The influence of
the crack size and relation of elasticity moduli is also taken into account.
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2. Boundary problem formulation

The considered slender system (Fig. 1a) is subjected to a compressive external load with a
constant line of action. The column is composed of elements (rods) with different rigidities
which are symmetrically placed relative to the axis of the system.
Two external rods have equal rigidities while the third one is characterized by a smaller rigi-

dity relative to the others. Additionally, in the internal element, a defect in form of a crack (slit)
is investigated. In this paper, results of numerical simulations for different boundary conditions
are presented (Fig. 1b – EUi where i stands for a different type of support 1-5).

Fig. 1. Investigated multi-member system: (a) physical model of a flat frame with a marked defect –
crack, (b) schematic diagrams of the system with different boundary conditions and the installed

rotational spring in the point of crack presence

In the problem formulation, a generalized load (see Bochenek and Życzkowski, 2004; Gajewski
and Życzkowski, 1970) on both ends of the column is used. The advantage of the theoretical
generalized load is that it can be implemented in order to show all known types of conservative
loads (therein the Euler load in the system with different boundary conditions). The applied
force is a longitudinal external force P . The Hk andMk components are generalized forces which
arise due to the action of P . The index k is introduced and it can take values: 0 for x21 = 0 and
1 for x21 = l21.
In the boundary problem formulation process, the four rods are taken into account (Fig. 2)

with rigidities E11, E12, E21, E22. Elements 21 and 22 have equal rigidities, while 11 and 22 stand
for the cracked element. The crack is simulated by means of a rotational spring of stiffness C and
linear characteristics in the point of connection of rods 11 and 12. The functionWij(xij) i, j = 1, 2
describes transversal displacements of the rods at a given coordinate xij . The components Hk

andMk of the generalized load depend on the compressive force P and can be expressed in form
(see Gajewski and Życzkowski, 1970)

Hk = P

[
− (−1)k(1− ϕk)

dW21(x21)
dx21

∣∣∣
x21=kl21

− γkW21(kl21)
]

Mk = P

[
− (−1)kρk

dW21(x21)
dx21

∣∣∣
x21=kl21

+ νkW21(kl21)

] (2.1)

where φk, γk, ρk, νk are the coefficients which depend on the type of support or loading head.
The magnitudes of φk, γk, ρk, νk for different types of support with consideration of Euler load
are presented in Table 1.
The boundary problem formulation is done by means of the static criterion of instability

δV = 0 (2.2)
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Fig. 2. Calculation model of the considered system subjected to the generalized load on both ends

Table 1. Magnitudes of generalized load parameters

Type of suport
EU1 EU2 EU3 EU4 EU5

φ0 1 1 1 1 1
γ0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0
ρ0 0 1/ρ0 = 0 1/ρ0 = 0 1/ρ0 = 0 1/ρ0 = 0
ν0 0 1 1 1 1
φ1 1 1 1 1 0
γ1 1/γ1 = 0 0 1/γ1 = 0 1/γ1 = 0 0
ρ1 0 0 0 1/ρ1 = 0 1/ρ1 = 0
ν1 0 0 0 1 1

on the basis of which the estimation of the magnitude of the bifurcation load can be done. The
potential energy of the system shown in Fig. 2 is as follows

V =
1
2
C

[
dW11(x11)
dx11

∣∣∣
x11=l11

− dW12(x12)
dx12

∣∣∣
x12=0

]2
+
1
2

2∑

i=1

2∑

j=1

(EJ)ij

lij∫

0

[
d2Wij(xij)

dx2ij

]2
dxij

+
1
2

2∑

i=1

2∑

j=1

(EA)ij

lij∫

0

[
dUij(xij)
dxij

+
1
2

(dWij(xij)
dxij

)2
]2
dxij + PU21(l21)

+
1∑

i=0

1
2

{
− (−1)iP

[
− (−1)iρi

dW21(x21)
dx21

∣∣∣
x21=il

+ νiW21(il)

]
dW21(x21)
dx21

∣∣∣
x21=il21

+ P

[
− (−1)i(1− ϕi)

dW21(x21)
dx21

∣∣∣
x21=il

− γiW21(il)
]
W21(il)

}

(2.3)
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Geometrical boundary conditions can be written in form

U11(0) = U21(0) = U22(0) = 0 U12(l12) = U21(l21) = U22(l22)

U11(l11) = U12(0) W11(0) =W21(0) =W22(0)

W12(l12) =W21(l21) =W22(l22) W11(l11) =W12(0)

dW11(x11)
dx11

∣∣∣
x11=0

=
dW21(x21)
dx21

∣∣∣
x21=0

=
dW22(x22)
dx22

∣∣∣
x22=0

dW12(x12)
dx12

∣∣∣
x11=l12

=
dW21(x21)
dx21

∣∣∣
x21=l21

=
dW22(x22)
dx22

∣∣∣
x22=l22

(2.4)

Introduction of potential energy (2.3) into (2.2) leads to equations of transversal and longitudinal
displacements and natural boundary conditions on each end of the system at x11 = x21 = x22 =
0; x12 = l12, x21 = l21, x22 = l22 and crack location x11 = l11, x12 = 0.
The differential equation of transversal displacements is as follows

(EJ)ij
d4Wij(xij)

dx4ij
+ Sij

d2Wij(xij)
dx2ij

= 0 (2.5)

While the longitudinal displacements can be presented in form

Uij(xij)− Uij(0) = −
Sij
(EA)ij

xij −
xij∫

0

(dWij(xij)
dxij

)2
dxij

i = 1, 2

j = 1, 2
(2.6)

Natural boundary conditions are shown below

(EJ)11
d3W11(x11)

dx311

∣∣∣
x11=0

+
2∑

i=1

(EJ)2i
d3W2i(x2i)

dx32i

∣∣∣
x2i=0

+ S11
dW11(x11)
dx11

∣∣∣
x11=0

+
2∑

i=1

S2i
dW2i(x2i)
dx2i

∣∣∣
x2i=0

− P
[
γ0W21(0) + (1− ϕ0)

dW21(x21)
dx21

∣∣∣
x21=0

]
= 0

(EJ)11
d2W11(x11)

dx211

∣∣∣
x11=0

+
2∑

i=1

(EJ)2i
d2W2i(x2i)

dx22i

∣∣∣
x2i=0

+ P

[
ν0W21(0) − ρ0

dW21(x21)
dx21

∣∣∣
x21=0

]
= 0

(EJ)12
d3W12(x12)

dx312

∣∣∣
x12=l12

+
2∑

i=1

(EJ)2i
d3W2i(x2i)

dx32i

∣∣∣
x2i=l2i

+ S12
dW12(x12)
dx12

∣∣∣
x12=l12

+
2∑

i=1

S2i
dW2i(x2i)
dx32i

∣∣∣
x2i=l2i

+ P

[
γ1W21(l21)− (1− ϕ1)

dW21(x21)
dx21

∣∣∣
x21=l21

]
= 0

(EJ)11
d2W11(x11)

dx211

∣∣∣
x12=l12

+
2∑

i=1

(EJ)2i
d2W2i(x2i)

dx22i

∣∣∣
x2i=l2i

+ P

[
ν1W21(l21) + ρ1

dW21(x21)
dx21

∣∣∣
x21=l21

]
= 0

(2.7)

(EJ)11
d2W11(x11)

dx211

∣∣∣
x11=l11

+CR

[
dW11(x11)
dx11

∣∣∣
x11=l11

− dW12(x12)
dx12

∣∣∣
x12=0

]
= 0
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(EJ)12
d2W12(x12)

dx212

∣∣∣
x12=0

+ CR

[
dW11(x11)
dx11

∣∣∣
x11=l11

− dW12(x12)
dx12

∣∣∣
x12=0

]
= 0

2∑

i=1

(EJ)1i(−1)i+1
d3W1i(x1i)

dx31i

∣∣∣
x1i=(l1i)(2−i)

+ S11
dW11(x11)
dx11

∣∣∣
x11=l11

− S12
dW12(x12)
dx12

∣∣∣
x12=0

= 0

and

S12 + S21 + S22 − P = 0 (2.8)

Complex slender systems are characterized by the presence of rectilinear and curvilinear form of
static equilibrium. In this paper, the rectilinear form is only considered. In this case, the internal
force Sij in the element is obtained on the basis of the following relations

S11 = S12 S21 = S22 S12 = P
(EA)12
(EA)12

+ 2(EA)21 S22 =
P − S12
2

(2.9)

The relations between internal forces have been calculated with consideration of boundary con-
ditions (2.4) and (2.8). The presented method of formulation of the boundary problem in which
the theoretical generalized load is used shows that numerical simulations can be performed for
different types of supports and loads (including Tomski load (see Tomski and Uzny, 2008; Tom-
ski et al., 2007, 2014)). In the boundary conditions, only the parameters ρk, νk, φk, γk, where
k = 0, 1, must be introduced.
The solution of the differential equations of transversal displacements has been performed

on the basis of the following expression, i = 1, 2 and j = 1, 2

Wij(xij) = Aij exp(i
√
Pxij) +Bij exp(−i

√
Pxij) + Cijxij +Dij (2.10)

After introduction of (2.10) into the boundary conditions, one obtains a system of equations for
which the matrix determinant equated to zero creates a transcendental equation used for the
estimation of the bifurcation load.

3. Results of numerical simulations

The results of numerical simulations performed on the basis of the proposed mathematical model
have been presented in the plane bifurcation load – flexural rigidity asymmetry factor µa. The
coefficient µa is defined as a relation of the flexural rigidity of the cracked rod to the sum of
rigidities of the external rods

µa =
(EJ)11

(EJ)21 + (EJ)22
(3.1)

The magnitude of bifurcation load is presented in the non-dimensional form

λb =
Pl221
(EJ)11

+
2∑

i=1

(EJ)2i (3.2)

In simulations, a constant total flexural rigidity of the system is used

(EJ)11 + (EJ)21 + (EJ)22 = EJ
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Numerical simulations have been performed for three magnitudes of the parameter ζB
(ζB = 0.1, 0.5, 1.0). The ζB shows the relation between the Young modulus of the cracked
rod to the uncracked one

ζB =
E11
E21

(3.3)

The non-dimensional spring stiffness parameter c which reflects the crack size and the location ζA
are as follows

c =
Cl

EJ
ζA =

l11
l

(3.4)

The results presented in this paper are done only at ζA = 0.5 (central location).

Fig. 3. A change of the bifurcation load parameter λb of EU1 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

On the basis of the results of numerical simulations presented in Figs. 3-7 it have been shown
that the crack size has a small influence on the bifurcation load magnitude at a lower level
of the bending rigidity asymmetry factor. This influence depends on the boundary conditions
and Young modulus of the materials used in the supporting structure. When the materials are
comparable (which corresponds to ζB ≈ 1) the differences in bifurcation loads are the smallest at
low µa. An increase in the bending rigidity asymmetry factor µa causes an increase in bifurcation
load to the maximum level above which a further increase of µa results in reduction of the loading
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Fig. 4. A change of the bifurcation load parameter λb of EU2 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

capacity. In EU4 and EU5 configurations at higher µa, the bifurcation load is constant and
independent of the crack size. Furthermore, in EU5 the area of independency of the bifurcation
load to µa can be found (the smaller crack, the greater the independency area). On the basis
of the numerical simulations, it can be concluded that columns EU4 and EU5 at higher µa are
insensitive to the crack size, which appears in the central element (the one with lower bending
rigidity). In all investigated cases such ranges of the crack size can be estimated at which a small
change of the bifurcation load regardless of µa can be found.
Additionally, it has been shown that in configurations EU4 and EU5, the discontinuity

of the curves can be observed in the plane loading parameter – flexural rigidity asymmetry
factor λb(µa). In columns EU4 and EU5, at a sufficiently high flexural rigidity asymmetry
factor, a change in buckling mode shapes takes place. The magnitude of this factor at which
the change can be observed highly depends on the crack size (rotational spring stiffness c). The
smaller crack, the higher µa is needed to obtain a change in the buckling mode shape. The
buckling mode shapes of the considered systems are presented in Fig. 8. A high difference in
the parameter µa has been chosen in order to achieve the best presentation of the change of
buckling shapes, especially for EU4 and EU5.
In configurations EU1-EU3, an increase of µa reveals the presence of the crack. That is why

in those three cases an observation of buckling shape modes can easily lead to determination
of failure of the structure at high µa because the function used to describe the transversal
displacements of the cracked element is not a smooth one. The buckling shape modes of EU4
and EU5 systems at a lower magnitude of the µa coefficient are characterized by no transversal
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Fig. 5. A change of the bifurcation load parameter λb of EU3 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

displacement of the uncracked rods (see Fig. 8 – shapes at µa = 0.01 – EU4 and µa = 0.001
– EU5 configurations). At µa = 0.9, the buckling shape modes of EU4 and EU5 are changing
regarding to lower µa. The change is related to independency of the bifurcation load of the
considered systems from the crack size at higher µa magnitudes. Additionally, when columns
EU4 and EU5 are taken into account, the buckling shape modes are described by a smooth
function. In EU4 and EU5 configurations, the crack presence is hard to identify on the basis
of analysis of buckling shape modes. That is why, the further investigations on the natural
vibration frequency must be done (relations: external load-vibration frequency and amplitude-
-vibration frequency). The solution presented in this paper allows one to choose proper physical
and geometrical parameters and reveals the area of drop in the loading capacity in the case of
crack presence.

4. Conclusions

In this paper, a slender system with a crack subjected to compressive external load with a
constant line of action is considered. The effect of size of the crack, which is present in the
internal element, on the bifurcation load magnitude is investigated. Numerical simulations of
the bifurcation load have been done at different magnitudes of parameters such as: rotational
spring stiffness (size of the crack), flexural rigidity asymmetry factor and longitudinal elasticity
modulus. The numerical calculations are also concerned with different types of supports (five
configurations have been chosen for presentation).
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Fig. 6. A change of the bifurcation load parameter λb of EU4 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

On the basis of the results of simulations, the following conclusions can be drawn:
• influence of the crack size on the bifurcation load magnitude highly depends on a combi-
nation of the supporting elements (boundary conditions),

• in the systems with the zero deflection angle at both ends, the crack which is present in the
element with the lower bending rigidity has no affect on the bifurcation load at high µa,

• for each of the considered systems, the magnitude of the bending rigidity asymmetry factor
as a function of the crack size at which the bifurcation load is the highest can be found,

• the magnitude of µa which corresponds to the highest bifurcation load strongly depends
on the Young modulus parameter ζB,

• when the systems with the zero deflection angle at both ends are considered, such µa can
be found at which the change of buckling shape modes can be observed; additionally, after
this change, the buckling load does not depend on the crack size.

On the basis of the simulations presented in this paper the type of supports have significant
influence on the sensitivity of the structure to the crack presence (taking into account the
bifurcation load considered in this publication). Additionally, in the future investigations of the
influence of the crack on instability of a discussed structure, different types of external load
should be introduced. Structures subjected to non-conservative loads may be less vulnerable to
the crack presence. A good example of such a type of load is the specific load. An introduction of
the specific load modifies investigations on instability and natural vibrations (change of vibration
frequencies and shape modes) regarding the classic Euler load. For the specific load (which is a
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Fig. 7. A change of the bifurcation load parameter λb of EU5 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

Fig. 8. Buckling mode shapes of the considered systems (EU1-EU5) for ζB = 0.1, c = 0.5
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practical load, see Tomski and Uzny (2008), Tomski et al. (2007, 2014)) the parameters allowing
the control of the bifurcation load or the critical one as well as the natural vibration frequency
can be found. It can be assumed that the parameters of the loading heads of the specific load
will also affect the vulnerability of the structure to the crack presence. A continuation of this
study in the mentioned way is justified and should be done in the future.
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The present work focuses on the study and analysis of vibrations generated by the electrical
motor of a wiper system on its support bracket referring to an hatchback vehicle passenger
car. In the electric motor of the wiper system there can be present an imbalance transmitting
vibrations to the main body via the support bracket. In this paper, after a short resume
of available synchronized switch shunt damping methods, a preliminary experimental evalu-
ation of their potential performance on noise control of the wiper system is reported. After
preliminary experimental measurements of dynamic vibration by the use of vibrometer la-
ser both on the real hatchback car then in laboratory environment, a numerical model has
been created to evaluate deformations of the support bracket for comparison with the expe-
rimental data. This work realizes the preliminary numerical/experimental characterization
activity to set up a new application of a control system based on a semi-active technique,
called Synchronized Switch Shunt Resonator (SSSR).

Keywords: vibration control, acoustic, wiper system, semi-active technique, synchronized
switch shunt resonator

1. Introduction

In the modern automotive industry, the fundamental topic is noise annoyance inside the car.
The reduction of internal noise is of great importance in order to make the driving experience

safer and more comfortable and to prevent that these annoyance sources could be perceived as
the low quality indicator. For this reason, great efforts are addressed by the research world to
define requirements and specifications for integrated solutions aimed at reduction of noise using
different cost effective established technologies such as noise and vibration control, innovative
materials and optimized tires, analyzing related risks too. In addition, many new soundpro-
ofing solutions are developed and focused, in particular, oriented on internal noises reduction
(especially for squeak and rattle noises).
The noise sources in an auto-vehicle can be divided into the primary and secondary sources.

In the first group, there are three main sources:

• The power-train: the engine noise is generated by mechanical and chemical processes inside
the engine that cause vibrations which are transmitted to the cockpit.

• Interaction road-tires: the road noise is generated by the interaction with the tire interface
and the ground and causes broadband vibrations which are transmitted to the structure.
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• Aerodynamic flow: the vortex shedding noise which is caused by the fluid (air) and a
non-aerodynamic body (car) interaction.

In the other group, there are two main secondary sources:

• Noise generated internally by the passenger compartment (squeaks, etc.).

• Equipment and systems of various kinds (air conditioning, etc.).

Within this frame, the present work focuses on the study and analysis of vibrations generated
by the electrical motor of the wiper system transmitted on its support bracket for a hatchback
vehicle passenger car application. It has been indeed identified that the electric motor of the
wiper system can present an imbalance transmitted to the body through this support bracket.
The main goal is to investigate typical vibration modes of the supporting plate in order to design
proper control system parameters based on a semi-active technique. This technique uses piezo
transducers to convert mechanical into electrical energy and elaborates the related signal within
an external electrical circuit.
Piezoelectric materials fall in the category of the so-called smart materials and they can

often control and suppress vibration in an efficient and intelligent way without causing much
additional weight or cost. In many research activities, piezoelectric materials are satisfactorily ap-
plied to control structural materials due to their excellent mechanical-electrical coupling charac-
teristics.
The shunt methods for vibro-acoustic control based on piezoelectric sensors and actuators can

be divided into three main classes: passive, active and semi-active. Passive shunt control systems
mainly reproduce the dynamic vibration absorber device by means of electrical components,
typically resistive-inductive (R-L) circuits (Hollkamp, 1994). This kind of circuits is simple to
design but its performance is based on the resonance tuning, so it is sensitive to variations of
structural parameters. In addition, R-L shunt systems need large inductance for a low frequency
domain, which is improbable in realistic applications.
Active control systems require high-performance digital signal processors and bulky power

amplifiers to drive actuators, which is not suitable in many practical applications too. To over-
come these disadvantages, several semi-active approaches have been proposed. In the last years,
Clark proposed a state-switched method (Clark, 1999) in which piezo-elements were periodically
held in an open-circuit state, then switched and held in the short-circuit state synchronously
with the structure motion. Another type of semi-active control, which has been receiving much
attention in the recent years, is called the pulse switching technique (Richard et al., 1998; Onoda
et al., 2003; Makihara et al., 2005). It consists in fast inversion of voltage on the piezo-element
using a few basic electronic elements synchronized with the mechanical vibration.
In the methods proposed by Richard et al. (1998), the voltage is switched on the piezoelectric

element at each strain extrema or, equally, displacement extrema. These methods are called
synchronized switch damping (SSD) techniques (Ciminello et al., 2008).
The present paper reports a preliminary feasibility study of the well established control

technology on a new automotive application. The Synchronized Switch Shunt Resonator (SSSR)
control system already investigated and applied by the authors for aeronautical components
(Ciminello et al., 2010; Ameduri and Ciminello, 2010) is used here to a new particular test
case, namely a wiper mechanism for an automotive application. The paper at hand includes a
preliminary experimental evaluation of the control of the wiper assembly vibrations supported
by some FEA computations. The SSSR design is also described and followed by preliminary
experimental results. The authors show possible issues with realistic damping of low amplitude
vibrations of the wiper system bracket.
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2. Synchronized switch damping (SSD) method

The synchronized switch damping (SSD) method, also called the pulse-switched method, consists
of nonlinear processing of the voltage on a piezoelectric actuator. It is implemented with a simple
electronic switch synchronously driven with the structural motion.
This switch, which is used to reverse the voltage on the piezoelectric element, allows one to

briefly connect a simple electrical network (short circuit, inductor and voltage sources depending
on the SSD version) to the piezoelectric element. Due to this process, a voltage magnification
is obtained and a phase shift appears on the resulting voltage. The force generated by the
resulting voltage is hence opposite to the structural motion, thus creating energy dissipation.
The dissipated energy corresponds to the part of the mechanical energy converted into electric
energy. Maximizing this energy is equivalent to minimizing mechanical energy in the structure.
Several SSD techniques are reported. The simplest is called SSDS, as shown in Fig. 1, which

stands for synchronized switch damping on the short circuit (Clark, 1999).

Fig. 1. Principle of the SSDS technique

The SSDS technique consists of a simple switching device in parallel with the piezoelectric
patch without other electric devices. The switch is kept open for most of the time during the
vibration period and then closed when the voltage reaches the maximum (corresponding to the
maximum of the strain on the piezoelectric patch) and left closed for a short period in order to
dissipate the stored electric energy.
According to the work of Qiu et al. (2009), for the SSDS circuit, the transferred energy Et

in a period is given by

Et =
4α2

C0
u2M (2.1)

where α is the piezoelectric coefficient, C0 is the capacitance of the piezoelectric element and
uM is the amplitude of vibration (Badel et al., 2006).
To further increase the dissipated energy, the SSDI technique (synchronized switch damping

on the inductor) shown in Fig. 2, has been developed by Richard et al. (1998), Guyomar et al.
(2001) and Petit et al. (2004).
In the SSDI approach, the inductor is connected in series with the switch. Because the

piezoelectric patch and the inductor constitute an L-C resonance circuit, fast inversion of the
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voltage on the piezoelectric patch is achieved by appropriately controlling the closing time and
duration of the switch.

Fig. 2. Principle of the SSDI technique

The switch is closed at the displacement extremes, and the duration of the closed state lasts
half of the period. This leads to an artificial increase of the dissipated energy. The period of the
L-C circuit is chosen to be much smaller than that of the mechanical vibration.
In the SSDI technique, the dissipated energy Et during the period is given by

Et =
4α2

C0

1 + γ
1− γ u

2
M (2.2)

where γ ∈ [0, 1] is the voltage inversion coefficient. Comparing equations (2.1) and (2.22), the
transferred energy is magnified by means of (1 + γ)/(1 − γ) factor (Badel et al. (2006).
Although most semi-active studies have been devoted so far to single-mode control, the

switching laws can be also used for multi-mode control. In the method proposed by Makihara
et al. (2007a,c), switch actions are automatically generated by the control law applicable to
multi-modal control of a structure with multiple piezoelectric transducers.
In the method proposed by Ciminello et al. (2010), a similar technology was tested to verify

its experimental performance on a 2D structure over a broadband frequency range. The selected
test specimen was a 220mm×280mm, 7mm thick, 10-ply fiberglass laminate plate. The system
was made of several actuator/sensor piezoelectric ceramic pairs linked to a 4-channel control
circuit. Active elements were embedded into the structure at different locations to produce effects
over a large number of modes. The placement resulted from an optimization study performed
to maximize their action over the frequency bandwidth of interest. The equivalent induced
damping was estimated for seven out of eight bending modes present in the investigated interval.
Amplitude reductions up to 16 dB were attained. The experimental results were found to be in
good accordance with the numerical predictions.
Through about 10 years of research, several electronic switching circuits and switch control

laws have been developed. However, more improvements must still to be provided for practical
applications. Due to the energy loss during voltage inversion, these switching laws are not always
optimal as demonstrated by experimental results (Makihara et al., 2007b; Viscardi and Leo,
2016). More efficient control laws and higher robustness of the control system are required.
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3. Problem formulation

The target of the activity at hand is the vibration control of the mechanical wiper system of a
hatchback passenger car. The system is linked to the chassis of the vehicle in three points (red
circles in Fig. 3).

Fig. 3. Digital and physical mock-up of the wiper system

It has been identified that the electric motor of the wiper system presents an imbalance
transmitting vibrations to the main body via the support bracket (part in red colour in Fig. 4).
According to this problem and to the specifications (that is the reduction of vibrations in

the frequency range 600-850 Hz, which is the range of interest as provided by the experimental
measures on the car and as said in the subsequent lines), a feasibility study on the vibration
suppression provided by a semi-active synchronized switch shunt resonator (SSSR) is investiga-
ted.
Specific analysis with the wiper system of the car used as the test case is addressed to

measure the force transmitted to the chassis of the car through the constraint points of the wiper
generated by the electrical motor in operating conditions. Figure 5 shows the force spectrogram
transmitted in the Z direction according to the reference system in Fig. 3. The force is measured
on the right lateral constraint and shows a maximum peak in the 600-850 Hz frequency range.
The red curve is the measured force with the wiper blades mounted, and the blue curve refers
to the wiper blades dismissed.
The design and manufacturing of the dedicated control system has been developed through

the next steps:

• Measurements of the acoustic performance for the original wiper system (without system
control) in the real hatchback passenger car cabin.

• Dynamic characterization of the support bracket in the wiper system.
• Numerical simulation of the dynamic behaviour of the support bracket in the wiper system.
• Design of the basic layout of the control system.
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Fig. 4. Assembly bracket with an electrical motor. The upper and lateral view

Fig. 5. Force wiper system-chassis in the Z direction on the right lateral contraint

4. Acoustic performance of the wiper in the vehicle cab

The acoustic performance of the mechanical wiper has been measured. Measurements were per-
formed by the authors in different operative speeds of the wiper system and with thermodynamic
engine in the “off” and “on” state.
The experimental set-up was composed by two Roga MI-17 Icp microphones which were

installed on both sides of the head of the driver at the ear level. An additional Roga MI-17 Icp
microphone was installed outside the vehicle in front to the bonnet at a distance of one meter.
Besides, an accelerometer was installed on the bottom face of the support bracket to measure

the vibrating level produced by the electrical motor in real operative conditions. Another one
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was positioned on the interior surface of the windshield to measure acceleration transmitted by
the wiper to have an idea about the most important transmission path between the windshield
and the chassis.

For data acquisition, an LMS Scadas Mobile 5 with eight channels and TestLab software
were used.

The first data logging was done for the accelerometers in two different conditions. The first
one was characterized by the thermodynamic engine “on” at different rotational speeds (idle,
1500, 2000 rpm) while keeping the wiper system “off”. The second data logging was characterized
by the thermodynamic engine “off” while keeping the wiper system “on”. For every measure the
car was left with the gearbox in neutral position.

Figure 6 shows that the acceleration of the support bracket produced by the excitation of
the wiper electrical motor is higher than the one produced by the stand alone thermal engine.
Therefore, the effect of the wiper on the vibrating energy, transmitted by the support bracket
to the chassis is not negligible.

Fig. 6. Acceleration of the support bracket for the thermal engine “on” and the wiper “off” (blue
curve – idle, cyan – 1500 rpm); acceleration of the support bracket (red curve) and the windshield

(green curve) for the thermal engine “off” and the wiper “on”

Besides, the amplitude of acceleration of the support bracket, expressed in “g” units, is higher
than the windshield one.

In the next figures, the background noise of the environment inside and outside the car are
reported (the thermal motor and the wiper system in “off” condition) and besides the internal
and external noise in the cases of three different wiper speeds (Vel1, Vel2 and Vel3).

Inside and outside the passenger compartment, the background noise is almost the same,
even if at low frequencies is smaller inside due to attenuation generated by the windscreen of
the car.

It can be noted that the noise with the wiper electrical motor “on” is higher than the
background noise. The external noise is approximately the same for three different speeds of the
wiper (Fig. 8), although the internal noise increases with the increasing of the speed (Fig. 9).
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Fig. 7. Internal and external background noise diagrams [dB(A)]

Fig. 8. External noise vs. variation of the wiper speed

Fig. 9. Internal noise vs. variation of the wiper speed



Preliminary experimental/numerical study of the vibration annoyance control... 291

Besides, it is evident that the perceived noise outside the vehicle is always greater than 1dB
compared to that received inside. This is due to the windscreen that acts as a soundproof.
The tests performed with accelerometers and microphones confirm that there are high peaks

of acceleration and pressure in the frequency range between 600Hz and 850Hz (blue circle in
Fig. 10) validating the preliminary numerical FE analysis.

Fig. 10. Summary diagram of tests performed on the wiper at Vel2

5. Experimental set-up and dynamic characterization

In order to reproduce the same constraints with the chassis in the bonnet compartment of the
car, an aluminum frame has been built carrying three clamping points. The wiper was installed
on this frame (Fig. 3) in order to perform the test campaign.
At first, a dynamic characterization test was performed through the vibrations measured by

a triaxial piezoelectric accelerometer placed on the bottom face of the support bracket (Fig. 4).
The tests were carried out at two different electric motor velocities: Vel1 and Vel2. Moreover,
the tests were conducted both with and without leverage (see Fig. 3) in order to left the support
bracket free from the rotating kinematic system and to make vibrometer laser analysis (Fig. 11).

Fig. 11. Mechanical wiper system installed in the laboratory set-up with Polytec PSV-400 Scanning
Vibrometer

Following graphs shows that the peak of acceleration has a light shift in the case of absence
of leverage for both speeds of the wiper motor (from a value of 494Hz to 540Hz for Vel1 and
from 760Hz to 830Hz for Vel2).
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Besides, from the data analysis it results that acceleration values measured without leverage
are generally greater than those measured with the leverage; the only exception is the acceleration
referred to the y axis, which presents higher values when the leverage is present.
It is however clear that there is an influence of the presence of the leverage on the global

dynamic behaviour of the wiper.

Fig. 12. Frequency spectrum (X axis) 1/24 octave with leverage

Fig. 13. Frequency spectrum (X axis) 1/24 octave without leverage

Fig. 14. Acceleration in the time domain (X axis) for tests on the car and on the set-up

There are some differences in the system behaviour depending on the typology of the main
support (car chassis or frame structure).
In particular, the wiper blades provide a considerable amount of friction on the glass, which

is an important noise source. To characterize the structural vibration of the support bracket, a
Polytec PSV-400 scanning vibrometer was used. The laser was positioned at 550mm from the
surface of the bracket. In order to properly acquire displacements, velocities and accelerations
of the brackets, all the following tests were carried out without leverage of the kinematic system
because of their interference with the track of the laser beam.
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The measurements have been conducted tracing a scanning grid composed of 176 dots on
the support bracket surface and detecting, through the scanning vibrometer, the velocity of
each point. The test has been performed both at Vel1 and Vel2 in order to identify eventual
differential behaviour, focusing on modal shapes and frequency resonances in the range between
500Hz and 850Hz.
The following images (Figs. 15 and 16) have been achieved considering the Vel1 electric

motor velocity.

Fig. 15. FRF displacement vs frequency at Vel1 for the point of maximum displacement

Fig. 16. Modes of vibrations images computed by PSV-400 scanning vibrometer at Vel1

It is clear that this curve is characterised by periodic behaviour with three repeated distinc-
tive groups of peaks. According to this spectrogram, 500Hz, 600Hz, 750Hz, 800Hz and 850Hz
have been analysed in detail.
Modal shapes and strain distribution are required to optimize strain energy transmission from

the SSSR to the bracket. It is in fact necessary to know the locations of the plate presenting
the highest deformations in the frequency range during the test finalized to a good positioning
of the piezo patch. The piezo devices must maximize the energy extracted from the mechanical
part and convert it into the electrical energy for the control supply.
The map of displacements reported in Fig. 16 is used to compute the associated deformations

by applying the following expression which comes from the definition of the discrete form of the
second derivative linked to the strain by a half of the thickness t for a small displacement

ε =
t

2
wi−1 − 2wi +wi+1

∆x2
(5.1)
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where w is the transverse displacement measured by the vibrometer laser, and x is the coordinate
in the plane.
In reference to the transversal displacements of the plate for the support bracket at 750Hz,

the maximum deformation is 4.4 · 10−4µε.

6. Numerical analysis

The Nastran SOL111, has been used to verify the map of displacements at 750Hz. In particular,
the analysis shows that the modal shape for this frequency is characterized by a torsional defor-
mation of the bracket around the axis of the central rivet connection (Fig. 17), thus highlighting
the region with highest deformations and in accordance with the experimental data (blue circle
in Fig. 16).

Fig. 17. Modes of vibration at 750Hz by FEM analysis

Fig. 18. In plane strain map

The strain energy map is also plotted, which shows that in the plane of the bracket the
areas of most energy are around the central rivet and holes, as expected (Fig. 18). This analysis
highlighted the areas of interest for deformation energy congruent with the experimental data.
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In addition, this area is a unique suitable area, flat enough to bond the piezoelectric patch. In
the same region, the finite element analysis shows deformation of the order of magnitude of
5 · 10−4µε in accordance with the experimental valuation.

7. Conclusion and future developments

An original study of a windshield wiper mechanical system has been herein reported. Theoretical
analysis highlighted a mechanical imbalance transmitting vibrations to the wiper main body via
the support bracket. This problem can be of high interest for future electrical cars design,
in which motor noise Siano et al. (2016) will be negligible with respect to other mechanical
subsystems causing annoyance to passengers.
The paper reports a preliminary feasibility study of a well established control technology

on a new automotive application. A semi-passive shunt control technique opportunely designed
for the vibrations reduction within the required frequency band has been here used to a new
particular test case, namely a wiper mechanism for an automotive application. The paper at
hand includes a preliminary experimental evaluation of the wiper assembly for vibrations con-
trol, supported by some FEA computations. The SSSR design is also described, followed by
preliminary experimental results. The authors show possible issues with realistic damping of low
amplitude vibrations of the wiper system bracket. However this technique seems to more ade-
quately face this type of application in respect to other ANC and AVC approaches (Magliacano
et al., 2016a,b).
A real windshield wiper mechanical system has been then installed on a steel truss support.

The constraint has been reproduced according to the car schematics, the engine has been powered
and the transmitted vibrations have been detected via vibrometer laser instrumentation.
Due to complex geometry of the wiper characterized by sharp curvatures and local stiffeners,

only short areas have been available for secondary bonding of sensors. Strain gauges and pzt have
been installed and the energy strain level has been correlated and compared to the vibrometer
output.
The results were in good agreement, thus showing the robustness of the predicted numerical

evaluations and applied methodologies. Nevertheless, the results showed very low deformations.
The implementation of a semi-passive shunt control could be applied with some restrictions.
A Synchronized Switch Shunt Resonator proved to be the most promising technical solution,
according to the mechanical specifications, but requiring a very sensitive transducer device on
the same time.
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With the goal of decreasing the stress concentration along the hole boundary in an ortho-
tropic plate under inequi-biaxial loadings, an optimum design of the fiber angle and hole
orientation is presented. The maximum absolute tangential stress along the hole boundary
is taken as the objective function, and the fiber orientation angle and the hole orientation
angle are considered as design variables. The conformal transformation method of a complex
function and the Differential Evolution (DE) algorithm are used. Two non-circular shapes,
ellipse and hexagon are taken as examples to analyze the problem. Based on the results, we
can conclude that the major axis of elliptical holes should be designed in the direction of the
maximum external loading for a perforated structure in an orthotropic plate. However, the
principal direction that has the larger Young’s modulus should be inclined to the direction
of the minimum loading, especially for a significantly orthotropic plate.

Keywords: orthotropic plate, fiber orientation angle, hole orientation angle, conformal trans-
formation method, differential evolution algorithm

1. Introduction

Natural materials, such as wood and rock, and composite materials, such as fiberboard, epoxy
resin bonded fiber and fiber reinforced polymer, all display anisotropic properties. Specifically,
orthotropic plates with different holes have found widespread applications in various fields such
as aerospace, marine, automobile and mechanics because of high specific stiffness and specific
strength as well as the designability of the properties (Jain, 2009; Romeo, 2001; Li and Zheng,
2007). The stress concentration along the boundary of the hole becomes an important research
problem for this structure (Toubal et al., 2005; Sharma, 2011; Engels et al., 2001). Generally,
tangential stresses at different points along the hole boundary in orthotropic plates are different
and, usually, it is the maximum value that depends the stability on the plate (Savin, 1961).
Thus, it is important to decrease the tangential stress concentration along the hole boundary in
the design of orthotropic plates.
Some researchers have studied the shape optimization of holes in isotropic plates based on

different optimization criteria or methods. Bjorkman and Richards (1976, 1979) proposed the
concept of a harmonic hole and obtained the optimal shape of the hole under different loads.
Taking the minimum integration of the square of tangential stress as the objective, Dhir (1981)
solved a series of shape optimization problems by the complex variables function, the same
method as Bjorkman. Aiming at minimizing the maximum value of the tangential stress along
the hole boundary, Lu et al. (2014a,b) obtained the optimum shape of the support section of a
tunnel at great depths using the complex variables function method. The hole-shape optimization
problem has also been solved using the Evolutionary Structural Optimization (ESO) procedure
(Ren et al., 2005) and the Simulated Annealing (SA) procedure (Sobótka et al., 2013).
So far, the existing studies have mainly focused on the shape optimization of hole in isotropic

plates to decrease stress concentration. For many practical applications, however, the shape
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of the hole is always determined by some specific demands. Hence, the optimization results
sometimes cannot meet the actual requirement. Furthermore, many plates in actual applications
are orthotropic. For orthotropic plates, however, the determination of stress distribution is more
complex than that for isotropic plates. Lekhnitskii (1968, 1981) used the complex function
method, developed by Muskhelishvili (1963), to determine the stress in an anisotropic plate,
and gave an accurate solution of stress around an elliptic hole under in-plane loading at infinity.
Some researchers have obtained analytical solutions for other non-elliptic holes (Romeo, 2001;
Rao et al., 2010; Daoust and Hoa, 1991; Ukadgaonker and Kakhandki, 2005; Rezaeepazhand
and Jafari, 2008). Lu et al. (2015) found an accurate analytic solution of stress for plates with
an arbitrarily shaped hole using the power-series method.
It can be seen from the stress analysis of an orthotropic plate that the stress distribution

along the hole boundary mainly depends on the fiber orientation angle and the hole orientation
angle for certain loadings and hole shapes. Therefore, how to decide the two angles of an or-
thotropic plate in minimization of the stress concentration is important. Sharma et al. (2014)
researched the optimization of fiber orientation angle for single lamina of composite materials
(graphite/epoxy and glass/epoxy) with circular and elliptical holes; however, the hole orienta-
tion angle was not taken into consideration. In this paper, not only the fiber orientation angle
but also the hole orientation angle are taken into consideration, and other more complicated
shapes of holes are considered, in which the maximum absolute value of the tangential stress
reaches its minimum value.
Herein, the Differential Evolution (DE) algorithm (Storn and Price, 1997) is used, and the

following assumptions are made: the orthotropic plate is infinite and elastic under the in-plane
loading at infinity (see Fig. 1); the problem can be treated as a plane stress problem.

2. Fundamental theories

Although the optimization of fiber orientation angle and hole orientation of an orthotropic plate
is an inverse problem, the process of obtaining the optimal results requires solving a series of
forward problems. In every optimization process, the solution for the tangential stress along the
hole boundary should be based on the material properties, external loads, shapes and orientation
angles of the hole. In this paper, the conformal transformation method of the complex function
is adopted to first map the outer regions of the hole in the physical plane to the outer regions of
the unit circle in the image plane. Then, the analytical solution of stress along the hole boundary
can be obtained using the power-series method.

2.1. Transformation of the mapping function under different coordinates

Figure 1 illustrates an orthotropic plate with an arbitrarily shaped hole under an in-plane
loading. xoy is the global Cartesian coordinate system, where x and y are along the directions
of σ∞x and σ

∞
y , respectively. x1oy1 and x

′oy′ are two local Cartesian coordinates. x1 is the
symmetric axis of the hole, and the angle α between the positive direction of the x-axis and
x1-axis denotes the hole orientation. x′ and y′ are along the principal direction of the elastic
materials, and the angle ϕ denotes the fiber orientation. The outer region of the hole in the local
coordinates x1oy1 (z-plane) is mapped to the outer region of the unit circle (ζ-plane) using the
following mapping function

z∗ = x1 + iy1 = R1
(
ζ +

n∑

k=1

Ckζ
−k
)

(2.1)

where i =
√
−1, and R1 is a real constant and Ck are complex constants denoting the size and

shape of the hole, respectively. ζ = ρeiθ (θ is the polar angle in the ζ-plane, ρ = 1 on the hole
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boundary). When n is large enough, Eq. (2.1) can describe a variety of shapes of the hole. The
mapping function in the global coordinates should be obtained using the following method due
to the change of the hole orientation angle.

Fig. 1. Orthotropic plate with an arbitrarily shaped hole under an in-plane loading

As shown in Fig. 1, the local coordinates x1oy1 overlap the global coordinates xoy after
rotating α degrees clockwise. The vector z (z = x+iy) with a length of r in the coordinates xoy
makes an angle β with the x-axis.
In the global coordinates xoy

z = reiβ (2.2)

In the local coordinates x1oy1

z∗ = rei(β−α) (2.3)

Then, Eq. (2.4) can be obtained because Eqs. (2.2) and (2.3) share the same vector z

z∗ = rei(β−α) = e−iαreiβ = e−iαz (2.4)

Then

z = ω(ζ) = eiαz∗ = eiαR1
(
ζ +

n∑

k=1

Ckζ
−k
)
= R

(
ζ +

n∑

k=1

Ckζ
−k
)

(2.5)

It can be seen that the mapping function in the coordinates xoy can be easily determined by
Eq. (2.5) as long as the corresponding mapping function in the coordinates x1oy1 is given even
if the hole orientation angle α changes. Changing the real constant R1 in Eq. (2.1) to a complex
constant R (R = R1eiα) is what we need to do.

2.2. The affine transformation and mapping

The three complex variables involved in solving the anisotropic plane problems are z, z1
and z2, and the affine mathematical relationships between the three complex variables are

z1 = x+ µ1y = γ1z + δ1z

z2 = x+ µ2y = γ2z + δ2z
(2.6)
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where γ1 = (1 − iµ1)/2, γ2 = (1 − iµ2)/2, δ1 = (1 + iµ1)/2, δ2 = (1 + iµ2)/2, µ1 = α1 + iβ1,
µ2 = α2 + iβ2, αk and βk (k = 1, 2) are real constants related to the material properties.
If three polar coordinates are introduced, and by transforming the outer regions of the hole

in the z-, z1-, and z2-planes into the outer regions of the unit circle in the ζ-, ζ1-, and ζ2-planes,
respectively, the three mapping functions which satisfy Eqs. (2.6) can then be obtained. The
three mapping functions are expressed by z = ω(ζ), z1 = ω1(ζ1) and z2 = ω2(ζ2), respectively
(Lu et al., 2015)

z1 = ω1(ζ1) = γ1R
(
ζ1 +

n∑

k=1

Ckζ
−k
1

)
+ δ1R

( 1
ζ1
+

n∑

k=1

Ckζ
k
1

)

z2 = ω2(ζ2) = γ2R
(
ζ2 +

n∑

k=1

Ckζ
−k
2

)
+ δ2R

( 1
ζ2
+

n∑

k=1

Ckζ
k
2

) (2.7)

where ζ1 = ρ1eiθ1 and ζ2 = ρ2eiθ2. The angles θ1 and θ2 are the polar angles in the ζ1- and
ζ2-planes, respectively. ρ1 = ρ2 = 1 on the hole boundary.
Assuming that ζ1 = ζ2 = ζ = σ = eiθ along the unit circle, the relationships between ζ, ζ1

and ζ2 can also be established

γ1R
(
ζ1 +

n∑

k=1

Ckζ
−k
1

)
+ δ1R

( 1
ζ1
+

n∑

k=1

Ckζ
k
1

)
= γ1R

(
ζ +

n∑

k=1

Ckζ
−k
)
+ δ1R

(
ζ +

n∑

k=1

Ckζ
−k)

γ2R
(
ζ2 +

n∑

k=1

Ckζ
−k
2

)
+ δ2R

( 1
ζ2
+

n∑

k=1

Ckζ
k
2

)
= γ2R

(
ζ +

n∑

k=1

Ckζ
−k
)
+ δ2R

(
ζ +

n∑

k=1

Ckζ
−k)

(2.8)

Equations (2.8) are suitable for any point in the region |ζ|  1. Given a point ζ, then points
ζ1 and ζ2 can be determined by Eqs. (2.8). z, z1, and z2 can be calculated by Eqs. (2.5) and
(2.7), respectively.

2.3. Calculation of the analytical solution of stress

For the plane stress problem of an orthotropic plane, when the body forces are not taken into
consideration, the compatibility equation for Airy’s stress function F = F (x′, y′) in the local
coordinates x′oy′ can be given as (Lekhnitskii, 1968, 1981)

a′22
∂4F

∂x′4
− 2a′26

∂4F

∂x′3∂y′
+ (2a′12 + a

′
66)

∂4F

∂x′2∂y′2
− 2a′16

∂4F

∂x′∂y′3
+ a′11

∂4F

∂y′4
= 0 (2.9)

where a′ij are constants related to the material properties. The solution to Eq. (2.9) is related
to the roots of the following characteristic equation

a′11µ
′4 − 2a′16µ′

3 + (2a′12 + a
′
66)µ

′2 − 2a′26µ′ + a′22 = 0 (2.10)

The four conjugate complex roots in Eq. (2.10) are µ′1, µ′1, µ
′
2 and µ′2, which can be calculated

by the principal elastic constants. However, the complex roots in the global coordinates xoy
should be calculated due to the change of the fiber orientation. When the local coordinates x′oy′

overlap the global coordinates xoy after rotating ϕ degrees counter clockwise, µ1 and µ2 in the
global coordinates can be given as (Lekhnitskii, 1968)

µ1 =
µ′1 cosϕ− sinϕ
cosϕ+ µ′1 sinϕ

µ2 =
µ′2 cosϕ− sinϕ
cosϕ+ µ′2 sinϕ

(2.11)
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In this paper, only the situation of µ1 6= µ2 is discussed. The solution to Eq. (2.9) can be
expressed by the two analytical functions F1(z1) and F2(z2) as

F = 2Re[F1(z1) + F2(z2)] (2.12)

where z1 and z2 are exactly the same as given in the previous Sections.
Let Φ1(z1) = dF1(z1)/dz1 and Φ2(z2) = dF2(z2)/dz2, respectively. The stress boundary

conditions on the edge of the hole expressed by Φ1(z1) and Φ2(z2) can be given as

2Re[Φ1(z1) + Φ2(z2)] = f1
2Re[µ1Φ1(z1) + µ2Φ2(z2)] = f2

(2.13)

where z1 and z2 are two points on the boundary.
The problem discussed here is an infinite field with holes, and no loads exist along the edge

of the hole. Therefore, f1 = f2 = 0, and Φ1(z1) and Φ2(z2) can be given in the following form

Φ1(z1) = B∗z1 + Φ01(z1) Φ2(z2) = (B′
∗ + iC ′∗)z2 + Φ02(z2) (2.14)

where B∗, B′∗, and C ′∗ can be determined according to the stress components acting at infinity
(i.e., σ∞x , σ

∞
y and τ

∞
xy) as

B∗ =
σ∞x + (α

2
2 + β

2
2)σ
∞
y + 2α2τ

∞
xy

2[(α2 − α1)2 + (β22 − β21)]

B′
∗ =
(α21 − β21 − 2α1α2)σ∞y − σ∞x − 2α2τ∞xy

2[(α2 − α1)2 + (β22 − β21)]

C ′
∗ =
(α1 − α2)σ∞x + [α2(α21 − β21)− α1(α22 − β22)]σ∞y + [(α21 − β21)− (α22 − β22)]τ∞xy

2β2[(α2 − α1)2 + (β22 − β21)]

Here, Φ01(z1) and Φ02(z2) in Eqs. (2.14) should have the following form after substituting
z1 = ω1(ζ1) and z2 = ω2(ζ2) into them

Φ01(z1) = Φ
0
1[ω1(ζ1)] =

∞∑

k=0

akζ
−k
1 Φ02(z2) = Φ

0
2[ω2(ζ2)] =

∞∑

k=0

bkζ
−k
2 (2.15)

where ak = a1k + ia2k, bk = b1k + ib2k, a1k, a2k, b1k and b2k are undetermined real constants
(k = 0, . . . ,∞).
Along the edge of the hole, ζ1 = σ = eiθ and ζ2 = σ = eiθ. The undetermined coefficients

ak and bk can be determined from Eqs. (2.13)-(2.15) by using the power-series method. Then,
the stress components σx, σy and τxy in the Cartesian coordinates can be determined by the
following equations (Lu et al., 2015)

σx = 2Re[µ21Φ
′
1(z1) + µ

2
2Φ
′
2(z2)] σy = 2Re[Φ′1(z1) + Φ

′
2(z2)]

τxy = −2Re[µ1Φ′1(z1) + µ2Φ′2(z2)]
(2.16)

where

Φ′1(z1) = B
∗ −

n∑

k=1

kakζ
−k−1
1

/[
γ1R

(
1−

n∑

k=1

kCkζ
−k−1
1

)
+ δ1R

(
− 1
ζ21
+

n∑

k=1

kCkζ
k−1
1

)]

Φ′2(z2) = B
′∗+ iC ′∗−

n∑

k=1

kbkζ
−k−1
2

/[
γ2R

(
1−

n∑

k=1

kCkζ
−k−1
2

)
+ δ2R

(
− 1
ζ22
+

n∑

k=1

kCkζ
k−1
2

)]

(2.17)
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The stress components σρ, σθ and τρθ in orthogonal curvilinear coordinates can be determined
by the following equations

σρ + σθ = σx + σy σθ − σρ + 2iτρθ =
ζ2

ρ2
ω′(ζ)

ω′(ζ)
(σy − σx + 2iτxy) (2.18)

Along the hole boundary where ζ1 = ζ2 = ζ = σ = eiθ and ρ = 1, the analytical solution
of stress can be solved easily by Eqs. (2.16)-(2.18). In this way, when the mapping functions
are known and the material parameters and external loads are given, no matter how the fiber
orientation angle and hole orientation angle change, the analytical solution of the stress along
and near the hole boundary can be calculated. In addition, this analytical solution of the stress
is suitable for an arbitrarily shaped hole.

2.4. Optimization

Tangential stress concentration along the boundary of the hole will cause damage if its
magnitude exceeds the material strength. Consequently, the optimization criterion we take is
that the absolute maximum value of the tangential stress along the hole boundary should be
kept at the minimum. In the optimization, the fiber orientation angle ϕ and the hole orientation
angle α are the unknown variables. A set of the initial values of ϕ and α are given; then, the
tangential stress with the maximum absolute value max |σθ| could be obtained through the
complex variable method. By revising the values of design variables ϕ and α, the final values
of ϕ̂ and α̂ that lead to the minimal value of max |σθ| should be the optimized results. The
mathematical model could be expressed as follows

F (X) = max
θ∈[0,2π]

|σθ|

minF (X) X ∈ D = {ϕ,α}
s.t. 0 ¬ ϕ ¬ 2π 0 ¬ α ¬ 2π

(2.19)

The original DE algorithm (Storn and Price, 1997) is used in the computations. It can be
written as DE/rand/1/bin. As defined by Storn and Price, the DE algorithm is characterized
by three main parameters NP , F and CR as

xi,G i = 1, 2, . . . , NP

vi,G+1 = xr1,G + F (xr2,G − xr3,G)

uji,G+1 =

{
vji,G+1 if (randb(j) ¬ CR) ∨ j = rnbr (i)

xji,G if (randb(j) > CR) ∧ j 6= rnbr (i)
j = 1, 2, . . . ,D

(2.20)

In this paper, the number of population vectors NP equals 200. The real and constant factor
F equals 0.8, and the crossover constant CR is equal to 0.5.

3. Examples

As shown in Fig. 1, the external loads are chosen as σ∞x : σ
∞
y = 2 : 7 and τ

∞
xy = 0. Sign

convention is defined as positive for tension and negative for compression. It can be seen from
the results of the following examples that all of the maximum tangential stresses are tensile
stresses. The values of the independent principal elastic constants in the local coordinates x′oy′

are: E1 = 1.4 · 105 Pa, υ12 = 0.46 and G12 = 1.2 · 104 Pa, where the subscripts 1 and 2 represent
the directions along the x′- and y′-axis, respectively. To analyze the effect of Young’s modulus
on the optimization results, we take different values of E2/E1, i.e., 0.2, 0.5, 2.0 and 5.0. The
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material coefficients in Eq. (2.9) can be obtained by the three elastic constants as a′11 = 1/E1,
a′22 = 1/E2, a

′
16 = a

′
26 = 0, a

′
12 = −υ12/E1, and a′66 = 1/G12 (Lekhnitskii, 1968; Chen, 1994).

The hexagonal hole and the elliptical hole are selected as examples. The size of the hole has
no influence on the calculation of the stress field, because the domain occupied by the plate is
infinite. In order not to lose the generality, take R1 = 1.0. The mapping function of Eq. (2.5)
can be described as

z = ω(ζ) = 1.0eiα
(
ζ +

n∑

k=1

Ckζ
−k
)

(3.1)

The imaginary part of the coefficient Ck is equal to zero, because the hole shapes of the examples
are all symmetric about the x1-axis.
For the elliptical hole: a/b = 1.5, n = 1, C1 = (a− b)/(a+ b) = 0.2.
For the hexagonal hole: n = 29, C5 = 0.0667, C11 = 0.0101, C17 = 0.0036, C23 = 0.0018 and

C29 = 0.0010 (Savin, 1961). The other Ck are all equal to zero.

3.1. Optimization of the fiber orientation angle ϕ

In this Section, only the fiber orientation angle ϕ is taken as the design variable, while the
external loads and hole orientation angle α are given. The hole orientation angle α shown in
Fig. 1 is set to 0◦ (see Fig. 2), meaning that the coordinates x1oy1 coincide with xoy. The local
coordinates x′oy′ still follow the fiber orientation, coinciding with xoy after rotation by ϕ degrees
counterclockwise. The scope of the optimized variable is ϕ ∈ 0◦-90◦ because of the symmetry of
the external loads and the hole shape.

Fig. 2. The location of holes with two coordinates: (a) elliptical hole, (b) hexagonal hole

3.1.1. Elliptical hole

The optimal fiber orientation and its corresponding tangential stress along the boundary of
the elliptical hole are illustrated in Figs. 3 and 4, respectively. The optimized fiber orientation
angles and the maximum tangential stresses are listed in Table 1. The global coordinates xoy
in Fig. 3 are in accordance with that in Fig. 2a, and the oblique lines in Fig. 3 represent the
fiber directions in the x′-axis (Fig. 2a) for different values of E2/E1. It should be noted that the
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Fig. 3. The optimal fiber orientation of the orthotropic plate with the elliptical hole

Fig. 4. Tangential stresses along the boundary of the elliptical hole at the optimal fiber orientation

Table 1. The optimal fiber orientation angles and the max |σθ| of an orthotropic plate with the
elliptical hole

E2/E1
0.2 0.5 2.0 5.0

ϕ [◦] 30.46 39.89 49.96 56.49
max |σθ| [MPa] 21.84 23.34 28.50 32.04

angle θ in Fig. 4 is the polar angle in the ζ-plane and θ = 0◦ corresponds to the intersection of
the positive x-axis and the excavation boundary.
It can be seen from Figs. 3 and 4 and Table 1 that both the optimal fiber orientation angle ϕ

and the maximum tangential stress increase with the increasing value of E2/E1. The maximum
tangential stress concentration is evident in approximately 30◦, 150◦, 210◦ and 330◦, not similar
to the isotropic plate, where the maximum tangential stress usually occurs at 0◦ and 180◦. Under
the given loading condition, the compressive stress can be found around the intersection of the
y-axis and the hole boundary with a smaller magnitude than the tensile stress.
Considering that there is only one variable in this case, the optimal fiber orientation angle ϕ

can be obtained without any optimization algorithm. Figure 5 illustrates the maximum absolute
tangential stress max |σθ| for different fiber orientation angles, showing that the minimum value
of max |σθ| and the corresponding fiber orientation angles are identical with the results listed in
Table 1, which verifies the results obtained by the DE algorithm.
For an elliptical hole, the stresses have also been analyzed by Ukadgaonker and Rao (2000).

To verify the fundamental theories of Section 2, we compared the normalized stresses of σx,
σy and τxy along the hole boundary with the results obtained by Ukadgaonker and Rao (2000,
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Fig. 5. The max |σθ| for different fiber orientation angles

Table 2. Normalized stresses of σx, σy and τxy for equi-biaxial tension on a graphite/epoxy
plate, 60◦ fibers containing an elliptical hole (a/b = 2)

θ [deg]
Ukadgaonker and Rao (2000) Zhang et al.
σx σy τxy σx σy τxy

0 0 3.44 0 0 3.4393 0
20 0.82 1.54 −1.12 0.8172 1.5421 −1.1226
40 1.46 0.52 −0.87 1.4589 0.518 −0.8693
60 1.54 0.13 −0.45 1.5423 0.1285 −0.4452
80 1.41 0.01 −0.12 1.4076 0.0109 −0.1241
90 1.3 0 0 1.3033 0 0
100 1.18 0.01 0.1 1.1812 0.0092 0.1041
120 0.89 0.07 0.26 0.8867 0.0739 0.256
140 0.57 0.2 0.34 0.5651 0.2007 0.3367
160 1.23 2.32 1.69 1.2272 2.316 1.6859
180 0 3.44 0 0 3.4393 0

page 348, Table 3) in Table 2. Taking the same values of material parameters and external
loadings, Table 2 shows that the results obtained by the two papers are in a very close agreement.

3.1.2. Hexagonal hole

The optimized fiber orientation angles and their corresponding tangential stresses along the
boundary of the hexagonal hole are illustrated in Figs. 6 and 7, respectively. The maximum
tangential stress occurs at the points marked with an asterisk. When the ratios of the elastic
moduli are E2/E1 = 0.2, 0.5, 2.0 and 5.0, the corresponding optimal fiber orientation angles
are ϕ = 32.15◦, 40.47◦, 42.74◦ and 57.90◦, respectively (shown in Fig. 6), which shows a great
difference for the different ratios of E2/E1. Figure 7 illustrates that the tangential stress reaches
the corresponding extreme values in/near the corner points. The maximum tangential stresses
for different E2/E1 are found in different positions but are still around the corner points, and
the values of the maximum tangential stress range from 42.89MPa (E2/E1 = 0.5) to 70.77MPa
(E2/E1 = 5.0), meaning that the location and magnitude of the maximum tangential stress
are highly dependent on Young’s modulus for a given hole shape and loading condition. We
can also see that the tangential stresses along the boundary are mainly tensile stresses with
the exception of the two sides BC and EF, which are parallel to the direction of the minimum
loading. Moreover, the magnitude of the compressive stress is much smaller than that of the
tensile stress.
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Comparing with the results in Fig. 4, the stress concentration along the boundary of the
hexagonal hole is much larger than that along the boundary of the elliptical hole because there
are sharp corners on the hexagonal hole.

Fig. 6. The optimal fiber orientation of the orthotropic plate with the hexagonal hole

Fig. 7. Tangential stresses along the boundary of the hexagonal hole at the optimal fiber orientation

3.2. Optimization of the fiber and hole orientation angles

Considering that the hole orientation angle also influences the tangential stress along the
boundary of the hole, both the fiber orientation angle and the hole orientation angle are chosen
as the design variables in this Section with the external loads given (refer Fig. 1).



Optimum design of fiber angle and hole orientation... 307

3.2.1. Elliptical hole

Because of the symmetry of the external loads and the elliptical hole, the scopes of optimized
variables are given as α ∈ 0◦-180◦ and ϕ ∈ 0◦-90◦. The optimal fiber and hole orientation angles
and the corresponding tangential stress along the boundary of the hole are illustrated in Figs. 8
and 9, and Table 3, respectively.

Fig. 8. The optimal fiber and hole orientation angles of the orthotropic plate with the elliptical hole

Fig. 9. Tangential stresses along the boundary of the elliptical hole at the optimal fiber and hole
orientation

Table 3. The optimal fiber and hole orientation and the max |σθ| of the orthotropic plate with
the elliptical hole

E2/E1
0.2 0.5 2.0 5.0

ϕ [◦] 33.64 39.25 53.98 66.13
α [◦] 90.95 89.29 92.43 94.84
max |σθ| [MPa] 12.85 14.33 18.12 20.11

It can be seen from Fig. 8 and Table 3 that the optimal fiber orientation angle increases
greatly with an increase in the ratio of E1/E2. Nevertheless, the hole orientation angles are all
near the same degree of 90◦, that is to say, the major axis of the elliptical hole should be set in
the direction of the maximum external load. It can also be verified by comparing Figs. 4 and 9.
Under the given loadings, vertical elliptical holes (Fig. 9) always produce smaller tangential
stress concentration compared to the horizontal ones (Fig. 4). In addition, the similar laws of
the two cases are that the maximum tangential stress increases with the ratio of E2/E1 and
compressive stress is found in Fig. 9 as well.
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3.2.2. Hexagonal hole

Because a hexagonal hole has more symmetry axes, the scopes of the optimized variables are
reduced to α ∈ 0◦-60◦ and ϕ ∈ 0◦-90◦. Figures 10-13 show the optimal placements of the fiber
and hole orientation angles and the corresponding tangential stress along the hole boundary. It
should be noted that the angle θ = 0◦ corresponds to the intersection of the positive x1-axis and
the hole in this case.

Fig. 10. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 0.2

Fig. 11. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 0.5

Fig. 12. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 2.0

It can be seen from Figs. 10-13 that both the optimized fiber orientation angle and the hole
orientation angle are apparently different for different ratios of E2/E1. Under the given inequi-
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Fig. 13. The optimal placement of fiber and hole orientation angles of orthotropic plates and the
tangential stresses along the boundary of the hexagonal hole when E2/E1 = 5.0

-biaxial tensile loading, compressive tangential stress may occur and is more likely to be found
in the sides that are parallel (BC and EF in Figs. 6 and 7), or inclined (BC and EF in Figs. 11,
AB and DE in Figs. 12 and 13) to the direction of the minimum external loading.
Combining with the above example on the hexagonal hole (see Section 3.1.2), we find that for

holes with sharp corners, the tangential stress concentration is more likely to occur around the
corner points but not always exactly in the corner points. The point D in Fig. 11 gives the most
obvious evidence. In addition, the tangential stress concentration is smaller when both the fiber
and hole orientation angles are optimized compared to the case in Section 3.1. Thus, when we
design a perforated structure in an orthotropic plate, the two parameters should be considered
jointly to decrease the tangential stress concentration along the boundary of the hole. From all
of the examples given in Sections 3.1 and 3.2, we obtain that for a significantly orthotropic plate
(E2/E1 = 0.2 or 5.0) with a central hole, setting the principal direction that has the larger
Young’s modulus inclined to the direction of the minimum loading may decrease the tangential
stress concentration along the hole boundary.

3.2.3. Optimality verification of fiber and hole orientation angles

The optimality verification should be carried out to guarantee that the optimized fiber and
hole orientation angles, ϕ and α, are the global optimal solutions. Taking the hexagonal hole
as an example, only one condition is analyzed when the ratio of the elastic modulus is given as
E2/E1 = 2.0. The external loads and other parameters are the same as in the previous examples.
The variation of the maximum tangential stress max |σθ| with respect to ϕ, α and the contour
map is illustrated in Fig. 14. The degree intervals of ϕ and α are all set as 0.01◦. It can be seen
from Fig. 14 that the value of max |σθ| differs for different ϕ and α. According to the calculation
results, max |σθ| reaches the minimum value of 47.30MPa only when ϕ = 55.53◦ and α = 54.60◦,
which verifies the results shown in Fig. 12.

4. Conclusions

To decrease the tangential stress concentration around an arbitrarily shaped hole in an orthotro-
pic plate, the optimization design on the fiber orientation angle and the hole orientation angle
are conducted. The tangential stress distributions around non-circular shapes are given. The
results show that the tangential stress concentration around a hole with corner points in an or-
thotropic plate under an inequi-biaxial loading is more likely to occur in/near the corner points.
Furthermore, the tangential stress concentration around a hole with corner points is found to
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Fig. 14. The three-dimensional map and contour map of max |σθ | for all possible placements of the fiber
and hole orientation angles

be more significant compared to that around a smooth convex hole. Under an inequi-biaxial
loading, compressive stress can usually be found and is mainly located at the sides that are
parallel or inclined to the direction of the minimum external loading.
Based on the results, the following several treatments can be referred in the designing of

orthotropic plates in order to decrease the tangential stress concentration: (1) avoid holes with
corner points and choose smooth convex holes instead, such as an ellipse hole; (2) set the major
axis of an ellipse in the direction of the maximum external loading and (3) set the principal
direction that has the larger Young’s modulus inclined to the direction of the minimum loading,
especially for a significantly orthotropic plate.
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In this paper, certain examples of comparison between the selected definition of the stochastic
technical stability (for motor vehicle models) and the ISO definitions (developed for real
vehicles) have been discussed. Being able to refer the examined stability of a mathematical
model to the real object may result in verifying the properties of the latter on the basis
of model tests, instead of the field trials. Such an attempt has been presented previously,
but in a more general approach. The aim of this paper is to present a certain attempt to
compare the results obtained for a simulated vehicle model in virtual environment with the
specific definitions of stability dedicated to the real motor vehicles. The background of this
considerations liesin the examination of the stochastic technical stability, which allows any
mechanical system undergo external random disturbances, such as road irregularities.

Keywords: motor vehicle stability, ISO norm, comparisons

1. Introduction

In the analysis of stability it seems important to choose an appropriate definition which, de-
pending on the ease of interpretation and nature of disturbances, allows analysis of the tested
object. The ability to refer the obtained results to real-world objects (e.g. motor vehicle) seems
to be important, for which stability criteria are determined according to the ISO standards.
Stability of a nonlinear mathematical model of a motor vehicle, with additional external

disturbances, is considered. Disturbances stemming from road irregularities are assumed as a
stochastic process, stationary in broader sense as well as globally ergodic, which enabled analysis
based on a single trajectory representing motion of the vehicle (Kisilowski and Zalewski, 2008).
For motor vehicles, the stability is adopted in accordance with ISO 8855:1991 which, in

comparison to the stochastic technical stability, gives an opportunity to examine the motor
vehicle stability on the basis of an exemplary model (described with the use of differential
equations) and refer the results to the real one, in real maneuver.
The term “stochastic” has been previously connected to the aspects of stability, e.g. in

(Khasminskii, 2012; Kisilowski and Zalewski, 2016), however not related to the ISO standards.
Stability was also examined for motor vehicles, e.g. in (Karnopp, 2004), however not combining
both the use of the stochastic technical stability and the ability to relate the results to real
vehicles.
Certain aspects of vehicle stability were considered previously. For example, in (Chung and

Yi, 2006) motor vehicle stability control based on the side slip angle was proposed, as well as
the the evaluation of certain control schemes on a virtual test track. In (Doumiati et al., 2013)
the investigation on the coordination of active front steering and rear braking for a driver-assist
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system in yaw control of a motor vehicle was proposed. In (Güvenç et al., 2009) asymmetrical
load in a vehicle, combined with µ-split braking forces caused by side wind or unilateral tire
pressure loss was examined. As a result, unexpected yaw disturbances were observed, which
required yaw stabilisation provided either by a driver or by an automatic driver-assist system.
Stability was also examined in relation to control systems. In (Segawa et al., 2001) the so-

-called D∗ control system was proposed, which, according to the authors, could offer mainly
high steering response and reduced driving effort, whereas in (Zheng et al., 2006) the use of the
vehicle yaw moment and wheel slip control were used in the dynamic control system, mainly for
tracking the desired vehicle behaviour.
Taking the above into consideration, it is fair to say that research on the vehicle stability has

two major directions: vehicle dynamics with the use of mechanical dependencies and control with
the use of systems basing on the obtained data. It seems however important that the mechanical
reliances could be connected with simulation results and normalized descriptions (ISO).
Analysis of the possibility to compare results obtained in a simulation with the ISO standards

was presented in (Kisilowski and Zalewski, 2015). However, it was not previously discussed on
specific examples.
In this paper, the motor vehicle model, considered as well in (Kisilowski and Zalewski, 2016),

is used as an example. It seems questionable when, under what circumstances, a vehicle after
accident and repair is roadworthy. In order to provide the realism of the analysed problem,
the stochastic technical stability definition is taken into consideration, as it provides random
disturbances acting on the mechanical system (here the vehicle). One of the discussed examples
was previously created in (Kisilowski and Zalewski, 2016).

2. Stability of a motor vehicle

The concept of stability in terms of motor vehicle motion is presented in ISO 8855: 1991. To so
called steady-state of the vehicle is described as a condition in which the sum of all external and
inertial forces and moments forms a constant. Other conditions have been described as other
states (non-steady). Hence, definitions of stability, quoted in the paper (Kisilowski and Zalewski,
2016), are as follows:
• non-periodic stability – stability characteristic at a prescribed steady-state equilibrium if,
following any small and temporary disturbance or control input, the vehicle will return to
the steady-state equilibrium without oscillation;

• neutral stability – stability characteristics at a prescribed steady state equilibrium if, for
any small and temporary disturbance or control input, the vehicle motion remains close
to the motion defined by the steady-state equilibrium, but does not return to it;

• oscillatory stability – oscillatory vehicle response of a decreasing amplitude and a return
to the original steady-state equilibrium;

• non-periodic instability – ever-increasing response without oscillation;
• oscillatory instability – oscillatory response of an increasing amplitude about the initial
steady-state equilibrium.

3. Stochastic technical stability

Stochastic technical stability is defined according to, e.g. (Bogusz, 1972), where a system of
stochastic equations is assumed

dx

dt
= f(x, t, ξ(t)) (3.1)
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where x = (x1, . . . , xn) and f(x, t, y) = (f1, . . . , fn) and ξ(t) = (ξ1, . . . , ξn) are vectors and ξ(t)
for t  0 is a stochastic process which describes random disturbances. Any set of equations can
be represented by such a system (Kisilowski and Zalewski, 2016).
The function f(x, t, y) is assumed to be determined for each x ∈ En, y ∈ En and t  0.

Absolute integrability is assumed for a stochastic process f(0, t, ξ(t))

P

{ T∫

0

|f(0, t, ξ(t))| dt <∞
}
= 1 for each T > 0 (3.2)

as well as the existence of another stochastic process f(X, t, ξ(t)), which fulfills the Lipschitz cri-
terion in [0, T ] interval for another process η(t), also absolutely integrable in that given interval.
This assumption is described as follows

|f(x2, t, ξ(t)) − f(x1, t, ξ(t))| ¬ η(t)|x2 − x1| (3.3)

As a result of the above assumptions, there exists only one solution of the set of equations
(3.1), being an absolutely continuous stochastic process with the probability 1 for t  t0, with
the initial conditions t = t0 and x(t0) = x0.
It is also assumed that there exist two areas in the Euclidean space En: ω – limited and open

and Ω – limited and closed, where ω ⊂ Ω. There is as well a positive number ε, where 0 < ε < 1
and the stochastic process X(t) specified for t  t0.
Initial conditions for each solution are t = t0, x(t0) = x0 and the solution itself is presented

as (t, t0, x0).
Definition of the stochastic technical stability reads: if every solution of equation (3.1), with

its initial conditions belonging to ω, remains in the Ω area with the probability 1−ε, then system
(3.1) is stochastically technically stable towards ω, Ω and the process ξ(t) with the probability
1− ε (Fig. 1).

Fig. 1. Graphic interpretation of the stochastic technical stability. Source: Bogusz (1972)

It can also be described by the formula

P{(t, t0, x0) ∈ Ω} > 1− ε for x0 ∈ ω (3.4)

The above definitions of the motor vehicle stability according to ISO standards can be com-
pared with the stability defined for mathematical models, according to certain assumptions and
criteria which concern not only the vehicle but the disturbances coming from road irregularities
as well. It was previously theoretically discussed in (Kisilowski and Zalewski, 2015) but with no
specific examples. As a result, the following conclusions were made in relation to the stochastic
technical stability versus the ISO standards. All comparisons are possible if trajectories of the
vehicle are taken into account.
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The definition of non-periodic stability can be compared with the stochastic technical stabi-
lity provided that the accepted disturbances will generate a relatively small deviation from the
assumed stable motion, because the return to this state should seem fluent without oscillations.
In the presented case, random disturbances could, for example, originate from transverse irregu-
larities of the road as well as a strong blow of wind whose resultant force would be perpendicular
to the plane of symmetry of the vehicle. This may cause transverse drift of the vehicle.
The neutral stability (motion close to the steady-state, but without oscillations) can as well

be compared to the stochastic technical stability, because of the assumption that the solution
remains in the acceptable area around the steady-state.
The comparison seems also be possible between the oscillatory stability and the stochastic

technical stability, since both definitions provide return of a representative point of the vehicle
to the steady-state. Also implementing stochastic disturbances that cause oscillations seems
important when considering the vehicle response. Oscillatory stability does not have to mean a
periodic decrease of the trajectory amplitude.
Both periodic and non-periodic instabilities characterised by the strengthening of the vehicle

response with or without oscillation, respectively, can be compared to the stochastic technical
stability depending, among others, on which the model is analysed (linear or non-linear) and
what type of disturbances are taken into account (constant or random).

4. Comparison of the methods

The above conclusions show that stability of technical objects presented as mathematical mo-
dels with the use of differential equations (in this case motor vehicles) seems to be a valuable
tool for analysis of the correctness of their functioning. Moreover, significant seems the fact of
the possibility of experimental verification of tested models by analysing motion of their real
counterparts.
In this Section, certain examples of comparison between the stochastic technical stability

and selected ISO standards are shown. Three presented examples show simulation results for a
sports two seater (in MSC Adams/Car environment), differently laden and moving in different
road conditions. Description of this model was presented, among others, in (Zalewski, 2014a,b).
In each given case the FTIRE (flexible tire ring) tire model was used instead of the PAC89
originally attached to the vehicle model, because of random irregularities in the road surface.
Typical tire models do not allow running simulations on two-dimensional stochastic uneven road
profiles, where the wavelength of a single irregularity is less than the wheel radius (Zalewski,
2014a,b).
Nominal parameters of the considered model of the motor vehicle in MSC Adams/Car have

been adopted as in (Zalewski, 2014a,b):

• mass of the unladen vehicle: mUB = 995 kg;

• location of the “origo” point in relation to the front edge center of the unladen vehicle:
xc = 0.9m, yc = 0m, zc = 0.48m;

• nominal location of the center of mass in relation to the “origo” (Kisilowski and Zalewski,
2016) in the unladen vehicle: xc = 1.5m, yc = 0, zc = 0.45m;

• nominal values of the inertia moments for the unladen vehicle relative to the axes which
intersect the “origo” point: Ix = 401 kg·m2, Iy = 2940 kg·m2, Iz = 2838 kg·m2;

• nominal values of the deviation moments of inertia of the unladen vehicle relative to the
same intersecting “origo”: Ixy = 0, Ixz = 671 kg·m2, Iyz = 0.
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Example I

As the first example, results from the work (Zalewski, 2014) are presented, where a single
lane change maneuver has been simulated using the model described previously as well in the
MSC Adams/Car component.
Assumptions for the vehicle load and the course of maneuver have been taken as follows:
• mass of the vehicle was increased by the baggage (mB = 60 kg), driver (m1 = 75 kg) and
passenger (m2 = 110 kg);

• initial speed of the vehicle moving at the fifth gear was 100 km/h;
• coordinates of the center of mass in the laden vehicle with respect to “origo”:
xcL = 1.472m, ycL = 0.085m, zcL = 0.454m;

• inertia and deviation moments of inertia with regard to “origo”: IxL = 464 kg·m2,
IyL = 3442 kg·m2, IzL = 3295 kg·m2, IxyL = 155 kg·m2, IxzL = 828 kg·m2, IyzL =
47.8 kg·m2.

The above mentioned “origo” point is the origin of the coordinate system located underneath
the vehicle model (on the ground level) but moving along with the model during simulation. It
is presented in Fig. 2.

Fig. 2. Location of the “origo” point. Source: MSC Adams/Car

The vehicle model used here had non-linear elastic – damping elements. In Fig. 3, the spring
deflection, whereas in Fig. 4 – the damping force versus velocity of the acting damper are
presented. A MacPherson column based suspension is used in the model.

Fig. 3. The force – spring deflection characteristics in the vehicle suspension. Source: Zalewski (2014a)
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Fig. 4. The damping force – damper velocity characteristics in the vehicle suspension.
Source: Zalewski (2014a)

A single lane change maneuver simulation has been carried out for the following configura-
tions:

a) vehicle laden as shown above, riding on a flat and icy road (µ = 0.3);

b) vehicle laden as shown above and riding on an icy and randomly uneven road.

The maneuver has been realised on a 480m long road section at a constant speed of 100 km/h.
Random disturbances acting on the vehicle as road irregularities were described among others in
(Zalewski, 2014a). The discussed maneuver has been carried out for extreme icy road conditions.
As a result, two trajectories were obtained, each for one of the above described configurations.

The thin curve marks the vehicle trajectory on a flat surface, whereas the bold curve – the
trajectory obtained for the uneven road (Fig. 5).

Fig. 5. Lateral displacement versus covered distance. Source: Zalewski (2014a)
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Example II

Another example is based on the results obtained from (Zalewski, 2014). By adding mass of
the driver (m1 = 75 kg), passenger (m2 = 105 kg) and baggage (mB = 50 kg), the entire mass
of the vehicle model increased (Figs. 6 and 7), so that new parameters of mass – inertia in the
vehicle body were determined:
• disturbed location of the mass center with regard to the “origo”: xcL = 1.481m,
ycL = 0.081m, zcL = 0.454m;

• inertia moments of the vehicle with regard to the axes intercecting the “origo”:
IxL = 461 kg·m2, IyL = 3441 kg·m2, IzL = 3297 kg·m2;

• deviation moments of the vehicle with regard to the axes intersecting the “origo”:
IxyL = 148 kg·m2, IxzL = 824 kg·m2, IyzL = 45.5 kg·m2.

Simulation of the impulse steer maneuver described in (Zalewski, 2014a) was carried, among
others, for the icy even and icy, uneven road surface with randomly occurring irregularities. The
vehicle moved at the speed of 70 km/h, and its course was disturbed by implementing an impulse
turn of the steering wheel about 90◦ counterclockwise.
The spring – damping elements were non-linear, similarly as in the first example, so the

results depended on initial conditions and concerned only such cases as discussed in this paper.
Two vehicle configurations were selected for analysis: the laden vehicle on an icy flat road

surface and the laden vehicle on an icy road surface with randomly appearing irregularities.

Fig. 6. The Ω area of the feasible solutions containing parts of the obtained trajectories.
Source: Zalewski (2014a)

The simulation took place on a 107m length section of a straight road. Two trajectories for
the described motion conditions were selected for further analysis – both representing the above
discussed configurations, respectively (Fig. 6).

Example III

According to the work (Kisilowski and Zalewski, 2016), the following configuration of distur-
bances has been assumed:
• the vehicle was laden with the driver (md = 74 kg), passenger (mp = 105 kg) and baggage
(mb = 45 kg).

As in the previous examples, new coordinates of the center of mass have been determined:
• location of the center of mass for the laden vehicle in regard to the “origo”: xcL = 1.562m,
ycL = 0.016m, zcL = 0.471m;
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• inertia moments of the laden body with regard to the axes intersecting the “origo”:
IxL = 460 kg·m2, IyL = 3624 kg·m2, IzL = 3464 kg·m2;

• deviation moments of the laden body with regard to the axes intersecting the “origo”:
IxyL = 29 kg·m2, IxzL = 863 kg·m2, IyzL = 8.8 kg·m2.

An incomplete double lane change maneuver has been simulated. After the maneuver was
finished, the vehicle remained in the middle of width of a single-lane road. The vehicle drove at
the speed of 120 km/h, reflecting the necessity of an emergency response to an emerging obstacle.
The simulation was carried out in MSC Adams/Car component as well in two configurations:

• laden vehicle moving on a dry and flat road;

• laden vehicle on an icy and randomly uneven road.

The resulting two trajectories for the described case are shown in Fig. 7.

Fig. 7. Lateral displacement of the vehicle model versus the distance covered, for the laden vehicle body
and both road surface conditions. Source: Kisilowski and Zalewski (2016)

Basing on the obtained simulation results for three different maneuvers in different road
conditions, certain conclusions can be made. Provided that such analysis can be conducted on
the basis of the obtained trajectories, it seems possible to compare the stochastic technical
stability with the stability according to ISO standards, both for the motor vehicle in virtual and
real world, respectively.
As in Example I, it can be seen that both trajectories in Fig. 5, after performing the single lane

change, remain close to each other. If the thin line was assumed to be the steady state motion,
than the thick line could be regarded as neutrally stable, according to the ISO definitions. It
seems that the qualitative assesment of both obtained trajectories is sufficient in the given case.
In Example II, however, it seems that the vehicle realising motion along the thick line is non-

periodically unstable versus the thin line, assumed to be the steady state motion. For the first
100m of the covered distance, the difference between the lateral displacement of both trajectories
for the horizontal axis (distance [m], Fig. 6) increased without oscillation, as according to the
ISO standards.
Finally, for the trajectories obtained in Example III (Fig. 7), it seems not easy to justify

whether the thick line is oscillatory or neutrally stable versus the thin line. However, none of the
given examples proved to be oscillatory unstable or non-periodic stable (none of them returned
to the assumed steady state).
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5. Conclusions

Basing on the presented results, certain conclusions can be made. It seems that comparison
between stability of vehicles examined in virtual reality with the use of the given mathematical
definition, and stability as a feature of real vehicles as mechanical objects described according
to the specified norm, is possible. Moreover, the presented method seems versatile enough to be
used in other examples, i.e. different vehicle models and different maneuvers.
Correctness of the final results in this case seems to depend on the accuracy of the vehicle

model as well as simulation of its motion. However, vehicle stability, considered as a certain
feature of each vehicle in the period of its maintenance, does not seem to require vehicle models
being as accurate as the real vehicles. The ability to specify the mass – inertia parameters of
the modeled vehicle seems to be the most important.
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4. Güvenç B.A., Güvenç L., Karaman S., 2009, Robust yaw stability controller design and
hardware-in-the-loop testing for a road vehicle, IEEE Transactions on Vehicular Technology, 58, 2

5. Karnopp D., 2004, Vehicle Stability, CRC Press

6. Khasminskii R., 2012, Stability of Stochastic Differential Equations, 2nd Edition, Springer-Verlag,
Berlin, Heidelberg

7. Kisilowski J., Zalewski J., 2008, Chosen problems of examination of car stability, Archives of
Transportation Systems Telematics, 1, 1

8. Kisilowski J., Zalewski J., 2015, Stability of road vehicle mathematical models and the real
objects (the ISO norm) (in Polish), Logistyka, 4

9. Kisilowski J., Zalewski J., 2016, Analysis of the stochastic technical stability of engineering
structures on example of moving car, Journal of Theoretical and Applied Mechanics, 54, 4

10. Segawa M., Nakano S., Nishirara O., Kumamoto H., 2001, Vehicle stability control strategy
for steer by wire system, JSAE Review, 22

11. Zalewski J., 2014a, The influence of road conditions on the stability of a laden vehicle ma-
thematical model, realising a single lane change maneuver, Telematics – Support for Transport,
Communications in Computer and Information Science, 471

12. Zalewski J., 2014b, Effect of disturbing the center of gravity on stability of a vehicle subject to
impulse distortion of the straightforward motion (in Polish), Zeszyty Naukowe Polskiego Stowarzy-
szenia Zarządzania Wiedzą, 70

13. Zheng S., Tang H., Han Z., Zhang Y., 2006, Controller design for vehicle stability enhancement,
Control Engineering Practice, 14

Manuscript received September 12, 2016; accepted for print October 10, 2017





JOURNAL OF THEORETICAL SHORT RESEARCH COMMUNICATION

AND APPLIED MECHANICS

56, 1, pp. 323-328, Warsaw 2018
DOI: 10.15632/jtam-pl.56.1.323

MODIFIED SPLIT HOPKINSON PRESSURE BAR FOR INVESTIGATIONS
OF DYNAMIC BEHAVIOUR OF MAGNETORHEOLOGICAL MATERIALS

Leszek J. Frąś, Ryszard B. Pęcherski
Institute of Fundamental Technological Research of the Polish Academy of Science, Warsaw, Poland

e-mail: lfras@ippt.pan.pl

The magnetorheological fluid is a functional material that is changing its rheological pro-
perties and finally solidifies in a magnetic field. The dynamic behaviour, tested with the use
of the Split Hopkinson Pressure Bar is an important issue for description of this material,
which is commonly used in different kinds of shock absorbers. This note presents a new
idea how to modify the known SHPB set up in order to investigate dynamic properties of
magnetorheological materials.

Keywords: Split Hopkinson Pressure Bar (SHPB), Magnetorheological Fluid (MRF), dyna-
mic behaviour, solidification in magnetic field, ferroelements

1. Introduction

The magnetorheological fluid (MRF) is a material which is composed of microsized (less than
10µm diameter) magnetoactive carbonyl iron particles immersed in a carrier fluid, e.g. oil. The
influence of the magnetic field changes properties of the MRF. The ferroelements are joined
together and form characteristic shapes – braids, which are created along the magnetic field
lines. The braids are concentrating in the process of sticking together. The applied magnetic
field is changing the state of the material leading to solidification. Then the yield shear strength
appears the important material parameter, the value of which is dependent on strength of the
magnetic field. The aim of the paper is to present the idea how to investigate the behaviour
of the solidified magnetorheological fluid under high strain rates. The experimental tests are
carried out with application of the own construction of a laboratory test stand – the modified
Split Hopkinson Pressure Bar (SHPB).
The Hopkinson Pressure bar was not only used to test metallic materials or brittle solids

at high strain rates. Kenner (1980) adopted the split Hopkinson pressure bar to test pressure
pulses in different kinds of fluids – ethyl alcohol, distilled water, glycerin and two kinds of oil.
The experimental results help one to evaluate the one dimensional representation of pulse trans-
mission and reflection at a solid-fluid interface. The results of experimental investigations make
a basis for creation of a mathematical expression describing the pressure pulse distributed in the
fluid. Another attempt to use the SHPB to test fluids was presented by Lim et al. (2009). The
authors tested Cannon N4000 and N5100 fluids consisting 100% polybutene. The experimental
part was prepared with use of the SHPB furnished with aluminum bars and the fluid container
was specially prepared. This part was machined of soft and flexible rubber and was tested with
respect to fluid expansion in the radial direction. The dynamical tests of the polymer materials
were considered by Siviour and Jordan (2016) where the behaviour of the rearrangement of mi-
crostructure of amorphous polymers was reviewed. The preliminary information about testing
magnetorehological fluid under high strain rates was announced by Frąś (2015). There was pre-
sented a proposal of the laboratory set-up and an attempt to use the Perzyna viscoplasticity
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model to describe the behavior of magnetorheological fluids. Another attempt of testing magne-
tically controlled materials was presented by Wang (2016). The authors tested a self-prepared
material with content of 75% carbonyl iron particles in several magnetic fields – form 95 to
382 kA/m. During those experiments, stress values from 5 to almost 16MPa (for maximal ma-
gnetic field value) were obtained. Another attempt to use the Split Hopkinson Pressure Bar with
magnetically controlled materials to test magnetorheological elastomers was presented by Liao
et al. (2013). The authors used for several magnetic field strengths – maximally 320 kA/m and
received in a dynamic compression test maximal stress values about 6MPa with velocity of the
striker about 30m/s. The microsized ferroelements in the magnetic field created the structure of
viscoplastic solids. The structural rearrangements controlled by the magnetic field in the course
of deformation can be investigated experimentally due to the recent developments of MEMS
devices designed by Jarząbek et al. (2015).

2. Magnetorheological fluid

The magnetorheological fluid contains microsized ferroelements. The particles are spherically
shaped and their diameter is less than 10µm. The magnetoactive ferroelements are coated with
a silicon shield and immersed in the carrying fluid, e.g. mineral oil. The silicon coating prevents
from aggregation of particles which are made of a carbonyl iron material. The influence of the
magnetic field forces the ferroelements to connect together into characteristic linear shapes –
the braids. The linearly-shaped elements made of ferroelements are sticking together and create
the solid structure of the material.

Fig. 1. The ferroelements in neutral state (a) and under the influence of a magnetic field (b)

The ferroelements can freely move in the carrying fluid. Figure 1b shows the influence of the
magnetic field on the way how the ferroelements are connected. The magnetoactive particles
are sticking together creating characteristic braids parallel to the line of the magnetic field. The
whole rearrangement of the structure during the deformation process can be described by tearing
off a single ferroelement from the braid. The structure is deformed in the course of taking off
from the sequence of separate braids.
The rearrangement of ferrorelements under the external force tends to swap the neighboring

element. The particle is shifted and this produces a shear angle. The interaction energy of two
particles is given as follows (Jolly et al., 1996)

E12 =
|m2|(1− 3 cos2 θ)
4πµ1µ0r3

(2.1)

where m is mass of the particle, θ corresponds to the angle of shear, r denotes the distance
between particles and µ1 is the relative permeability, µ0 is vacuum permability. The shift of a
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Fig. 2. The rearrangement of the structure, F – external force, H – magnetic flux

single ferroelement produces migration of the braid. The refreshable features of the magneto-
rheological fluid allow one to use them as an energy absorption material. The shifting of a single
ferroelement by some external force causes reorganization of the skeleton structure.

3. The laboratory test stand

The testing stand is made on the basis of the Split Hopkison Pressure Bar with 7075 alloy
aluminum bars. Their length is 1000mm and diameter 20mm. The strain gauges are cemented
in the middle – four on the each bar, and they are working as a quarter bridge sub system with
the signal amplifier. The main idea is to modify the present laboratory device and prepare it to
test the magnetorheological fluid – LORD MRF-140CG in a magnetic field at high strain rates
by using the prepared coil – the resitivity of used copper 0.7mm wire is 180Ohm. It generates a
120 kA/m magnetic flux with a 360V and 2A direct current power supply. The coil with inner
diameter 30mm and length 50mm has 80 turns of the wire. The power line is realized by EA-PS
8360-30 and the maximum voltage is 360V while the current is 50A. The laboratory device to
investigate magnetorheological materials is subjected to modification. The idea of the proposed
modification is presented in Fig. 3.

Fig. 3. 1 – striker, 2 – laser sensor to measure velocity, 3 – incident bar, 4 – strain gauges, 5 – glue,
6 – deformable hose, 7 – MR fluid, 8 – coil cover, 9 – coil , 10 – glue, 11 – transmitter bar, 12 – spring,
13 – momentum trap, 14 – velocity measure system, 15 – signal amplifier , 16 – oscilloscope, 17 – power

supply for coils

The novelty of the proposed laboratory test stand is the application of coils for the sleeves
shown in Fig. 3 to induce a constant magnetic field. Also a new shear testing device is designed.
Due to this, the dynamic axial compression and shear tests of the solidified magnetorheological
material is possible. The theory of measurement of the axial strain and determination of the
axial stress with the use of the SHPB was presented by Klepaczko (2007). The striker accelerated
by the gas gun achieves velocity V0 which is measured by a matrix of diodes and photodiodes.
In the case of impact by the striker against an incident bar shock wave is triggered. It has length
ϕ = 2L, where L is length of the striker. The time period of this wave is T = 2L/C0, where
C0 is the velocity of the sound wave inside the bar.
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4. Results

During the experiment, the MR fluid solidified under the magnetic field responds to the stress
waves. The effect of the compressive longitudinal incident pulse and the reflected pulse can be
observed in Fig. 4b.

Fig. 4. (a) The deformable hose with the MR fluid before the test, (b) the observed wave forms of the
tested material

The MR specimen is closed in a deformable hose made of latex with carefully prepared
dimensions – 10mm long and 20mm in the external diameter of the bars, which allows one to
keep about 3.2ml of the fluid injected with a syringe – Fig. 4a. It provides free deformation of
the solidified MR fluid. The specially designed coil is generating a 120 kA/m magnetic flux and
is responsible for sticking the ferroelements together. The generated field is parallel to the axis
of incident – the transmitted bars what keeps the solidified ferroelements between the bars. The
magnetoactive particles are arranged along the lines of the magnetic field. The deformable hose
presented in Fig. 4 a with the MR fluid inside allows free deformation during the dynamical
tests. The influence of the thin rubber hose on the longitudinal stress waves can be neglected.
The results of experimental investigation are presented below.

Fig. 5. The results of the experiment, the nominal stress-strain curve

The results presented in Fig. 5 are obtained during experimental investigation. The material
has been tested with a 300mm long striker and with two velocities 18m/s and 10m/s±0.1m/s.
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During the experiment aluminum bars without the shaper placed between the striker and the
incident bar were used. The measured values were multiplied 200 times by the signal amplifier.
For this reason, the obtained transmitted wave had an amplitude about 0.08V with the velocity
of the striker about 18m/s and about 0.035V for ∼ 10m/s.

5. Conclusions

The Split Hopkinson Pressure Bar has been adopted to test the magnetorheological fluid at high
strain rates. The material was tested for two velocities of the striker to test and evaluate the
laboratory set-up. The obtained results can be compared with the results of Wang et al. (2016)
who tested similar materials but with a lower content of iron particles 74% versus 84% in our
case. Wang et al. (2016) obtained for 200mT (159 kA/m) and the strain rate 6000 s−1 the stress
values in the range of 10-17MPa. The material structure of Wang et al. (2016) was completely
different (74% of carbonyl irons and several another additions closed into the gel structure)
but the order of magnitude was similar to tested LORD MRF-140CG (84% of carbonyl irons).
The the effect of dispersion can play an essential role in the interpretation of the experimental
data. The dispersion effect in the aluminium bars is not significant due to the large ratio of
wavelength to the bar diameter, however, it has not been analysed yet and requires further
studies. The comparison of our preliminary results confirms the validity of the concept of the
proposed laboratory set-up and gives a promising perspective for a more detailed investigation
aiming at the identification of Perzyna model.
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It is known that nano- and micromechanics require new approaches to right describing of
surface-like phenomena which lead to an enhanced energy conversion. In this work, a general
form of surface forces that consist of a contribution from both the friction and mobility
components has been extended to collect the effects of bulk and surface motion of a fluid.
Quite similar impact can be observed for a solid-fluid mixture, where the principle of effective
stress for this new type of approach should be considered from the very beginning. The second
motivation of our work is to present the multiscale domain of fluid-solid interaction which
describes some “emergence effects” for materials with especially high volumetric surface
densities.

Keywords: enhanced energy conversion, micro- and nanomechanics, fluid-solid interaction,
pressure and thermally driven flow

1. Introduction

Though the classical continuous mechanics theory is enormously useful, it does not take into
account all the phenomena that occur in the fluid-solid interface at the micro- and nanoscale.
Thus, new approaches in continuum thermodynamics with slip velocity, thermal transpiration
and a variety of different “jump” phenomena on the surface like: temperature, concentration,
pressure, electric potential, order parameter, etc., are developed with comparison to experimental
results (Badur et al., 2011, 2015; Henry and Minier, 2014; Kowalewski et al., 2016; Lewandowski
et al., 2011; Nakielski et al., 2015; Nitoń et al., 2013; O’Hare et al., 2007; Thomson and Trojan,
1997; Ziółkowski and Badur, 2014). Moreover, these surface processes, in general, lead to some
enhancement of energy conversion in comparison to the bulk classical transport model (Badur
et al., 2015; Lemański and Karcz, 2008; Morini et al., 2011; Nakielski et al., 2015). A similar
impact can be observed for porous saturated solids, when the Terzaghi principle of effective
stress leads to a new situation in which the exchange of momentum and thermal energy in such
continua undergo in a more complex manner (Badur et al., 2011, 2015; Lemański and Karcz,
2008; Thomson and Trojan, 1997; Ziółkowski and Badur, 2014). The enhanced conversion of
energy is observed in new micro- and nanodevices as outside devices which work in power
plants.
Practically, we should use the surface phenomena to improve the exchange of mass, momen-

tum and energy (Kucaba-Piętal et al., 2009; Lemański and Karcz, 2008; Lewandowski et al.,
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2011; Morini et al., 2011; O’Hare et al., 2007; Reese et al., 2003; Thomson and Trojan, 1997;
Ziółkowski and Badur, 2014). Also quite new challenges for accurate prediction and assessment
of the material effort (the risk of fracture) are developed for these processes (Banaszkiewicz,
2015; Banaszkiewicz and Rehmus-Forc, 2015; Pęcherski et al., 2011; Vadillo et al., 2011). A
schematic presentation of these emergencing asspects of the modelling of fluid-solid interactions
in the multiscale domain is highlighted in Fig. 1.

Fig. 1. Schematic presentation of emergencing asspects of mathemetical modelling that takes into
acount fluid-solid interaction in the multiscale domain

2. Collected effects of fluid-solid interaction in porous flow

One example of applicability of this method to improve flow in porous media is a model of thermal
transpiration described mainly via a mobility force. Beside the classical “bulk” behavior, wall
stresses should also incline us to introduce new quantities such as surface friction force, surface
mobility, etc. In the presented reasoning, it has been postulated that the generall surface “vis
impressa” can be additively split into friction and mobility parts. Here, the mobility forces are
defined as an ability of a fluid (gas or liquid) to flow along the wall without the assistance of, or
even in opposition to, bulk (volume) forces. A whole description of this phenomenon is presented
in (Badur et al., 2011, 2015). In this short communication, let us mention only reexamination
of the Poiseuille-Knudsen-Reynolds equation in terms of a sum of three contributions: the bulk
pressure driven flow and two mobility surface forces, mainly: the Knudsen surface slip driven
flow and the Reynolds surface thermally driven flow.
A peculiar difficulty of the modeling of flow in porous media arises often when there is a

need of applying some extension of Darcy equation, like for instance, the Brinkmann-Darcy-
-Forchheimer equation (Hooman, 2008). Treating that a laboratory nanopipe is fully equivalent
to a single porous channel and looking for common effects of the bulk and surface motion, one
may consider the following momentum flux integral in any cross section of a porous medium
oriented by the tangential component of the unit vector ntan

∫∫

bulk section

(ρv ⊗ v + p)ntan +
∮

C

(ρsvs ⊗ vs + ps + nnorp+ f∂V )ntan dC = 0 (2.1)
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In the above, ρv and ρsvs are the bulk and the surface momentum density vectors, ρ and ρs are
the gas density in the bulk and on the boundary. Next, p = pijei⊗ej = pT and ps = pTs are the
bulk and the surface flux momentum. The boundary force can be separated into surface friction
and surface mobility, thus: f∂V = fr+ fm (Badur et al., 2011, 2015). The total momentum influx
will be

M =
∫∫

bulk section

ρvvtan dA+
∮

C

ρsvsvs tan dC M = ṁvr (2.2)

where
∫∫

bulk section
ρvvtan dA – contribution from the bulk velocity and

∮
C
ρsvsvs tan dC – contribution

from the slip velocity vs tan = vsntan. Using some arguments from technique of homogenization,
we can postulate the existence of a resultant velocity vr which is parallel to the vector of total
momentum (2.2)2. This vector is located somewhere in a geometrical center of the velocity profile.
In many cases, independently of the shape of the cross section, the bulk profile of velocity is
nearly flat and ending with the value of vs tan ≈ |vs| – the magnitude of slip velocity. In the above,
according with the traditional Reynolds notation, ṁ denotes the resultant mass flow rate. Taking
into account that f∂V = fr+fm = νvs−cmθ grad sθs, integral (2.1) can be reorganized, expressing
explicitly the thermal mobility part cmθ grad sθs with the thermomobility coefficient cmθ and the
slip friction part νvs, where ν is the Navier surface friction coefficient

ṁvr =
∫∫

Poiseuille

(pI− 2µd)n dA−
∮

Darcy

νvsIs dC −
∮

Reynolds

cmθ grad s(θs)Is dC (2.3)

Since the porosity in any cross section of porous media is quite arbitrary, then the known
procedure of homogenization can be applied, thus Eq. (2.3) leads finally to a 3D resultant
equation (Vignoles et al., 2008)

vr = −
(P
µ
B+DK

) gradP
P
+D
gradT
T

(2.4)

where vr is the resultant filtration velocity, µ – gas viscosity, B – permeability tensor, DK –
Knudsen accommodation diffusion tensor and D – thermal transpiration coefficient tensor. Here,
the single surface pressure tensor ps does not appear, slip velocity vs or surface temperature θs
either, since after homogenization their role retakes the capillarity pressure P and the capillarity
temperature T . Also, the two-dimensional surface gradient grad s(·), due to homogenization,
turns into the three-dimensional gradient grad (·). This phenomenological model is based on the
already averaged equations for the bulk flow resistance and the surface mobility forces, which
means that some local coefficients, like the Navier slip and Reynolds transpiration can be used
to a direct definition of B, DK and D, respectively.
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