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The objective of this work is to show the influence of dynamic characteristics of Active
Magnetic Bearings (AMBs) on the stability and dynamic response of an asymmetric and
unbalanced rotor. Indeed, AMBs have been successfully applied in several industrial machi-
nery facilities. Their main advantages are the contactless working principle, frictionless su-
spension and operation in very high speeds. Firstly, the AMBs dynamic support parameters
have been obtained through electromagnetic theory. Then, a generalized system equations of
motion have been derived using the finite element method. The motion of a rotor the shaft
cross-section of which is asymmetric is generally governed by ordinary differential equations
with periodic coefficients. Floquet’s theory is used to investigate the stability of this system
of equations. Finally, numerical simulation results are presented and discussed.

Keywords: asymmetric rotor, finite element, Floquet’s theory, dynamic coefficients, stability

1. Introduction

A spinning system serves as a model for many rotating machinery elements. It is generally com-
posed of a flexible shaft on which a flexible or rigid disk is mounted and supported by bearings.
Bearings have a considerable effect on the dynamic behaviour of such systems. Recently, AMBs
are increasingly used, especially in machines operating at very high rotational speeds, because
of their many advantages (no lubrication, very long life, supporting hard environments, precise
control, low power use and high-speed operating) compared to rolling elements, hydrodynamic
or elasto-hydrodynamic bearings.

On the other hand, the presence of defects is a major concern in rotating machinery; they
generate some important loads and vibrations and also stability problems. Asymmetric cross
section of the shaft is among commonly encountered defects, it is usually due to machining
defects.

The study of rotating systems supported by AMBs bearings and analysis of machine faults
has resulted in an extensive body of publications.

Lei and Palazzolo (2008) presented an approach for the analysis and design of magnetic
suspension systems with a large flexible rotor dynamic model including dynamics, control and
simulation. Inayat-Hussain (2007) presented a numerical study to investigate the response of
an unbalanced rigid rotor supported by AMBs. The mathematical model of the rotor-bearing
system used in that study incorporated non-linearity arising from the electromagnetic force-coil
and current-air gap relationship, and the effects of geometrical cross-coupling. The response of
the rotor was observed to exhibit a rich variety of dynamical behaviour including synchronous,
sub-synchronous, quasi-periodic and chaotic vibrations. Inagaki et al. (1980) studied a multi-
-disk fully asymmetric rotor with longitudinal variation of the shaft cross section. The temporal
equations of motion were obtained using the transfer matrix method. The unbalance response
was deduced by the harmonic balance method.
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Oncescu et al. (2001) proposed modifications into a classical finite element procedure deve-
loped for rotors with symmetry to incorporate the effect of shaft asymmetry and used Floquet’s
theory to investigate the stability of a general system of differential equations with periodic
coefficients.
Recently, Inayat-Hussain (2010) studied the dynamics of a rigid rotor supported by load-

-sharing between magnetic and auxiliary bearings for a range of realistic design and operating
parameters. Numerical results of that work show that the unbalance parameter is the main
factor that influences the dynamics of the rotor-bearing system. It was also shown that the
non-synchronous vibration response amplitude of the rotor with a relatively small unbalance
magnitude can be reduced by decreasing the magnitude of the friction coefficient. Tsai et al.
(2011) developed a wavelet transform algorithm to identify magnetic damping and stiffness
coefficients of the driving rod with a set of 4-pole AMBs. This work further revealed that the
identified second-order damping coefficient is negative for a specific rod displacement and speed.
The dynamics of the rotor-AMBs system in the axial direction is unstable. Bouaziz et al. (2011)
investigated the dynamic response of a rigid misaligned rotor mounted in two identical AMBs.
Three simplified models of current biased radial AMBs were presented, where four, six and eight
electromagnets were powered by a bias current and the respective control current. Results of that
work show that angular misalignment is such that the 2× and 4× running speed components
are predominant in spectra of vibration. Their magnitudes vary with the number of magnets in
the bearing. Bouaziz et al. (2016), proposed a dynamical analysis of a high speed AMB spindle
in the peripheral milling process. The time history of the response, orbit, FFT diagram at the
tool-tip center and the bearings dynamic coefficients were plotted to analyze dynamic behavior
of the spindle.
Most of the papers found in the literature concerning magnetic bearings are interested in the

dynamic response of unbalanced or misaligned rotors. The shaft is generally considered rigid or
massless.
On the other hand, the papers dealing with asymmetric shafts, consider that the shaft is

supported by two identical elastic bearings. The coefficients of stiffness and damping are given
arbitrarily. Stability study is very limited.
In this paper, dynamic characteristics of Active Magnetic Bearings (AMBs) is first be deter-

mined. Then a model of an asymmetric rotor supported by two magnetic bearings is presented
using the finite element procedure. A stability analysis will be conducted while showing the
influence of various parameters of the bearings on stability areas. In the same way, the dynamic
response of the asymmetric shaft will be calculated and analyzed.

2. Bearing modelling

The electromagnetic bearing studied is formed by four electromagnets (n = 4) placed in the
bearing around the rotor and producing an attractive force (Fig. 1).
Using the electromagnetic theory, the electromagnetic resultant forces produced by every

pair of the electromagnets in x and y directions are expressed as (Inayat-Hussain, 2010)

Fx = λ
[( I0 − ix
C0 − ux

)2
−
( I0 + ix
C0 + ux

)2]
Fy = λ

[(I0 − i0 − iy
C0 − uy

)2
−
(I0 + i0 + iy

C0 + uy

)2]
(2.1)

where C0 is the nominal air gap, i0 is the bias current (to produce neutralizing force due to
weight of the rotor), I0 is the steady state current in the coil, ux and uy are respectively the
shaft displacements in the x and y directions, λ is the global magnetic permeability expressed
as

λ =
µ0AN

2

4
cos θ (2.2)
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Fig. 1. Electromagnetic bearing

where A, µ0, θ and N represent, respectively, cross section area of an electromagnet, permeability
of vacuum, half angle between the poles of the electromagnet and the number of windings in the
coil, and ij (j = x, y) represents the control current expressed using a proportional-differential
(PD) controller as

ij = kpuj + kdu̇j j = x, y (2.3)

where u̇j is shaft velocity in the j direction, kp is the proportional gain and kd is the differential
gain.
By replacing (2.3) respectively in (2.1), we obtain

Fx = a



(
1− kpuxI0 −

kdu̇x
I0

1− uxC0

)2
−
(
1 +

kpux
I0
+ kdu̇xI0

1 + uxC0

)2


Fy = a



(
1− i0I0 −

kpuy
I0
− kdu̇yI0

1− uyC0

)2
−
(
1 + i0I0 +

kpuy
I0
+
kdu̇y
I0

1 +
uy
C0

)2


(2.4)

where a = λI20C
2
0 .

Electromagnetic forces that depend on the shaft centre displacement and velocity are line-
arized (first order) around the equilibrium position (Bouaziz et al., 2016). This will provide the
classic model of a bearing with four stiffness and damping coefficients (Fig. 2)

{
fx
fy

}
= −KB

{
ux
uy

}
−CB

{
u̇x
u̇y

}
(2.5)

where KB is the bearing stiffness matrix expressed as

KB =

[
Kxx Kxy
Kyx Kyy

]
= −




(∂Fx
∂ux

)

0
0

0
(∂Fy
∂uy

)

0


 (2.6)

and CB is the bearing stiffness matrix expressed as

CB =

[
cxx cxy
cyx cyy

]
= −




(∂Fx
∂u̇x

)

0
0

0
(∂Fy
∂u̇y

)

0


 (2.7)
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In this model, the stiffness and damping cross-coefficients of the bearings are neglected. Nume-
rical differentiation method is selected for determination of the dynamic coefficients. The partial
derivatives are evaluated by the finite difference central method.

Fig. 2. Two DOF bearing model

3. Equation of motion

The mathematical model (Fig. 3) consists of a flexible asymmetric shaft, one rigid disk and two
active magnetic bearings.

Fig. 3. Rotor bearing system with AMBs

The finite element procedure for rotors with the symmetric shaft is considered. Modifications
are made to accommodate the effect of shaft asymmetry (Oncescu et al., 2001).

3.1. Equation of motion of the shaft

The shaft is considered to be flexible. It is characterized by its kinetic and deformation
energies. Its motion results from transverse displacement (ux, uy) and bending deformations
(θx, θy) in the x- and y-planes (Fig. 4).

Because of the shaft asymmetry, the sectional moments of inertia Ix and Iy are not identical,
consequently, the kinetic energy of the shaft can be represented by Oncescu et al. (2001)

Ts =
ρS

2

L∫

0

(u̇2x + u̇
2
y + u̇

2
z) dz +

ρIm
2

L∫

0

(θ̇2x + θ̇
2
y) dz + 2ρImΩ

L∫

0

θ̇xθy) dz

+
ρId
2

L∫

0

(θ̇2x + θ̇
2
y) dz cos(2Ωt) + ρId

L∫

0

(θ̇xθy) dz sin(2Ωt)

(3.1)
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Fig. 4. Shaft modelling and corresponding DOF

where ρ is material density, Im = (Ix + Iy)/2, Id = (Ix − Iy)/2 are respectively deviatory and
mean area moments of inertia of the shaft cross-section (Ix and Iy are the second moments of
area about the principal axes x and y of the shaft).
Rayleigh’s dissipation function of the disk is (Gosiewski, 2008)

Ed =
1

2

L∫

0

cs(u̇
2
x + u̇

2
y) dz +

1

2

L∫

0

ci[(u̇x +Ωuy)
2 + (u̇y −Ωux)2] dz (3.2)

where cs and ci are respectively coefficients of external and internal damping.
If shear deformations are neglected, the strain energy of the shaft is (Oncescu et al., 2001)

U =
1

2

L∫

0

EId
{[(∂2uy

∂z2

)2
−
(∂2ux
∂z2

)2]
cos(2Ωt)− 2uxuy sin(2Ωt)

}
dz

+
1

2

L∫

0

EIm
[(∂2ux

∂z2

)2
+
(∂2uy
∂z2

)2]
dz

(3.3)

where E is Young’s modulus.
The finite element used to discretize the shaft consists of two node beam elements where

each node has four degrees of freedom: two lateral displacements and two bending rotation
angles. Applying Lagrange’s formalism to this system permits the development of the equations
of motion of asymmetric shaft (Oncescu et al., 2001)

Ms(t)δ̈s + (ΩGs +Cs)δ̇s +Ks(t)δs = 0 (3.4)

with

Ms(t) =Mss +Md,c cos(2Ωt) +Md,s sin(2Ωt)

Ks(t) = Kss +Kd,c cos(2Ωt) +Kd,s sin(2Ωt)

whereMss is the mass matrix of the symmetric shaft (Batoz and Gouri, 1990), Md,c and Md,s
are mass matrices induced by the asymmetry of the shaft, Gs is the gyroscopic matrix of the
shaft, Cs is the damping matrix, Kss is the stiffness matrix of the symmetric shaft (Batoz and
Gouri, 1990), Kd,c and Kd,s are stiffness matrices induced by the asymmetry of the shaft, δs is
the vector of shaft DOFs.

3.2. Equation of motion of the disk

The center of mass of the rigid disk coincides with the elastic center of the shaft
cross-section. The nodal displacements vector of the disk in fixed co-ordinates is given by:
δD = {ud,x, ud,y, θd,x, θd,y}.
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The kinetic energy of the disk, by considering the effect of the unbalance, is expressed as
(Oncescu et al., 2001)

Td =
1

2
Md(u̇d,x+u̇

2
d,y)+

1

2
J(θ̇2d,x+ θ̇

2
d,y)+2Jθ̇d,xθd,y+mudΩ[u̇d,x cos(Ωt)+u̇d,y sin(Ωt)] (3.5)

where Md and J are mass and moment of inertia of the disk, Ω is angular speed of the rotor,
mu is unbalance mass (assumed to be small if compared with Md), d is the radius defining
location of the unbalance.
Rayleigh’s function of the disk energy dissipation is (Gosiewski, 2008)

Ed =
1

2
cs(u̇

2
d,x + u̇

2
d,y) +

1

2
ci
[
(u̇d,x +Ωud,y)

2 + (u̇d,y −Ωud,x)2
]

(3.6)

where cs and ci are respectively the coefficients of external and internal damping.
The application of Lagrange’s equations for the disk only gives

MDH + δ̈(ΩGD +CD)δ̇D +KDδD = Fu(t) (3.7)

whereMD, GD, CD and KD are respectively mass, gyroscopic, damping and stiffness matrices
of the disk, Fu(t) is the unbalance vector.

3.3. General equation of motion of the rotor

By assembling the elementary matrices of shaft elements, disks and bearings (as expressed in
Section 2), we obtain a system of n second order differential equations and n unknown functions,
where n is the number of DOFs of the rotor. The global equations of motion are

M(t)δ̈ + (C +ΩG)δ̇ +K(t)δ = Fu(t) (3.8)

whereM(t) and K(t) are periodic matrices of period T1 = π/Ω, for which the time dependency
is due to shaft asymmetry, C is a constant matrix including damping effects of AM bearings,
G is the gyroscopic matrix, Fu(t) – unbalance vector of period T2 = 2π/Ω and δ is the vector
of global DOFs.
The equations of motion are therefore parametric in nature, which usually causes a stability

problem. Floquet’s theory will be used to determine the zones of instability.

4. Floquet’s theory

Floquet’s method is a mathematical tool for solving parametric differential equations, such as
(3.8). It involves computation of a transfer matrix over one period of motion (Dufour and Berlioz,
1998).
The study of stability of the steady state solution of system (3.8) can be reduced to study

of stability of the trivial solution of the associated homogeneous system.
A state-space model for system (3.8) (with Fu(t) = 0) has the form

Ẋ = A(t)X (4.1)

where A(t) is a m ×m (m = 2n) periodic matrix called the dynamic matrix of period T , and
X = {δ, δ̇}−1 is the state variable vector.
The transfer matrix Φ(T, t0) (Bauchau and Nikishkov, 2001) is by definition a matrix that

relates the initial solution X(t0) to the solution X(T ) obtained at t = T , so

X(T ) = Φ(T, t0)X(t0) (4.2)
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The period T of the matrix A(t) is divided into n intervals of equal length h = T/n (t0 < t1 <
. . . < tn−1 < tn). Between the two solutions of (Eq. (3.7)) X(ti+1) and X(ti), there is a relation

X(ti+1) = Φ(ti+1, ti)X(ti) (4.3)

where Φ(ti+1, ti) is the elementary transfer matrix. We can easily notice that

Φ(T, ti) = Φ(T, ti+1)Φ(ti+1, ti) (4.4)

The matrix Φ(T, t0) can be obtained by iterative calculation based on relation (4.4). We start
with Φ(T, T ) = Im and gradually gets Φ(T, tn−1),Φ(T, tn−2), . . . ,Φ(T, t0).
To determine the elementary transfer matrixΦ(ti+1, ti), several methods have been proposed.

In this work, Newmark’s method is used.
Furthermore, it is shown that the stability of the trivial solution of equation (3.7) is fully

defined by the eigenvalues of the transfer matrix over one period Φ(T, t0), known as the charac-
teristic multipliers of system. The trivial solution is asymptotically stable if the modulus of all
m eigenvalues is less than one, and is unstable if the modulus of at least one of the eigenvalues
is greater than one.

5. Numerical results

The spinning system investigated in this paper is shown in Fig. 4. The disk is mounted on the
shaft at 3L/4. The system parameters are given in Table 1.

Table 1. System parameters

Parameter Symbol Value

Permeability of vacuum µ0 4π · 10−7Wb/Am
Number of windings around core N 300

Half angle between poles of electromagnet θ 22.5 deg

Bias current i0 0.5A

Differential gain kd 42.4 A·s/m
Proportional gain kp 14869A/m

Rotor length L 300mm

Shaft diameter dS 10mm

Disk diameter dD 100mm

Young’s modulus E 2.1 · 1011 Pa
Density ρ 7.85 gm/cm3

Poisson’s ratio ν 0.28

Unbalance mass Mu 5 gm

Moment of inertia J 0.005Kg·m2
Rotor running speed Ω –

Figures 5 and 6 show respectively the dependency of stiffness and damping coefficients of
AMBs on the air gap C0 between the stator and the rotor for different values of the steady state
current in the coil I0. Figures 7 and 8 show respectively the dependency of stiffness and damping
coefficients of AMBs on the air gap C0 between the stator and the rotor for different values of
cross-sectional area of one electromagnet A.

Kxx, Kyy, Cxx and Cyy are strongly influenced by C0, I0 and A. Indeed, their values decrease
considerably with C0, but regularly increase respectively with I0 and A. This observation was
proven by Bouaziz et al. (2011) when they determine the dynamic coefficients of AMB with
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four, six and eight magnets. It is clear that the four coefficients become constant for large values
of C0 (from C0 = 2mm and irrespective of I0 and A). It should also be noted that the values of
damping coefficients are significant compared to those frequently encountered in literature for
modeling of elastic bearings.

Fig. 5. Stiffness coefficients (A = 200mm2)

Fig. 6. Damping coefficients (A = 200mm2)

Fig. 7. Stiffness coefficients (I0 = 3A)
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Fig. 8. Damping coefficients (I0 = 3A)

Since the coefficients of stiffness and damping are variable according to the parameters of
the bearings, the stability of the studied asymmetric rotor varies as well. So try from the layout
of different regions of stability to find the optimal parameters providing better system behavior
(a minimum of regions of instability). The variable parameter is the factor of shaft asymmetry
defined as the rate between the deviatory (Id) and the mean area moments of inertia of the shaft
cross-section (Im): fsa = Id/Im.

We are interested in the range of higher speeds because electromagnetic bearings are used
in applications at high speeds.

Figure 9a shows regions of instability obtained for the studied system for factors of shaft
asymmetry varying from 0 to 0.3 with increments by 0.05. The results have been obtained by
varying the rotational speed between 10000 and 80000 rpm, with increments by 100 rpm. The air
gap C0 is 0.5mm, the steady state current in the coil I0 is 3A, and the effective cross-sectional
area of one electromagnet A is 200mm2.

Fig. 9. Instability regions: (a) C0 = 0.5mm, I0 = 3, A = 200mm, (b) [30000-40000rpm], C0 = 0.5mm,
I0 = 3, A = 200mm

For the symmetric shaft, no instability interval has been identified around the four shaft
critical speeds: 17685, 36350, 63840 and 80100 rpm (according to the Campbell diagram). For
the asymmetric shaft, four regions of instability appear for a factor of shaft asymmetry of 0.1
and for widths increasing with the shaft asymmetry. For a shaft asymmetry of 0.25, there are
5 critical speeds delimiting the three regions of instability: 15492, 19639, 31600, 40475, and
55765 rpm.
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Figure 9b shows the influence of internal and external damping on the instability region
[30000-40000 rpm]. The width of the stability zone decreases substantially by introducing the
internal and external damping. This behavior is also observed for the other two instability
regions. These coefficients are generally negligible compared to those provided by AMBs and
cannot in this case considerably influence the stability of the system studied.

Figure 10 depicts the regions of instability respectively obtained for three different values
of C0: 0.5mm, 1.5mm and 3mm.

Fig. 10. Instability regions, I0 = 3, A = 200mm

It is evident that the instability regions are highly dependent on the air gap C0. Indeed,
for a small value of C0 (C0 = 0.5mm), the stiffness coefficients of AMBs are very important
(Fig. 5). They increase the critical speed of the system and, therefore, the stability regions are
also affected.

We note the presence of three regions of instability for C0 = 3mm against two for
C0 = 1.5mm.

The second region of instability begins from a factor of shaft asymmetry of 0.2 for
C0 = 1.5mm, while it starts from a factor of shaft asymmetry of 0.1 for C0 = 3mm. In fact, for
greater values of C0, the stiffness coefficients of AMBs undergo a slight decrease. The positions
of instability regions remain therefore almost unchanged, while their size and numbers increase
with C0. This last behavior is explained by a decrease in damping coefficients of the AMBs.

Fig. 11. Instability regions: (a) C0 = 1.5mm, A = 200mm, (b) C0 = 1.5mm, I0 = 3A

Figure 11a shows regions of instability obtained for three values of I0. It is observed that
regions of instability decreas with the increasing I0. By increasing I0, we can also remove a
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region of instability, which proves the importance of control. Figure 11b presents the regions of
instability obtained for three values of A. It is also observed that regions of instability decrease
with the increasing A.

We can conclude that the stability is strongly linked with the dynamic coefficients of the
bearings. A significant change of stiffness coefficients results in a change of the critical speed
of the system and, consequently, a change in the positions of instability areas. At the same
time, an increase in the damping coefficients, automatically leads to a decrease in the size of
instability regions. C0 and I0 are the most influential parameters on the rotor stability. Based
on this analysis, the parameters of AMBs that offer greater stability to the asymmetric rotor
are: C0 = 1.5mm, A = 200mm and I0 = 5A.

To better understand the instability phenomenon of asymmetric rotors, it is important to
calculate and analyze the dynamic response. The dynamic response is observed at the disk-to-
shaft attachment. A spectral method is used to estimate the dynamic response (Attia Hili et al.,
2006).

The frequency response along the x direction (power spectral density) of the rotor in the
frequency range of 0 to 250Hz is shown in Fig. 12a. The factor of asymmetry is 0.25 when the
shaft running speed is 420 rpm.

Fig. 12. (a) Frequency response, C0 = 1.5mm, I0 = 3A, A = 200mm
2. (b) Experimental frequency

response, Lazarus et al. (2010)

The frequency response is essentially characterized by:

• A dominant peak at the rotational frequency (Ω = 7Hz) indicating the presence of an
unbalance.

• Several peaks located at frequencies of odd multiples of the rotational frequency
(3Ω, 5Ω, 7Ω, . . .) indicating the simultaneous presence of an unbalance and shaft asym-
metry as well as representing the modulation phenomenon. Indeed, the mass and stiffness
terms are time variables having the frequency equal to two times of that of rotation, whe-
reas the excitation frequency (unbalance force) being equal to the rotational frequency.

• Two peaks presenting the first and second natural frequencies of the rotor (in xz-plane):
Ωn1 = 59Hz and Ωn2 = 203Hz. Supplementary harmonics emerge in the frequency re-
sponse and are located following the relation: Ωj = Ωni ± 2jΩ (j > 1, i = 1, 2). The
fundamental and first secondary harmonics related to the natural frequencies Fn1 and Fn2
are respectively marked with spots and square marks. These peaks correspond to parame-
tric quasi-modes characterizing every linear time-varying system like an asymmetric shaft.
These results are in good agreement with the experimental results given in Fig. 12b and
found by Lazarus et al. (2010). Indeed, the authors measured the frequency response of



762 M. Attia Hili et al.

an asymmetrical shaft. These experimental results are filtered to remove the spin speed
subharmonics. The fundamental and first secondary harmonics related to the natural fre-
quencies Ωn1 = 15Hz and Ωn2 = 23Hz are, respectively, marked with red square marks
and with blues pots.

We deliberately chose a low speed rotation (although magnetic bearings operate at high
speeds) to validate the numerical simulations. Finally, we note that the same behavior is observed
in the yz-plane. The parametric quasi-modes also appear regardless of the running speed used.

6. Conclusion

In this paper, a finite element procedure for rotor-AMBs systems is generalized to include the
effects of shaft asymmetry.

Firstly a model describing electromagnetic bearings (with four electromagnets) has been
developed allowing to calculation of the dynamic coefficients which are mainly influenced by
the air gap C0 between the stator and the shaft, the effective cross-sectional area A and the
bias current I0. Then, analysis of the stability by Floquet’s theory shows that the stability is
strongly dependent on the parameters of the bearings (which allow determination of the optimum
parameters providing better behavior). The stability of the system is improved by the choice of
AMBs parameters leading to an increase in the damping coefficients.

The dynamic response identifies the asymmetry of the shaft by the presence of odd harmonics
of the rotational frequency and parametric quasi-modes in frequency spectra. These features
could be useful in the detection of shaft faults in diagnosis of rotating machines.
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Temperature changes near the end of a curvilinear cohesive crack and their influence on
crack growth are investigated. The problem of local temperature changes consists in a delay
or retardation of the cohesive crack growth. The bonds between the curvilinear crack faces in
the end zones are modeled by application to the crack surface cohesive forces caused by the
presence of bonds. The boundary value problem of equilibrium of the curvilinear crack with
interfacial bonds in the end zones under action of external tensile loads, induced temperature
field and tractions in the bonds preventing to its opening, is reduced to a system of singular
integral equations with a Cauchy-type kernel. From the solution of this equation system,
normal and tangential tractions in the bonds are found. Analysis of the limit equilibrium of
the crack using the end zone model is performed on the basis of a criterion of bonds limiting
stretching and includes: 1) establishment of tractions depending on opening of the crack
faces; 2) evaluation of the stress state near the curvilinear crack with taking into account
tensile loads, induced temperature field, tractions in the bonds; 3) determination of the
critical external tensile loads.

Keywords: curvilinear crack with interfacial bonds, thermoelastic stress field, cohesive forces

1. Introduction

Creating reliable emergency response systems is a vital issue, especially when we talk about
unique installations and safety of people. One of the effective means of crack growth retardation
may be temperature and thermoelastic fields (Finkel, 1977; Parton and Morozov, 1985; Potthast
and Herrmann, 2000; Fu et al., 2001; Qin et al., 2007; Liu, 2008, 2011a,b, 2014a,b; Georgantzinos
and Anifantis, 2014; Liu et al., 2015). In fracture mechanics, the healing problem existing in the
crack body is of significant importance (Dimaki et al., 2010). As seen from the results of the
papers (Kadiev and Mirsalimov, 2001; Mirsalimov and Kadiev, 2004; Liu, 2008, 2011a,b; Itou,
2014; Liu, 2014a,b; Mirsalimov and Mustafayev, 2015a,b), the influence of the thermal source
reduces strain of the stretching plane in the direction perpendicular to the crack, and because
of what the stress intensity factor near the crack end lowers. In most of the existing papers,
Griffith’s model of a crack is used. In the present paper, we use a bridged crack model ([4],
Mirsalimov, 2007; Mirsalimov and Mustafayev, 2016).
The crack retardation problem is of scientific and significant practical value as its solution

enables one to extend the lifetime and, the main thing, to avoid accidents associated with sudden
fracture. Evaluation of efficiency of application of thermal sources in crack growth retardation
in thin-walled structural elements is of interest. Fracture of a construction may be prevented by
creating a thermal field in the path of crack growth. Creation of thermal fields was justified by
their ease of preparation and multilateral nature of influence on the fracture process.
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Technical ease of obtaining in an extended object temperature and thermoelastic field in any
size and distribution creates wide opportunities of change of the direction and retardation of
crack growth. The experiments (Finkel, 1977) show that by heating the crack path to 70-100◦C,
we observe delay and retardation of a crack.
The effect of the temperature field on the retardation of a curvilinear crack with bonds

between the faces still has not been investigated. In this connection, studying the influence of the
reduced thermal stress field on curvilinear crack propagation in a stretchable plane with regard
to the bonds between the faces in the crack end areas is of scientific and practical interest. The
goal of the paper is to develop a mathematical model of curvilinear interfacial crack retardation
by means of temperature fields.

2. Formulation of problem

Let us consider an unbounded elastic plane weakened with a crack of length 2ℓ = b − a at
the origin of coordinates. In real materials, due to structural and technological factors, crack
surfaces have roughnesses and curvings. A fracture mechanics problem on a curvilinear crack in
a plane assuming that the crack contour has roughnesses (small deviations from a linear form)
is considered. It is assumed that there are areas at which the cohesion forces of the material
continuously distributed at the end area of the crack, ect. It is considered that these areas adjoin
to the crack tips, their sizes are comparable with the crack length [4]. Models of the crack with
end zones were proposed for brittle materials in (Barenblatt, 1961) and for plastic flow state
under constant stress in (Leonov and Panasyuk, 1959; Dugdale, 1960). The end zones of the
curvilinear crack were simulated by the areas with weakened interparticle bonds in the material.
The model of a crack with interfacial bonds at the end zones may be used in different

scales of fracture. Intensive development of crack models with explicit account of nonlinear laws
of interaction in conformity to elasto-visco-plastic behavior of materials and various kinds of
loading is connected with this fact. Bibliography on this subject may be found in papers of the
special issue of Engineering Fracture Mechanics (2003).
When the length of the end zone of the crack is not small compared with the crack length,

the methods for evaluating the fracture toughness of the material based on consideration of a
crack with a small end zone are not applicable. In these cases, simulation of the stress state
at the crack end zone should be carried out with regard to deformational characteristics of the
bonds.
The crack faces outside the end zones are free from external loads. At infinity, the strengthe-

ned plane is subjected to uniform tension along the ordinate axis by a stress σ∞y = σ0 (Fig. 1).
For retardation of the crack, on the path of its propagation a zone of compressible stresses is
formed by means of heating the domain S by a thermal source to temperature T0. The following
assumptions are accepted:

a) All thermoelastic characteristics of the plate material are temperature independent.

b) The plate material is homogeneous and isotropic.

It is assumed that at the moment t = 0 an arbitrary domain S = S1+S2 on the crack growth
path in the plane instantly heats up to a constant temperature T = T0. The remaining part of
the plate at the initial moment has zero temperature.
For many metallic materials (steels, aluminum alloy and so on) at the temperature change

to 300◦C-400◦C, the dependence of thermoelastic characteristics weakly changes according to
temperature. This fact was experimentally established. Thus, for all structural materials there
exists such a temperature range in which the assumption on steadiness of characteristics of the
material is correct. It is established on the basis of temperature dependence of the modulus of
elasticity.
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Fig. 1. Computational diagram of the problem

Let us distinguish a part of the crack of length d1 = a1 − a and d2 = b − b1 (end zones)
adjoining to its tips at which the crack faces interact. The interaction of the crack faces in the
end zones is modeled by introducing between the crack faces the bonds (cohesive forces) having
the given deformation diagram. The physical nature of such bonds and sizes of the end zones in
which the interaction of crack faces is realized, depends on kind of the material. A crack existing
in the plane is assumed to be close to a rectilinear form admitting only small deviations of the
crack line from the straight line y = 0. The crack line equation is accepted in the form: y = f(x),
a ¬ x ¬ b. Based on the accepted assumption on the form of the crack line, functions f(x) and
f ′(x) are small quantities.
The end zones are small compared with another part of the plane. Therefore, the end zones

may be mentally removed having changed by cuts whose surfaces interact between themselves
by some law corresponding to the action of the removed material.
Under the action of external power and thermal loads on the plane, in the bonds connecting

the crack faces in the end zones, there will arise in the general case, normal qy(x) and tangential
qxy(x) forces. Consequently, to the crack faces in the end zones there will be applied normal and
tangential stresses equal to qy(x) and qxy(x), respectively. The quantities of these stresses are
not known in advance and they are to be determined.
The boundary conditions of the considered problem have the following form (y = f(x))

σn − iτnt =
{
0 for a1 < x < b1

qy − iqxy for a ¬ x ¬ a1 ∧ b1 ¬ x ¬ b
(2.1)

where n, t are natural coordinates. The stress state is represented in the form

σx = σx0 + σx1 σy = σy0 + σy1 τxy = τxy0 + τxy1 (2.2)

where σx0, σy0, τxy0 is the solution to the thermoelasticity problem for a crackless plane; σx1, σy1,
τxy1 is the stress state of the plane with an interfacial crack on the faces on which the stresses
equal in value and opposite in sign, defined by the stress state σx0 , σy0, τxy0 for y = 0, are
additionally applied.

3. The method of solution of the boundary-value problem

For determining the stresses σx0, σy0 , τxy0, we solve a thermo-elasticity problem for a solid plane.
At first, we find temperature distribution in the plane. For that we solve the following boundary
value problem of heat theory

∂T

∂t
= a∗∆T T =

{
T0 for t = 0 ∧ x, y ∈ S
0 for t = 0 ∧ x, y /∈ S (3.1)
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where ∆ is the Laplace operator; a∗ is the coefficient of thermal conductivity of the plane
material.
For a generalized plane stress state, it is assumed that the plate is thermally insulated on

lateral surfaces. When determining the temperature field, for simplifying the problem, we do
not take into account a perturbed temperature field caused by the existence of the crack. Let
the heated by heat source areas S1 and S2 from each vertex are arbitrary and simply connected
regions with centers Ok(Lk, ck) (Fig. 1).
The solution to the thermal conductivity problem has the form

T (x, y, t) =
T0
4πa∗t

∫∫

S1

exp
(
− R2

4a∗t

)
dξ dη +

∫∫

S2

exp
(
− R2

4a∗t

)
dξ dη (3.2)

where R2 = (x− ξ)2 + (y − η)2.
For the thermoelastic potential of displacement, we find

F (x, y, t) =
(1 + ν)αT0
4π




t∫

0

1

τ

∫∫

S

exp
(
− R2

4a∗t

)
dξ dη − 2

∫∫

S

ln
1

R
dξ dη



 (3.3)

where S = S1+S2; ν is the Poisson ratio of the material; α is the coefficient of linear temperature
expansion.
The components of the stress tensor are expressed through thermoelastic potential of displa-

cement by the known formulas (Parkus, 1959) and have the form

σx0 = −µ(1 + ν)αT0

·
{
1 +
1

π

∫∫

S

1

R4

[
(x− ξ)2 − (y − η)2 + 2(y − η)2Γ

(
2,

R2

4a∗t

)
−R2 exp

(
− R2

4a∗t

)]
dξ dη

}

σy0 = −µ(1 + ν)αT0 (3.4)

·
{
1 +
1

π

∫∫

S

1

R4

[
−(x− ξ)2 + (y − η)2 + 2(x− ξ)2Γ

(
2,

R2

4a∗t

)
−R2 exp

(
− R2

4a∗t

)]
dξ dη

}

τxy0 = −
µ(1 + ν)αT0
2π

∫∫

S

4(x− ξ)(y − η)
π

1

R4

[
1− Γ

(
2,

R2

4a∗t

)]
dξ dη

Γ (α, x) =

∞∫

x

e−ttα−1 dt

where µ is the shear modulus of the material.
Boundary conditions (2.1) on the crack with end zones on the basis of (2.2) take the form

(y = f(x))

σn1−iτn1 =
{
−[σy0(x, 0) − iτxy0(x, 0)] for a1 < x < b1

qy(x, 0)− iqxy(x, 0) − [σy0(x, 0)− iτxy0(x, 0)] for a ¬ x ¬ a1 ∧ b1 ¬ x ¬ b
(3.5)

Let us consider some arbitrary realization of the curved (with small deviations from the
rectilinear form) surface of crack faces.
As the functions f(x) and f ′(x) are small quantities, the function f(x) may be represented

in the form

f(x) = εH(x) a ¬ x ¬ b
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where ε is a small parameter for which we can accept the greatest height of the bulge of irregu-
larity of the upper crack surface related to the crack length.
The stress and the displacement values and tractions in the bonds are sought in the form of

an expansion in the small parameter

σx1 = σ
(0)
x + εσ

(1)
x + . . . σy1 = σ

(0)
y + εσ

(1)
y + . . . τxy1 = τ

(0)
xy + ετ

(1)
xy + . . .

u = u0 + εu1 + . . . v = v0 + εv1 + . . .

qy = q
0
y + εq

1
y + . . . qxy = q

0
xy + εq

1
xy + . . .

where the terms with ε of higher orders are neglected for simplification. Here σ
(0)
x , σ

(0)
y , τ

(0)
xy , u0,

v0, q
0
y, q
0
xy and σ

(1)
x , σ

(1)
y , τ

(1)
xy , u1, v1, q

1
y, q
1
xy are the stresses, displacements and tractions in the

bonds of zero and first approximations, respectively.
The values of stresses for y = f(x) can be found by expanding in series the expressions for

stresses in the vicinity of y = 0. Using the procedure of the perturbation method, allowing for
previous formulas, we find boundary conditions for y = 0, a ¬ x ¬ b:
— in the zero approximation (y = 0)

σ(0)y − iτ (0)xy =
{
−(σy0 − τxy0) for a1 < x < b1

q0y − iq0xy − (σy0 − τxy0) for a0 ¬ x ¬ a1 ∧ b1 ¬ x ¬ b0
(3.6)

— in the first approximation (y = 0)

σ(1)y − iτ (1)xy =
{
N − iT for a1 ¬ x ¬ b1
q1y − iq1xy +N − iT for a1 ¬ x ¬ a1 ∧ b1 ¬ x ¬ b1

(3.7)

where for y = 0

N = τ (0)xy
dH

dx
−H∂σ

(0)
y

∂y
T = (σ(0)y − σ(0)x )

dH

dx
−H∂τ

(0)
xy

∂y

a = a0 + εa1 + . . . b = b0 + εb1 + . . .

(3.8)

The basic relations of the stated problem should be complemented by the equation connecting
the crack faces opening and tractions in the bonds in the end zones of the crack. Without loss
of generality, we can represent this equation in the form

(v+ − v−)− i(u+ + u−) = Πy(x, σ)qy(x)− iΠx(x, σ)qxy(x) (3.9)

where the functions Πy(x, σ) and Πx(x, σ) are effective compliances of the bonds dependent on

the tension of the bonds, σ =
√
q2y + q

2
xy is the modulus of the bonds traction vector; (v

+ − v−)
are normal and (u+ + u−) are tangential components of the opening of the crack faces in the
end zones.
At constant values of Πy, Πx in (3.9), we have a linear law of deformation. In the general

case, the deformation law is nonlinear and is given.

The stress strain state σ
(0)
x , σ

(0)
y , τ

(0)
xy and u0, v0 at an infinite plane and conditions of a plane

problem with a cut along the abscissa is described by two piecewise-analytical functions Φ(z)
and Ω(z) (Muskhelishvili, 2010)

σ(0)x + σ
(0)
y = 2[Φ0(z) + Φ0(z)] σ(0)y − iτ (0)xy = Φ0(z) +Ω0(z) + (z − z)Φ′0(z)

2µ
∂

∂x
(uo + iv0) = κΦ0(z)− Φ0(z) − zΦ′0(z)− Ψ0(z)

Ω(z) = Φ(z) + zΦ′(z) + Ψ(z)

(3.10)

where κ = 3− 4ν for plane deformation, and κ = (3− ν)/(1 + ν) for a plane stress state.
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For determination of the functions Φ0(z) and Ω0(z) on the basis of boundary conditions and
the superposition principle, we have a linear conjugation problem (Muskhelishvili, 2010)

[Φ0(x) +Ω0(x)]
+ + [Φ0(x) +Ω0(x)]

− = 2p0(x)

[Φ0(x)−Ω0(x)]+ − [Φ0(x)−Ω0(x)]− = 0
(3.11)

where a ¬ x ¬ b, x is the affix of the points of the contour of the crack with end zones

p0(x) =

{
−(σy0 − τxy0)− σ0 on free faces of the crack

q0y − iq0xy − (σy0 − τxy0)− σ0 on faces of the crack end zones

Since the stresses in the plate are restricted, we should look for the solution to boundary
value problem (3.11) in the class of everywhere bounded functions. The sought for solution to
the boundary value problem is written in the form

Φ0(z) = Ω0(z) =

√
(z − a0)(z − b0)

2πi

b0∫

a0

p0√
(t− a0)(t− b0)(t− z) dt (3.12)

Moreover, all the following solvability conditions of boundary value problem (3.11) should
be fulfilled

b0∫

a0

p0(t)√
(t− a0)(b0 − t) dt = 0

b0∫

a0

tp0(t)√
(t− a0)(b0 − t) gt = 0 (3.13)

These relations serve for determination of the unknown parameters a0 and b0.
For the final determination of the complex potentials Φ0(z) and Ω0(z), it is necessary to find

the tractions in the bonds q0y and q
0
xy. Using the relation

2µ
∂

∂x
(u0 + iv0) = κΦ0(z)−Ω0(z)− (z − z)Φ′0(z)

and the boundary values of the functions Φ0(z) and Ω0(z) on the segment a
0 ¬ x ¬ b0, we get

the following equality

Φ+0 (x)− Φ−0 (x) =
2µ

1 + κ

[ ∂
∂x
(u+0 − u−0 ) + i

∂

∂x
(v+0 − v−0 )

]
(3.14)

Using the Sokhotski-Plemelj formulas (Muskhelishvili, 2010) and taking into account formula
(3.12) we find

Φ+0 (x)− Φ−0 (x) = −
i
√
(x− a0)(b0 − x)

π

b0∫

a0

p0(t)√
(t− a0)(b0 − t)(t− z) dt (3.15)

The obtained expression, (3.15), is substituted into the left side of (3.14), and by taking into ac-
count relation (3.9) in the zero approximation we get the system of nonlinear integro-differential
equations with respect to the unknown functions q0y and q

0
xy

−
√
(x− a0)(b0 − x)

π

b0∫

a0

q0y(t) + fy(t)√
(t− a0)(b0 − t)(t− x) dt =

2µ

1 + κ

d

dx
[Πy(x, σ

0)q0y(x)]

−
√
(x− a0)(b0 − x)

π

b0∫

a0

q0xy(t) + fxy(t)√
(t− a0)(b0 − t)(t− x) dt =

2µ

1 + κ

d

dx
[Πx(x, σ

0)q0xy(x)]

(3.16)

Here fy(t) = −σy0(t)− σ0, fxy(t) = −τxy0(t).
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4. Numerical solution and analysis

As expected, the stated problem in the zero approximation is decomposed into two independent
problems: Eq. (3.16)1 for mode I crack and Eq. (3.16)2 for mode II crack.
Each of equations (3.16)1 or (3.16)2 is a nonlinear integro-differential equation with a Cauchy-

-type integral and may be solved only numerically. For their solution, one can use a collocation
scheme (Panasyuk et al., 1976; Mirsalimov, 1987; Ladopoulos, 2000, 2013) with an approximation
of unknown functions.
Now pass to algebraization of integro-differential equations (3.16). At first, in integro-

-differential equations (3.16) all integration segments are reduced to one interval [−1, 1]. For
that, we make a change of variables

t =
1

2
(a0 + b0)− 1

2
(a0 − b0)τ x =

1

2
(a0 + b0)− 1

2
(a0 − b0)η

At such a change of variables, the left side of integro-differential equation (3.16)1 admits the
following form

− 1
π

√
1− η2




1∫

−1

q0y(τ)√
1− τ2(τ − η)

dτ +

1∫

−1

fy(τ)√
1− τ2(τ − η)

dτ





Respectively, for the left side of equation (3.16)2 we get

− 1
π

√
1− η2



1∫

−1

q0xy(τ)√
1− τ2(τ − η)

dτ +

1∫

−1

fxy(τ)√
1− τ2(τ − η)

dτ




Replace the derivative in the right hand side of equation (3.16)1 for an arbitrary internal
i-th node by a finite-difference approximation

d

dx
[Πy(x, σ

0)q0y(x)]i =
Πy
(
xi+1, σ

0(xi+1)
)
q0y(xi+1)−Πy

(
xi−1, σ

0(xi−1)
)
q0y(xi−1)

2∆x

where ∆x = (b0 − a0)/M .
In the similar way we do it with the right hand side of equation (3.16)2. Therewith we take

into account boundary conditions for η = ±1: q0y(a0) = q0y(b
0) = 0, q0xy(a

0) = q0xy(b
0) = 0 (this

corresponds to the conditions v+0 (a
0, 0) − v−0 (a0, 0) = 0, v+0 (b0, 0) − v−0 (b0, 0) = 0, u+0 (a0, 0) −

u−0 (a
0, 0) = 0, u+0 (b

0, 0)− u−0 (b0, 0) = 0).
Using the quadrature formula

1

2π

1∫

−1

g(τ)√
1− τ2(τ − η)

dτ = − 1

M sin θ

M∑

k=1

gk

M−1∑

m=1

cos(mθk) cos(mθ)

where

τ = cos θ ηm = cos θm θm =
2m− 1
2M

π (m = 1, 2, . . . ,M)

all the integrals in (3.16) are replaced by finite sums, and the derivatives in the right hand sides
of the equations are replaced by finite-difference approximations.
The above formulae enable one to reduce each integro-differential equation to a finite system

of algebraic equations with respect to approximate values of the sought for function, respectively,
at the nodal points. As a result, we get
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− 2
M

[
M∑

ν=1

q0y,ν

M−1∑

k=1

sin(kθm) cos(kθk) +
M∑

ν=1

fy,ν

M−1∑

k=1

sin(kθm) cos(kθk)

]

=
M(1 + κ)

4µ(b0−a0)
[
Πy
(
xm+1, σ

0(xm+1)
)
q0y,m+1(xm+1)−Πy

(
xm−1, σ

0(xm−1)
)
q0y,m−1(xm−1)

]

− 2
M

[
M∑

ν=1

q0xy,ν

M−1∑

k=1

sin(kθm) cos(kθk) +
M∑

ν=1

fxy,ν

M−1∑

k=1

sin(kθm) cos(kθk)

]

=
M(1 + κ)

4µ(b0−a0)
[
Πx
(
xm+1, σ

0(xm+1)
)
q0xy,m+1(xm+1)−Πx

(
xm−1, σ

0(xm−1)
)
q0xy,m−1(xm−1)

]

(4.1)

where

m = 1, 2, . . . ,M1 q0y,ν = q
0
y(τν) q0xy,ν = q

0
xy(τν)

σy0,ν = σy0(τν) τxy0,ν = τxy0(τν) xm+1 =
a0+b0

2 +
b0−a0

2 ηm+1

If we take into account the equality

2
M−1∑

k=0

cos(kθν) sin(kθm) = cot
θm ∓ θν
2

the systems will take the following forms

M∑

ν=1

Amν(q
0
y,ν + fy,ν) =

M(1 + κ)

4µ(b0 − a0)
[
Πy(xm+1, σ

0)q0y,m+1 −Πy(xm−1, σ0)q0y,m−1
]

M∑

ν=1

Amν(q
0
xy,ν + fxy,ν) =

M(1 + κ)

4µ(b0 − a0)
[
Πx(xm+1, σ

0)q0xy,m+1 −Πx(xm−1, σ0)q0xy,m−1
] (4.2)

where

m = 1, 2, . . . ,M1 qy,ν = q
0
y(τν) qxy,ν = q

0
xy(τν)

fy,ν = fy(τν) fxy,ν = fxy(τν) Amν = − 1M cot θm∓θν2
the upper sign is taken when the number |m− ν| is odd, the lower sign when it is even.
Now pass to algebraization of the solvability conditions of boundary value problem (3.13).

Separating in them the real and imaginary parts, using the change of variables and Gauss’s
quadrature formula, we get the solvability conditions of the problem in the following form

M∑
ν=1

f∗y (cos θν) = 0
M∑
ν=1

τνf
∗
y (τν) = 0

M∑
ν=1

f∗xy(cos θν) = 0
M∑
ν=1

τνf
∗
xy(τν) = 0

(4.3)

where f∗y = q
0
y + fy, f

∗
xy = q

0
xy + fxy.

As a result of algebraization, instead of each integro-differential equation with corresponding
additional conditions, we get M1 + 2 (M1 is the number of nodal points belonging to the crack
end zones) algebraic equations to determine stresses at nodal points and the end zone sizes. Even
in the special case of linear elastic bonds, the obtained system of equations becomes nonlinear
because of the unknown size of the end zone. In this connection, for solving the obtained systems,
in the case of linear bonds the method of successive approximations has been used.
In the case of a deformation law of nonlinear bonds, to define tractions in the end zones it is

advisable to use an iterative scheme similar to the method of elastic solutions (Il’yushin, 2003).



Effect of induced temperature field on development... 773

It is accepted that the law of deformation of interparticle bonds (cohesive forces) is linear

for V =
√
(v+0 − v−0 )2 + (u+0 − u−0 )2 ¬ V∗. The first step of iterative calculations is solving

the system of equations (4.2) and (4.3) for linear-elastic interparticle bonds. The subsequent
iterations are fulfilled only in the case when the relation V (x) > V∗ holds on a part of the end
zone. For such iterations, the system of equations is solved at each approximation for quasi-brittle
bonds with effective compliance variable along the crack end zone and dependent on the size of
modulus of the fraction vector obtained in the previous step of calculation. Effective compliance
analysis is conducted through the definition of the secant modulus in elasticity parameters.
The successive approximations process ends as the forces along the end zone, obtained at two
successive iterations, differ a little from each other.
The nonlinear part of the strain curve of interparticle bonds is represented in the form

of a bilinear dependence whose ascending portion corresponds to elastic deformation of the
bonds (0 < V (x) < V∗) with their maximum tension. For V (x) > V∗, the deformation law is
described by a non-linear dependence determined by two points (V∗, σ∗) and (δc, σc). And for
σc  σ∗, we have a descending linear dependence (linear hardening corresponding to elastic-
plastic deformation of bonds). Here σ∗ is the maximum elastic stress in the bonds, δc is the
characteristic of fracture toughness of the material determined experimentally. In numerical
calculations, it has been assumed M = 30, which corresponds to partition of the integration
interval into 30 Chebyshev nodal points.
After finding stress components in the zero approximation, we find the functions N and

T from formulas (3.8). The sequence of solution of problem (3.7) in the first approximation is
similar to the solution of the problem in the zero approximation. The solution of the problem
on the definition of piecewise-analytic functions Φ1(z) and Ω1(z) is of the form

Φ1(z) = Ω1(z) =

√
(z − a1)(z − b1)

2πi

b1∫

a1

p1(t)√
(t− a1)(t− b1)(t− z) dt (4.4)

where

p1(t) =

{
N − iT on free crack faces

q1y − iq1xy +N − iT on faces of the crack end zones

Moreover, all the following solvability conditions of the boundary value problem should be
fulfilled

b1∫

a1

p1(t)√
(t− a1)(b1 − t) dt = 0

b1∫

a1

tp1(t)√
(t− a1)(b1 − t) dt = 0 (4.5)

These relations serve for determination of the unknown parameters a1 and b1.
Using the formula and boundary values of the functions Φ1(z), Ω1(z) on the segment

a1 ¬ x ¬ b1, we find the equality

Φ+1 (x)− Φ−1 (x) =
2µ

1 + κ

[ ∂
∂x
(u+1 − u−1 ) + i

∂

∂x
(v+1 − v−1 )

]
(4.6)

Using the Sokhotski-Plemelj (Muskhelishvili, 2010) and taking into account formula (4.4),
we find

Φ+1 (x)− Φ−1 (x) = −
i

π

√
(x− a1)(b1 − x)

b1∫

a1

p1(t)√
(t− a1)(b1 − t)(t− x) dt (4.7)
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Substituting obtained expression (4.7) into the left part of equation (4.6) and taking into
account relation (3.9) for the first approximation, after some transformations we get a system
of nonlinear integro-differential equations with respect to the unknown functions q1y and q

1
xy

−
√
(x− a1)(b1 − x)

π

b1∫

a1

q1y(t) +N(t)√
(t− a1)(b1 − t)(t− x) dt =

2µ

1 + κ

d

dx
[Πy(x, σ

1)q1y(x)]

−
√
(x− a1)(b1 − x)

π

b1∫

a1

q1xy(t) + T (t)√
(t− a1)(b1 − t)(t− x) dt =

2µ

1 + κ

d

dx
[Πx(x, σ

1)q1xy(x)]

(4.8)

where σ1 =
√
(q1y)

2 + (q1xy)
2.

Similarly, in the first approximation, in obtaining the algebraic systems all integration in-
tervals are reduced to one interval [−1, 1]. Then, using the quadrature formulas of the Gauss
type the integrals are replaced by finite sums. As a result we get the zero approximation while
obtaining algebraic systems all integration intervals are reduced to one interval [−1, 1]. Then,
the integrals are replaced by finite sums by means of Gauss-type quadrature formulas. As a
result, we get

M∑

ν=1

Amν [q
1
y,ν +Nν ] =

µM

(1 + κ)(b1 − a1)
[
Πy(x

1
m+1, σ

1)q1y,m+1 −Πy(x1m−1, σ1)q1y,m−1
]

M∑

ν=1

Amν [q
1
xy,ν + Tν ] =

µM

(1 + κ)(b1 − a1)
[
Πx(x

1
m+1, σ

1)q1xy,m+1 −Πx(x1m−1, σ1)q1xy,m−1
](4.9)

where

m = 1, 2, . . . ,M1 x1m+1 =
1
2 (a
1 + b1)− 12 (a1 − b1)ηm+1 q1y,ν = q

1
y(τν)

q1xy,ν = q
1
xy(τν) Nν = N(τν) Tν = T (τν)

As a result of algebraization of the boundary problem solvability conditions (4.5), we obtain

M∑
ν=1

f∗1y (τν) = 0
M∑
ν=1

τνf
∗1
y (τν) = 0

M∑
ν=1

f∗1xy(τν) = 0
M∑
ν=1

τνf
∗1
xy(τν) = 0

(4.10)

where f∗1y = q
1
y +N , f

∗1
xy = q

1
xy + T .

As a result of algebraization, as in the zero approximation, instead of each integro-differential
equation we get a system of M1+2 algebraic equations for determining stresses at nodal points
of the crack end zones and end zones sizes.
A solving algorithm for algebraic systems (4.9) and (4.10) is similar to the solution of the

systems for the zero approximation. The opening of the crack in the end zones may be determined
from the relations

v+(x, 0) − v−(x, 0) = Πy(x, σ)qy(x)
u+(x, 0) − u−(x, 0) = Πx(x, σ)qxy(x)
a ¬ x ¬ a1 b1 ¬ x ¬ b

(4.11)

Calculations show that for the linear law of deformation of bonds, tractions in the bonds
have always maximal values at the edge of the end zone. The similar picture is observed for
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the quantities of crack openings. Opening of a crack at the edge of end zone has maximum for
linear and nonlinear laws of deformation, and with an increasing compliance of the bonds. To
determine the limit state at which the crack growth occurs, we use the critical condition

|(v+ − v−)− i(u+ + u−)| = δc (4.12)

The joint solution of the obtained equations and condition (4.12) enable determination of
the critical value of external loads, forces in the bonds and the size of the end zone for the limit
equilibrium state under the given characteristics of bonds.
The function H(x) describing roughness of the crack surface are considered as a determinate

set of the rough surface of the profile contour and also as a stationary random function. In this
case, the random function H(x) is given by the canonical expansion

H(θ) =
∞∑

k=−∞

vkε
ikθ

where vk are independent zero random values of the mathematical expectation and dispersions
Dk.
Calculations show that the heated zone promotes flow of plastic deformations in the bonds.
In Fig. 2a, plots of distribution of normal forces qy in the bonds of the crack end zones

are depicted for the following values of free parameters t∗ = 4a∗t/L
2
1 = 10; c1/L1 = −0.2;

c2/L2 = 0.1 = 0.1; ν = 0.3; L1 = L2 = L; M = 30; E = 1.8 · 105MPa; V∗ = 10−6m;
σ∗ = 75MPa; σc/σ∗ = 2; δc = 2.5 · 10−6m; C = 2 · 10−7m/MPa (C is the effective compliance
of the bonds). There, curves 1 correspond to the bilinear law of strains of the bonds, and
curves 2 correspond to the linear law of strains. In the computations, we used the dimensionless
coordinates x = (a+ b)/2 + (b− a)x′/2.
The compliance of the bonds in the normal and tangential directions is assumed to be equal.
Graphs of the distribution of tangential forces qxy in the bonds of the crack end zones are

shown in Fig. 2b.

Fig. 2. Distribution of normal forces qy/σ0 (a) and tangential forces qxy/σ0 (b) in the bonds of
the crack end zones

Graphs of the length of the crack end zone (b − b1)/(b − a) for the plate against the di-
mensionless value of the tensile stress σ0/σ∗ are shown in Fig. 3 for different crack lengths
ℓ∗ = (b1 − a1)/(b− a) = 0.5, 0.7.
The dependence of the critical load σ0/σ∗ on the dimensionless length of the crack (b−a)/R

is shown in Fig. 4. There R is the typical linear size of the plate.
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Fig. 3. Dependency of the length of the end zone (b − b1)/(b− a) on the dimensionless value σ0/σ∗ for
different crack lengths

Fig. 4. Distribution of the critical load on the dimensionless length of the crack

Theoretical and experimental investigations show that the created temperature field in the
course of some limited time for the purpose of crack retardation is an insurmountable barrier
(Finkel, 1977) on the path of its propagation. Subsequent removal of the temperature field
(t→∞) will gradually decrease the value of compressive stresses and crack retardation efficiency.
The crack faces opening at the bottom of the end zone, having attained reduction, will gradually
grow to the size stipulated by mechanical load.

Under action of the temperature field, simultaneously with the reduction of maximum tensile
stress, there happens its unfolding towards the thermal source. This reduces (Morozov, 1969;
Finkel, 1977) the displacement of the fracture plane observed in the experiment. After removing
the temperature field, this circumstance will help ensuring that for crack propagation, an increase
of the external tensile load is necessary. Note that the perturbed temperature field amplifies the
inhibitory effect of the induced temperature field of stresses. In conclusion, note that plate-
like elements have found wide application in constructions of different kind transport systems
(aircraft). Based on experimental data and numerical results of this paper, we can recommend
the following schemes of effective retardation of crack propagation:

• On the path of possible fracture of a plate-like construction, it is necessary to create stable
temperature fields. If a crack grows in the direction of temperature increase, then velocity
of its growth will decrease, and sooner or later it will stop.
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• Creating no temperature fields beforehand, heating on the path of crack propagation may
be conducted impulsively, for example, by means of explosive wires. In this case, the crack
tip is found in the site of explosion. As a result of simultaneous action of impact waves
of thermoelastic stress and plastic deformations of the heated material, the crack growth
slows down and the fracture stops.

5. Conclusions

Theoretical investigation of the retardation problem for a curvilinear crack with interfacial bonds
by temperature fields has been carried out. An effective calculation scheme of the retardation
of the curvilinear crack with interfacial bonds in a plane under action of external tensile loads
is suggested. Based on the obtained results, we can consider that the temperature field created
in the vicinity of the crack tip is a barrier to its propagation way. Relations for tractions in the
bonds and opening of curvilinear crack faces in the end zone depending on the applied load,
intensity of thermal source, crack length, and geometrical sizes of the heated zone are obtained.
The dependence of the crack length on the applied stretchable load, intensity of the heated zone
and also on physical and geometrical parameters of the plate at monotone loading is established.

In the case of a crack with bonds in the end zones and temperature stresses induced by heat
sources, the analysis of the limiting equilibrium state of the plane reduces to a parametric study
of the solution of algebraic systems (4.2),(4.3) and (4.9), (4.10) for various laws of deformation
of the bonds, sizes of end zones and thermal and elastic constants of the plane material. The
normal and tangential stresses in the bonds and the crack opening are directly determined by
solving the resulting algebraic systems in each approximation. The crack opening in the end
zones can also be determined from relation (4.11).
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In the paper, the dynamics of a three degree of freedom vibratory system with a sphe-
rical pendulum in the neighbourhood of internal and external resonance is considered. It
has been assumed that the spherical pendulum is suspended to the main body which is
then suspended to the element characterized by some elasticity and damping. The system
is excited harmonically in the vertical direction. The equation of motion has been solved
numerically. The influence of initial conditions on the behaviour of the spherical pendulum is
investigated. In this type of the system, one mode of vibration may excite or damp another
one, and for different kinds of periodic vibrations there may also appear chaotic vibrations.
For characterization of an irregular chaotic response, time histories, bifurcation diagrams,
power spectral densities, Poincaré maps and the maximum Lyapunov exponents have been
calculated.

Keywords: spherical pendulum, energy transfer, coupled oscillators, chaos

1. Introduction

The subject of this work is investigation of the effect of initial conditions on the dynamics
of a three degree of freedom system with a spherical pendulum. Dynamical systems having
an element in the form of a mathematical or physical pendulum have important applications.
Different kinds of coupled autoparametric oscillators with simple pendulums are presented in
the book by Sado (2010). Furthermore, the numerical and analytical methods of researching the
dynamics of two degree and three degree of freedom vibratory systems with the pendulums are
presented in this book. There are shown: the influence of initial conditions on the behaviour of
the vibratory system, the characteristic of vibrations, and how to manipulate the vibrations.
The real pendulum is of spherical type. The spherical pendulum was investigated by many

researches. The spherical pendulum subjected to parametric excitation was studied by Miles and
Zou (1993). They investigated the non-linear response of a slightly detuned spherical pendulum
with natural frequencies. In that model, no stable harmonic motion was possible, therefore the
motion of the system was either periodically modulated by a sinusoid or becomes chaotic. The
numerical integration was supported by analytical predictions, which also uncovered that the
limit cycles and chaotic motions overlaped those of stable harmonic motion.

In paper by Naprstek and Fischer (2009), the pendulum vibration damper modelled as a
two degree of freedom strongly non-linear auto-parametric system was investigated. There was
a kinematic external excitation applied to a point. In that model the excitation was considered
to be horizontal and harmonically variable in time. The solution and the stability were analysed.
Therefore, the biggest attention was paid to the resonance domain. In certain domains of the

1The paper was presented at the 27th Symposium on Vibrations in Physical Systems, May 9-13,
Poznań-
-Będlewo, Poland.
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pendulum and excitation parameters, the semi-trivial solution did not exist in that domain
and various post-critical three-dimensional regimes occurred. Some of them were non-stationary
despite the harmonic excitation. Three different types of the resonance domain were investigated.
Their main properties depended on dynamic parameters of the pendulum and the external
excitation amplitude. An analytical and numerical study brought some recommendations for
designers of such devices. Their aim was to avoid any post-critical response rules risking the
pendulum functionality.

The bifurcation behaviour of a spherical pendulum where the suspension point is harmo-
nically excited in both vertical and horizontal directions was presented by Leung and Kung
(2006). The equations of motion for a lightly damped spherical pendulum were considered. The
point of the suspension was harmonically excited in both vertical and horizontal directions. The
equations were solved with approximation in the neighbourhood of resonance by including the
third order terms in the amplitude.

A mathematical model of the spherical pendulum with a moving pivot was suggested by
Mitrev and Grigorov (2009) and later developed. Such a model allowed studying the influence
of different kinematic excitations applied to the pivot point. That required the kinematical
and dynamical parameters of the pendulum which also determined the force in the rope. A
numerical simulation for spatial curvilinear and planar with straight line motions trajectories
was performed. The stochastic analysis of a spring spherical pendulum was done by Viet (2015).
The vibration was reduced by a spring and damper installed in the radial direction between the
point mass and the cable. Under the sway motion, the centrifugal force resulted in the radial
motion, which in its turn produced the Coriolis force to reduce the sway motion.

The dynamics of coupled spherical pendulums (where two lower pendulums were mounted
at the end of the upper pendulum) was considered by Witkowski et al. (2014). The analysis
showed that three rotating modes existed. The linear modes helped to understand the nonlinear
normal modes, which were later visualized in plots. When there was an increase of energy in
one mode, we could see a symmetry pitchfork bifurcation. In the second part of the paper, the
energy transfer between pendulums was investigated. The results for co-rotating (all pendulums
rotated in the same direction) and counter-rotating motion (one of lower pendulum rotated in
the opposite direction) were presented.

In the present paper, it is assumed that the spherical pendulum is suspended on a flexible
element, thus in this system there may occur an autoparametric excitation as a result of inertial
coupling.

2. A model of an autoparametric system with a spherical pendulum

The investigated system is shown in Fig. 1. The system consists of a body of mass m1 suspended
to the flexible element. This flexible element is characterised by the stiffness k and damping c.
This system also consists of the spherical pendulum of the length l and mass m2 which is
suspended to the body of mass m1. The body of mass m1 is subjected to the harmonic vertical
excitation F1(t) and the spherical pendulum is subjected to the horizontal excitation F2(t).

The spherical pendulum is similar to the simple pendulum but it moves in 3D space, so
we need to introduce a new variable ϕ in order to describe rotation of the pendulum in the
plane XY . The position of the body of mass m1 is described only by the coordinate z. However,
the position of the pendulum is described by the coordinate z and two angles: θ and ϕ. The
angle θ is the deflection of the pendulum measured from the vertical line. This system has three
degrees of freedom. The equations of motion are derived as Lagrange’s equations.
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Fig. 1. A model of an autoparametric system with a spherical pendulum

The kinetic energy T is the sum of the energy of the two bodies

T =
m1v

2
1

2
+
m2v

2
2

2
=
m1ż

2
1

2
+
m2(ẋ

2
2 + ẏ

2
2 + ż

2
2)

2
(2.1)

where

x2 = l sin θ cosϕ y2 = l sin θ sinϕ z2 = z1 + l cos θ

z1 = z + zst zst =
(m1 +m2)g

k

(2.2)

The kinetic energy T is given by the expression

T =
1

2
(m1 +m2)ż

2 +
1

2
m2(lθ̇

2 + l2ϕ̇2 sin2 θ − 2lżθ̇ sin θ) (2.3)

The potential energy V is given by the expression

V = −(m1 +m2)g(z + zst) +m2g(l − l cos θ) +
k(z + zst)

2

2
(2.4)

Assuming that the exciting forces are in the form: F1(t) = P1 cos(ν1t), F2(t) = P2 cos(ν2t), the
dissipation function D = cż2/2, the equations of motion of the system are as follows

(m1 +m2)z̈ −m2lθ̈ sin θ −m2lθ̇2 cos θ + kz + cż = P1 cos(ν1t)
m2l
2θ̈ −m2lz̈ sin θ −m2l2ϕ̇2 sin θ cos θ +m2gl sin θ = l cos θ sinϕP2 cos(ν2t)

m2l
2ϕ̈ sin2 θ + 2m2l

2ϕ̇θ̇ sin θ cos θ = l sin θ cos θP2 cos(ν2t)

(2.5)

By introducing the dimensionless time and parameters

τ = ω1t ω21 =
k

m1 +m2
ω22 =

g

l
β =

ω2
ω1

γ =
c

(m1 +m2)ω1
z̄ =

z

l
a =

m2
m1 +m2

A1 =
P1

(m1 +m2)ω
2
1

A2 =
P2

m2lω
2
1

µ1 =
ν1
ω1

µ2 =
ν2
ω1

(2.6)

after transformation (2.5) into the dimensionless form we obtain

z̈ − aθ̈ sin θ − θ̇2 cos θ + z + γż = A1 cos(µ1τ)
θ̈ − z̈ sin θ − ϕ̇2 sin θ cos θ + β2 sin θ = A2 cos θ sinϕ cos(µ2τ)
ϕ̈ sin θ + 2ϕ̇θ̇ cos θ = A2 cos θ cos(µ2τ)

(2.7)

where the overbars denoting non-dimensionalisation are omitted for convenience.
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After transformation, the equations of motion can be written in a simpler form for numerical
calculations:

z̈ =
1

1− a sin2 θ [(A1 cos(µ1τ) + θ̇
2 cos θ − z − γż) + a sin θ(ϕ̇2 sin θ cos θ − β2 sin θ)]

θ̈ =
1

1− a sin2 θ
{
ϕ̇2 sin θ cos θ − β2 sin θ

+ [A1 cos(µ1τ) + aθ̇
2 cos θ − z − γż + a sin θ(ϕ̇2 sin θ cos θ − β2 sin θ)] sin θ

}

ϕ̈ =
1

sin2 θ
(A2 sin θ cosϕ cos(µ2τ)− 2ϕ̇θ̇ sin θ cos θ)

(2.8)

3. Numerical simulation results

The equations of motion of the given model are solved numerically using Runge-Kutta method
with a variable step length. The calculations are carried out for different values of parameters
of the system and for different initial conditions. Exemplary time histories of the displacements
z and θ are obtained for parameters of the system a = 0.8, β = 0.5, γ = 0, A1 = A2 = 0 and for
the initial conditions: z(0) = 0.1, θ(0) = 0.005◦, ϕ(0) = 0, ż(0) = θ̇(0) = ϕ̇(0) = 0 are presented
in Fig. 2, where we can observe the energy transfer between the modes of vibration in a closed
cycle. In this case, the spherical pendulum behaves in the same way as a simple pendulum, and
motion of the pendulum is in the vertical plane (angle ϕ is constant and it depends on the initial
conditions, so it is equal to 0 for ϕ(0) = 0).

Fig. 2. Time history for (a) oscillator, (b) pendulum for a = 0.8, β = 0.5, γ = 0, A1 = A2 = 0,
z(0) = 0.1, θ(0) = 0.005◦, ϕ(0) = 0

Fig. 3. Internal resonance for: a = 0.8, γ = 0, A1 = A2 = 0, z(0) = 0.1, θ(0) = 0.005
◦, ϕ(0) = 0

The diagram of internal resonance for the same initial conditions put on the displacements
is presented in Fig. 3, and it is similar to a simple pendulum presented in the work (Sado, 2010).
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We observe the resonance excitation for the frequency ratio β = 0.5. In this case, there is an
assumption that the simple pendulum results are good.
On the other hand, when the initial conditions are put on the displacements and also on the

velocities (in this example: z(0) = 0, ż(0) = 0, θ(0) = 5◦, θ̇(0) = −0.04, ϕ(0) = 0, ϕ̇(0) = −0.96),
we can observe the influence of angle ϕ (Fig. 4). For these initial conditions, we observe the
oscillation displacements z and θ with the same frequency.

Fig. 4. Time history for: a = 0.5, β = 0.51, γ = 0, A1 = A2 = 0, z(0) = 0, ż(0) = 0, θ(0) = 5
◦,

θ̇(0) = −0.04, ϕ(0) = 0, ϕ̇(0) = −0.96

With the same initial conditions for displacements and velocities, the internal resonance is
observed for the frequency ratio β = 0.51 (shown in Fig. 5a).

Fig. 5. Internal resonance for: (a) a = 0.5, γ = 0, A1 = A2 = 0, z(0) = 0, ż(0) = 0, θ(0) = 5
◦,

θ̇(0) = −0.04, ϕ(0) = 0, ϕ̇(0) = −0.96; (b) a = 0.2, γ = 0, A1 = A2 = 0, z(0) = 0, ż(0) = 0.65,
θ(0) = 50◦, θ̇(0) = −0.04, ϕ(0) = 0, ϕ̇(0) = −0.296

For different parameters of the system: a = 0.2, γ = 0, A1 = A2 = 0, β = 0.75 and for initial
conditions which are put on the displacements and also on the velocities (z(0) = 0, ż(0) = 0.65,
θ(0) = 50◦, θ̇(0) = −0.04, ϕ(0) = 0, ϕ̇(0) = −0.296) there is visible an influence of the angle ϕ,
and the internal resonance area is observed for the frequency ratio near β = 0.75 (Fig. 5b). In
this example, the angle ϕ describes rotation of the pendulum around the axis z.
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Assuming the model of the pendulum as a spherical pendulum, we obtain results more similar
to the real system.

Next we prepare diagrams of the external resonance. An example is considered when the
initial conditions are imposed on the displacements: a = 0.8, β = 0.5, γ = 0, A1 = 0.001,
A2 = 0, z(0) = 0, θ(0) = 0.005

◦, ϕ(0) = 0. In that case, the diagram shows the external
resonance for both the coordinate z and the angle θ with the vertical excitation force F1(t).

Fig. 6. External resonance for the coordinates z and θ for: a = 0.2, β = 0.5, γ = 0, A1 = 0.0001,
z(0) = 0, γ = 0

Near the internal and external resonances depending on the selection of physical parameters,
the amplitudes of vibrations of the coupled system may be related differently. The motion in
terms of z and θ are periodic or quasi-periodic vibrations, but sometimes the motion of the
body of mass m1 and the pendulum are chaotic. To characterize an irregular chaotic response,
bifurcation diagrams are constructed.

Exemplary bifurcation diagrams for the displacements z and θ versus bifurcation parame-
ter A1 with parameters of the system: a = 0.2, β = 0.5, γ = 0.00081443, µ = 0.99 are presented
in Fig. 7 (it is assumed that the bifurcation parameter is the amplitude of excitation A1).

Fig. 7. Bifurcation diagrams for the coordinates z and θ for: a = 0.2, β = 0.5, γ = 0.00081443, µ1 = 0.99

As it can be seen from the bifurcation diagrams, motion of the oscillator and the spherical
pendulum depends of the amplitude of excitation A1 and can be of different character: it maybe
periodic, quasi-periodic or chaotic. Several phenomena can be observed: the existence of a simple
or a chaotic atractor, and various bifurcations. All these phenomena have to be verified in
the phase space. Therefore, the Poincaré maps and Lyapunov exponents are then constructed.
Exemplary results of the Poincaré maps (Fig. 8) and the maximum Lyapunov exponents (Fig. 9)
are presented for the amplitude of excitation A1 = 0.0029.

It is visible that the Poincaré maps trace strange atractors and the maximum Lyapunov
exponents are positive, so the motions with respect both coordinates are chaotic.
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Fig. 8. Poincaré maps for the coordinates z (a) and θ (b) for a = 0.2, β = 0.5, γ = 0.00081443,
µ1 = 0.99, A1 = 0.0029

Fig. 9. Maximum Lyapunov exponent for the coordinates z (a) and θ (b) for a = 0.2, β = 0.5,
γ = 0.00081443, µ1 = 0.99, A1 = 0.0029

4. Conclusions

The influence of initial conditions on the behaviour of an autoparametric system with a spherical
pendulum is very interesting, because sometimes when the initial conditions are imposed on the
displacements of the spherical pendulum it behaves similarly to a simple pendulum (angle ϕ
is constant), but when the initial conditions are put also on the velocities, we observe some
influence of the angle ϕ. It is important, because near the internal and external resonance
area there may appear different motion – regular or chaotic. Autoparametric systems are very
sensitive to nonlinearities and the energy is transferred between modes of vibrations in a closed
cycle. The time of this cycle depends on the values of parameters, and numerical calculations
should be carried for a satisfactorily long time. Assuming the model of the pendulum as the
spherical pendulum, the obtained results are more similar to those obtained for the system with
the simple pendulum.
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The present study is concerned with the finite element (FE) implementation of slightly com-
pressible hyperelastic material models. A class of constitutive equations is considered where
the isochoric potential functions are based on the first invariant of the right Cauchy-Green
(C-G) deformation tensor. Special attention is paid to the most recently developed model
formulations. The incremental form of hyperelasticity and its numerical implementation into
both commercial and non-commercial FE software are discussed. A Fortran 77 UMAT code
is attached which allows for a simple implementation of arbitrary first invariant-based con-
stitutive models into Abaqus and Salome-Meca FE packages. Several exemplary problems
are considered.
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1. Introduction

The hyperelastic constitutive equations are nowadays available in every advanced FE program.
However, the material libraries of FE software usually include only a number of standard hyper-
elastic models such as: neo-Hooke, Mooney-Rivlin, Ogden or Yeoh. Less celebrated or newly
developed constitutive models can be implemented into a FE program by taking advantage of
a proper user subroutine. The FE package Abaqus provides three user subroutines which allow
one to define a custom hyperelastic model, i.e. UHYPER (for isotropic hyperelastic materials),
UANISOHYPER (for anisotropic hyperelastic materials) and UMAT (a general purpose subro-
utine which can be utilized for implementing any kind of constitutive equation), cf. Hibbit et
al. (2008). Due to the method of FE implementation used for slightly compressible hyperelasti-
city in Abaqus, it is not recommended to utilize the subroutine UHYPER for all kinds of finite
elements (cf. Jemioło, 2002). Thus, in the case of slightly compressible hyperelastic materials,
i.e. the materials with decoupled volumetric and isochoric responses, the subroutine UMAT mi-
ght be preferred. Both UHYPER and UANISOHYPER subroutines can be utilized to define
nonlinear viscoelastic models based on the viscoelasticity theory used by Abaqus. Alternatively,
a proper option allows one to simulate the Mullins effect in a hyperelastic material defined by
the aforementioned subroutines1. On the other hand, the subroutine UMAT is a much more
powerful tool which enables one to define an arbitrary constitutive theory, including those based
on hyperelasticity such as nonlinear viscoelasticity (e.g. Suchocki 2013) or growth models (e.g.
Young et al., 2010), so that the user is not limited by the built-in options of Abaqus.
The subroutine UMAT is a Fortran 77 code which is called during every iteration of the

Newton-Raphson numerical procedure to calculate components of the stress tensor and the ma-
terial Jacobian which is also reffered to as tangent modulus or (in the case of elastic materials)

1The nonlinear viscoelasticity and the Mullins effect must be used separately as Abaqus does not allow
for combining these behaviors.
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the elasticity tensor, cf. Hibbit et al. (2008). The material Jacobian may be defined either in
an approximate or (if possible) an analytical form, which is usually very difficult to determine.
The approximate material Jacobians always worsen the rate of convergence of the numerical
calculations. It was demonstrated by Stein and Sagar (2008) that for the neo-Hooke hypere-
lastic model, the quadratic rate of convergence2 is obtained only when the analytical material
Jacobian is used. The utilization of the approximate material Jacobians resulted in worsening
the convergence rate and, in the case of some of the considered problems and finite element ty-
pes, it caused lack of convergence. Thus, it is always recommended to use an analytical material
Jacobian whenever it is available.
In this study, the FE implementation of slightly compressible isotropic hyperelastic constitu-

tive models that are not included in any of the commercial and non-commercial CAE packages
is discussed. The stored energy functions that are based on the first invariant of the isochoric
right C-G tensor are considered. The focus is on the recently developed models for polymeric
materials (Gent, 1996; Jemioło, 2002; Lopez-Pamies, 2010, da Silva Soares, 2008; Khajehsaeid
et al., 2013) and on some model formulations used in soft tissue biomechanics (Demiray, 1972;
Demiray et al., 1988). The general framework for deriving an analytical material Jacobian is
presented. A subroutine UMAT is attached allowing for using the newly developed exponential-
logarithmic model (Khajehsaeid et al., 2013) in both Abaqus and Salome-Meca FE packages.
The code structure is universal so that any other first invariant-based slightly compressible or in-
compressible hyperelastic model can be easily implemented by simply changing the expressions
for the stored energy derivatives. A number of exemplary problems were solved for selected
energy potentials. The presented UMAT code can be upgraded to define nonlinear viscoelastic,
elastoplastic, viscoplastic or other behavior using arbitrary constitutive theory.

2. Slightly compressible hyperelastic materials

In the following derivations, the multiplicative split of the deformation gradient tensor into the
volumetric and isochoric component is utilized (e.g. Jemioło, 2016), i.e.

F = FvolF Fvol = J
1
31 F = J−

1
3F C = F

T
F = J−

2
3C (2.1)

where J = detF and C is the isochoric right C-G tensor with the following set of algebraic
invariants

Ī1 = trC Ī2 =
1

2

(
( trC)2 − trC2

)
Ī3 = detC = 1 (2.2)

In the case of slightly compressible hyperelastic materials, the stored energy function is consi-
dered to be the sum of the volumetric contribution U and the isochoric part W , thus

W (C) = U(J) +W (Ī1, Ī2) S = 2
∂W

∂C

∣∣∣∣
C=CT

(2.3)

where the most general form of the constitutive equation is given by Eq. (2.3)2
3. After substi-

tuting Eq. (2.3)1 into Eq. (2.3)2, the decoupled form of the constitutive equation is found

S = JpC−1 + J−
2
3 DEV

[
S
]

p =
∂U

∂J
S = 2

∂W

∂C

∣∣∣∣
C=C

T
(2.4)

with DEV [•] = [•]− 13
(
[•] ·C

)
C
−1
being a deviator in the reference configuration.

2The quadratic convergence means that the error at the current iteration is proportional to the square
of the error from the previous iteration.
3The adopted notation emphasizes the fact that symmetrization is carried out after calculating a

derivative.
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3. Material Jacobian tensor

Taking a directional derivative of Eq. (2.4)1 with respect to C, an incremental constitutive
relation is found, see e.g. Jemioło and Gajewski (2014)

∆S = C · 1
2
∆C C = 2

∂S

∂C

∣∣∣∣
C=CT

= 4
∂2W

∂C⊗ ∂C

∣∣∣∣
C=CT

C = Cvol + Ciso (3.1)

Assuming U = U(J) and W =W (Ī1), the expressions for the volumetric and the isochoric parts
of the elasticity tensor can be derived

C
vol = J

∂U

∂J

(
C−1 ⊗C−1 − 2IC−1

)
+ J2

∂2U

∂J2
C−1 ⊗C−1

C
iso = −4

3
J−

2
3
∂W

∂Ī1

[
1⊗C−1 +C−1 ⊗ 1− I1

(
IC−1 +

1

3
C−1 ⊗C−1

)]
+ J−

4
3CW

CW = 4
∂2W

∂Ī21

[
1⊗ 1− 1

3
I1(1⊗C−1 +C−1 ⊗ 1) +

1

9
I21C

−1 ⊗C−1
]

(3.2)

where

IC−1 =
1

2

[
(C−1⊗C−1) (2,3)T +(C−1⊗C−1) (2,4)T

]
=
1

2
(C−1IKC

−1
JL+C

−1
ILC

−1
JK)EI⊗EJ⊗EK⊗EL

is the fourth order identity tensor in the reference configuration with the Cartesian base {EK}
(K = 1, 2, 3)4, see e.g. Suchocki (2011).
The incremental constitutive law given by Eq. (3.1)1 can be transformed into a form relating

the incremental Oldroyd (convected) rate of the Kirchhoff stress to the increment of the strain
rate tensor, i.e.

Lvτ = ∆τ −∆Lτ − τ∆LT = Cτc ·∆D (3.3)

where∆L = ∆FF−1 is the increment of the velocity gradient, whereas Cτc is the pushed-forward
form of the material Jacobian

C
τc = FiPFjQFkRFlSCPQRSei ⊗ ej ⊗ ek ⊗ el (3.4)

with {ek} (k = 1, 2, 3) being the Cartesian base in the current configuration. The elasticity
tensor takes the following form

C
τc =
4

3

∂W

∂Ī1

[
Ī1
(
I− 1
3
1⊗ 1

)
− (1⊗ dev (B) + dev (B)⊗ 1)

]
+ 4

∂2W

∂Ī21
dev (B)⊗ dev (B)

+ J
[(∂U
∂J
+ J

∂2U

∂J2

)
1⊗ 1− 2∂U

∂J
I
]

(3.5)

where

I = 1✸1 =
1

2

[
(1⊗ 1) (2,3)T + (1⊗ 1) (2,4)T

]
=
1

2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el

and dev [•] = [•]− 13([•] · 1)1.

4The following notation is used: [•] (µ,ν)T =
(
[•]ijklei⊗ ej︸︷︷︸

µ

⊗ek⊗ el︸︷︷︸
ν

) (µ,ν)
T = [•]ijklei⊗ el︸︷︷︸

µ

⊗ek⊗ ej︸︷︷︸
ν

.
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The FE software Abaqus utilizes the incremental constitutive equation written in terms of
the incremental Zaremba-Jaumann rate of the Kirchhoff stress (cf. Hibbit et al. 2008), i.e.

τ
∇ = ∆τ −∆Wτ − τ∆WT = JCMJ ·∆D (3.6)

where, respectively

C
MJ =

1

J

(
C
τc + 1✸τ + τ✸1

)
τ = Jp1+ 2

∂W

∂Ī1
dev (B) (3.7)

and

1✸τ =
1

2

[
(1⊗ τ ) (2,3)T + (1⊗ τ ) (2,4)T

]
τ✸1 =

1

2

[
(τ ⊗ 1) (2,3)T + (τ ⊗ 1) (2,4)T

]

and

∆W =
1

2
(∆L−∆LT) ∆D =

1

2
(∆L+∆LT) (3.8)

The fourth order tensor CMJ is the material Jacobian which should be coded in the subroutine
UMAT. For the considered class of hyperelastic materials, it takes the form

C
MJ =

2

J

∂W

∂Ī1

[
1✸dev (B) + dev (B)✸1+

2

3
Ī1
(
I− 1
3
1⊗ 1

)

− 2
3

(
1⊗ dev (B) + dev (B)⊗ 1)

]
+
4

J

∂2W

∂Ī21
dev (B)⊗ dev (B) +

(∂U
∂J
+ J

∂2U

∂J2

)
1⊗ 1
(3.9)

4. Finite element implementation

4.1. General

In Fig. 1, the interaction of the subroutine UMAT with the Abaqus package is illustrated for
the Newton-Raphson iterative procedure during a single time increment (cf. Hibbit et al. 2008).

Fig. 1. Flow chart for the interaction of Abaqus and UMAT

The subroutine UMAT calculates the components of Cauchy stress and material Jacobian
for each Gauss integration point. These quantities are subsequently used by Abaqus to form up
the element stiffness matrix. Finally, the global stiffness matrix is assembled by Abaqus using
the element stiffness matrices. The user subroutines used in other FE packages to define custom
constitutive equations are integrated with the remainder of the program in a similar way and
play the same role.
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4.2. Variables and dimensions

In the following table, the meaning of the variables used in the Fortran 77 code has been
explained. The dimensions of array variables have been specified in proper indices. The lengthy
definitions of the auxiliary variables have been skipped.

Number of direct stress components NDI
Number of shear stress components NSHR
Array of material constants PROPS(I)
Deformation gradient tensor F3×3 DFGRD1(I,J)
Jacobian determinant DET
Isochoric deformation gradient matrix F3×3 DISTGR(I,J)
Isochoric Left C-G deformation tensor matrix B6×1 BBAR(I)
Trace of B divided by 3 TRBBAR
First partial derivative ∂JU DUDJ
Second partial derivative ∂2J2U DDUDDJ

First partial derivative ∂Ī1W DWDI1
Second partial derivative ∂2

Ī21
W DDWDDI1

Cauchy stress tensor matrix σ6×1 STRESS(I)

Material Jacobian matrix CMJ6×6 DDSDDE(I,J)
Auxiliary variables EK, PR, SCALE,

TERM1, TERM2,
TERM3

According to the rule adopted in Abaqus, the column matrix components 1, 2, . . . , 6 corre-
spond to the scalar components of the second order tensor: 11, 22, 33, 12, 13, 23, respectively.

4.3. User subroutine UMAT

Algorithm for the implementation in ABAQUS

Input data: F3×3 (DFGRD1), NDI, NSHR

1. Calculate Jacobian determinant J (DET)

J = detF3×3

2. Calculate isochoric deformation gradient F3×3 (DISTGR)

F3×3 = J
− 1
3F3×3

3. Calculate left C-G deformation tensor B6×1 (BBAR)

B3×3 = F3×3F
T
3×3 B6×1 =

{
B11 B22 B33 B12 B13 B23

}T

4. Calculate Cauchy stress matrix σ6×1 (STRESS)

5. Calculate Material Jacobian matrix CMJ6×6 (DDSDDE).
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4.4. Coding in Fortran 77

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,

2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,

3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,

4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)

!

INCLUDE ’ABA PARAM.INC’

!

CHARACTER*8 MATERL

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3),

3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3)

!

! LOCAL ARRAYS

! ----------------------------------------------------------------

! BBAR - DEVIATORIC RIGHT CAUCHY-GREEN TENSOR

! DISTGR - DEVIATORIC DEFORMATION GRADIENT (DISTORTION TENSOR)

! ----------------------------------------------------------------

!

REAL*8 BBAR,DISTGR

DIMENSION BBAR(6),DISTGR(3,3)

!

PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0)

!

! ----------------------------------------------------------------

! UMAT FOR COMPRESSIBLE EXPONENTIAL-LOGARITHMIC HYPERELASTICITY

!

! WARSAW UNIVERSITY OF TECHNOLOGY

! CYPRIAN SUCHOCKI, JULY 2015

!

! CANNOT BE USED FOR PLANE STRESS

! ----------------------------------------------------------------

! PROPS(1) - A

! PROPS(2) - A1

! PROPS(3) - B

! PROPS(4) - D1

! ----------------------------------------------------------------

REAL*8 A, A1, B, D1, TERM1, TERM2, TERM3, DUDJ, DDUDDJ,

1 DWDI1, DDWDDI1, TRBBAR, DET, SCALE

!

! ELASTIC PROPERTIES

!

A=0.195

A1=0.018 ! originally a

B=0.22

D1=0.000000033

!

! JACOBIAN AND DISTORTION TENSOR

!

DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3)

1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3)

IF(NSHR.EQ.3) THEN

DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1)

1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1)

2 -DFGRD1(1, 3)*DFGRD1(3,1)*DFGRD1(2, 2)

3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1)

END IF

SCALE=DET**(-ONE/THREE)

DO K1=1, 3

DO K2=1, 3

DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1)

END DO

END DO

!

! CALCULATE LEFT CAUCHY-GREEN TENSOR

!

BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2
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BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2

BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2

BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2)

1 +DISTGR(1, 3)*DISTGR(2, 3)

IF(NSHR.EQ.3) THEN

BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2)

1 +DISTGR(1, 3)*DISTGR(3, 3)

BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2)

1 +DISTGR(2, 3)*DISTGR(3, 3)

END IF

!

! CALCULATE THE STRESS

!

TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))/THREE

DUDJ=2/D1*(DET-ONE)

DDUDDJ=2/D1

DWDI1=A*(exp(A1*(THREE*TRBBAR-THREE))

1 -B*log(THREE*TRBBAR-TWO))

DDWDDI1=A*(A1*exp(A1*(THREE*TRBBAR-THREE))

1 -B*(THREE*TRBBAR-TWO)**(-ONE))

TERM1=-FOUR/(THREE*DET)*DWDI1

TERM2=FOUR/DET*DDWDDI1

TERM3=DET*DDUDDJ

CALL CALCSTRESS(BBAR,TRBBAR,DET,DUDJ,DWDI1,NDI,NSHR,

1 STRESS)

!

! CALCULATE THE STIFFNESS

!

CALL CALCTANGENT(DDSDDE,STRESS,BBAR,TRBBAR,DUDJ,

1 DWDI1,DDWDDI1,TERM1,TERM2,TERM3,DET,NTENS,NSHR)

!

RETURN

END

! ----------------------------------------------------------------

SUBROUTINE CALCSTRESS(BBAR,TRBBAR,DET,DUDJ,DWDI1,NDI,NSHR,

1 STRESS)

REAL*8 BBAR,TRBBAR,DET,DUDJ,DWDI1,STRESS

DIMENSION BBAR(6),STRESS(6)

PARAMETER(TWO=2.D0)

INTEGER NDI,NSHR,K1

DO K1=1,NDI

STRESS(K1)=TWO/DET*DWDI1*( BBAR(K1)-TRBBAR)+DUDJ

END DO

DO K1=NDI+1,NDI+NSHR

STRESS(K1)=TWO/DET*DWDI1*BBAR(K1)

END DO

RETURN

END

! ----------------------------------------------------------------

SUBROUTINE CALCTANGENT(DDSDDE,STRESS,BBAR,TRBBAR,DUDJ,

1 DWDI1,DDWDDI1,TERM1,TERM2,TERM3,DET,NTENS,NSHR)

REAL*8 DDSDDE,STRESS,BBAR,TRBBAR,DUDJ,DWDI1,DDWDDI1,

1 TERM1,TERM2,TERM3,DET

DIMENSION DDSDDE(6,6),STRESS(6),BBAR(6)

INTEGER NTENS,NSHR,K1,K2

PARAMETER(TWO=2.D0, THREE=3.D0, FOUR=4.D0)

DDSDDE(1, 1)=-DUDJ+TERM3+TWO*TERM1*(BBAR(1)-TWO*TRBBAR)+

1 TERM2*(BBAR(1)**TWO+TRBBAR*(-TWO*BBAR(1)+TRBBAR))+
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2 TWO*STRESS(1)

DDSDDE(2, 2)=-DUDJ+TERM3+TWO*TERM1*(BBAR(2)-TWO*TRBBAR)+

1 TERM2*(BBAR(2)**TWO+TRBBAR*(-TWO*BBAR(2)+TRBBAR))+

2 TWO*STRESS(2)

DDSDDE(3, 3)=-DUDJ+TERM3+TWO*TERM1*(BBAR(3)-TWO*TRBBAR)+

1 TERM2*(BBAR(3)**TWO+TRBBAR*(-TWO*BBAR(3)+TRBBAR))+

2 TWO*STRESS(3)

DDSDDE(1, 2)=DUDJ+TERM3+TERM1*(BBAR(1)+BBAR(2)-TRBBAR)+

1 TERM2*(BBAR(1)*BBAR(2)-TRBBAR*(BBAR(1)+BBAR(2))+

2 TRBBAR**TWO)

DDSDDE(1, 3)=DUDJ+TERM3+TERM1*(BBAR(1)+BBAR(3)-TRBBAR)+

1 TERM2*(BBAR(1)*BBAR(3)-TRBBAR*(BBAR(1)+BBAR(3))+

2 TRBBAR**TWO)

DDSDDE(2, 3)=DUDJ+TERM3+TERM1*(BBAR(2)+BBAR(3)-TRBBAR)+

1 TERM2*(BBAR(2)*BBAR(3)-TRBBAR*(BBAR(2)+BBAR(3))

2 +TRBBAR**TWO)

DDSDDE(1, 4)=FOUR/DET*BBAR(4)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(1)-TRBBAR))+STRESS(4)

DDSDDE(2, 4)=FOUR/DET*BBAR(4)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(2)-TRBBAR))+STRESS(4)

DDSDDE(3, 4)=FOUR/DET*BBAR(4)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(3)-TRBBAR))

DDSDDE(4, 4)=-DUDJ+TWO/DET*(TRBBAR*DWDI1+

1 TWO*DDWDDI1*BBAR(4)**TWO)+(STRESS(1)+STRESS(2))/TWO

IF(NSHR.EQ.3) THEN

DDSDDE(1, 5)=FOUR/DET*BBAR(5)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(1)-TRBBAR))+STRESS(5)

DDSDDE(2, 5)=FOUR/DET*BBAR(5)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(2)-TRBBAR))

DDSDDE(3, 5)=FOUR/DET*BBAR(5)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(3)-TRBBAR))+STRESS(5)

DDSDDE(1, 6)=FOUR/DET*BBAR(6)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(1)-TRBBAR))

DDSDDE(2, 6)=FOUR/DET*BBAR(6)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(2)-TRBBAR))+STRESS(6)

DDSDDE(3, 6)=FOUR/DET*BBAR(6)*(-DWDI1/THREE+

1 DDWDDI1*(BBAR(3)-TRBBAR))+STRESS(6)

DDSDDE(5, 5)=-DUDJ+TWO/DET*(TRBBAR*DWDI1+

1 TWO*DDWDDI1*BBAR(5)**TWO)+(STRESS(1)+STRESS(3))/TWO

DDSDDE(6, 6)=-DUDJ+TWO/DET*(TRBBAR*DWDI1+

1 TWO*DDWDDI1*BBAR(6)**TWO)+(STRESS(2)+STRESS(3))/TWO

DDSDDE(4,5)=TERM2*BBAR(4)*BBAR(5)+STRESS(6)/TWO

DDSDDE(4,6)=TERM2*BBAR(4)*BBAR(6)+STRESS(5)/TWO

DDSDDE(5,6)=TERM2*BBAR(5)*BBAR(6)+STRESS(4)/TWO

END IF

DO K1=1, NTENS

DO K2=1, K1-1

DDSDDE(K1, K2)=DDSDDE(K2, K1)

END DO

END DO

RETURN

END

5. Exemplary problems

A number of exemplary FE simulations have been prepared in order to verify the performance of
the developed UMAT code. Seven different types of the isochoric stored energy potential W (Ī1)
and two types of the volumetric function U(J) have been tested (see Tables 1 and 2). Two
different approaches were used in order to simulate the material near incompressibility, i.e. the
penalty method and the hybrid formulation (e.g. Liu et al. 1994). The results obtained for the
material near incompressibility in the case of homogenous deformations were compared to the
analytical solutions available in the fully incompressible case.
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Table 1. Material parameter values

Material Constitutive parameters Units

Jemioło (2002) – µ1 = 2.228 [MPa]
Lopez-Pamies (2010) µ2 = 1.919 [MPa]

α1 = 0.6 [-],α2 = −68.73 [–]

Gent (1996) µ = 0.27 [MPa]
Jm = 85.91 [–]

Khajehsaeid et al. (2013) A = 0.195 [MPa]
a = 0.018 [–]
b = 0.22 [–]

Demiray (1971) c = 0.2 [MPa]
β = 16 [–]

Demiray et al. (1988) α = 10.74E-10 [MPa]
β = 7.548E-9 [MPa]
c = 1.17 [–]

Da Silva Soares (2008) µ1 = 17.999 [MPa]
µ2 = 0.17047 [MPa]
a = 477.28 [–]

Knowles (1977) µ = 264.069 [MPa]
b = 54.19 [–]
n = 0.2554 [–]

5.1. Simple tension

In the case of uniaxial tension of an incompressible rectangular block (Fig. 2) along the
X1-direction, the deformation is defined by the set of equations

x1 = λ1X1 x2 = λ
− 1
2
1 X2 x3 = λ

− 1
2
1 X3 (5.1)

where the stretch ratio λ1 > 1 and J = 1 is assumed. It follows that

I1 = λ
2
1 +
2

λ1
W =W (I1) (5.2)

which yields an equation for the axial component of the Lagrange stress

T11 = 2
∂W

∂I1

(
λ1 −

1

λ21

)
(5.3)

The analytical Eq. (5.3) was used to verify the results of FE calculations. In numerical
simulation, a 15mm×15mm×15mm block was undergoing a uniaxial tension (Fig. 2). In the
first approach, a single C3D85 element was used with the material near incompressibility being
enforced by using the penalty method. The penalty parameter D1 = 33E-9MPa

−1. In the second
approach, a hybrid element C3D8H was utilized. The comparison of the numerical results and
the analytical solution for the incompressible material can be seen in Fig. 3. The FE simulations
were later repeated for the block meshed with 125 elements which produced exactly the same
results.

5Cubic, three-dimensional, 8 nodes.
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Table 2. Exemplary isochoric and volumetric stored-energy functions and their derivatives

Material Energy potential W (Ī1) 1st derivative ∂W/∂Ī1 2nd derivative ∂2W/∂Ī21

Jemioło (2002) – ∑M
r=1

31−αr
2αr

µr
(
Īαr1 − 3αr

) ∑M
r=1

31−αr
2 µrĪ

αr−1
1

∑M
r=1

31−αr
2 µr(αr − 1)Īαr−21

Lopez-Pamies (2010)

Gent (1996) −µJm2 ln
(
1− Ī1−3Jm

)
µ
2

(
1− Ī1−3Jm

)−1
µ
2Jm

(
1− Ī1−3Jm

)−2

Khajehsaeid et al. (2013)
A
[
1
ae
a(Ī1−3) − 1a − b

A
[
ea(Ī1−3) − b ln(Ī1 − 2)

]
A
[
aea(Ī1−3) − b(Ī1 − 2)−1

]
+b(Ī1 − 2)

(
1− ln(Ī1 − 2)

)]

Demiray (1971) c
(
eβ(Ī1−3) − 1

)
cβeβ(Ī1−3) cβ2eβ(Ī1−3)

Demiray et al. (1988) α
4 (Ī1 − 3)2 +

β
4c

[
ec(Ī1−3)

2 − 1
]

1
2(Ī1 − 3)

[
α+ βec(Ī1−3)

2
]

1
2

{
α+ βec(Ī1−3)

2
[1 + 2c(Ī1 − 3)2]

}

Da Silva Soares (2008)
µ1e
−(Ī1−3)(Ī1 − 3) µ1e

−(Ī1−3)(4− Ī1) −µ1e−(Ī1−3)(5− Ī1)
+µ2 ln[1 + a(Ī1 − 3)] +µ2a[1 + a(Ī1 − 3)]−1 −µ2a2[1 + a(Ī1 − 3)]−2

Knowles (1977) µ
2b

{[
1 + bn(Ī1 − 3)

]n
− 1

}
µ
2

[
1 + bn(Ī1 − 3)

]n−1 µb(n−1)
2n

[
1 + bn(Ī1 − 3)

]n−2

Material Energy potential U(J) 1st derivative ∂U/∂J 2nd derivative ∂2U/∂J2

Sussman and Bathe (1987) 1
D1
(J − 1)2 2

D1
(J − 1) 2

D1

Simo and Taylor (1982) 1
D1
[(J − 1)2 + (ln J)2] 2

D1

(
J + lnJJ − 1

)
2
D1

[
1 + 1

J2 (1− ln J)
]
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Fig. 2. Uniaxial defomation of a single element: (a) distribution of the displacement,
(b) boundary conditions

Fig. 3. Uniaxial tension for various hyperelastic models; comparison of analytical and FE results:
(a) Demiray (1972), (b) Demiray et al. (1988), (c) Exp-Ln, (d) Gent, (e) Jemioło–Lopez-Pamies,

(f) Da Silva Soares

5.2. Simple shear

In the case of simple shear of an incompressible rectangular block in the X1 − X2 plane
(Fig. 4), the deformation is defined by the set of equations

x1 = X1 + γX2 x2 = X2 x3 = X3 (5.4)

where γ > 0. The first invariant of the right C-G tensor is given as

I1 = γ
2 + 3 (5.5)

which yields the following components of the Lagrange stress tensor

T3×3 =
2

3

∂W

∂I1



−γ2 3γ 0

γ(γ2 + 3) −γ2 0
0 0 −γ2


 (5.6)



798 C. Suchocki

Fig. 4. Shear deformation of a single element: (a) distribution of the displacement,
(b) boundary conditions

The analytical formula for T12 given by Eq. (5.6) was utilized to verify the results of FE
calculations. In numerical simulation, a 15mm×15mm×15mm block was undergoing a simple
shear (Fig. 4). Again, the analysis was carried out using the penalty method with a single C3D8
element (D1 = 33E-9MPa

−1) and was subsequently repeated for a hybrid element C3D8H. The
comparison of the numerical results and the analytical solution for the incompressible material
can be seen in Fig. 5. The FE simulations were later performed for the block meshed with 125
elements with exactly the same results.

Fig. 5. Simple shear for various hyperelastic models; comparison of analytical and FE results:
(a) Demiray (1972), (b) Demiray et al. (1988), (c) Exp-Ln, (d) Gent, (e) Jemioło–Lopez-Pamies,

(f) Da Silva Soares

6. Conclusions

In this paper, the FE implementation of slightly compressible, first invariant-based, isotropic
hyperelastic constitutive equations is discussed. Special attention is paid to the newly developed
models for polymers and some of the stored energy functions used in the soft tissue biome-
chanics. A user subroutine UMAT code is attached, which enables the implementation of the
aformentioned models into Abaqus and Salome-Meca FE packages. The performance of this code
has been verified using some exemplary problems and an excellent agreement was found with
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the analytical solutions. It should be emphasized that the stress-stretch (or stress-amount of
shear) relation which yields from the potential function developed by Demiray et al. (1988) is
characterized by a very flat slope in the small strain domain (cf. Figs. 3b and 5b). Thus, for this
particular model, a considerably small strain increment should be used initially in order to avoid
convergence problems. The presented UMAT code can be further modified in order to define any
constitutive theory that would be an extension of the slightly compressible, first invariant-based
hyperelasticity.
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Optimization algorithms use various mathematical and logical methods to find optimal po-
ints. Given the complexity of models and design levels, this paper proposes a heuristic opti-
mization model for surface-to-air missile path planning in order to achieve the maximum
range and optimal height based on 3DOF simulation. The proposed optimization model in-
volves design variables based on the pitch programming and initial pitch angle (boost angle).
In this optimization model, we used genetic and particle swarm optimization (PSO) algori-
thms. Simulation results indicated that the genetic algorithm was closer to reality but took
longer computation time. PSO algorithm offered acceptable results and shorter computation
time, so it was found to be more efficient in the surface-to-air missile path planning.

Keywords: path planning, genetic algorithm, PSO algorithm, surface-to-air missile, 3DOF
simulation

1. Introduction

System optimization means minimizing or maximizing system functions to improve its efficiency.
Several approaches have been proposed for designing acceptable answers under time limitation.
These approaches involve some algorithms which do not guarantee an optimal answer but offer
the best combination of quality and time based on evidences and records. These algorithms
are called heuristic algorithms (Puchinger and Raidl, 2005). Normally, the air defense missile
guidance system consists of three phases: boost phase, midcourse and terminal phase. The
midcourse is the longest phase of the flight and aims to direct the missile towards the target
and to move it through an optimal path in order to save energy and prevent it from being seen
by the enemy. This paper aims to design the midcourse of a surface-to-air missile using genetic
and PSO algorithms in order to achieve the maximum range for the missile. To do so, we have
to determine the initial boost angle and pitch angle over the path in the vertical sheet. This is
normally a difficult job and entails real-time trial and error, which in turn imposes heavy cost,
long time and real-time modeling. Path planning using heuristic algorithms helps to achieve the
maximum height and range.

In 2001, a study was conducted under the title of “designing guidable interceptor missile using
genetic algorithm” with a view to minimizing the contact error, interception time and takeoff
weight (Anderson et al., 2001). In 2004, a research was conducted under the title of “finding
path for tactical missiles using genetic algorithm”, in which the application of genetic algorithm
in path planning was investigated. The objectives were to increase speed, range and flight time
(Cribbs, 2004). In 2006, a research was conducted under the title of “path optimization using
genetic algorithm simulation”, in which path data used in optimization process were produced
by simulation of the equation of motion. This paper examines a moving hypersonic missile using
a path optimization technique (Farooq and Limebeer, 2002). The results indicated that the
genetic algorithm was an efficient method in path planning. In 2007, a study was conducted
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under the title of “path planning, optimization and guidance of boost vehicles in terminal phase
of flight”. That PhD thesis proposed a method for path planning, optimization and guidance
using 3DOF simulation, evaluated the paths planned for the terminal phase, and used them
for the development of the guidance program (Chartres, 2007). Zhao and Fan (2009) dealt
with optimal path planning for an anti-ship missile using MAKLINK graph method. In this
method, genetic algorithm was used to find optimal points with an emphasis on the points
which satisfied all problem constraints. Shu et al. (2010) optimized path height for cruise missile
using the improved PSO algorithm and simulated the annealing algorithm. Peibei and Jun (2010)
compared the Voronoi algorithm, grid method and visual graph for multi missile path planning.
Wang et al. (2011) proposed a real-time path planning for UAV (Unmanned Air Vehicle) based
on PSO algorithm improved by modification of inertia weight and self-adaption. Huang et al.
(2012) proposed a method for cruise missile path planning based on the voronoi diagram and
biogeography-based optimization. Liu et al. (2015) proposed an algorithm for path planning
based on a series of geometrical constraints and rules using multi-attribute fuzzy optimization
(MAFO), which produced successful results for real-time functions.
Some of the above-mentioned papers focused only on the optimization method and solved

the problems using heuristic methods to increase convergence speed, reduce the number of as-
sessments, reduce optimization time, reduce computation volume, and combine the optimization
methods. They have also compared their methods with other optimization methods. Others fo-
cused on optimization results and interpreted them based on bird dynamics and the objective
function by changing design variables and comparing the results with empirical methods. This
paper deals with surface-to-air missile path planning based on pitch programming in order to
achieve the maximum range and optimal height. In this optimization model, we used genetic
and PSO algorithms and compared them in a specific problem.

2. Exploration algorithm

Generally, heuristic algorithms can be divided into three groups:

• Algorithms which focus on structural features of the problem to define a producer algorithm
or local search.

• Algorithms which focus on heuristic guidance of a producer algorithm or local search so
that the algorithm can overcome sensitive conditions (e.g. optimal local escape).

• Algorithms which focus on a heuristic framework or concept using mathematical program-
ming (usually by precise methods).

The first group may perform the job very well (sometimes in optimal level) but is trapped in
low quality answers. These algorithms were improved by new approaches, including algorithms
which explicitly or implicitly managed the relationship between search diversity (where there are
symptoms that the search is going towards bad regions of search space) and search intensification
(with a view to find the best answer in the studied region). Among such algorithms, we can
mention simulated annealing, particle swarm optimization, and colony optimization and neural
network. The most famous and efficient algorithms are those which provide problem solving
models using genetic evolution patterns. These algorithms develop an effective search method
in large spaces which finally lead to finding the optimal answers. In this part, we first introduce
the heuristic algorithms and then explain how to find the answer (Puchinger and Raidl, 2005).

2.1. Genetic algorithm

The idea of evolutionary algorithms was coined by Richenberg in 1960. According to Darwin’s
Theory of Evolution, those natural traits which adapt more to natural laws have more chance of
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survival. Based on the natural selection law, those species of a population which possess the best
traits continue their generation and those which lack such traits are gradually destroyed over
time. Therefore, natural selection may be considered as a competition for preserving superior
traits. Genetic algorithms are evolutionary algorithms inspired by biological sciences such as
genetics, mutation, natural selection and combination.
Important parameters in a genetic algorithm are encoding, population size, initial population,

chromosome rating (fitness function scale), parent selection mechanism, crossover rate, genetic
operators, replacement, and algorithm stoppage parameters (Holland, 1975).
Evolution begins from the initial population and is repeated in the next generations. Figure 1

illustrates the steps of a genetic algorithm. The important point in a genetic algorithm is to select
the most appropriate members of each generation, not the best ones (Puchinger and Raidl, 2005;
Jarvis and Goodacre, 2005).

Fig. 1. Genetic algorithm

2.2. Particle swarm optimization algorithm

Birds show certain social behaviors. To better understand this technique, we will explain a
scenario in the next paragraphs.
A group of birds are randomly seeking food in a specific area. In this area, only a piece of

food exists and the birds are unaware of its exact location. However, they know their distance
from the food in any moment. In such circumstances, a good strategy to find the exact location
of food is to follow the bird that is closest to the food.
In fact, each bird in PSO algorithm is a solution to the problem. Every answer has a fitness

value which is obtained from the fitness function of the problem. This technique aims to find the
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location with the best fitness value in the problem space. The fitness value directly affects the
direction and speed of bird movement (problem answers) towards food location (optimal answer).
This algorithm starts to work with a number of initial answers and searches for the optimal
answer by moving the answers during frequent repetitions. In each repetition, the location of
best fitness value for each particle (pBest) and the location of the best particle in the current
population (gBest) are specified (Fan and Shi, 2001). Figure 2 illustrates the steps of PSO
algorithm.

Fig. 2. Particle swarm optimization algorithm

3. 3DOF simulation

Designing and testing guidance and control systems of aerospace vehicles requires path simu-
lation based on the system model. The advances in computer science, the increased processing
power, and the efforts to model subsystems and other associated items have led to the improved
planning process. On the other hand, special attention has been paid to the application of si-
mulation in multithreaded optimization, and efforts have been made to perform simulation with
high accuracy and speed. Generally, simulation of flight dynamics is divided into five parts:

1. Simplification

2. Selection of reference coordinates
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3. Extraction of subsystem equations and modeling

4. Simulation of motion equations in a computer program

5. Authentication of the simulation

The simplification refers to the assumptions used to simplify the study of vehicle dynamics.
Since the mass center path of the vehicle is more important than its rotation, 3DOF simulation
greatly contributes to the estimation of vehicle performance and investigation of the path. In
contrast to 6DOF simulation, 3DOF simulation does not use Euler laws and does not need to
compute body rates, so there is no need to aerodynamic and propulsion moments. One of the
subjects in each simulation is the selection and conversion of coordinates. In many parts of the
simulation, we need to convert coordinates of the parameters so that we can use their values in
other coordinates (Zipfel, 2007).

Body coordinates (Fig. 3) are one of the most important coordinates because they make many
measurements and computations. For example, accelerations are measured by accelerometers
installed in body coordinates.

Fig. 3. Body coordinates

In missiles, all Xb and Yb directions are the main axes due to rotational symmetry, so geo-
metrical signs are used to locate unit vectors. As one can see, the origin of coordinates is on the
boost point of the ground, the axis x is in the boost direction, the axis z is perpendicular to the
ground (towards the ground), and the axis y makes the coordinate (Zipfel, 2007), see Fig. 4.

If Missile DATCOM (MD) software is used in simulation to compute aerodynamic coeffi-
cients, it is necessary to pay attention to the body coordinate and the positive directions of its
axis in the software (Fig. 5).

3.1. Gravity model

In any simulation, a gravity model must be selected with the required accuracy. Distribution
of non-spherical mass of the Earth affects the size and direction of gravity on the missile, but
these components are so small that they are omitted in surface-to-air missile programs. According
to equation (3.1), gravity acceleration depends on vehicle height in each moment and decreases
with the increased height (Tewari, 2007)

g = g0
( Re
Re +H

)2
(3.1)

where g is gravity acceleration, H is height, Re is ground radius (6378140 m), and gravity
acceleration at sea level is 9.80665m/s2.
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Fig. 4. Ground coordinates

Fig. 5. MD software coordinates

3.2. Standard atmosphere model

Investigation of aerospace vehicle flight has two parts: atmosphere flight mechanics and
space flight mechanics. The standard atmosphere is modeled in the form of frequent layers with
different temperature rates based on height T (h). The objective is to provide and develop a
21-layer standard atmosphere model for the ground to be used in simulation of atmosphere
paths and in determination of dimensionless aerodynamic parameters for aerodynamic force
modeling. To do so, two standard atmosphere models of 1976 and 1962 are used. These two
models have negligible difference until the height of 0 ¬ h ¬ 86, but the difference becomes
noticeable in the exosphere layer (Tewari, 2007).

3.3. Point mass 3DOF equations

The most important step before modeling is the selection of inertia reference coordinates.
For example, in aerospace vehicles flying near the Earth (such as the satellites rotating in lower
orbits), circular or elliptical inertia reference is used. This may be accompanied with circular
or elliptical models. The flat ground model is used for airplanes and tactical missiles. First,
using Newton’s second law, we write transmission equations for an aerospace vehicle exposed to
aerodynamic forces and gravity
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v̇xbody =
( 1
M

)
(T + Fxaero + Fxgravitybody )− (qvzbody − rvybody)

v̇ybody =
( 1
M

)
(Fyaero + Fygravitybody )− (rvxbody − pvzbody)

v̇zbody =
( 1
M

)
(Fzaero + Fzgravitybody )− (pvybody − qvxbody)

(3.2)

where M is vehicle mass and vbody = [vxbody , vybody , vzbody ] is body mass center speed of
the vehicle. T describes the force produced by thrust. Faero = [Fxaero , Fyaero , Fzaero ] and
Fgravity = [Fxgravitybody , Fygravitybody , Fzgravitybody ] denote the aerodynamic force and gravity force,

respectively. p, q and r denote the angular velocity about XB , YB and ZB directions in the body
coordinates. The left side of the above equations can be easily computed in body coordinates,
through which vehicle acceleration components in body coordinates will be determined. By in-
tegration of the above equations based on initial zero conditions, speed components in body
coordinate will be determined (Handbook MIL, 1995).

3.4. Aerodynamic forces and torques

Atmosphere path of aerospace vehicles is under the influence of aerodynamic forces and
moments. Aerodynamic forces are developed by the interaction between particles and vehicle
body during movement in atmosphere. An influential factor in vehicle aerodynamics is the
general configuration of the vehicle. On the other hand, the constituent parts of these forces
and torques include aerodynamic factors. Identification of importance and accuracy of these
factors has a determining role in the design, control and planning the path and in the analysis of
vehicle stability. Assuming that wind speed is zero and angular speed of the missile is negligible,
aerodynamic forces and moments relate only to dimensions, geometry, speed and parameters of
atmosphere.

Fig. 6. Aerodynamic forces on missile

According to Fig. 6, the aerodynamic forces are determined by

Fxaero =
1

2
ρV 2SCA Fyaero =

1

2
ρV 2SCy Fzaero =

1

2
ρV 2SCN (3.3)

where S is surface, ρ is density, CA, Cy and CN are coefficients of axial, lateral and normal
forces, respectively, and V is mass center speed of the vehicle in the body coordinates (Tewari,
2007).

4. Numerical results

To achieve optimal planning, a code has been codified in MATLAB environment for genetic and
PSO algorithms. In this program which is connected to MATLAB Simulink, first the parame-
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ters of each algorithm are adjusted by the user. The cost function is optimized according to
the adjusted parameters and simulation results (which exist in the algorithm). In this specific
case, the optimization problem includes the cost function in the form of equation (4.1) for the
achievement of optimal height and the desired maximum

f = (H −Ht)2 + (R2 −Rt)2 (4.1)

where H and R are height and range requested by the designer, Ht and Rt are height and range
of the vehicle in each moment of flight. Tables 1 and 2 contain the parameters of genetic and
PSO algorithms.

Table 1. Parameters of genetic algorithm

Parameter Value

Generation number 100

Population number 50

Mutation rate 0.1

Selection rate 0.5

Table 2. Parameters of PSO algorithm

Parameter Value

Particle number 100

Local optimal coefficient 2

Comprehensive optimal coefficient 2

Speed contraction coefficient 0.5

Table 3 represents the system parameters needed for 3DOF simulation of a surface-to-air
missile.

Table 3. System parameters needed for simulation

Parameter Value

Total mass in boost time 237.777 kg

Total mass of booster 45 kg

Main engine trust 35585.766 N

Booster trust 60453 N

Main engine burn time 2.9 s

Booster burn time 2 s

Pressure behind the nozzle 70000 Pa

To guide the vehicle, we used pitch programming in the simulation problem. For this purpose,
we designed a boost angle and angular rate schedule and used them as the simulation input.
The preset pitch rate command is generated by

θ̇ =






0 for t < t1

a(t− t1)
t2 − t1

for t1 ¬ t < t2

a for t2 ¬ t < t3

aeb(t−t3) for t  t3

(4.2)
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where θ̇ isthe pitch rate command used as pitch programming in the simulation problem, a and
b schedule the angular rate, t denotes the simulation time, t1 is defines the engine start time,
t2 and t3 are 0.1 s and 0.3 s after starting main engine, respectively.
Geometrical parameters of the vehicle, aerodynamic coefficients tables and angular schedule

were recalled by the input file at the beginning of the program, and the related parameters were
initialized.
To evaluate the vehicle performance, we had to determine the range that the vehicle would

achieve if it reached the intended height. To do so, we planned the path in two scenarios: 1) the
ability to achieve flight height of 10 000m, and 2) reaching the height of 6000m as the most
common altitude in the path planning strategies. These two scenarios were investigated to reach
maximum range as well as achieving altitudes in the two case studies. Optimization results of
the algorithms will be represented in the following Sections.
According to the boost conditions, optimization algorithms modified speed, acceleration and

height. These modifications affected aerodynamic coefficients and dynamic pressure. For this
reason, the force coefficients are calculated for seven particular Mach numbers ranging from 0.3
to 3, at five angles of attack α for each Much number in the range of 0◦ to +15◦. The outputs
of Missile DATCOM are shown in Figs. 7 and 8. These results are set as a lookup table in
SIMULINK and the interpolated based Mach number, altitude and angle of attack in the flight
simulation process.

Fig. 7. Axial force coefficient with respect to Mach number and angle of attack

The average execution time of both algorithms is measured and given in Table 4, using
a specific computer, characterized by Intel(R) Core(TM) i3 CPU M370 at 240GH. Given the
performance of optimization algorithms in this specific problem, we found that the genetic
algorithm had a relatively good performance and its optimal solutions were closer to reality.
However, it had higher computation cost.

Table 4. Average execution time of PSO and GA in the path planning problem

Algorithm
Average execution time [s]

First scenario Second scenario

PSO 510.2672 305.7908

GA 785.2714 486.6852

Figures 9 and 10 illustrate some of these modifications for both scenarios.
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Fig. 8. Normal force coefficient with respect to Mach number and angle of attack

Fig. 9. Functional changes of the vehicle in the first scenario

As you can see in Figs. 9 and 10, vehicle performance in reaching the specified height is
similar in both scenarios. Therefore, the changes have similar functional parameters but varied
in numerical values. Tables 5 and 6 summarize the optimization results.

5. Conclusion

In this paper, we optimized a surface-to-air missile path using genetic and PSO algorithms in
order to achieve the maximum range and optimal height based on 3DOF simulation. In this
optimization model, design variables are based on the pitch programming, initial pitch angle
and pitch variations rate slope. According to 3DOF simulation results, vehicle performance
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Fig. 10. Functional changes of the vehicle in the second scenario

Table 5. Comparison of algorithms for the height of 10 000m

Parameter
Algorithm
PSO GA

Initial boost angle [deg] 55.3114 53.4212

a −0.0492 −0.0558
b −0.7135 −0.8228

Operating range [m] 8250 8125

Table 6. Comparison of algorithms for the height of 6000m

Parameter
Algorithm
PSO GA

Initial boost angle [deg] 43.8424 42.4933

a −0.0784 −0.0622
b −0.3855 −0.4295

Operating range [m] 7500 7225

did not differ in the mentioned optimization algorithms. The difference lied only in the type
of algorithm. In this specific case, the genetic algorithm was closer to reality but took longer
computation time. PSO algorithm offered acceptable results and shorter computation time, so
it was found to be more efficient in the surface-to-air missile path planning.

References

1. Anderson M.B., Burkhalter J.E., Jenkins R.M., 2001, Design of a guided missile interceptor
using a genetic algorithm, Journal of Spacecraft and Rockets, 38, 1, 28-35

2. Chartres J.T.A., 2007, Trajectory design, optimisation and guidance for reusable launch vehicles
during the terminal area flight phase, Diss. Universität Stuttgart



812 S.M. Zandavi

3. Cribbs H.B., 2004, Genetics-based trajectory discovery for tactical missiles, AIAA 1st Intelligent
Systems Technical Conference, 1-6

4. Fan H., Shi Y., 2001, Study on Vmax of particle swarm optimization, Proceedings of Workshop
on Particle Swarm Optimization, Purdue School of Engineering and Technology, Indianapolis, IN,
USA

5. Farooq A., Limebeer D.J.N., 2002, Trajectory optimization for air-to-surface missiles with
imaging radars, Journal of Guidance, Control and Dynamics, 25, 5, 876-887

6. Handbook, 1995, Military. Missile Flight Simulation, Part One: Surface-to-Air Missiles, MIL-
-HDBK-1211 (MI)

7. Holland J.H., 1975, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence, U Michigan Press

8. Huang N., Liu G., He B., 2012, Path planning based on Voronoi diagram and biogeographybased
optimization, Advances in Swarm Intelligence, Springer Berlin Heidelberg, 225-232

9. Jarvis R.M., Goodacre R., 2005, Genetic algorithm optimization for pre-processing and variable
selection of spectroscopic data, Bioinformatics, 21, 860-868

10. Liu G., Lao S.-Y., Hou L.-L., Li Y., Tan D.-F., 2015, OARPER-MAFO algorithm for anti-ship
missile path planning, Aerospace Science and Technology, 47, 135-145

11. Peibei M.A., Jun J.I., 2010, Comparison of three algorithms for multi missile path planning (in
Chinese), Electronics Optics and Control, 10, 007.

12. Puchinger J., Raidl G.R., 2005, Combining metaheuristics and exact algorithms in combina-
torial optimization: A survey and classification, International Work-Conference on the Interplay
Between Natural and Artificial Computation, Springer Berlin Heidelberg, 41-53

13. Shu J., Wu J., Zhao J., Wang X., Wang S., 2010, Cruise height optimization based on improved
PSO algorithm (in Chinese), Electronics Optics and Control, 2, 004

14. Tewari A., 2007, Atmospheric and Space Flight Dynamics, Birkhaüser Boston
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Damage detection based on structural dynamic characteristics, such as natural frequencies
and mode shapes, is an important area of research. Obtaining accurate structural dynamic
characteristics is perhaps the most challenging aspect. In particular, changes in environ-
mental temperature due to seasonal weather or radiation from sunshine leads to changes
in the dynamic characteristics of structures. An important conclusion is that changes in
the dynamic characteristics of a structure due to damage may be smaller than changes in
the dynamic characteristics due to variations in temperature. Also, damage can affect the
frequency response. This is the first study of evaluation of the effect of changes in tem-
perature and multiple damages on natural frequency at the same time. In this paper, the
simultaneous effect of the multiple defects and temperature on the natural frequencies of
6063 aluminum alloy beam are assessed numerically. ABAQUS finite element software is
used for the numerical analysis. The present paper aims to evaluate the temperature effect
and multiple damages on vibration responses. The variations in the frequency have been
analysed in simulation by using an aluminum specimen and obtaining impedance signatu-
res at temperatures ranging from −200◦C to 204◦C. The results show that an increase in
temperature leads to a decrease in structural frequency, and that a decrease in tempera-
ture leads to an increase in structural frequency. The evaluation of the effect of multiple
defects on natural frequency shows that when damages are created in the structure, there is
a significant decrease in the natural frequency responses of the 6063 aluminum alloy beam.
The results show that damage causes a decrease in the natural frequency of the structure.
This study highlights the importance of applying simulation methods to the evaluation of
the effect of changes in environmental temperature and multiple damages on the dynamic
characteristics such as natural frequencies and mode shapes, especially at the same time.

Keywords: structural health monitoring, damage detection, vibration response, temperature,
natural frequency

1. Introduction

Many techniques have been proposed to detect and localize structural damage using changes in
dynamic characteristics of structures such as natural frequency and mode shape (Xu and Wu,
2007). Modal parameters such as natural frequencies and mode shapes are sensitive indicators
of structural damage. However, they are not only sensitive to damage, but also to environmental
conditions such as humidity, wind and, most important, temperature (Meruane and Heylen,
2012). In particular, changes in environmental temperature due to seasonal weather or radia-
tion from sunshine lead to changes in the dynamic characteristics of structures. An important
conclusion is that the changes in dynamic characteristics of the structure due to damage may be
smaller than changes in the dynamic characteristics due to variations in temperature (Ralbovsky
et al., 2014). For large structures, such as long-span bridges, damage detection is affected by
environmental factors. Significant damage may cause very small changes in dynamic characte-
ristics, and these changes may go undetected due to changes in environmental and operational
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conditions. These changes have an influence on the dynamic characteristics of the structure.
Damage induced dynamic characteristics may be completely masked by changes in dynamic
characteristics due to changes in environmental temperature (Xu and Wu, 2007).

The effect of crack location in the modal frequency of a draft gear used in auto couplers
of freight railway wagon for various orientations was investigated by Harak et al. (2015). They
showed that the defect in consecutive pads causes more changed in frequency as compared to
a single defective pad. As far as the location of the defective pad is concerned, it is seen that
the draft gear frequency is more sensitive to defective pads located either near the housing ba-
se plate or top follower (Harak et al., 2015). The effects of crack ratios and positions on the
fundamental frequencies and buckling loads of slender cantilever Euler beams with a single-
edge crack are investigated by Karaag̃aç et al. (2009). Sayman et al. (2013) presented the effect
of interface crack on the free vibration response of a sandwich composite beam experimental-
ly and numerically. They showed that the natural frequency of the torsional mode decreases
as the crack length increases (Sayman et al., 2013). The effect of temperature on damage de-
tection results was detected early. Eigenfrequency changes caused by temperature effects on
different structures were described in the works of Peeters and DeRoeck (2001), Farrar et al.
(1997) or Ralbovsky et al. (2010). The effect of temperature was considered as an obstacle
for damage detection. Various methods for removing that effect were proposed, for example in
the works of DeRoeck et al. (2000), Hu et al. (2012) and many other scientists (Ralbovsky et
al., 2010). Variations in frequencies are caused mainly by a change in the modulus of a mate-
rial under different temperatures. Modal frequencies of steel structures, the aluminum beam,
and the RC structures decrease by about 0.02, 0.03, and 0.15%, respectively, when tempera-
ture increases by one degree Celsius, regardless of modes and structural types. Frequencies of
concrete structures are more sensitive to temperature changes than metallic structures (Xia
et al., 2012).

The present paper aims to evaluate the temperature effect and multiple damages on vibra-
tion responses. In this study, the frequency changes of a structure caused by multiple defects
and temperature changes in the 6063 aluminum alloy beam are studied. The thermally induced
changes in dynamic characteristics are compared with those due to damages to the 6063 alumi-
num alloy beam. The changes caused by temperature have been analyzed based on the following
aspects: (1) change of the passion rate of the aluminum alloy; (2) changes of the elastic modulus
of the aluminum alloy. Guidelines to predict changes in the frequency and mode shape curvature
due to temperature changes in the aluminum alloy have been obtained, which is useful for design
purposes (Xu and Wu, 2007). The remainder of the paper is organized as follows. In Section 2,
theory of the temperature effect on natural frequency is discussed. Section 3 is devoted to the
process of the evolution effect of multiple defects and temperature changes on structural natural
frequency responses. The verification and simulation of the method is discussed in Section 4.
Numerical methods and results for evaluation of the temperature effect and multiple damages
on vibration responses are presented in Section 5. The conclusion is reported in Section 6.

2. Theory

Let us consider a rectangular plate which is subjected to an exponential temperature distribution
along the length, i.e. in the x-direction (Arun et al., 2014)

T = T0
e− ex
e− 1 (2.1)

where T denotes the temperature excess above the reference temperature at any point at the
distance X = x/a and T0 denotes the temperature excess above the reference temperature at
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the end, i.e. x = a or X = 1. The temperature dependence of the modulus of elasticity for most
of engineering materials is given by Nowacki (1962), (Arun et al., 2014)

E(T ) = E0(1− γT ) (2.2)

where E0 is the value of Young’s modulus at the reference temperature, i.e. T = 0, and γ is
the slope of variation of E with T (Arun et al., 2014). Taking as the reference temperature, the
temperature at the end of the plate, i.e. at X = 1, the modulus variation in view of (2.1) and
(2.2) becomes (Arun et al., 2014)

E(X) = E0
(
1− αe− e

X

e− 1
)

(2.3)

where α = γT0(0 − α < 1) is a constant known as the temperature constant. In the above
literature, most studies show that an increase in temperature leads to a decrease in structural
frequencies, while magnitude varies depending on structures, materials, and temperature range.
Variations in natural frequencies of structures with temperature are caused by changes in mate-
rial properties, in particular, the modulus of elasticity. To quantify the effect of temperature on
natural frequencies, a single-span or multi-span prismatic beam made of an isotropic material
is used as an example. Its undamped flexural vibration frequency of the order n is (Xia et al.,
2012; Blevins, 1979)

fn =
λ2n
2πl2

√
EI

µ
(2.4)

where λn is a dimensionless parameter and is a function of boundary conditions, l is length of
the beam, µ is mass per unit length, E is the modulus of elasticity, and I is the moment of
inertia of cross-sectional area. It is assumed that variations in temperature do not affect mass
and boundary conditions, but only geometry of the structure and mechanical properties of the
material.

3. Description of the process of the evolution effect of multiple defects and
temperature changes on structural natural frequency responses

In recent years, the use of simulation models to develop vibration based damage detection
techniques has become very popular, because it is a less expensive and time-consuming procedure
than investigation of real structures or experimental models. Also, an experimental setup is also
a fairly difficult process. Since the Finite Element (FE) method has been widely accepted as
an analysis tool in Structural Health Monitoring (SHM), the above mentioned constraints can
be overcome by using a validated FE model to simulate the real structure (Moragaspitiya et
al., 2013). In this Section, a FE modeling method is used to obtain natural frequencies of the
structure. FE models of the sample are developed utilizing the commercial FE package ABAQUS.
As shown in Fig. 1, natural frequency responses of the structure are obtained from FE modeling
of the intact and damaged structure. Then, the natural frequency responses of the structure are
obtained for varying temperatures from −200◦C to 204◦C. This is illustrated in Fig. 2.

4. Numerical simulation

In this Section, evaluation of the effect of multiple defects on natural frequencies of the 6063
aluminum alloy beam is discussed. Then, the effect of temperature changes on the natural
frequencies of the 6063 aluminum alloy beam is investigated as well.
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Fig. 1. Flowchart of the evolution effect of multiple defects on the natural frequency responses

Fig. 2. Flowchart of the evolution effect of temperature changes on the natural frequency responses of
the undamaged structure

4.1. Evaluation of the effect of multiple defects on natural frequencies

A 3-D FE model of the 6063 aluminum alloy beam has been created using ABAQUS (see
Fig. 3). The overall dimensions of the beam are 400mm×40mm×0.16mm. The material pro-
perties are listed in Table 1. The clamped end of the beam has no rotation or displacement in
any direction (see Fig. 4). Finally, the model is analysed with a frequency step, and the natural
frequency responses for 10 modes are obtained from the results. As shown in Fig. 5, in order
to investigate the effect of multiple defects on natural frequencies, several damage scenarios are
simulated. Two types of damages are simulated (Table 2) and each is introduced using different
extents to investigate the effect of multiple defects on natural frequencies. Free meshing is more
suitable on the damaged section, thus free meshing with triangular and tetrahedral elements is
utilized (see Fig. 6). The elements type, the total number of elements and nodes for the unda-
maged model and damage scenarios that are created in the model are shown in Table 3. In each
step, the damaged model is analysed with a frequency step of the natural frequency responses
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for 10 modes obtained from the results. Figure 7 shows the results of calculating the structural
response to various damage cases to investigate the effect of multiple defects on natural frequ-
encies. As shown in Fig. 7, when damages are created in the structure, the natural frequencies
responses of the 6063 aluminum alloy beam significantly decrease. The results show that the
damage decreases the natural frequency of the structure.

Table 1. Material properties of the 6063 aluminum alloy beam

Density Poisson’s ratio Modulus of elasticity
ρ [g/cc] ν [–] E [GPa]

2.7 0.33 68.9

Fig. 3. A FE model of the beam created using ABAQUS

Fig. 4. Boundary conditions

Fig. 5. Location of damages in the model

Fig. 6. Free meshing technique with linear tetrahedral and hexahedral elements

Table 2. Introduced damage types to investigate the effect of multiple defects on the natural
frequency

Damage Description
Dimensions Location
[mm] [mm]

#1 delamination in the beam 20× 0.06 × 1 100-120

#2 delamination in the beam 2× 0.02 × 0.5 180-182

#3 delamination in the beam 5× 0.02 × 0.077 300-305

#4 transverse crack in the beam 0.02× 0.17 × 5 200-200.02
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Table 3. The type of elements, the total number of elements and nodes for undamaged model
and damage scenarios that were created in the model

Structure status
Total number Total number

Type of elements
of nodes of elements

Undmaged model 49323 32000
linear hexahedral elements

of type C3D8R

Damage scenario
49838 195122

linear tetrahedral elements
#1 of type C3D4

Damage scenario
98536 383130

linear tetrahedral elements
#2 of type C3D4

Damage scenario
147420 572781

linear tetrahedral elements
#3 of type C3D4

Damage scenario
196712 763944

linear tetrahedral elements
#4 of type C3D4

Fig. 7. Effect of multiple defects on natural frequency responses of the 6063 aluminum alloy beam

4.2. Investigation of the effect of temperature changes on natural frequencies

The investigation of the effect of temperature changes on natural frequencies is presented in
this Section. For the purpose of this investigation, two types of scenarios are simulated to identify
the effect of temperature changes on the natural frequencies (Table 4). The first type of scenario,

Table 4. Introduced damage types to investigate the effect of temperature changes on the
natural frequency

Structure status Description

First type of scenario: intact structure,
undmaged model #1 investigate at −200◦C to 204◦C
Second type of scenario: damaged structure with transverse crack,
damaged model #2 investigate at −200◦C to 204◦C

the intact model, is analysed with some frequency step, and the natural frequency responses for
10 modes are obtained. For the second type of scenario, a transverse crack is created on the model
(see Fig. 8). The size of the transverse crack is 5mm×0.17mm×0.02mm, and is located at a
distance of 200mm to 200.02mm from the fixed end. Then, the damaged model is analysed and
the natural frequency responses for 10 modes are obtained. Tables 5 and 6 show respectively the
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results of calculation of the undamaged and damaged structural response to various temperature
cases presenting the effect of temperature on the natural frequency. Figures 9 and 10 respectively
show the effect of temperature changes on natural frequency responses pertaining to undamaged
and damaged structures. The results show that as temperature of the structure increases, the
natural frequencies responses of the structure decrease.

Fig. 8. Transverse crack created in the model

Table 5. Effect of temperature changes on the natural frequency responses of the undamaged
structure

Natural frequencies ω [rad/s] and corresponding temperatures t [◦C]
Mode −200◦C −129◦C −73◦C 21◦C 93◦C 149◦C 204◦C

ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s]

1 0.00747343 0.00742029 0.00731643 0.00719205 0.0069961 0.00684871 0.00665982

2 0.0468166 0.0464838 0.0458331 0.045054 0.0438264 0.042903 0.0417199

3 0.131184 0.130251 0.128428 0.126245 0.122805 0.120218 0.116903

4 0.143114 0.142097 0.140108 0.137726 0.133974 0.131151 0.127534

5 0.212142 0.210634 0.207686 0.204156 0.198593 0.194408 0.189047

6 0.257473 0.255643 0.252064 0.247780 0.241028 0.235950 0.229443

7 0.426512 0.423480 0.417552 0.410455 0.399271 0.390858 0.380080

8 0.431727 0.428658 0.422657 0.415473 0.404153 0.395637 0.384727

9 0.638622 0.634082 0.625206 0.614579 0.597833 0.585236 0.569098

10 0.727410 0.722239 0.712130 0.700025 0.680951 0.666603 0.648221

Table 6. Effect of temperature changes on the natural frequency responses of the damaged
structure

Natural frequencies ω [rad/s] and corresponding temperatures t [◦C]
Mode −200◦C −129◦C −73◦C 21◦C 93◦C 149◦C 204◦C

ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s] ω [rad/s]

1 0.0111536 0.0110743 0.0109193 0.0107337 0.0104412 0.0102212 0.00993934

2 0.0699099 0.0694129 0.0684413 0.0672779 0.0654448 0.0640658 0.0622991

3 0.195750 0.194358 0.191637 0.188380 0.183247 0.179386 0.174439

4 0.212484 0.210973 0.208020 0.204484 0.198912 0.194721 0.189352

5 0.224307 0.222713 0.219595 0.215862 0.209981 0.205556 0.199888

6 0.383982 0.381252 0.375916 0.369526 0.359457 0.351883 0.342180

7 0.634711 0.630199 0.621377 0.610815 0.594172 0.581652 0.565613

8 0.676172 0.671365 0.661967 0.650715 0.632985 0.619647 0.602560

9 0.948804 0.942059 0.928872 0.913084 0.888204 0.869489 0.845512

10 1.13783 1.12974 1.11393 1.09499 1.06516 1.04271 1.01396
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Fig. 9. Effect of temperature changes on the natural frequency for the undamaged structure

Fig. 10. Effect of temperature changes on the natural frequency for the damaged structure

5. Conclusion

This paper reviews multiple defects and the temperature effect on variations in modal properties
of the structure. This is the first study of evaluation of the effect of temperature changes and
multiple damages on the natural frequency at the same time. The variations in the frequency
are analysed in simulation by using an aluminum specimen obtaining impedance signatures at
temperatures ranging from −200◦C to 204◦C. The results show that an increase in temperature
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leads to a decrease in the structural frequency, and that a decrease in temperature leads to an
increase in the structural frequency. Therefore, temperature effects are a critical problem for
structural health monitoring based on vibration responses, especially in detecting low damage
levels. Efficient compensatory methods for temperature effects remain to be developed. The
evaluation of the effect of multiple defects on the natural frequency shows that when damages
are created in the structure, there is a significant decrease in natural frequency responses of
the 6063 aluminum alloy beam. The results show that damage causes a decrease in the natural
frequency of the structure. This study highlights the importance of application of simulation
methods to the evaluation the effect of changes in environmental temperature and multiple
damages on dynamic characteristics, such as natural frequencies and mode shapes, especially
taking place at the same time.
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This article aims to study the natural frequency of defective graphene sheets since the
existence of cut-outs in plates may be essential on the basis of their desired functionality.
A combination of the Aifantis theory and Kirchhoff thin plate hypothesis is used to derive
governing equations of motion. The Ritz method is employed to derive discrete equations of
motion. The molecular structural mechanics method is also employed to specify the effective
length scale parameter. In the ‘numerical results’ Section, the effects of different parameters
such as boundary conditions and diameter of the hole-to-side length ratio on the fundamental
frequency of graphene sheets are studied.

Keywords: free vibration, defective graphene sheet, Aifantis theory, molecular structural
mechanics

1. Introduction

Graphene sheets, the two-dimensional carbon nanostructure, amazingly exhibit the electrical,
mechanical, thermal and optical properties (Jomehzadeh et al., 2015) that have been considered
as a promising material for a wide range of applications (Lebedeva et al., 2012) such as compo-
sites, chemical sensors, ultra capacitors, transparent electrodes, photovoltaic cells, bio-devices
(Zandiatashbar et al., 2014) and the gigahertz oscillator suggested based on the telescopic oscil-
lation of graphene layers (Lebedeva et al., 2012). It is of great importance to simulate mechanical
behavior of single/muti-layered graphene sheets accurately due to this wide scope of applica-
tions. One important topic which has recently received great attention is the study of free and
forced vibration of graphene sheets used in nano-scale devices which may experience vibration.

Among different theoretical modelings used to simulate carbon nano-structures, continuum
mechanics modeling and molecular structural mechanics (MSM) methods are the most popular
ones employed to study the mechanical behavior of carbon nanostructures because their compu-
tational tasks are much more time-effective than different atomistic modeling such as classical
molecular dynamics, tight-binding molecular dynamics and density functional theory (Li and
Chou, 2003; Hu et al., 2007). The linear vibration of zigzag and armchair single-layered gra-
phene sheets (SLGS) was studied by Sakhaee-Pour et al. (2008) via the MSM approach. They
obtained fundamental frequencies and corresponding mode shapes for different boundary condi-
tions and showed that the natural frequencies of SLGS are independent of chirality and aspect
ratio (Sakhaee-Pour et al., 2008), while the Hashemnia et al. study (2009) indicated that the
fundamental frequency of SLGS with fixed-fixed or fixed-free end conditions decreased as the
aspect ratio increased. They proposed the use of graphene sheets with a lower aspect ratio to
prevent resonance and dynamic damage (Hashemnia et al., 2009). Gupta and Batra (2010) im-
plemented MSM simulation to investigate the effect of pretention on the natural frequencies of
SLGS. The comparison between the results obtained by the MSM method and those predicted
by an equivalent linear elastic isotropic continuum model showed that there was a noticeable
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difference between the mode shapes corresponding to the several lowest frequencies of the SLGS
and those of an equivalent linear elastic isotropic continuum model (Gupta and Batra, 2010).
Sadeghi and Naghdabadi (2010) introduced a hybrid atomistic structural element to model the
nonlinear behavior of SLGS. Their results verified with experimental observations demonstrated
that natural frequencies predicted by nonlinear analysis were far higher than those obtained by
the linear approach. Wang et al. (2013) proposed a pseudo beam model with 3-node beam ele-
ment to simulate the modal behavior of the wrinkled SLGS by using the MSM method. They not
only obtained the features of formation and evolution of wrinkles but also offered a prediction
model to estimate the natural frequency of wrinkle SLGS (Wang et al., 2013).

The importance of incorporating the size effect into continuum mechanics, in order to inve-
stigate the mechanical behavior of micro- or nano-scale devices, is well known and higher-order
continuum theories containing additional material constants have been developed to this end
(Askes and Aifantis, 2011). Mindlin (1964) developed a theory of elasticity with microstructure
in which strain energy was considered as a function of macroscopic strain, the difference betwe-
en macroscopic and microscopic deformation and the gradient of the microscopic deformation.
In this theory, the strain energy contained 16 constitutive coefficients in addition to Lame’s
constants. Mindlin wrote the kinetic energy density in terms of quantities at microscale and ma-
croscale as well (Askes and Aifantis, 2011). Mindlin also simplified this theory and introduced
three new versions which differed in the assumed relation between the microscopic deformation
gradient and the macroscopic displacement (Mindlin, 1964; Askes and Aifantis, 2011). The Min-
dlin simplified theory in which strain energy is only a function of first-order gradient of strain
tensor contains five new constants as well as Lame’s constants for an isotropic linear elastic ma-
terial (Mindlin, 1964; Askes and Aifantis, 2011). It can be shown that these five new constants
can be grouped in two new constants (Askes and Aifantis, 2011). In this way, the number of new
material constants is reduced from 5 down to 2 (Askes and Aifantis, 2011). A simplified kinetic
energy whose constitutive equation consists of velocity and velocity gradient was also sugge-
sted by Mindlin (1964). Therefore, Mindlin’s simplified theory contains one additional inertia
parameter as well as two additional elastic parameters (Askes and Aifantis, 2011).

Lam et al. (2003) proposed a modified strain gradient theory in which three new length
scale parameters were introduced into isotropic linear elastic materials. In this theory, the total
deformation energy density is independent of the anti-symmetric rotation gradient tensor and it
is only a function of the symmetric strain tensor, the dilatation gradient vector, the deviatoric
stretch gradient tensor and the symmetric rotation gradient tensor (Lam et al., 2003).

The other well-known higher-order continuum theories are classical couple stress theory
(Mindlin and Tiersten, 1962) with two material length scale parameters for an isotropic elastic
material, and the modified couple stress theory (Yang et al., 2002) whose modified constitutive
equation contains only a new length scale parameter. It can be shown that the modified couple
stress theory is a special case of the modified strain gradient elasticity theory if two of the three
material length scale parameters of the modified strain gradient theory are taken to be equal to
zero (Ashoori Movassagh and Mahmoodi, 2013).

On the basis of Aifantis’ studies in plasticity and nonlinear elasticity, Aifantis and his cowor-
kers proposed another gradient elasticity theory, the constitutive equation of which is a function
of strain and Laplacian of strain with one internal length (Aifantis, 1992; Altan and Aifantis,
1997). It can be shown that the associated equilibrium equations obtained by simplified Midlin’s
theory can be converted to those obtained by the Aifantis gradient elasticity theory if two new
elastic parameters of simplified Mindlin’s theory are taken to be equal to each other (Askes and
Aifantis, 2011).

Another powerful gradient elasticity theory proposed to simulate dynamical behavior of
micro/nano structures is achieved by combining stable strain gradients with acceleration (inertia)
gradients (Askes and Aifantis, 2011) such as Mindlin’s simplify theory. Metrikine and Askes
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(2002, 2006) derived such a theory from a discrete lattice. It is worth mentioning that these
theories known as dynamically consistent models (Askes and Aifantis, 2011), incorporate at least
two length scales: one of them related to strain gradients and another related to acceleration
(inertia) gradients.

The nonlocal strain gradient theory is another Laplacian based gradient elasticity whose
constitutive equation is a function of strain, stress, Laplacian of strain and Laplacian of stress
(Askes and Aifantis, 2011; Aifantis, 2011).

Meany researchers employed different gradient elasticity theories mentioned above in con-
junction with different classical continuum mechanic theories to study the mechanical behavior
of size-dependent micro/nanostructures so far (Ansari et al., 2011, 2013; Reddy, 2011; Rahmani
and Pedram, 2014; Akgöz and Civalek, 2012, 2014, 2015; Gholami et al., 2016; Binglei et al.
2011, 2016; Askes and Aifantis, 2009; Şimşek, 2016; Ebrahimi et al., 2016; Li and Hu, 2016).

On the basis of the strain gradient Timoshenko beam theory, the free vibration characteri-
stics of functionally graded microbeams were investigated by Ansari et al. (2011). Ansari et al.
(2013) also combined the most general strain gradient elasticity theory containing five additio-
nal material length scale parameters with the classical Timoshenko beam theory to investigate
bending and buckling of functionally graded microbeams. Akgöz and Civalek (2014) proposed a
new size-dependent trigonometric beam model based on the strain gradient theory. They (Akgöz
and Civalek, 2014) employed their new model to estimate load-bearing capacity of microbeams.
A new size-dependent sinusoidal plate model to predict mechanical behavior of thin, moderately
thick and thick microplate was suggested by Akgöz and Civalek (2015) as well. They employed
a modified strain gradient elasticity hypothesis to incorporate the size effect into the classical
continuum plate theory. In an earlier work, Akgöz and Civalek (2012) estimated vibratory be-
havior of single-layered graphene sheets embedded in an elastic matrix. To this end, they used
the Krichhoff plate hypothesis in conjunction with the modified couple stress theory to develop
governing equations of motion (Akgöz and Civalek, 2012).

Gholami et al. (2016) combined Mindlin’s simplified theory hypothesis with first-order shear
deformation shell theory to investigate free vibration and axial buckling of circular cylindrical
micro-/nano-shells. They ignored the effects of inertia gradients in their model and derived the
kinetic energy in terms of macroscopic kinematic quantities. They compared three different size-
dependent shell models on the basis of strain gradient theory, modified strain gradient theory,
and modified couple stress theory in predicting the natural frequency and load-bearing capacity
of microshells as well. They showed that the values of natural frequency and the critical buckling
force predicted by the strain gradient theory are higher than those predicted by the modified
strain gradient theory because of inducing a higher stiffness. Binglei et al. (2011) simulated
static bending, static instability and vibratory behavior of a simply-supported micro-plate via
the modified strain gradient theory and the modified couple stress theory. Their results clearly
show that the strain gradient theory induces a higher stiffness than the modified couple stress
theory. They (Binglei et al., 2016) re-derived the governing equation of the nonclassical Kirchhoff
micro-plate as well as the general boundary conditions based on the strain gradient elasticity to
simulate mechanical behavior of a micro-plate with any reasonable boundary conditions.

Askes and Aifantis (2009) employed a dynamically consistent model with two length scales
to simulate flexural wave dispersion in carbon nanotubes. They verified validity of the proposed
model by comparing their findings with those obtained via molecular dynamics simulation and/or
Eringen’s nonlocal elasticity theory.

Using nonlocal strain gradient elasticity, Li and Hu (2016) developed a model to analyze
wave propagation in fluid-conveying carbon nanotubes. They investigated the effects of different
parameters such as nonlocal parameter, small scale parameter, damping coefficient and flow
velocity on wave propagation properties of fluid-conveying carbon nanotubes.
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The other well-known gradient theory is Eringen’s nonlocal elasticity theory in which there is
only one length scale parameter and its constitutive equation is expressed based on the nonlocal
stress tensor and Laplacian stress tensor (Askes and Aifantis, 2011). Eringen’s nonlocal elasti-
city is widely employed to simulate mechanical behavior of carbon nano-structures because of
being a good agreement between obtained results via Eringen’s theory and molecular dynamics
simulation. Murmu and Pradhana (2009) employed a nonlocal elasticity theory to investigate
the vibrational behavior of SLGS. Numerical results clearly revealed that the small scale value
could affect the fundamental frequencies of SLGS significantly (Murmu and Pradhana, 2009).
Shen et al. (2010) employed a nonlocal orthotropic plate model which contained small scale
effects to simulate nonlinear vibration behavior of SLGS in thermal environmental. They used
temperature-dependent material properties obtained by molecular dynamic simulation. To esti-
mate the value of the small-scale parameter, they reconciled the natural frequencies of graphene
sheets obtained via molecular dynamics (MD) simulation with those predicted by the nonlocal
plate model (Shen et al., 2010). Their results clearly showed the significant impact of vibration
amplitude and temperature change on the nonlinear vibration response of both armchair and
zigzag graphene sheets (Shen et al., 2010). Ansari et al. (2010) employed the nonclassical Min-
dlin plate theory to study the vibrational behavior of SLGS. To incorporate the size effect into
the continuum plate model, they used Eringen’s nonlocal elasticity theory. Matching the results
obtained from MD simulation with those taken from the nonlocal model, they determined the
proper value of the nonlocal parameter. They showed that the nonlocal parameter depends on
chairality and boundary conditions. Using nonlocal elasticity, Farajpour et al. (2011) estimated
the load-bearing capacity of circular graphene sheet subjected to uniform radial compression.
To study the vibratory behavior of annular and circular graphene sheet in thermal environment,
Mohammadi et al. (2014) employed Eringen’s theory. They investigated the effect of different
parameters such as elastic medium, boundary conditions and small scale parameter on the na-
tural frequencies of circular and annular graphene sheets. Farajpour et al. (2012) estimated
load-bearing capacity of a rectangular single-layered graphene sheet by combining the nonlocal
elasticity theory with Kirchhoff’s plate hypothesis as well as orthotropic material stress-strain
relations.

Although there have been numerous studies carried out on the simulation of vibrational
behavior of perfect graphene sheets, the notable studies shown that the effects of nanopores on
linear and/or nonlinear vibration responses of graphene sheets do not exist, while the existence
of nanopores in the graphene lattice can be essential based upon the desired functionality of
graphene sheets in different nano-devices such as bio-devices and the DNA-decorated graphene
(Zandiatashbar et al., 2014). On the other hand, the production process used or environmental
and operating conditions under which the graphene device operates can lead to the appearance
of vacancy defects in the graphene lattice (Zandiatashbar et al., 2014). Therefore, simulation of
the dynamic response of graphene sheets with nanopores to determine how the size, the position
and the shape of cut-outs influence the natural frequencies is important. Accordingly, the main
purpose of this study is to model the dynamic response of SLGS with cut-outs. Different me-
thods, such as Ritz, finite difference and finite element can be employed to this end. Rajamani
and Prabhakaran (1977) used Lagrange’s equations to obtain discrete equations of motion of a
composite plate with a central cut-out. For this purpose, they employed potential energy and ki-
netic energy of a uniform plate and considered the cut-out as a displacement-dependent external
loading on the plate (Rajamani and Prabhakaran, 1977). The finite difference method was used
by Aksu and Ali (1976) to determine vibration characteristics of rectangular plates with one or
two central cut-outs. To develop a simple method to study the effects of the rectangular cut-
out on natural frequencies of rectangular plates, Ali and Atwal (1980) used Rayleigh’s method
and employed trigonometric functions to estimate the lateral deflection. They showed that this
method can predict the fundamental frequency with a quite good accuracy although the accu-
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racy could be increased if one added a correction function to the estimated lateral displacement
function (Ali and Atwal, 1980). Lam et al. (1989) presented a modification of the Rayleigh-Ritz
method to investigate the vibrational behavior of rectangular plates with one or two cut-outs.
They used an orthogonal polynomial function generated based on the Gram-Schmidt process to
estimate the lateral displacement of plate segments (Lam et al., 1989). Similar methods were
used by Liew et al. (2003) to investigate the effect of different boundary conditions on vibratio-
nal behavior of a rectangular plate with the central rectangular cut-out. The negative stiffness
method was applied to analyze free vibration and buckling of plates with cut-outs by Tham et
al. (1986).

One of the popular variational methods employed to derive discrete equations of motion
is the Ritz method because the displacement field is approximated by a linear combination
of shape functions which are only satisfied by essential boundary conditions. On the other
hand, it is shown that one can reduce the complexity of the mechanical behavior modelling
of structures with cut-outs by combining the construction of energy functional with the Ritz
method (Malekzadeh et al., 2013). Therefore, in this study, the Ritz method is employed to derive
discrete equations of motion which yield the eigenvalue problem. Because Eringen’s nonlocal
elasticity theory does not allow the construction of energy functional (Reddy, 2011), the dynamic
consistent model is used to simulate vibrational behavior of the graphene sheet with a nanopore.
To this end, Aifantis’ theory, as well as inertia gradients is combined with Kirchhoff’s thin plate
hypothesis to construct the energy functional and incorporate the size effect into the classical
continuum plate model. Also, the length scales related to strain gradients and inertia gradients
are set equal to each other. The molecular structural mechanics method is also used to simulate
vibrational behavior of defective SLGS to estimate the length scale parameter which must be
used in the proposed nonclassical plate model.

2. Governing equation

2.1. Nonclassical thin plate theory

According to Hamilton’s principle, one can formulate discretized free vibration equations of a
nano-plate with free edges cut-out via the Ritz method. The Aifantis theory in conjunction with
inertia gradients is also used to incorporate the size effect into the equation governing natural
frequencies of the nano-plate with the cut-out. For this reason, the variation of strain energy
and kinetic energy can be written as

δPE =

∫

VI

(σijδε
L
ij) dV −

∫

VII

(σijδε
L
ij) dV

δKE =

∫

VI

[ρu̇δu̇+ ρv̇δv̇ + ρẇδẇ + ρl21(u̇,iδu̇,i + v̇,iδv̇,i + ẇ,iδẇ,i)] dV

−
∫

VII

[ρu̇δu̇+ ρv̇δv̇ + ρẇδẇ + ρl21(u̇,iδu̇,i + v̇,iδv̇,i + ẇ,iδẇ,i)] dV

(2.1)

where σij , ε
L
ij and l1 are components of the stress tensor, linear strain tensor and length scale

related to inertia gradients, respectively. Vi (i = I, II) is the volume of i-th segment of the
plate. The displacement field is shown by u, v and w. ρ is the specific mass density of the plate
material and the time derivative of displacements are shown by overhead dot. According to the
classical plate theory hypothesis, if the xy-plane of the Cartesian coordinate system (x, y, z)
coincides with the geometrical mid-plane of the undeformed rectangular micro-/nano-plate, the
displacement field can be expressed as (Reddy, 1999)
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u(x, y, z, t) = u0(x, y, t) − z
∂w(x, y, t)

∂x
v(x, y, z, t) = v0(x, y, t)− z

∂w(x, y, t)

∂y

w(x, y, z, t) = w(x, y, t)

(2.2)

where u0 and v0 are the x- and y-components of the displacement vector of a point in the
mid-plane of the plate at time t, respectively.
According to the classical plate theory hypothesis, the linear components of the strain tensor

can be found on the basis of Eqs. (2.2) (Reddy, 1999)

εLxx =
∂u0
∂x
− z ∂

2w

∂x2
εLyy =

∂v0
∂y
− z ∂

2w

∂y2

εLxy = ε
L
yx =

1

2

(∂v0
∂x
+
∂u0
∂y
− 2z ∂

2w

∂x∂y

) (2.3)

According to Aifantis’ theory, the stress tensor components are related to the linear strain
tensor components as (more details can be found in Aifantis (1992, 2011), Askes and Aifantis
(2011), Gitman et al. (2005))

σij = Cijkl(εkl − l2εkl,mm) (2.4)

which can be obtained on the basis of the implicit gradient elasticity model given by

tr (α1ε+ α2σ)1+ α3ε+ α4σ +∇2[ tr (α5ε+ α6σ)1+ α7ε+ α8σ] = 0

through a proper choice of the constants α1, . . . , α8 (Aifantis, 2011). C can be defined based on
the classical plate theory hypothesis as

C =




E

1− ν2
Eν

1− ν2 0
Eν

1− ν2
E

1− ν2 0
0 0 G




(2.5)

where E, G and ν are the modulus of elasticity, modulus of rigidity and Poisson’s ratio, respec-
tively. l is the length scale parameter related to strain gradients.
By substituting Eqs. (2.2) to (2.5) into Eqs. (2.1), one can find the variation of strain energy

and kinetic energy on the basis of the displacement field. By using the appropriate approximation
of dependent unknowns (u0, v0, w) satisfying the essential boundary conditions and employing
Hamilton’s principle, one can find the following system of ordinary differential equations gover-
ning the lateral vibration of the plate. It is completely independent of the other two equations
governing in-plane motion of the plate

(M Imnpq −M IImnpq)Ẅpq + (KImnpq −KIImnpq)Wpq = 0 (2.6)

in which

M I,IImnpq =

∫

VI ,VII

[−1
12
ρh3

(∂φp
∂x

∂φm
∂x

ϕqϕn +
∂ϕq
∂y

∂ϕn
∂y

φpφm
)
− ρhφpϕqφmϕn

]
dx dy

− l21
∫

VI ,VII

2ρh
(∂φp
∂x

∂φm
∂x

ϕqϕn +
∂ϕq
∂y

∂ϕn
∂y

φpφm
)
dx dy

− l21
∫

VI ,VII

1

12
ρh3

(∂2φp
∂x2

∂2φm
∂x2

ϕqϕn +
∂2ϕq
∂y2

∂2ϕn
∂y2

φpφm + 2
∂φp
∂x

∂φm
∂x

∂ϕq
∂y

∂ϕn
∂y

)
dx dy

(2.7)
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and

KI,IImnpq =

∫

VI ,VII

[
−D

(∂2φp
∂x2

ϕq + ν
∂2ϕq
∂y2

φp
)∂2φm
∂x2

ϕn

−D
(∂2ϕq
∂y2

φp + ν
∂2φp
∂x2

ϕq
)∂2ϕn
∂y2

φm − [2D(1 − ν)]
∂2(φpϕq)

∂x∂y

∂2(φmϕn)

∂x∂y

]
dx dy

− l2
∫

VI ,VII

[
−D

(∂4φp
∂x4

ϕq + (1 + ν)
∂2ϕq
∂y2

∂2φp
∂x2
+ ν

∂4ϕq
∂y4

φp
)∂2φm
∂x2

ϕn

−D
(∂4ϕq
∂y4

φp + (1 + ν)
∂2φp
∂x2

∂2ϕq
∂y2
+ ν

∂4φp
∂x4

ϕq
)∂2ϕn
∂y2

φm

−[2D(1− ν)]
(∂4(φpϕq)
∂x3∂y

+
∂4(φpϕq)

∂x∂y3

)∂2(φmϕn)
∂x∂y

]
dx dy

(2.8)

where D = Eh3/[12(1− ν2)] and h is thickness of the plate. The Gram-Schmidt process is used
to generate the polynomial functions ϕn(y) (ϕq(y)) and φm(x) (φp(x)) as well.
Equation (2.6) can be solved on the basis of the eigen-value problem to find the natural

frequencies corresponding to lateral vibration of the nano-plate.

2.2. Molecular structural mechanics

The molecular structural mechanics approach has been built on the basis of some similarities
between the molecular model of carbon nanostructures (nanotube and graphene sheet) and the
structure of a space frame building (Li and Chou, 2003; Hu et al., 2007; Sakhaee-Pour et al.,
2008; Hashemnia et al., 2009; Gupta and Batra, 2010, Sadeghi and Naghdabadi, 2010; Wang
et al., 2013). In this method, the atomic lattice of carbon nanostructures is rebuilt by beams
and point masses replacing C-C covalent bonds and carbon atoms, respectively (Li and Chou,
2003; Hu et al., 2007; Sakhaee-Pour et al., 2008; Hashemnia et al., 2009; Gupta and Batra, 2010;
Sadeghi and Naghdabadi, 2010; Wang et al., 2013). To determine stiffness parameters of the
equivalent beam, i.e., tensile stiffness (EA), bending stiffness (EI) and torsional rigidity (GJ), one
can use the concepts of energy equivalence between the total potential energies in computational
chemistry (Eq. (2.9)) and the total elemental strain energies in structural mechanics (Eq. (2.10))
(Li and Chou, 2003; Hu et al., 2007; Sakhaee-Pour et al., 2008; Hashemnia et al., 2009; Gupta
and Batra, 2010; Sadeghi and Naghdabadi, 2010; Wang et al., 2013).
The total potential function among carbon atoms due to bonded and nonbonded interactions

are (Li and Chou, 2003; Hu et al., 2007; Sakhaee-Pour et al., 2008; Hashemnia et al., 2009; Gupta
and Batra, 2010; Sadeghi and Naghdabadi, 2010; Wang et al., 2013)

UP =
∑

Ur +
∑

Uθ +
∑
(Uϕ + Uω) +

∑
Uvdw (2.9)

in which Ur is the bond stretching, Uθ is the bond angle bending, Uϕ is the dihedral angle
torsion, Uω is the out of plane torsion, Uvdw is the nonbonded van der Waals interaction and
Ue is the nonbonded electrostatic interactions. On the other hand, the total strain energy for a
beam element is (Li and Chou, 2003; Hu et al., 2007; Sakhaee-Pour et al., 2008; Hashemnia et
al., 2009; Gupta and Batra, 2010; Sadeghi and Naghdabadi, 2010; Wang et al., 2013)

USE =
∑

UA +
∑

UM +
∑

UT +
∑

UV (2.10)

where UA is the strain energy of axial tension, UM is the strain energy of bending, UT is the strain
energy of torsion and Uv is the strain energy of the shear force. One can obtain a relationship
between the molecular mechanics force field constants and the structural mechanics parameters
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by using the energy equivalence between Eq. (2.9) and Eq. (2.10) (Li and Chou, 2003; Hu et al.,
2007; Sakhaee-Pour et al., 2008; Hashemnia et al., 2009; Gupta and Batra, 2010; Sadeghi and
Naghdabadi, 2010; Wang et al., 2013) as follows

EA

L
= kr

EI

L
= kθ

GJ

L
= kτ (2.11)

where kr, kθ and kτ are force field constants in molecular mechanics.
On the basis of the previous research (Li and Chou, 2003; Hu et al., 2007; Sakhaee-Pour et

al., 2008; Hashemnia et al., 2009; Gupta and Batra, 2010; Sadeghi and Naghdabadi, 2010; Wang
et al., 2013), the following numerical values of the force field constants used in this research are
selected

kr = 65.2 nNÅ
−1

kθ = 2.78 nNÅrad
−2

kτ = 2.78 nNÅrad
−2

(2.12)

Then, the diameter-to-length ratio of the beam element estimated by Eq. (2.11) shows that this
element is too thick and must be modeled based on shear deformation beam theories.
Wang et al. (2013) used the study of Scarpa et al. (2009) who considered the C-C bond as

a Timoshenko beam, to obtain the mechanical properties and optimized cross-section diameter
of the equivalent beam element via the following relationships (Wang et al., 2013)

d < 2

√

6
kθ
kr

E =
k2rL

4πkθ
G =

kτ
2kθ

(2.13)

where kθ is expressed as

kθ =
krd
2

16

4C1 + C2
C1 + C2

(2.14)

and (Wang et al., 2013)

C1 = 112L
2kτ + 192L

2kτν + 64L
2kτν

2 C2 = 9krd
4 + 18krd

4ν + 9krd
4v2 (2.15)

and L is length of the C-C bond. They obtained the diameter-to-length ratio of the equivalent
Timoshenko beam around 0.704 (Wang et al., 2013), which is used in this study.
Based on the finite element method and using modal analysis concepts, one can find the

natural frequencies of this space frame-like structure constructed by Timoshenko beam elements
and point masses.

3. Verification

3.1. Non-classical thin plate theory

Based on the best knowledge of the author, it is the first attempt to analyze the vibrational
behavior of graphene sheets with nanopores via Aifantis’ theory combined with acceleration
(inertia) gradients and the Ritz method. Then, to verify the correctness of the presented model,
the author first compares the obtained natural frequencies of classical thin plates with central
holes with those obtained based on the finite element method (Table 1). To this end, the value
of length scale parameters (l and l1) is taken equal to zero.
According to Table 1, although natural frequencies of perfect plates can be accurately predic-

ted by the present model, those of the defective plate are overestimated. However, the calculated
percentage error (lower than 4% and 3% for the simply supported and clamped plate, respecti-
vely) shows that there is an acceptable agreement between the results.
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Table 1. Comparisons of the first dimensionless natural frequencies Ω = (ωa2/π2)
√
ρh/D for

the fully simply supported (SSSS) and fully clamped (CCCC) plate (a/b = 1, a/h = 29.4, d – the
diameter of the central hole)

d/a
SSSS CCCC

Present FEM Present FEM

0 1.9986 1.9986 3.6445 3.6445

0.1 2.0021 1.9913 3.6907 3.6533

0.2 2.0304 1.9950 3.8482 3.7644

0.3 2.0918 2.0454 4.1673 4.0898

0.4 2.1979 2.1727 4.7690 4.7286

0.5 2.4988 2.4106 5.8615 5.8571

Next, after setting the length scale parameters to be equal to each other (i.e. l = l1), the
effects of an increase in the length scale parameter on the variation of the first natural frequency
of perfect graphene sheets by increasing the side-length of nano-plate is compared with the
data available in Ansari et al. (2010), showing the influence of the small scale parameter on
the natural frequency of perfect graphene sheets by using Eringen’s nonlocal elasticity theory.
Figure 1 shows that, regardless of the boundary conditions, the first natural frequency of perfect
graphene sheets decreases with an increase in the length scale parameter, although a rise in
the side-length of the nano-plate reduces the importance of the length scale value, so that the
non-classical natural frequencies tend to the classical ones. The observed behavior is completely
in agreement with that reported in Ansari et al. (2010).

Fig. 1. The effects of the length scale value on the natural frequency of perfect graphene sheets; (a) fully
simply supported nano-plates, (b) fully clamped nano-plates (l = l1)

3.2. Molecular structural mechanics method

To verify the accuracy of predicted natural frequencies of graphene sheets obtained via
molecular structural mechanics (MSM), the estimated first natural frequency of fully simply
supported and fully clamped single-layered graphene sheets are compared with those obtained
by the molecular dynamics method and are available in Ansari et al. (2010), see Table 2. As it
is seen, there is a quite good agreement between the results.

4. Numerical results

In this Section, first, the effects of different parameters such as length scale and diameter of the
central hole to the side length ratio, which is not more than the half of side length of nano-
-plate, on the dimensionless natural frequency of graphene nano-sheet with a central pore are
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Table 2. Comparison of the first natural frequency of a square single-layered graphene sheet

Side-length SSSS CCCC
a [nm] MSM MD MSM MD

10 0.0576347 0.0587725 0.1148990 0.1146223

15 0.0292556 0.0273881 0.0523147 0.0517078

20 0.0167249 0.0157524 0.0310192 0.0306219

25 0.0118420 0.0099840 0.0182260 0.0179975

investigated (see Fig. 2). Then, the variation of dimensionless natural frequencies of the graphene
nano-sheet with the pore diameter to side length ratio equal to 0.5 versus the length scale and
side length is studied. Finally, it is tried to estimate the effective length scale of the defective
graphene sheet via matching the results obtained from the non-classical plate theory with those
found on the basis of molecular structural mechanics. It should be mentioned that the length
scales related to strain gradients and inertia gradients are set equal to each other (i.e. l = l1) in
this Section.

Fig. 2. Defective monolayer graphene sheet modeled with a plate with a circular hole

In Fig. 3, the effects of the length scale and diameter of the central hole to the side length ratio
on the dimensionless natural frequency of the graphene nano-sheet with a central pore for two
different boundary conditions are investigated. Regardless of boundary conditions, for a small
value of the length scale parameter, the first natural frequency of defective graphene sheets rises
as diameter of the central hole to the side length ratio increases, while with a rise in the length
scale, the rate of increase of the first natural frequency with pore diameter decreases. For a larger
value of the length scale, a decrease in the first natural frequency may be seen by increasing
the pore diameter (Figs. 3a and 3d). Generally, however, the sensitivity of simply supported
graphene sheets to the existence of the central hole is less than in the fully clamped nano-sheets.
The sensitivity of the second and third natural frequency of a fully clamped graphene sheet to
an increase in pore diameter is less than the first one, although the length scale value can change
the increasing or decreasing trend of the curves.

The impact of side length on frequencies can be seen in Fig. 4 for fully clamped and simply
supported graphene sheets. It is assumed that graphene has a central hole the diameter of which
is half of the side length of the sheet.

It is clearly seen that the importance of the length scale role in decreasing the natural
frequencies reduces with an increase in the side length of the defective sheet. It can be concluded
that the influence of the length scale on higher order frequencies is more than the first natural
frequency as well. As expected, the natural frequencies of simply-supported sheets are less than
the fully clamped ones.

In order to show if the existence of vacancy defects makes a difference to the effective length
scale used in the non-classical plate theory, the results obtained from the molecular structural
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Fig. 3. The effects of the length scale and diameter of the hole to side length of plate ratio on the first
three dimensionless natural frequencies of fully clamped graphene sheets (a), (b) and (c) and fully

simply-supported graphene sheets (d), (e) and (f) (l = l1)

mechanics are used. First, the effective length scale for perfect square graphene nano-sheets the
side length of which is 10 nm is obtained by matching the first natural frequencies predicted
by the molecular structural mechanics with the non-classical plate model. They are around
1.15 nm and 0.5 nm for simply supported and fully clamped nano-sheets, respectively. According
to these effective length scales, the first three natural frequencies of nano-sheets are 0.0578181,
0.133181 and 0.193658 THz, 0.1150115, 0.2230178 and 0.3152479 THz for simply supported and
fully clamped nano-plates, respectively. The comparison of these results with those determined
by molecular structural mechanics (0.05763, 0.12857 and 0.18252 THz for simply supported sheet
and 0.11490, 0.23047 and 0.34411 for clamped sheet) shows that the percentage error in higher
order frequencies is more than that of the first natural frequencies. Similar results can be seen
in Table 3 and 4 in which the same method is used to estimate the effective length scale of the
defective sheet. It can be concluded that the effective length scale may vary with an increase
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Fig. 4. The effect of the length scale and side length on the first three dimensionless natural frequencies
of the fully clamped graphene sheet (a), (b) and (c) and fully simply-supported graphene sheet (d), (e)

and (f) with a central hole the diameter to side length ratio of which is 0.5 (l = l1)

in diameter of the vacancy defect as well. It seems that the dependency of the effective length
scale on diameter of the vacancy defect changes with boundary conditions. The effective length
scale of a clamped defective graphene is more sensitive to diameter of the vacancy than that of
the simply supported one.

5. Conclusion

This article attempts to study the natural frequency of defective graphene sheets because the
existence of cut-outs in plates may be essential on the basis of their desired functionality. In this
study, Aifantis’ theory in conjunction with inertia gradients is combined with Kirchhoff’s thin
plate hypothesis to incorporate the size effect into the classical continuum plate theory because
Eringen’s nonlocal elasticity theory does not allow the construction of an energy functional.
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Table 3. The estimated length-scale parameter of simply supported defective graphene sheets
on the basis of matching natural frequencies obtained from the present method against MSM
results

No. of
Mode
No.

MSM
[THz]

Present Length scale
lost method parameter
atoms [THz] l = l1 [nm]

ω11 0.057446 0.05738
6 ω12 0.12840 0.14056 1.2

ω22 0.18224 0.19349

ω11 0.057170 0.05711
24 ω12 0.12797 0.13944 1.145

ω22 0.18157 0.19140

ω11 0.057008 0.05706
54 ω12 0.12718 0.13934 1.155

ω22 0.18049 0.19096

Table 4. The estimated length-scale parameter of fully clamped defective graphene sheets on
the basis of matching natural frequencies obtained from the present method against MSM results

No. of
Mode
No.

MSM
[THz]

Present Length scale
lost method parameter
atoms [THz] l = l1 [nm]

ω11 0.11444 0.11439
6 ω12 0.23712 0.21931 0.55

ω13 0.34343 0.30796

ω11 0.11381 0.11383
24 ω12 0.23650 0.21525 0.61

ω13 0.34196 0.29900

ω11 0.11356 0.11355
54 ω12 0.23650 0.21236 0.71

ω13 0.34196 0.29157

The Ritz method is employed to derive discrete equations of motion which yield the eigenvalue
problem. The molecular structural mechanics method is also employed to specify the effective
length scale parameter. In the ‘numerical results’ Section, the effects of different boundary
conditions, length scale, diameter of hole to side length ratio and side length of nano-sheets on
the fundamental frequency of graphene sheets are studied. The results demonstrate that:

• Regardless of boundary conditions, for a small value of the length scale parameter, the
first natural frequency of defective graphene sheets rises as diameter of the central hole to
the side length ratio increases, while with a rise in the length scale, the rate of increase of
the first natural frequency with pore diameter decreases.

• For larger values of the length scale, by increasing pore diameter, a decrease in the first
natural frequency may be seen.

• The sensitivity of simply supported graphene sheets to the existence of the central hole is
less than that of the fully clamped nano-sheets.

• The importance of the length scale role in decreasing the natural frequencies reduces with
an increase in the side length of the defective sheet.
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• The influence of the length scale on higher order frequencies is stronger than that on the
first natural frequencies.

• Although the dependency of the effective length scale on diameter of the vacancy defect
changes with boundary conditions, the effective length scale does not vary with an increase
in diameter of the vacancy defect significantly.
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The problem discussed in the paper concerns the numerical modeling of thermal processes
proceeding in micro-scale described using the Dual Phase Lag Model (DPLM) in which
the relaxation and thermalization time appear. The cylindrical domain of a thin metal film
subjected to a strong laser pulse beam is considered. The laser action is taken into account by
the introduction of an internal heat source in the energy equation. At the stage of numerical
modeling, the Control Volume Method is used and adapted to resolve the hyperbolic partial
differential equation. In particular, the Alternating Direction Implicit (ADI) method for
DPLM is presented and discussed. The examples of computations are also presented.

Keywords: micro-scale heat transfer, dual phase lag model, control volume method, alterna-
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1. Introduction

Thermal processes proceeding in the microscale are characterized, as a rule, by an extremely
short duration, extreme temperature gradients and very small geometrical dimensions of the
domain considered. It is a reason that typical mathematical models basing on the macroscopic
Fourier-type equations are not suitable for the analysis of this type problems. In the recent
years, the problem of heat transfer through domains subjected to an strong external heat source
(e.g. an ultrafast laser pulse) has been of vital importance in microtechnology applications, and
it is a reason that the problems connected with fast heating of solids has become a very active
research area (Tzou, 2015; Zhang, 2007; Chen et al., 2004).

From the mathematical point of view, nowadays there exist different models describing the
mechanism of the process discussed. In this group, the microscopic two-temperature parabolic
or hyperbolic models (belonging to a group of continuum models) should be mentioned (Chen
and Beraun, 2001; Kaba and Dai, 2005; Lin and Zhigilei, 2008; Majchrzak, 2012; Majchrzak and
Dziatkiewicz, 2015). The two-step parabolic and hyperbolic models involve two energy equations
determining the thermal processes in the electron gas and the metal lattice. The coupling factor
combining these equations is introduced. Depending on the variant of the model, parabolic or
hyperbolic PDEs are considered. Assuming certain simplifications, the two-temperature model
can be transformed into a single equation containing the second order time derivative and higher
order mixed derivative in both time and space (known as the dual phase lag model (DPLM)). In
this equation, two positive constants τq, τT appear and they correspond to the relaxation time,
which is the mean time for electrons to change their energy states and the thermalization time,
which is the mean time required for electrons and lattice to reach equilibrium (Orlande et al.,
1995).

The Cattaneo-Vernotte and the dual phase lag models belong also to the group of continuum
ones. They result from the generalization of the well-known Fourier law. To take into account
the finite velocity of a thermal wave the lag time between the heat flux and temperature gradient
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has been introduced (Cattaneo, 1958). The Cattaneo-Vernotte hyperbolic equation (CVE) can
be treated as a certain microscale heat transfer model, but for this purpose is rarely used. The
model discussed often finds application in the case of bioheat transfer problems, e,g. (Ciesielski
et al., 2016). In fact, according to literature, e.g. (Mitra et al., 1995) the lag time (relaxation
time) for processed meat is of the order of several seconds.

Introduction of two lag times in the generalized form of the Fourier law (relaxation and
thermalization ones) leads, after relatively simple mathematical manipulations, to the dual phase
lag equation. At present, in literature one can find big number of analytical and (first of all)
numerical solutions of various thermal problems described by this model. The majority of the
solutions presented in the literature concerns the 1D problems. Such an assumption is often
fully acceptable. For example, considering the laser pulse interactions with thin metal films it
is reasonable to treat the interactions as a one-dimensional heat transfer process (Chen and
Beraun, 2001). In this paper, the axially-symmetrical problem is analyzed.

Most of the works in this field concerns direct problems. Homogeneous and also heterogeneous
domains are considered. The problem of the single layer heating was discussed, among others,
by Tang and Araki (1999), Kaba and Dai (2005), Mochnacki and Ciesielski (2012), Majchrzak
and Turchan (2016). In the subject of non-homogeneous micro-domains, one can mention the
paper presented by Dai and Nassar (2000), in which the heat transfer in a double layered gold-
chromium film is analyzed, and the papers prepared by Majchrzak et al. (2009a,b) concerning
a multi-layered film subjected to ultrafast laser heating.

Both in the case of the CVE and DPLE, the typical boundary conditions appearing in heat
transfer problems should be modified in a adequate way.

In literature, one can find works devoted to sensitivity of the transient temperature field in
microdomains with respect to the dual phase lag model parameters (Majchrzak, and Mochnacki,
2014). The issue of the inverse problems was also developed, e.g. by Mochnacki and Paruch
(2013), Dziatkiewicz et al. (2014), Mochnacki and Ciesielski (2015).

A next group of microscale heat transfer models is based on the Boltzmann transport equ-
ation (BTE). It is a conservation equation where the conserved quantity is the number of particles
(Tian and Yang, 2008). The general form of BTE is rather complex, but it can be modified to
analyze special tasks, for instance systems created by phonons, electrons, etc. In this field, de-
serving special attention is repeatedly cited paper presented by Escobar et al. (2006). One can
also mention the work by Belhayat-Piasecka and Korczak (2016) in which the microscale heat
transport was analyzed using the interval lattice Boltzmann method.

Microscale heat transfer processes can be also considered using the molecular approaches
(Smith and Norris, 2003; Theodosiou and Saravanos, 2007; Chen et al., 2007; Liu and Tsai,
2009).

2. Governing equations

Let us consider the diffusion equation in the domain Ω

(r, z) ∈ Ω c
∂T (r, z, t)

∂t
= −∇ · q(r, z, t) +Q(r, z, t) (2.1)

where c = c(T ) is the volumetric specific heat, q(r, z, t) is the heat flux vector, Q(r, z, t) is the
capacity of internal heat sources, r, z, t are the geometrical co-ordinates and time.

The value of heat flux is determined by Tzou’s dual-phase-lag theory (Tzou, 2015), as the
generalization of the Fourier law, in particular

q(r, z, t + τq) = −λ∇T (r, z, t+ τT ) (2.2)
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where τq is called the relaxation time, while τT is the thermalization time, λ = λ(T ) is the
thermal conductivity, ∇T (r, z, t) is the temperature gradient. For τT = 0, this model leads to
the Cattaneo-Vernotte equation, while for τT = 0 and τq = 0 it corresponds to the Fourier law.
The Taylor series expansions of equation (2.2) is the following

q(r, z, t) + τq
∂q(r, z, t)

∂t
= −λ

[
∇T (r, z, t) + τT

∂∇T (r, z, t)
∂t

]
(2.3)

Introducing formula (2.3) into equation (2.1) one obtains

c
[∂T (r, z, t)

∂t
+ τq

∂2T (r, z, t)

∂t2

]
= ∇ · [λ∇T (r, z, t)] + τT

∂∇ · [λ∇T (r, z, t)]
∂t

+Q(r, z, t) + τq
∂Q(r, z, t)

∂t

(2.4)

In the case of the axially-symmetrical task discussed in this work, the component∇·[λ∇T (r, z, t)]
is the following

∇ · [λ∇T (r, z, t)] = 1
r

∂

∂r

[
rλ
∂T (r, z, t)

∂r

]
+

∂

∂z

[
λ
∂T (r, z, t)

∂z

]
(2.5)

It should be pointed out that the boundary conditions (which appear in the typical Fourier heat
conduction models) for the DPL should be transformed to the form

(r, z) ∈ Γ : qb(r, z, t) + τq
∂qb(r, z, t)

∂t
= −λ

[
n · ∇T (r, z, t) + τT

∂[n · ∇T (r, z, t)]
∂t

]
(2.6)

In Fig. 1, the domain considered (limited by the planes z = 0, z = Z and surface r = R) is
shown.

Fig. 1. Cylindrical micro-domain

The effects of femtosecond laser pulse irradiation on the upper surface limiting the system
causes that the energy is delivered to metal and its absorption occurs. The internal heat source
Q(r, z, t) generated inside metal is related with action of the laser beam (Chen and Beraun,
2001)

Q(r, z, t) =

√
β

π

1−Rf
tpδ

I0 exp
(
−z
δ

)
exp

(
−r
2

r2d

)
exp

(
− β

( t− 2tp
tp

)2)
= IΩ(r, z)It(t) (2.7)

where

IΩ(r, z) = I0
1−Rf
δ
exp

(
−r
2

r2d

)
exp

(
−z
δ

)
It(t) =

√
β

tp
√
π
exp

(
− β

( t− 2tp
tp

)2)
(2.8)
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and I0 is laser intensity, Rf is reflectivity of the irradiated surface, δ is optical penetration depth,
rd is characteristic radius of Gaussian laser beam, β = 4 ln 2 and tp is characteristic time of the
laser pulse. Here, it is assumed that the total time of the laser action beam on the surface is
equal to 4tp.

So, action of the laser beam is taken into account by introduction of the internal heat source
Q(r, z, t). At the same time the dimensions Z and R are large enough that on the appropriate
boundaries adiabatic conditions qb(r, z, t) = 0 can be assumed. In the case of the problem
considered (see: Eq. (2.6)) one has

(r, z) ∈ Γ : −λ
[
n · ∇T (r, z, t) + τT

∂[n · ∇T (r, z, t)]
∂t

]
= 0 (2.9)

The initial conditions (the initial temperature of domain T0(r, z) and the initial heating rate
v0(r, z) are also given

t = 0 : T (r, z, 0) = T0(r, z)
∂T (r, z, t)

∂t

∣∣∣∣∣
t=0

= v0(r, z) (2.10)

3. Numerical solution using the Control Volume Method

To solve the problem presented in the previous Section, the control volume method (CVM) is
used. This method constitutes a very effective tool for numerical modeling of heat transfer pro-
cesses described by the Fourier-type equations. In the case of numerical simulation of microscale
heat transfer and the models based on the DPL equation, this method has so far been applied
only to the numerical solution using an ‘explicit’ scheme (Mochnacki and Ciesielski, 2015).

The first stage of the method application is the division of the domain considered into small
cells (known as the control volumes CV). In this work, the shape of control volumes is regular
one (it corresponds to the rings of a rectangular cross-section). The more complex discretization
using e.g. the Voronoi polygons can be also taken into account (Ciesielski and Mochnacki, 2014).

In Fig. 2, the domain discretization is presented, while in Fig. 3 the selected internal and
boundary (top) control volumes are shown.

Fig. 2. Discretization of the domain
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Fig. 3. The internal and boundary control volumes

On the basis of simple geometrical considerations, one can determine values of the successive
volumes ∆Vi,j and surfaces (∆Ak)i,j limiting ∆Vi,j in each k-direction. Numerical modelling of
transient problems requires introduction of the time grid, too: 0 = t0 < t1 < . . . < tf < . . . < tF ,
tf = f∆t.
The aim of the CVM is to find the transient temperature field at the set of control volumes.

The thermal capacities are concentrated at the elements, whereas the thermal resistances are
concentrated on the sectors connecting nodes of the control volumes. The average temperatures
in all control volumes can be found on the basis of energy balances for the successive volumes.
The energy balances corresponding to the heat exchange between the analyzed control volume
and adjacent control volumes results from integration of the energy equation with respect to
volume and time.

3.1. Integration of the energy equation with respect to volume

Integration of Eq. (2.4) over the control volume Ωi,j leads to
∫

Ωi,j

c
(∂T (r, z, t)

∂t
+ τq

∂2T (r, z, t)

∂t2

)
dΩ

=

∫

Ωi,j

(
∇ · [λ∇T (r, z, t)] + τT

∂∇ · [λ∇T (r, z, t)]
∂t

)
dΩ +

∫

Ωi,j

(
Q(r, z, t) + τq

∂Q(r, z, t)

∂t

)
dΩ

(3.1)

The integral occurring on the left-hand side of equation (3.1) can be approximated in the form
∫

Ωi,j

c
(∂T (r, z, t)

∂t
+ τq

∂2T (r, z, t)

∂t2

)
dΩ

∼= ci,j



∂T (r, z, t)

∂t

∣∣∣∣∣
r=ri
z=zj

+ τq
∂2T (r, z, t)

∂t2

∣∣∣∣∣
r=ri
z=zj


∆Vi,j = ci,j

(dTi,j
dt
+ τq

d2Ti,j
dt2

)
∆Vi,j

(3.2)

where Ti,j = T (ri, zj , t), while ci,j = c(Ti,j) is the integral mean of thermal capacity in the
volume Ωi,j. In a similar way, the numerical approximation of the source term in Eq. (3.1) can
be found

∫

Ωi,j

(
Q(r, z, t) + τq

∂Q(r, z, t)

∂t

)
dΩ ∼=

(
Qi,j + τq

dQi,j
dt

)
∆Vi,j (3.3)
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where Qi,j is determined as the integral mean of the heat source in the volume Ωi,j

Qi,j ≡ Qi,j(t) ∼=
1

∆Vi,j

∫

Ωi,j

Q(r, z, t) dΩ = It(t)
1

∆Vi,j

∫

Ωi,j

IΩ(r, z) dΩ

= It(t)
I0π(1−Rf )r2d

∆Vi,j

[
exp

(
− r̄
2
1

r2d

)
− exp

(
− r̄
2
2

r2d

)][
exp

(
− z̄1
δ

)
− exp

(
− z̄2
δ

)]
(3.4)

and r̄1, r̄2, z̄1, z̄2 are the limits of the control volume Ωi,j = {(ri, zi)| r̄1 ¬ ri ¬ r̄2, z̄1 ¬ zi ¬ z̄2}.
In the case of a more complex form of the function Q, one can compute Qi,j(t) = Q(ri, zj , t),
but this estimation is less accurate.

Applying the divergence theorem to the term determining heat conduction (right hand side
of Eq. (3.1)) between the volume Ωi,j bounded by the surfaces ∆Ai,j and its neighbourhoods,
one obtains

∫

Ωi,j

(
∇ · [λ∇T (r, z, t)] + τT

∂∇ · [λ∇T (r, z, t)]
∂t

)
dΩ

=

∫

Ωi,j

∇ · λ
(
∇T (r, z, t) + τT

∂∇T (r, z, t)
∂t

)
dΩ

=

∫

Ai,j

[
n · λ

(
∇T (r, z, t) + τT

∂∇T (r, z, t)
∂t

)]
dA

(3.5)

and then this term can be written in the form

∫

Ai,j

[
n · λ

(
∇T (r, z, t) + τT

∂∇T (r, z, t)
∂t

)]
dA

=
4∑

k=1

∫

(Ak)i,j


(nk)i,j · (λk)i,j

(
∇T (r, z, t)

∣∣
k
+ τT

∂∇T (r, z, t)
∂t

∣∣∣
k

)

i,j


 dAk

∼=
4∑

k=1

(nk)i,j · (λk)i,j
(
∇T (r, z, t)

∣∣
k
+ τT

∂∇T (r, z, t)
∂t

∣∣∣
k

)

i,j

(∆Ak)i,j =
4∑

k=1

(qk)i,j(∆Ak)i,j

(3.6)

where (qk)i,j is approximated by the following finite differences (taking into account also the
adiabatic boundary conditions (2.9) on the boundary surfaces)

(q1)i,j =





(λ1)i,j

[Ti,j−1 − Ti,j
∆z

+ τT
d

dt

(Ti,j−1 − Ti,j
∆z

)]
if j > 0

0 if j = 0
(3.7)

(q2)i,j =





(λ2)i,j

[Ti+1,j − Ti,j
∆r

+ τT
d

dt

(Ti+1,j − Ti,j
∆r

)]
if i < nr

0 if i = nr

(3.8)

(q3)i,j =




(λ3)i,j

[Ti,j+1 − Ti,j
∆z

+ τT
d

dt

(Ti,j+1 − Ti,j
∆z

)]
if j < nz

0 if j = nz

(3.9)

(q4)i,j =





(λ4)i,j

[Ti−1,j − Ti,j
∆r

+ τT
d

dt

(Ti−1,j − Ti,j
∆r

)]
if i > 0

0 if i = 0
(3.10)
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and (λk)i,j are harmonic mean thermal conductivities between two central points of adjoining
control volumes

(λ1)i,j =
2λi,jλi,j−1
λi,j + λi,j−1

(λ2)i,j =
2λi,jλi+1,j
λi,j + λi+1,j

(λ3)i,j =
2λi,jλi,j+1
λi,j + λi,j+1

(λ4)i,j =
2λi,jλi−1,j
λi,j + λi−1,j

(3.11)

and next, the thermal resistances are defined as follows

(R1)i,j =
∆z

(λ1)i,j
(R2)i,j =

∆r

(λ2)i,j
(R3)i,j =

∆z

(λ3)i,j
(R4)i,j =

∆r

(λ4)i,j

(3.12)

Then, Eq. (3.6) takes the form

∫

Ai,j

[
n · λ

(
∇T (r, z, t) + τT

∂∇T (r, z, t)
∂t

)]
dA ∼=

4∑

k=1

(θk)i,j
(Rk)i,j

(∆Ak)i,j (3.13)

where

(θ1)i,j =
(
Ti,j−1 − Ti,j + τT

d(Ti,j−1 − Ti,j)
dt

)∣∣∣∣∣

if j>0

(θ2)i,j =
(
Ti+1,j − Ti,j + τT

d(Ti+1,j − Ti,j)
dt

)∣∣∣∣∣

if i<nr

(θ3)i,j =
(
Ti,j+1 − Ti,j + τT

d(Ti,j+1 − Ti,j)
dt

)∣∣∣∣∣

if j<nz

(θ4)i,j =
(
Ti−1,j − Ti,j + τT

d(Ti−1,j − Ti,j)
dt

)∣∣∣∣∣

if i>0

(3.14)

while the notation expression |if condition introduced above, means

expression
∣∣∣
if condition

=

{
expression if condition = true

0 otherwise
(3.15)

After the introduction of all discrete terms into equation (3.1), one obtains

ci,j
(dTi,j
dt
+ τq

d2Ti,j
dt2

)
∆Vi,j =

4∑

k=1

(θk)i,j
(Rk)i,j

(∆Ak)i,j +
(
Qi,j + τq

dQi,j
dt

)
∆Vi,j (3.16)

or

ci,j
(dTi,j
dt
+ τq

d2Ti,j
dt2

)
=
4∑

k=1

(θk)i,j
(Rk)i,j

(Φk)i,j +Qi,j + τq
dQi,j
dt

(3.17)

where (Φk)i,j = (∆Ak)i,j/∆Vi,j .
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3.2. Integration of the equation with respect to time

The second stage of CVM is integration of equation (3.17) with respect to time. The same
effect can be obtained introducing the approximation of time derivatives occurring in (3.17) by
appropriate finite differences.

The idea of the ADI method is to split the time step ∆t = tf+1 − tf into two half-steps and
apply two different finite difference schemes for each half time step. In the first half time step, a
simple implicit scheme for directions (d1, d2) is used and simultaneously an explicit scheme for
directions (d3, d4) is applied. Next, in the second half time step, the difference schemas are written
by reversing the directions of the explicit and implicit schemes. The notation ‘(d1, d2)-(d3, d4)’,
where the indexes di indicate directions of the neighbouring CV (see Fig. 1), is introduced.

For passing: tf → tf+0.5 → tf+1, f = 1, . . . , F , and using the variant of ADI: (1,2)-(3,4), the
following differential schemas are proposed

cfi,j

(
T f+0.5i,j − T fi,j
0.5∆t

+ τq
T f+0.5i,j − 2T fi,j + T f−0.5i,j

(0.5∆t)2

)

=
∑

k=1,2

(θk)
f+0.5
i,j

(Rk)
f
i,j

(Φk)i,j +
∑

k=3,4

(θk)
f
i,j

(Rk)
f
i,j

(Φk)i,j +Q
f+0.5
i,j + τq

Qf+0.5i,j −Qfi,j
0.5∆t

(3.18)

and

cf+0.5i,j

(
T f+1i,j − T f+0.5i,j

0.5∆t
+ τq

T f+1i,j − 2T f+0.5i,j + T fi,j
(0.5∆t)2

)

=
∑

k=1,2

(θk)
f+0.5
i,j

(Rk)
f+0.5
i,j

(Φk)i,j +
∑

k=3,4

(θk)
f+1
i,j

(Rk)
f+0.5
i,j

(Φk)i,j +Q
f+1
i,j + τq

Qf+1i,j −Qf+0.5i,j

0.5∆t

(3.19)

and (θk)
s
i,j for s ∈ {f, f + 0.5, f + 1} for this method are approximated in the following way

(θ1)
s
i,j =

[
T si,j−1 − T si,j + τT

(
T si,j−1 − T s−0.5i,j−1

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣∣∣∣∣

if j>0

(θ2)
s
i,j =

[
T si+1,j − T si,j + τT

(
T si+1,j − T s−0.5i+1,j

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣∣∣∣∣

if i<nr

(θ3)
s
i,j =

[
T si,j+1 − T si,j + τT

(
T si,j+1 − T s−0.5i,j+1

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣∣∣∣∣

if j<nz

(θ4)
s
i,j =

[
T si−1,j − T si,j + τT

(
T si−1,j − T s−0.5i−1,j

0.5∆t
−
T si,j − T s−0.5i,j

0.5∆t

)]∣∣∣∣∣

if i>0

(3.20)

After transformations, the first system of equations (3.18) can be written in the final form
as

(A′0)
f
i,jT
f+0.5
i,j + (A′1)

f
i,jT
f+0.5
i,j−1

∣∣∣
if j>0

+ (A′2)
f
i,jT
f+0.5
i+1,j

∣∣∣
if i<nr

= (D′)fi,j (3.21)

where
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(A′k)
f
i,j = −(1 + 2µT )

(Φk)i,j

(Rk)
f
i,j

k = 1, 2

(A′0)
f
i,j = 2c

f
i,j

1 + 2µq
∆t

−
(
(A′1)

f
i,j

∣∣∣
if j>0

+ (A′2)
f
i,j

∣∣∣
if i<nr

)

(D′)fi,j = 2µT
(
T fi,j − T fi,j−1

) (Φ1)i,j
(R1)

f
i,j

∣∣∣∣∣

if j>0

+ 2µT
(
T fi,j − T fi+1,j

) (Φ2)i,j
(R2)

f
i,j

∣∣∣∣∣

if i<nr

+
[
−(1 + 2µT )

(
T fi,j − T fi,j+1

)
+ 2µT

(
T f−0.5i,j − T f−0.5i,j+1

)] (Φ3)i,j
(R3)

f
i,j

∣∣∣∣∣

if j<nz

+
[
−(1 + 2µT )

(
T fi,j − T fi−1,j

)
+ 2µT

(
T f−0.5i,j − T f−0.5i−1,j

)] (Φ4)i,j
(R4)

f
i,j

∣∣∣∣∣

if i>0

+ 2cfi,j
(1 + 4µq)T

f
i,j − 2µqT f−0.5i,j

∆t
+ (1 + 2µq)Q

f+0.5
i,j − 2µqQfi,j

(3.22)

while the second system of equations (3.19) – in the following form

(A′′0)
f+0.5
i,j T f+1i,j + (A

′′
3)
f+0.5
i,j T f+1i,j+1

∣∣∣
if j<nz

+ (A′′4)
f+0.5
i,j T f+1i−1,j

∣∣∣
if i>0

= (D′′)f+0.5i,j (3.23)

where

(A′′k)
f+0.5
i,j = −(1 + 2µT )

(Φk)i,j

(Rk)
f+0.5
i,j

k = 3, 4

(A′′0)
f+0.5
i,j = 2cf+0.5i,j

1 + 2µq
∆t

−
(
(A′′3)

f+0.5
i,j

∣∣∣
if j<nz

+ (A′′4)
f+0.5
i,j

∣∣∣
if i>0

)

(D′′)f+0.5i,j = 2µT
(
T f+0.5i,j − T f+0.5i,j+1

) (Φ3)i,j
(R3)

f+0.5
i,j

∣∣∣∣∣

if j<nz

+ 2µT
(
T f+0.5i,j − T f+0.5i−1,j

) (Φ4)i,j
(R4)

f+0.5
i,j

∣∣∣∣∣

if i>0

+
[
−(1 + 2µT )

(
T f+0.5i,j − T f+0.5i,j−1

)
+ 2µT

(
T fi,j − T fi,j−1

)] (Φ1)i,j
(R1)

f+0.5
i,j

∣∣∣∣∣

if j>0

+
[
−(1 + 2µT )

(
T f+0.5i,j − T f+0.5i+1,j

)
+ 2µT

(
T fi,j − T fi+1,j

)] (Φ2)i,j
(R2)

f+0.5
i,j

∣∣∣∣∣

if i<nr

+ 2cf+0.5i,j

(1 + 4µq)T
f+0.5
i,j − 2µqT fi,j
∆t

+ (1 + 2µq)Q
f+1
i,j − 2µqQf+0.5i,j

(3.24)

The initial conditions (1.10) are implemented as

T 0i,j = T0(ri, zj) T 0.5i,j = T
0
i,j + 0.5∆tv0(ri, zj) (3.25)

In a similar way, one can obtain the other variants of ADI, e.g. (1,3)-(2,4), (2,4)-(1,3), etc,
by replacing the indexes of directions in the sums in Eqs. (3.18) and (3.19).

Both systems of equations lead to systems with three-diagonal matrices.

4. Results

Numerical simulations of the thermal process in a thin film (chromium) subjected to the short-
pulse laser heating have been done. Thermophysical parameters of chromium are the following:
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λ = 93W/(mK), c = 3.2148 · 106 J/(m3K), τq = 0.136 · 10−12 s, τT = 7.86 · 10−12 s (Tang and
Araki, 1999). The cylindrical domain with dimensions Z = 100 · 10−9m, R = 100 · 10−9m
is considered. The parameters of the Gaussian-shaped pulse are equal to: rd = 50 · 10−9m,
I0 = 13.7W/m

2, Rf = 0.93, δ = 15.3 · 10−12m, tp = 100 · 10−15 s. The initial temperature and
the initial heating rate of the metal are equal to: T0(r, z) = 20

◦C and v0(r, z) = 0K/s. Different
mesh steps: ∆z, ∆r and different time step ∆t are tested in this example.

Fig. 4. Heating curves at the selected control volumes Ωk and the average temperature of the domain

In Fig. 4, the temperature histories (calculated as the average temperature) at five selected
control volumes of the domain

ΩA =

{
(r, z)| 0 ¬ r ¬ ∆r

2
, 0 ¬ z ¬ ∆z

2

}

ΩB =

{
(r, z)| R

4
− ∆r

2
¬ r ¬ R

4
+
∆r

2
, 0 ¬ z ¬ ∆z

2

}

ΩC =

{
(r, z)| R

2
− ∆r

2
¬ r ¬ R

2
+
∆r

2
, 0 ¬ z ¬ ∆z

2

}

ΩD =

{
(r, z)| 0 ¬ r ¬ ∆r

2
,
Z

5
− ∆z

2
¬ z ¬ Z

5
+
∆z

2

}

ΩE =

{
(r, z)| R

2
− ∆r

2
¬ r ¬ R

2
+
∆r

2
,
Z

5
− ∆z

2
¬ z ¬ Z

5
+
∆z

2

}

(4.1)

are shown. In this figure, the course of the average temperature Tavg of the whole cylindrical
domain is also presented. Here, the calculations are performed using the ADI variant: (1,2)-(3,4)
for the following parameters of meshes: ∆z = 10−9m, ∆r = 10−9m, ∆t = 10−16 s.
The courses of isotherms for the selected moments of time: 0.3, 0.5, 1 and 10 ps are presented

in Fig. 5.
Next, the comparison of different variants of the ADI method (here: schemas (1,2)-(3,4) and

(1,3)-(2,4) are chosen) for different sizes of meshes is studied. Adequate numerical simulations
have been performed. The differences in the numerical solutions are hard to see in the graphs.
So, the numerical results (as the average temperature at the selected control volumes (4.1) at
time t = 0.3 ps) for different sizes of meshes are collected in Table 1. The analytical solution
of the problem considered is so far unknown in literature and, hence, it is difficult to estimate
which numerical scheme is the best.
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Fig. 5. Courses of isotherms in the cross-section of the domain for different times

Table 1. Numerical results (temperature) for different sizes of meshes

∆r = ∆z ∆t
Method

Average temperature at time t = 0.3 ps at selected CV [◦C]
[m] [s] ΩA ΩB ΩC ΩD ΩE

10−8

(nr = nz
= 10)

10−15
(1,2)-(3,4) 29.407462 28.175041 23.939626 25.296615 22.257754
(1,3)-(2,4) 29.407477 28.175054 23.939633 25.296637 22.257766

10−16
(1,2)-(3,4) 29.423528 28.188169 23.943812 25.297708 22.256563
(1,3)-(2,4) 29.423528 28.188169 23.943812 25.297709 22.256563

10−17
(1,2)-(3,4) 29.425095 28.189446 23.944210 25.297781 22.256427
(1,3)-(2,4) 29.425095 28.189446 23.944210 25.297781 22.256427

10−9

(nr = nz
= 100

10−15
(1,2)-(3,4) 29.385557 27.542517 23.924927 25.361719 22.284553
(1,3)-(2,4) 29.387539 27.544204 23.926049 25.365099 22.286141

10−16
(1,2)-(3,4) 29.403565 27.555886 23.930159 25.366322 22.284954
(1,3)-(2,4) 29.403585 27.555903 23.930170 25.366356 22.284970

10−17
(1,2)-(3,4) 29.405160 27.557048 23.930567 25.366453 22.284839
(1,3)-(2,4) 29.405159 27.557046 23.930567 25.366452 22.284839



850 M. Ciesielski

The total energy (∆Q [J]) applied to the considered domain during one laser pulse is equal
to

∆Q =

4tp∫

0

Z∫

0

R∫

0

2π∫

0

Q(r, z, t)r dΦ dr dz dt

= I0(1−Rf )π
r2d
2

[
1− exp

(
−R

2

r2d

)][
1− exp

(
−Z
δ

)]
[ erf (2β) − erf (−2β)]

(4.2)

The laser energy causes a rise in temperature equal to ∆T [◦C] in the domain (assuming
adiabatic conditions at all boundaries)

∆T =
∆Q

cV
(4.3)

where V = πR2Z [m3] is the volume of the whole domain. For the above mentioned values of
parameters, the temperature increases by ∆T = 0.731048◦C after one laser pulse. This value is
used, among others, to compare the correctness of the numerical results. It should be pointed
out that the analytical value and numerical values are practically the same (the errors are of
the order 0.00001◦C).

5. Conclusion

The dual phase lag model seems to be adequate for mathematical description of microscale heat
transfer. In many situations when analytical solutions are not known, the numerical solutions
are desired to be found. To obtain an effective solution to the considered problem, the algorithm
based on the control volume method is presented. The DPLM consists of the partial differential
equation of a hyperbolic type, and thus the more complex numerical schemes should be deve-
loped, of course. In this paper, the Alternating Direction Implicit scheme is constructed. This
scheme can be easily implemented in computer programs. In opposite to other schemes, such
as the Crank-Nicolson scheme, where it is necessary to solve the system of equations characte-
rized by a 5-band matrix, the ADI method requires double solving of the systems with 3-band
matrices. From the computational point of view, the solution of the system of equations with
the 3-band matrix is efficient and fast. The numerical scheme allows one to use the thermophy-
sical parameters of the material (i.e. thermal conductivity and volumetric specific heat) as the
temperature-dependent (in this paper these parameters are assumed to be constant values). The
results (see: the temperatures presented in Table 1) obtained by application of the two types
of numerical schemes are very similar, especially the results obtained for the same set of the
parameters of meshes: {∆z,∆r,∆t} are practically identical.
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In this article, the bending, buckling, free and forced vibration behavior of a nonlocal nano-
composite microplate using the third order shear deformation theory (TSDT) is presented.
The magneto-electro-elastic (MEE) properties are dependent on various volume fractions of
CoFe2O4-BaTiO3. According to Maxwell’s equations and Hamilton’s principle, the governing
differential equations are derived. These equations are discretized by using Navier’s method
for an MEE nanocomposite Reddy plate. The numerical results show the influences of elastic
foundation parameters such as aspect ratio, length to thickness ratio, electric and magnetic
fields and various volume fractions of CoFe2O4-BaTiO3 on deflection, critical buckling lo-
ad and natural frequency. The natural frequency and critical buckling load increases with
the increasing volume fraction of CoFe2O4-BaTiO3, also the amplitude vibration decreases
with an increase in the volume fraction. This model can be used for various nanocomposite
structures. Also, a series of new experiments are recommended for future work.

Keywords: bending and buckling analysis, free and forced vibration analysis, nonlocal nano-
composite microplate, various volume fractions of CoFe2O4-BaTiO3

1. Introduction

In the recent years, the use of nano-technology is a subject of the main discussion in the world
of engineering sciences. Nano-technology is science in which the design and application of na-
nostructures relates different properties at the nanoscale. The size of nanoparticles and their
dispersion in a matrix composite is one of the ways to achieve desired properties of nano-
composites. According to the nanometer-scale, the reinforcement particles in nanocomposites,
intermolecular forces between the matrix and reinforcing is much greater than in ordinary com-
posites, which improves properties of the nanocomposites. The reinforcing phase in terms of the
material can be used as polymeric, metal and ceramic, which, according to different properties
of each, have different applications. Because of their magnetoelectric coupling effects, magneto-
electric-elastic (MEE) materials have been widely employed in many technological fields, such as
sensor and actuator applications, robotics, medical instruments, structural health monitoring,
energy harvesting. Many researchers have carried out static, buckling, and free vibration analysis
of nanocomposites, see Sih and Yu (2005) who analyzed the volume fraction effect of a MEE
composite on enhancement and impediment of crack growth. Their results showed that with the
increasing electric field to normal stress ratio and the volume fraction effect of the MEE compo-
site, the crack growth increased and decreased, respectively. Ke and Wang (2014) examined free
vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal elasticity
theory. By using the Hamilton principle, the governing equations and boundary conditions were
derived and discretized by using the differential quadrature method (DQM) to determine natural
frequencies. Their results showed that with the increasing magnetic and electric potential, the
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natural frequencies of nanobeams increased. Shokrani et al. (2016) employed the generalized dif-
ferential quadrature method (GDQM) to the buckling analysis of double orthotropic nanoplates
(DONP) embedded in elastic media under biaxial, uniaxial and shear loadings. Their results
showed that for higher values of the non-local parameter, the shear buckling was not depen-
dent on the van der Waals and Winkler moduli. Lang and Xuewu (2013) studied the buckling
and vibration of functionally graded magneto-electro-thermo-elastic circular cylindrical shells.
Based on using the third order shear theory (TSDT), they employed Hamilton’s principle to ob-
tain equations of motion and numerical solutions to find the natural frequencies. Ghorbanpour
Arani et al. (2012) investigated the effect of the CNT volume fraction on the magneto-thermo-
electro-mechanical behavior of a smart nanocomposite cylinder. Their results indicated that the
influence of internal pressure on the radial stress was larger than thermal, magnetic and elec-
tric fields. Also, their results are very useful for the optimization of nano-composite structures.
Xin and Hu (2015) analyzed free vibration of multilayered magneto-electro-elastic plates ba-
sed on the state space approach (SSA) and the discrete singular convolution (DSC) algorithm.
The results showed that the piezoelectric effect had a tendency to increase the stiffness of the
plate, and vice versa for the magnetostrictive effect. Karimi et al. (2015a) investigated surface
effects and non-local two variable refined plate theories that were combined on the shear/biaxial
buckling and vibration of rectangular nanoplates. Their results showed that by increasing the
non-local parameter, the effects of surface on the buckling and vibration increased. Shooshtari
and Razavi (2015) studied nonlinear free vibration behavior of a symmetrically laminated MEE
doubly-curved thin shell resting on an elastic foundation. By introducing a force function and
using the Galerkin method, the nonlinear partial differential equations of motion were reduced
to a single nonlinear ordinary differential equation. That equation was solved analytically by
the Lindstedt-Poincaré perturbation method. Their results showed that the shear constant coef-
ficient of the foundation had much greater effect on the natural frequency when compared with
the spring constant coefficient, and both of those coefficients increased the fundamental natural
frequency. Ebrahimi and Nasirzadeh (2016) analyzed free vibration of thick nanobeams based on
Eringen nonlocal elasticity theory and Timoshenko beam theory. Chen et al. (2014) studied free
vibration of multilayered MEE plates under combined clamped/free lateral boundary conditions.
Using semi-analytical solution, they obtained the natural frequency. Their results illustrated the
effect of stacking sequences and magneto-electric coupling on natural frequencies and mode sha-
pes. Karimi et al. (2015c) analyzed size-dependent free vibration characteristics of rectangular
nanoplates considering surface stress effects. Numerical results demonstrated that the obtained
natural frequency by considering the surface effects was lower than that without considering
the surface properties. Razavi and Shooshtari (2015) employed nonlinear free vibration of sym-
metric MEE laminated rectangular plates with simply supported boundary conditions. Their
results for the nonlinear natural frequency ratio were compared with the available results for
isotropic, laminated layers and piezo-layers and laminated MEE plates. Their results depicted
that the foundation parameters, negative electric potential and positive magnetic potential in-
creased the equivalent stiffness of the system. Using Bert’s model, Khan et al. (2014) studied
free and forced vibration characteristics of bimodular composite laminated circular cylindrical
shells. The results indicated that the relative difference of positive and negative half cycle frequ-
encies was considerably less for single layer orthotropic shells, and it was significant for cross-ply
shells with the axisymmetric mode of vibration. Du et al. (2014) illustrated nonlinear forced
vibration analysis of infinitely long functionally graded cylindrical shells using the Lagrangian
theory and the multiple scale method. Their results found that the power-law exponent had
not any influence on the qualitative behavior of FG cylindrical shells, but it would change the
amplitude in a complex nonlinear way. Hasani Baferani et al. (2011) presented free vibration
analysis of FG thick rectangular plates resting on an elastic foundation. They obtained gover-
ning equations of motion using the third order shear deformation plate theory and Hamilton’s
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principle. Their results showed that the Pasternak elastic foundation drastically changed the
natural frequency. Also some boundary conditions and in-plane displacements had significant
effects on the natural frequency of FG thick plates. Arefi (2015) analyzed free vibration of a
FG solid and annular circular plates with two functionally graded piezoelectric layers at the top
and bottom subjected to an electric field. Sobhy (2013) investigated buckling and free vibration
of exponentially graded sandwich plates resting on elastic foundations under various boundary
conditions. The governing equations of plates were derived by using various shear deformation
plate theories. They showed influence of the inhomogeneity parameter, aspect ratio, thickness
ratio and foundation parameters on natural frequencies and critical buckling loads. Zidour et
al. (2014) illustrated buckling of chiral single-walled carbon nanotubes by using the nonlocal
Timoshenko beam theory. Their results showed influence of a nonlocal small-scale coefficient
and the vibration mode number on the nonlocal critical buckling loads. Karimi et al. (2015b)
studied influence of the nonlocal parameter, van der Waals, Winkler, shear modulus on shear
vibration and buckling of double-layer orthotropic nanoplates resting on an elastic foundation.
In this article, bending, buckling, free and forced vibration of a magneto-electro-elastic

(MEE) microplate based on the third order shear deformation theory (TSDT) is presented.
According to Maxwell’s equations and Hamilton’s principle, the governing differential equation
is obtained. These equations discretized by using Navier’s method for a MEE microplate with
all edges simply supported boundary enabled determination of the deflection, critical buckling
load, natural frequency, response of the system as well as the electric and magnetic intensity
of the microplate. The numerical results show the influence of elastic foundation parameters,
aspect ratio l/b, length to thickness ratio l/h, volume fraction, normal pressure on the deflection,
critical buckling load, natural frequency, response of the system and the electric and magnetic
intensity.

2. Nonlocal theory of the MEE

The non-local modulus of elasticity was presented by Eringen (1983). This model states that
the stress of a point in the micro and nano dimension is dependent on the strain in all parts
of the model. The fundamental equations of a homogeneous and isotropic non-local elastic solid
are given by Eringen (2002)

σnlij (x) =

∫

V

α(|x− x′|, τ)σ′ij dV (x′) ∀x ∈ V (2.1)

For the MEE solid, the nonlocal fundamental equations for magnetic induction and electric
displacement can be obtained as follows

Dnlij (x) =

∫

V

α(|x− x′|, τ)D′ij dV (x′) ∀x ∈ V

Bnlij (x) =

∫

V

α(|x− x′|, τ)B′ij dV (x′) ∀x ∈ V
(2.2)

where σnlij , σ
′
ij, D

nl
ij , D

′
ij , B

nl
ij and B

′
ij are the nonlocal and local stress tensor, components of

the nonlocal and local electric displacements, components of the nonlocal and local magnetic
inductions, respectively. α(|x−x′|, τ) is the nonlocal modulus, |x−x′| is the Euclidean distance,
τ = e0a/l is defined as the small scale parameter.
According to Eringen (1983, 2002), the nonlocal elasticity theory can be simplified to partial

differential equations. Thus we have

[1−(e0a)2∇2]σnlij = σ′ij [1−(e0a)2∇2]Dnlij = D′ij [1−(e0a)2∇2]Bnlij = B′ij (2.3)
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3. Constitutive equations of the MEE nanocomposite microplate

Consider an MEE nanocomposite microplate with length l, width b and thickness h, resting on
an elastic foundation as shown in Fig. 1. A Cartesian coordinate system (x, y, z) is considered
such that the z direction denotes thickness of the nanocomposite microplate.

Fig. 1. Schematic of an MEE nanocomposite microplate on the elastic foundation

Based on the third-order shear deformation theory (TSDT) for a nanocomposite plate, the
displacements of an arbitrary point in the beam along the x, y and z axes are denoted by
u1(x, y, z, t), u2(x, y, z, t) and u3(x, y, z, t), respectively. They are written as follows

u1(x, y, z, t) = u(x, y, t) + z
[
ψx(x, y, t)−

4

3

(z
h

)2
[ψx(x, y, t) + w(x, y, t),x]

]

u2(x, y, z, t) = v(x, y, t) + z
[
ψy(x, y, t)−

4

3

(z
h

)2
[ψy(x, y, t) + w(x, y, t),y]

]

u3(x, y, z, t) = w(x, y, t)

(3.1)

where u, v, w are the mid-plane displacements of the MEE rectangular nanocomposite microplate
along the (x, y, z) coordinate directions, respectively, ψx, ψy denote rotations of the plate cross-
section and t is time.

The linear constitutive equations for the MEE nanocomposite microplate in the plane stress
state are expressed in the following form (Mohammadimehr et al., 2016a,b, 2017; Ghorbanpour
Arani et al., 2016)





σ11
σ22
τ12
τ13
τ23





=
1

1− (eoa)2∇2







C11 C12 0 0 0
C12 C22 0 0 0
0 0 C44 0 0
0 0 0 C44 0
0 0 0 0 C55








ε11
ε22
γ12
γ13
γ23





−




0 0 e31
0 0 e31
0 e24 0
e15 0 0
0 0 0








Ex
Ey
Ez




−




0 0 f31
0 0 f31
0 f24 0
f15 0 0
0 0 0








Hx
Hy
Hz
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Dx
Dy
Dz





=

1

1− (eoa)2∇2






0 0 0 e15 0
0 0 e24 0 0
e31 e31 0 0 0









ε11
ε22
γ12
γ13
γ23






+



h11 0 0
0 h22 0
0 0 h33









Ex
Ey
Ez





+



g11 0 0
0 g22 0
0 0 g33









Hx
Hy
Hz









(3.2)





Bx
By
Bz




=

1

1− (eoa)2∇2






0 0 0 f15 0
0 0 f24 0 0
f31 f31 0 0 0








ε11
ε22
γ12
γ13
γ23





+



g11 0 0
0 g22 0
0 0 g33









Ex
Ey
Ez





+



µ11 0 0
0 µ22 0
0 0 µ33









Hx
Hy
Hz









where σ11, σ22 and ε11, ε22 are the normal stresses and strains, respectively. τ12, τ13, τ23 and
γ12, γ13, γ23 denote the shear stresses and strains, respectively. Cij, eij , fij and gij denote
elastic, piezoelectric, piezomagnetic and magnetoelectric constants, respectively; hij and µij
are dielectric and magnetic permeability coefficients, respectively. Eij and Hij are the electric
magnetic field intensity, respectively.
The electric and magnetic fields are considered in terms of electric and magnetic potentials

φ and ϕ, respectively, which are defined as follows

Ei = −φ,i Hi = −ϕ,i i = 1, 2, 3 (3.3)

4. The governing equations of motion for the MEE nanocomposite microplate

The governing differential equations of motion for the MEE nanocomposite microplate are de-
rived using Hamilton’s principle which is given by (Mohammadimehr and Mostafavifar, 2016)

t∫

0

(δT − δU − δW ) dt = 0 (4.1)

where δT , δU and δW are the variations of kinetic energy and strain energy, the work done by
external applied forces, respectively.
Variations of the kinetic energy for a sandwich plate can be described as follows (Ghorban-

pour and Haghparast, 2017)

δT =

∫

V

ρi
∂ui
∂t

δ
(∂ui
∂t

)
dV =

∫

A

h
2∫

−h
2

ρi(u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3) dz dA (4.2)

where

Ii =

h∫

−h

ρzi dz (i = 1, 2, 3, 4, 6) C1 =
4

3h2

Variations of the strain energy for the MEE nanocomposite microplate can be expressed as
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δU =

∫

V

(σijδεij −DiδEi −BiHi) dV

=

∫

V

[(σ11δε11 + σ22δε22 + σ33δε33 + τ12δγ12 + τ13δγ13 + τ23δγ23)

− (DxδEx +DyδEy +DyδEy)− (BxδHx +ByδHy +ByδHy)] dV

(4.3)

Variations of the work can be considered as follows

δW = −
∫
P (x, y)δw dx+

∫
(kww − kG∇2w)δw dx (4.4)

where Kw and KG are the transverse and shear coefficients of elastic medium, respectively.
By substituting Eqs. (4.2)-(4.4) into Eq. (4.1), the equilibrium equations of the MEE nano-

composite microplate resting on an elastic foundation can be obtained in the following form

δu : N1,x +N6,y = I0ü+ I1ψ̈x − C1I3
(
ψ̈x +

∂ẅ

∂x

)

δv : N2,y +N6,x = I0v̈ + I1ψ̈y − C1I3
(
ψ̈y +

∂ẅ

∂y

)

δψx : M1,x +M6,y −Q1 −
4

3h2
(P1,x + P6,y) +

4λ

h2
R1

= I1ü+ I2ψ̈x − C1
(
I3ü+ 2I4ψ̈x + I4

∂ẅ

∂x

)
+ C21I6

(
ψ̈x +

∂ẅ

∂x

)

δψy : M2,y +M6,x −Q2 −
4

3h2
(P2,y + P6,x) +

4

h2
R2

= I1v̈ + I2ψ̈y − C1
(
I3v̈ + 2I4ψ̈y + I4

∂ẅ

∂y

)
+ C21I6

(
ψ̈x +

∂ẅ

∂y

)

δw : Q1,x +Q2,y +
4

3h2
(P1,xx + P2,yy + 2P6,xy)−

4

h2
(R2,y +R1,x)

+(−kww + kG∇2w) + P (x, y) = C1I3
(∂ü
∂x
+
∂v̈

∂y

)

+C1I4
(∂ψ̈x
∂x
+
∂ψ̈y
∂y

)
+ C21I6

(∂ψ̈x
∂x
+
∂ψ̈y
∂y
− ∂2ẅ

∂x2
− ∂2ẅ

∂y2

)
+ I0ẅ

(4.5)

and

∂Dz
∂z
= 0

∂Bz
∂z
= 0 (4.6)

whereNi,Mi (i = 1, 2, 6) denote the resultant forces and moments, respectively. Ri, Pi are higher
order resultant shear forces and moments, respectively, and Qi are transverse shear forces which
are all defined by the following expressions









N1
N2
N6





,






M1
M2
M6





,






P1
P2
P6







 =

h
2∫

−h
2






σ11
σ22
τ12





(1, z, z3) dz

({
Q1
Q2

}
,

{
R1
R2

})
=

h
2∫

−h
2

{
τ13
τ23

}
(1, z2) dz

(4.7)

By substituting Eqs. (3.3) into Eqs. (4.6), the electric and magnetic potential are obtained which
electric and magnetic boundary conditions assumed as follows
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φ
(h
2

)
= φ

(
−h
2

)
= 0 φ = λ1∆1

(z2

2
− z4

3h2
− 23h

2

192

)
+ λ1∆2

( h2

192
− z4

3h2

)

ϕ
(h
2

)
= ϕ

(
−h
2

)
= 0 ϕ = λ2∆1

(z2

2
− z4

3h2
− 23h

2

192

)
+ λ2∆2

( h2

192
− z4

3h2

) (4.8)

where

λ1 =
e31 − g33f31µ33

h33 − g
2
33
µ33

λ2 =
f31 − g33λ1

µ33
∆1 = ψx,x+ψy,y ∆2 = w,xx+w,yy

By substituting Eqs. (4.7) into Eqs. (4.5) and (4.6), the governing equations of motion for the
MEE nanocomposite microplate based on TSDT are obtained as follows

δu : A11u,xx + (A12 +A66)v,xy +A66u,yy = I0ü− e20a2I0(ü,xx + ü,yy) + (I1 − C1I3)ψ̈x
−(I1 − C1I3)e20a2(ψ̈x,xx + ψ̈x,yy)− C1I3ẅ,x + C1I3e20a2(ẅ,xxx + ẅ,xyy)

(4.9)

δv : A22v,yy + (A12 +A66)u,xy +A66v,xx = I0v̈ − e20a2I0(v̈,xx + v̈,yy) + (I1 − C1I3)ψ̈y
−(I1 −C1I3)e20a2(ψ̈y,xx + ψ̈y,yy)− C1I3ẅ,y + C1I3e20a2(ẅ,yxx + ẅ,yyy)

(4.10)

δψx :
(
B11 −

4H11
3h2

)
ψx,xx +

(
F11 −

4L11
3h2

)
ψx,yy +

(4T22
3h2
− T11

)
ψx

+
(
F11 +B12 −

4H12
3h2
− 4L11
3h2

)
ψy,xy +

(4K11
3h2
−D11

)
w,xxx

+
(4L12
3h2
+
4K12
3h2
−D12 − F12

)
w,xyy +

(4T22
3h2
− T11

)
w,x

= (I1 −C1I3)ü− (I1 − C1I3)e20a2(ü,xx + ü,yy) + (I2 − 2C1I4 + C21I6)ψ̈x
+(2C1I4 + C

2
1I6 − I2)e20a2(ψ̈x,xx + ψ̈x,yy) + (C21I6 − C1I4)ẅ,x

+(C1I4 − C21I6)e20a2ẅ,xxx + (C1I4 − C21I6)e20a2ẅ,xyy

(4.11)

δψy :
(
B22 −

4H22
3h2

)
ψy,yy +

(
F11 −

4L11
3h2

)
ψy,xx +

(4T22
3h2
− T11

)
ψy

+
(
F11 +B12 −

4H12
3h2
− 4L11
3h2

)
ψx,xy +

(4K22
3h2
−D11

)
w,yyy

+
(4L12
3h2
+
4K12
3h2
−D12 − F12

)
w,xxy +

(4T22
3h2
− T11

)
w,y

= (I1 − C1I3)v̈ − (I1 −C1I3)e20a2(v̈,xx + v̈,yy) + (I2 − 2C1I4 + C21I6)ψ̈y
+(2C1I4 + C

2
1I6 − I2)e20a2(ψ̈y,xx + ψ̈y,yy) + (C21I6 − C1I4)ẅ,y

+(C1I4 − C21I6)e20a2ẅ,yxx + (C1I4 − C21I6)e20a2ẅ,yyy

(4.12)

δw :
(
T11 −

4T22
h2

)
ψx,x +

(
T11 −

4T22
h2

)
ψy,y +

4H11
3h2

ψx,xxx +
4H22
3h2

ψy,yyy

+
(4H12
3h2
+
8L11
3h2

)
(ψx,xyy + ψy,xxy) +

(
T11 −

4T22
h2
+ e20a

2Kw −KG
)
(w,xx + w,yy)

+
(
e20a
2KG −

4K11
3h2

)
w,xxxx +

(
e20a
2KG −

4K22
3h2

)
w,yyyy −

(8K12
3h2
+
8L12
3h2

)
w,xxyy

−Kww + P (x, y) = C1I3ü,x − C1I3e20a2(ü,xxx + ü,xyy) + C1I3v̈,x
−C1I3e20a2(v̈,xxx + v̈,xyy) + (C1I4 + C21I6)ψ̈x,x − (C1I4 + C21I6)e20a2(ψ̈x,xxx + ψ̈x,xyy)
+(C1I4 + C

2
1I6)ψ̈y,y − (C1I4 + C21I6)e20a2(ψ̈y,yxx + ψ̈y,yyy)− (C21I6 + e20a2)ẅ,xx

−(C21I6 + e20a2)ẅ,yy + e20a2C1I6(ẅ,xxxx + ẅ,yyyy) + 2e20a2C1I6ẅ,xxyy + I0ẅ

(4.13)
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where the above coefficients are defined in Appendix A.

Substituting Eqs. (4.8) into Eq. (3.3), the electric and magnetic field is written as

Ez = λ1
(
z − 4z

3

3h2

)
(ψx,x + ψx,x)−

4z3

3h2
λ1(w,xx + w,yy)

Hz = λ2
(
z − 4z

3

3h2

)
(ψx,x + ψx,x)−

4z3

3h2
λ2(w,xx + w,yy)

(4.14)

5. Navier’s type solution for the MEE nanocomposite microplate

Analytical solutions for a simply supported rectangular MEE nanocomposite microplate are
obtained using Navier’s solution technique. Using Navier’s solution, the displacements of the
microplate can be written as follows (Mohammadimehr et al., 2016a)

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Umn cos(αx) sin(βy)e
iωt

v(x, y, t) =
∞∑

m=1

∞∑

n=1

Vmn sin(αx) cos(βy)e
iωt

ψx(x, y, t) =
∞∑

m=1

∞∑

n=1

Ψxmn cos(αx) sin(βy)e
iωt

ψy(x, y, t) =
∞∑

m=1

∞∑

n=1

Ψymn sin(αx) cos(βy)e
iωt

w(x, y, t) =
∞∑

m=1

∞∑

n=1

Wmn sin(αx) sin(βy)e
iωt

(5.1)

where α and β are equal to mπ/l, nπ/b, respectively.

5.1. Free vibration analysis of the nanocomposite microplate

The matrix form of free vibration equations of the microplate is written as

(S− ω2M)U = 0 (5.2)

where the non-zero elements of the mass and stiffness matrix are given in Appendix B.

5.2. Buckling analysis of the nanocomposite microplate

The matrix form of buckling equations for the nanocomposite microplate can be written as
follows




S11 S12 S13 S14 S15
S21 S22 S23 S24 S25
S31 S32 S33 S34 S35
S41 S42 S43 S44 S45
S51 S52 S53 S54 S55 −N0(α2 + kβ2)









Umn
Vmn
Ψxmn
Ψymn
Wmn






=






0
0
0
0
0






C =




S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44




−1

k =
Nxx
Nyy

(5.3)
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Using Eq. (5.3), we obtain an expression for the critical buckling load N0 of the MEE
nanocomposite microplate

N0 =
1

α2 + kβ2

(
S55 −

{
S51 S52 S53 S54

}
C
{
S15 S25 S35 S45

}T)
(5.4)

5.3. Forced vibration of the nanocomposite microplate

The load P (x, y, t) can be exoressed in the form of series

p(x, y, t) =
∞∑

m=1

∞∑

n=1

P0 sin(Ωt) sin(αx) sin(βy) (5.5)

whereΩ is the frequency of forced vibration. The equation of motion for the MEE nanocomposite
microplate will then include a variable, time-dependent, transverse load p(x, y, t).
The matrix form of the response system equations for the MEE microplate is obtained as

follows

{
Um Vm Ψxmn Ψymn Wmn

}T
=

1

ω2n −Ω2
M−1

[
0 0 0 0 P0

]T
(5.6)

5.4. Dimensionless parameter of the nanocomposite microplate

The dimensionless deflection, natural frequency and buckling load of the MEE nanocomposite
microplate is written as follows

W =
Cij maxh

3w

P0l4
ω =

√
ρl4ω

Cij maxh2
N =

l2N0
Cij maxh3

(5.7)

6. Numerical results and discussions

The piezoelectric and piezomagentic properties of the BaTiO3 (inclusion)-CoFe2O4 (matrix)
nanocomposite microplate with different volume fractions Vf of the inclusions can be found in
Sih and Sog (2002), Song and Sih (2002). They are listed in Table 1.
Numerical results for bending, buckling, free and forced vibration are presented for the MEE

nanocomposite microplate resting on a two-parameter elastic foundations with all edges simply
supported.
To validate the results of this research with the literature, a single-layered MEE square

thick plate, with l = b = 1m, h = 0.3m, simply-supported boundary conditions, and material
properties given by Table 2 is considered. The dimensionless fundamental frequency is calculated

as ω =
√
ρmax/Cij maxlω, where Cij max and ρmax are the maximum values of the stiffness

coefficient and density of the layers, respectively. The results are shown in Table 2 along with
some other published results.
Table 3 indicates the dimensionless biaxial buckling load of simply-supported square nano-

plates. From this Table, it is observed that the presented results are in good agreement with
those reported in the literature.
Table 4 presents the dimensionless center deflections of isotropic square plates under uni-

form loading. They are calculated with various side-to-thickness ratios up to a/h = 10000, and
compared to earlier studies.
The natural frequencies of the simply supported MEE nanocomposite microplate are obta-

ined using Eq. (5.2). From Fig. 2a, it is seen that the volume fraction plays an important role
for the MEE nanocomposite microplate in terms of the natural frequency, and its effects can
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Table 1. Properties of the BaTiO3, CoFe2O4 and BaTiO3-CoFe2O4 nanocomposite microplate
with different volume fractions

Piezoelectric
(BaTiO3)

Piezomagnetic
(CoFe2O4)

Vf (volume fraction for CoFe2O4 in
Properties BaTiO3-CoFe2O4 nanocomposite)

0.1 0.3 0.5 0.7 0.9

C11 [Gpa] 166 286 178.0 202 226 250.0 274

C12 [Gpa] 77 173 87.2 105.7 124 142.7 161

C22 [Gpa] 166 286 172.8 194.2 216 237.3 259

C44 [Gpa] 43 45.3 43.2 43.7 44 44.6 45

e31 [c/m
2] 43 45.3 −3.96 −3.08 −2.2 −1.32 −4.4

e33 [c/m
2] 44.5 56.5 16.74 13.02 9.3 5.58 1.86

e15 [c/m
2] −4.4 0 10.44 8.12 5.8 3.48 1.16

h11 [×10−10C2/(Nm2)] 0 580.3 100.9 78.6 56.4 34.2 11.9

h33 [×10−10C2/(Nm2)] −4.4 0 113.5 88.5 63.5 38.5 13.4

f31 [N/(Am)] 0 580.3 58.03 174.1 290.2 406.2 522.3

f33 [N/(Am)] 11.6 0 69.97 209.9 350.0 489.8 629.7

f15 [N/(Am)] 0 550 55.00 165.0 275.0 385.0 495.0

µ11 [×10−6NS2/C2] 11.6 0 63.5 180.5 297.0 414.5 531.5

µ33 [×10−6NS2/C2] 0 550 24.7 541.0 83.5 112.9 142.3

ρ [kg/m3] 126 0.93 5750 5650 5550 5450 5350

Table 2. Dimensionless fundamental frequencies of MEE plates

Material
Method Piezoelectric Piezomagnetic

BaTiO3 CoFe2O4

Wu and Lu (2009) 1.2523 1.0212

Shooshtari and Razavi (2015) 1.2426 1.1023

Present study 1.2952 1.1130

Table 3. Comparison of dimensionless biaxial buckling load (Ncr = N0a/D, D = Eh
3/[12(1 −

υ2)] for square nanoplates with all edges simply-supported (a = 10 nm, a/h = 2)

Method
e0a [nm]
0 1

Malekzadeh and Shojaee (2013) 8.5249 7.1039

Wang and Wang (2011) 8.4543 7.1533

Karimi et al. (2015) 8.6052 7.2204

Present study 8.5232 7.1138

not be ignored for microplate. It is shown that by increasing the volume fraction, the dimen-
sionless natural frequency increases. The reason is that a greater volume fraction makes the
microplate stiffer. Figure 2b depicts the effects of the Pasternak shear constant on the natural
frequency. From this figure, it can be found that by increasing this parameter, the stiffness of
the nanocomposite microplate increases and this result is similar to the dimensionless natural
frequency. The effect of volume fraction on the deflection is shown in Fig. 3a. It is shown that an
increase in the volume fraction will decrease the dimensionless deflection. The critical buckling
loads of the MEE nanocomposite microplate are obtained using Eq. (5.4). Figure 3b depicts the
variation of critical buckling load versus volume fraction. From this figure, it can be seen that
with an increase in the volume fraction, the critical buckling load for all the length to width
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Table 4. Comparison of dimensionless center deflection W
(
a
2 ,
b
2

)
D/[(P0a

4), D = Eh3/[12(1 −
υ2)] for simply-supported square isotropic plates under uniform loads

Method
a/h

10 100 1000 10000

Nguyen et al. (2016) 0.4272 0.4064 0.4062 0.4062

Nguyen-Xuan et al. (2008), MITC4 0.4273 0.4064 0.4062 0.4062

Nguyen-Xuan et al. (2008), MISC1 0.4273 0.4065 0.4063 0.4063

Taylor and Auricchio (1993) 0.4273 0.4064 0.4062 0.4062

Present study 0.4266 0.4055 0.4053 0.4053

Fig. 2. (a) The effect of volume fraction on the dimensionless natural frequency: l = 4µm, b = 4µm,
h = 0.04µm, Kw = 0, KG = 0. (b) The effect of the Pasternak shear constant on the dimensionless

natural frequency: l = 400µm, h = 80µm, Vf = 0.5, Kw = 0, e0a = 1nm

Fig. 3. (a) The effect of volume fraction on the dimensionless deflection: l = 400µm, b = 400µm,
h = 80µm, Kw = 0, KG = 0, P = 100N/m

2, e0a = 2nm. (b) The effect of volume fraction on the
dimensionless critical buckling load: l = 400µm, h = 80µm, Kw = 0, KG = 0, e0a = 1nm

ratios l/b will increase. The influence of the length to thickness ratio l/h is shown in Fig. 4a.
This figure shows that by increasing the length to thickness ratio l/h, the dimensionless critical
buckling load decreases. The response system of the MEE nanocomposite microplate is obtained
using Eq. (5.6). Figure 4b indicates the response system of the MEE nanocomposite microplate
and different values of the volume fraction. It is seen from the results that by increasing the
excitation frequency to the natural frequency ratio Ω/ω, the amplitude of the nanocomposite
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microplate reinforced by CoFe2O4-BaTiO3 increases. Also, by increasing the volume fraction,
the deflection to thickness ratio w/h decreases. Figure 5 depicts the effects of volume fraction
on the maximum deflection to thickness ratio wmax/h. From this figure, it can be found that by
increasing the volume fraction, the maximum deflection to thickness ratio wmax/h decreases.

Fig. 4. (a) The effect of the length to thickness ratio l/h on the critical buckling load: l = 400µm,
Vf = 0.5, Kw = 0, KG = 0, e0a = 1nm. (b) The effect of volume fraction on the response system:

l = 400µm, b = 400µm, h = 20µm, Kw = 0, KG = 0, P0 = 1N/m
2, e0a = 1nm

Fig. 5. The effect of volume fraction on the maximum deflection to thickness ratio Wmax/h: l = 4µm,
b = 4µm, h = 0.1µm, Kw = 0, KG = 0, P0 = 1N/m

2, e0a = 1nm

Figure 6a shows that by increasing the spring constant of the Winkler type, the intensity
of electric field decreases. Figure 6b presents the influence of the Pasternak shear constant on
the magnetic field, respectively. The results show that by increasing the elastic constant, the
intensity of magnetic and electric field decreases.

7. Conclusions

A theoretical analysis on bending, buckling, free and forced vibration characteristics of an MEE
nanocomposite microplate are carried out in the present work. The Hamilton principle, higher
order shear deformation theory and Maxwell’s equations are considered to derive the equations
of motion and distribution of electrical potential, magnetic field along the thickness direction of
the MEE nanocomposite microplate. Some conclusions of this research can be listed as follows:

• For the MEE nanocomposite microplate, the natural frequency and critical buckling load
increases with the increasing volume fraction of CoFe2O4O4-BaTiO3, because the nano-
composite microplate becomes stiffer in such a case.
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Fig. 6. (a) The effect of the Winkler spring constant on the intensity of electric field: l = 40µm,
b = 40µm, h = 1µm, KG = 0, P = 1N/m

2, e0a = 1nm. (b) The effect of the Pasternak shear constant
on the intensity of magnetic field : l = 40µm, b = 40µm, h = 1µm, Kw = 0, P = 1N/m

2, e0a = 1nm

• The natural frequency and critical buckling load decreases, and also the maximum deflec-
tion, whereas the intensity of magnetic and electric fields increases with the decreasing
Winkler and Pasternak shear constants of the MEE nanocomposite microplate.

• For the MEE nanocomposite microplate, the amplitude of vibration decreases with the
increasing volume fraction.

Appendix A

A11 = C11h A12 = C12h A22 = C22h A66 = C66h

B11 =
h3

15
(C11 + e31λ1 + f31λ2) B12 =

h3

15
(C12 + e31λ1 + f31λ2)

B22 =
h3

15
(C22 + e31λ1 + f31λ2) D11 =

h3

60
(C11 + e31λ1 + f31λ2)

D12 =
h3

60
(C12 + e31λ1 + f31λ2) D22 =

h3

60
(C22 + e31λ1 + f31λ2)

F11 = C66
h3

15
F12 = C66

h3

30
H11 =

(h5

80
− h5

336

)
(C11 + e31λ1 + f31λ2)

H12 =
(h5

80
− h5

336

)
(C12 + e31λ1 + f31λ2) H22 =

(h5

80
− h5

336

)
(C22 + e31λ1 + f31λ2)

K11 =
h5

336
(C11 + e31λ1 + f31λ2) K12 =

h5

336
(C12 + e31λ1 + f31λ2)

K22 =
h5

336
(C22 + e31λ1 + f31λ2) L11 =

(h5

80
− h5

336

)
C66 L12 =

h5

168
C66

T11 =
2h

3
C44 T22 =

(h3

12
− h3

20

)
C44

Appendix B

S11 = −A11α2 −A66β2 S12 = −(A12 +A66)αβ
S21 = −(A12 +A66)αβ S22 = −A22β2 −A66α2

S33 =
(
B11 −

4H11
3h2

)
(−α2)−

(
F11 −

4L11
3h2

)
β2 +

4T22
3h2
− T11
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S34 =
(
B12 + F11 −

4H12
3h2
− 4L11
3h2

)
(−αβ)

S35 =
(4K11
3h2
−D11

)
(−α3)−

(4L12
3h2
+
4K12
3h2
−D12 − F12

)
αβ2 +

(4T22
3h2
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)
α
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(
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4H12
3h2
− 4L11
3h2

)
αβ

S44 = −
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B22 −

4H22
3h2
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(
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)
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4T22
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− T11

S45 = −
(4K22
3h2
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)
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(4L12
3h2
+
4K12
3h2
−D12 − F12

)
α2β +

(4T22
3h2
− T11

)
β

S53 =
(
T11 −

4T22
h2

)
(−α)− 4H11

3h2
α3 +

(4H12
3h2
+
8L11
3h2

)
αβ2

S54 =
(
T11 −

4T22
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(4H12
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m11 = −I0 − e20a2I0(α2 + β2) m13 = (−I1 − C1I3)− e20a2(I1 − C1I3)(α2 + β2)
m15 = C1I3α+ C1I3e

2
0a
2(α3 + αβ2) m22 = −I0 − I0e20a2(α2 + β2)

m24 = −(I1 − C1I3)− e20a2(I1 −C1I3)(α2 + β2) m25 = C1I3β + e
2
0a
2C1I3(α

2β + β3)

m31 = −(I1 − C1I3) + (C1I3 − I1)e20a2(α2 + β2)
m33 = −(I2 − 2C1I4 +C21I6) + (2C1I4 − C21I6 − I2)e20a2(α2 + β2)
m35 = −(C21I6 − C1I4)α+ (C1I4 − C21I6)e20a2(α3 + αβ2)
m42 = −(I1 − C1I3) + (C1I3 − I1)e20a2(α2 + β2)
m44 = −(I2 − 2C1I4 +C21I6) + (2C1I4 − C21I6 − I2)e20a2(β2 + α2)
m45 = −(C21I6 − C1I4)β + (C1I4 − C21I6)e20a2(β3 + α2β)
m51 = C1I3α+ C1I3e

2
0a
2(α3 + αβ2) m52 = C1I3β + C1I3e

2
0a
2(β3 + α2β)

m53 = (C1I4 + C
2
1I6)α+ (C1I4 + C

2
1I6)e

2
0a
2α3 + (C1I4 + C

2
1I6)e

2
0a
2αβ2

m54 = (C1I4 + C
2
1I6)β + (C1I4 + C

2
1I6)e

2
0a
2β3 + (C1I4 + C

2
1I6)e

2
0a
2α2β

m55 = −(C21I6 + e20a2)(α2 + β2)− C21I6e20a2(α4 + β4)− 2C21I6e20a2α2β2 − I0
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This work presents a study of crack propagation with a new 2D finite element method with
the stretching of the mesh. This method affects at each propagation step new coordinates of
each element node of the mesh. The structure is divided to areas and each area has its own
coordinate formulas. A program in FORTRAN allows us to create a parametric mesh, which
keeps the same number of nodes and elements during different steps of crack propagation.
The nodes are stretched using the criterion of maximum circumferential stress (MCS). The
fracture parameters such as stress intensity factors in modes I and II and the orientation
angles are calculated by solving the problem by the finite element code ABAQUS.

Keywords: 2D crack propagation, FEM, stretching finite element method (SFEM), stress
intensity factor (SIF)

1. Introduction

Today, crack propagation is a large and very complex problem in the study of life of a structure.
It is based on the principles of fracture mechanics, in particular, on calculation of the SIF in
various modes.

Many analytical formulas exist to determine the SIF. However, these expressions are often
developed for different cases of geometry and the solicitation is simple, see Tada and Irwin
(1985). Others authors developed numerical methods for modeling crack propagation (Chan et
al., 1970; Bouchard et al., 2003). They proposed a solution by the finite element method to
model crack propagation problems in 2D. In the recent years, various approaches have been
proposed such as the extended finite element method (XFEM), Möes et al. (1999), and methods
of generalized finite elements (GFEM), Babuska and Banerjee (2012). Both methods are based
on the partition of the unity method proposed by Babuska and Belenk (1997). In addition,
the use of mesh regeneration crack schemes improved the estimate of the increment criteria.
Bouchard et al. (2000) developed a crack propagation method using a linking technique that
optimized the size and quantity of the elements, but the geometry was quite remeshed in each
step.

The same method was used for several elastic and plastic examples. Bouchard et al. (2003),
Phongthanapanich and Dechaumphai (2004) developed a method that completely reconstructed
the mesh between refinement steps using the adaptive mesh and Delaunay triangulations.
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Meyer et al. (2006) proposed a crack propagation method that combined an adaptive iterative
solver, mesh refinement and mesh coarsening techniques as well as optimization of the number
of nodes.

In exchange, Askes et al. (2001) discussed linkage strategies based on the relocation of nodes
for r-adaptive and h/r-adaptive analysis of crack propagation.

Another approach is the boundary element method (Aliabadi, 1997; Portela et al., 1991; Yan
and Nguyen-Dang, 1995), Galerkin method (Belytschko et al., 1994), meshfree element methods
(Belytschko et al., 1994; Yan, 2006; Duflot and Nguyen-Dang, 2004) and the finite element
method (FEM) Singh et al. (2012).

Numerical methods have been widely used to calculate fracture parameters, including the
mechanics of linear elastic plastic-fracture (Bouchard et al., 2003), mechanical dynamics and
breaking (Réthoré et al., 2005), tiredness (Miranda et al., 2003) and the spread of quasi-static
crack (Khoei et al., 2008). Azocar et al. (2010) proposed a new method for the simulation of
crack propagation in solids (LEFM) (2D). They used the Lepp-Delaunay method based on the
refinement of the triangular mesh by an algorithm that allowed both generation of the first mesh
and local modification of the current mesh during propagation of the crack.

This method uses a technique of displacement extrapolation to calculate KI and KII , and
the maximum circumferential stress criterion to calculate the crack propagation angle. Alshoaibi
(2015) used the method of extrapolation of the movement to simulate crack propagation in 2D
by the finite element method of a linear elastic plate. He also characterized the singularity of the
crack tip, and the stress intensity factors around the crack tip. Zaleha et al. (2007) proposed to
assess the displacement extrapolation technique (DET) for predicting the stress intensity factor.

The DET is used when the singular element is present at the tip of the crack. It uses
differential movements to adjacent nodes through the crack to calculate the SIF. Cho (2015)
proposed mixed modes for stress intensity factors of a 2D inclined crack and evaluated them
by Petrov-Galerkin natural element method (PG-NE). Murat (2016) presented a comparative
study of the finite element method (FEM) and an analytical method for the problem of a plane
layered composite containing an internal perpendicular crack.

2. Law of fatigue crack propagation (Paris and Erdogan, 1963)

The simplest and the oldest law to model fatigue crack propagation in the two-dimensional case
is the law proposed by Paris and Erdogan (1963). It is based on constant amplitude tests for
which the propagation velocities appear as a linear function of the variation in the SIF in a
log-log diagram. It takes the form

dA

dN
= C(∆K)m (2.1)

where C and m are material properties, A is crack length, N is the number of loading cycles
and ∆K variation of the stress intensity factor. C and m are the material constants. The crack
propagation length is kept constant during propagation steps.

3. Crack propagation criteria

In order to simulate crack propagation under the linear elastic condition, the crack path direc-
tion must be determined. There are several methods used to predict the direction of the crack
trajectory such as the maximum normal stress theory (or the maximum circumferential stress
theory, Erdogan and Sih (1963)) and the minimum strain energy density theory (Sih, 1974).
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3.1. Maximum circumferential stress criterion (MCSC)

This criterion is used for elastic materials. It states that the crack propagates in the direction
for which the circumferential stress σθθ is maximum. It is a local approach since the direction
of crack growth is directly determined by the local stress field along a small circle of radius r
centered at the crack tip.

The kinking angle α of the propagating crack can be determined after calculating the values
of the stress intensity factors KI and KII .

α = 2arctan

[
1

4

KI
KII
± 1
4

√( KI
KII

)2
+ 8

]
(3.1)

where KI and KII are, respectively, the stress intensity factors corresponding to mode I and
mode II loading.

4. Criterion of Richard 2D

KV =
KI
2
+
1

2

√
K2I + 5.366K

2
II = KIC (4.1)

where KV depends on the stress intensity factors KI and KII . It is noticeable that unstable
crack growth occurs if KV exceeds the fracture toughness KIC .

This criterion has an excellent approximation of the fracture limit surface of the maximum
tangential stress criterion (Erdogan and Sih, 1963). The crack kinking angle α can be determined
by

α = ∓
[
140◦

|KII |
|KI |+ |KII |

− 70◦
( |KII |
|KI |+ |KII |

)2]
(4.2)

whereby for KII > 0 the kinking angle α < 0 and vice versa while always KI > 0. There are
some more criteria, e.g. criterion of Nuismer (1975) or criterion of Amestoy et al. (1980), which
are based on the energy release rate and describes the crack growth for 2D-mixed-mode-loading
situations.

4.1. Field of the stresses in the vicinity of the forehead of the crack

Fig. 1. Field of stresses in the vicinity of the front of the crack
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The general equation of the stress field in 2D near the crack front defined by the stress
intensity factor K is given by Tada et al. (2000)

σI,IIi,j (r, θ) =
KI,II√
2πr

fij(θ) (4.3)

KI,II is the SIF in mode I and II, σ
I,II
i,j is the associated stress field with mode I.

KI is one that contributes the most to the propagation of the fatigue cracks. Fatigue cracks
tend to spread according to the perpendicular direction to the maximum tangential (Erdogan
and Sih, 1962)

σxx =
KI√
2πr
cos

θ

2

(
1− sin θ

2
sin
3θ

2

)
σyy =

KI√
2πr
cos

θ

2

(
1 + sin

θ

2
sin
3θ

2

)

τxy =
KI√
2πr
sin

θ

2
cos

θ

2
cos
3θ

2

(4.4)

Fig. 2. Stretching finite element method for 5 crack propagation

5. Illustration of 2D SFEM crack propagation

The finite element method by the stretching of the mesh (SFEM) generates for each propagation
new coordinates to each node through the following steps:

• Creation of singular elements and elements of contours of zone 5, see Fig. 3a by SFEM
using the crack propagation law respecting the propagation criterion.

• The elements of zone 1 and 2 are stretched and at each propagation. Column one of these
elements moves to the front of the mesh, the zones are divided in two parts, one is zone 1’
and the other is area 2’, Fig. 3b.

• . The elements of zones 4 and 6 are compressed in each crack propagation, see Fig. 3c.

Point 1 is the center the forehead of the crack and the starting basis for creation of other
nodes by this method. The coordinates of this point are given by the following relationship

X(1) = A Y (1) = 0 (5.1)

where A is the crack length.
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Fig. 3. Schematic illustration of SFEM method: (a) mesh without crack propagation, (b) mesh with
3 crack step propagation, (c) mesh with 5 crack propagations

Singular elements of the CPE4 type are used to determine zone 5. The following equation
defines the coordinates of the element nodes in this zone

xi = X(1)− j
L

t
cos((i− 1)θ) yi = Y (1)− j

L

t
sin(iθ) (5.2)

where j = 1, . . . , t is the number of contour, i = 1, . . . , 16 – number of elements, θ = π/16 –
angular division.

6. New coordinates of different areas for n propagations

Node 1 is the front of the crack; it is taken as the reference for all the other nodes of the mesh.
The coordinates of this node for n propagation are given by the following relationship

X(1) = A+
L

2

n∑

p=1

(
cos

p∑

k=1

αk

)
Y (1) =

L

2

n∑

p=1

(
sin

p∑

k=1

αk

)
(6.1)

where α is the crack orientation angle; p is the number of total crack propagation, p = 1, . . . , n;
L is length of the crack front.
From the first propagation, area 1 is divided into two areas: 1 and 1’, see Fig. 3b. The

coordinates in the second area can be given by the following formulas

xi =
1

M − p

{
X(1) −

[ n∑

p=1

(
cos

p∑

k=1

αk

)
+ S

n∑

p=1

(
sin

p∑

k=1

αk

)]
L

2

}
(i− 1)

yj = −S
L

2
+
B − L2
N
(j − 1)

(6.2)

where

i = 1, . . . , 10 and M = 10 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p
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and for zone 1’, the node coordinates are

xi = X(1) −
[ n∑

p=1

(
cos

p∑

k=1

αk

)
− S

n∑

p=1

(
sin

p∑

k=1

αk

)]
L

2

+
1

M − p

{
L

2

n∑

p=1

(
cos

p∑

k=1

αk

)}
(i− 1)

yj = Y (1) +

[
− S

n∑

p=1

(
cos

p∑

k=1

αk

)
−
n∑

p=1

(
sin

p∑

k=1

αk

)]
L

2

+
1

N

{
B −

[ n∑

p=1

(
cos

p∑

k=1

αk

)
+
n∑

p=1

(
sin

p∑

k=1

αk

)]
L

2

}
(j − 1)

(6.3)

where

i = 1, . . . , n and M = 4 p = 1, . . . , 5

j = 1, . . . , 9 and N = 9 k = 1, . . . , 5

and M is the number of vertical elements, N is the number of horizontal elements, B is height
of the structure, S is sign of the exchange factor between the two zones, the top and the bottom
(S = −1 for the top part area and S = 1 for the bottom part area).
The new coordinates of the elements of area 3, for n propagation can be written as
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(6.4)

where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p

The elements of area 4 are compressed as shown in Fig. 3b. The definition of coordinates of
this area may be given by the following relationship:

xi = X(1) +

[ n∑
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where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 9 and N = 9 k = 1, . . . , p

and C is width of the structure.
Area 2 is an area which contains elements of singularity. During the steps of propagation,

zone 2 is divided into two zones 2 and 2’, see Fig. 3b. Equations (6.6) and (6.7) show the
coordinates of area nodes 2 and 2’, respectively

xi =
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where

i = 1, . . . , 10 and M = 10 p = 1, . . . , 5

j = 1, . . . , 4 and N = 4 k = 1, . . . , 5
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(6.7)

where

i = 1, . . . , 4 and M = 4 p = 1, . . . , n

j = 1, . . . , 4 and N = 4 k = 1, . . . , p

The coordinates of the node elements of area 6 can be written as

xi = X(1) +
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where

i = 1, . . . , n and M = 4 p = 1, . . . , n

j = 1, . . . , N and N = 4 k = 1, . . . , p
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7. Interface FORTRAN ABAQUS

In structure of executing the FORTRAN program in interface with the ABAQUS (FEM) is
shown in Fig. 4.

Fig. 4. The structure of the interface between FORTRAN and
ABAQUS to calculate KI , KII and α

8. Numerical model (mesh)

The structure considered has length B = 8mm and width W = 7mm, the horizontal crack
length is A = 3.5mm, length of the front L = 1mm. The parametric mesh consists of 478 square
CPE4 type elements with four nodes.

The total number of degrees of freedom is equal to 1016. The FORTRAN program for
creation of the mesh that will be analyzed by the finite element code ABAQUS has been applied.
The steel structure with E = 1 · 107 Pa and ν = 0.25 is subjected to a uniform tensile stress
σ = 100MPa.

Fig. 5. The specimen with a crack
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9. Analytical calculation of stress intensity factors

The analytical stress intensity factor KI for this problem is given (Ewalds and Wanhill, 1989)
as

KI = Fσ
√
Aπ (9.1)

where F is the correction factor given by

F = 1.12 − 0.23 A
W
+ 10.6

( A
W
)2 − 21.7

( A
W
)3 + 30.4

( A
W

)4
(9.2)

where the stress intensity factor KII is calculated by the relation

KI sin θ +KII
(
3 cos θ − 1) = 0 (9.3)

The analytical values of calculated stress intensity factors are compared with the numerical
results obtained by SFEM.

Table 1. Comparison of analytical results and SFEM for stress intensity factor KI and KII

α KANALI KSFEMI Error KANALII KSFEMII Error
[◦] [MPa

√
m] [MPa

√
m] [%] [MPa

√
m] [MPa

√
m] [%]

−14.76 31.58 33.03 −4.591 4.232 4.427 −4.608
−0.643 42.90 42.84 0.139 0.2408 0.2404 0.166

0.8313 56.95 55.90 1.844 −0.4132 −0.4056 1.839

1.577 75.68 76.65 −1.282 −1.041 −1.056 −1.441
2.049 114.51 113.9 0.532 −2.049 −2.038 0.54

10. Evaluation of the SIFs as functions of area 5

Zone 5 (singular area) is the most important area, see Fig. 3a. This zone consists of singular
elements and other constituent element contours. Its shape is a square of side L. This area can
be parametrically varied in order to optimize the mesh.
Figures 6a and 6b show the change in crack length A depending on the size L of the front of

singularity zone 5. The stress intensity factors KI and KII are compared with theoretical values
for each stage of propagation of the rift. The interval optimization of zone 5 is in an interval L
between 0.1 ¬ L ¬ 1.1. This comparison shows a good correlation between the analytical method
proposed by Ewalds and Wanhill (1989) and the method of stretching the (SFEM) mesh for the
value of L = 1.0mm. There is a very good correspondence between the results obtained in the
case of L = 1.0mm compared to other values of L.
The results given by the SFEM are close to those of the analytical solution. The results are

obtained for different tilt angles for different crack ratios A/W between 0.5 and 0.8. Figure 7a,
shows the evolutions between the SIF and the crack length A, and Fig. 7b depicts an increases
in this ratio for which the intensity factor KI increases and KII decreases.
Figure 8 illustrates the variation of the angle of inclination α estimated at each increment

of length of the crack. This comparison shows a good comparison between the two criteria, the
criterion of Richard and the MCS criterion we used in our study.
For different values of SIF for the two numerical models and the analytical one, Fig. 7b shows

similar values for KI and KII as functions of the crack length A. Similarly, see Fig. 7a for the
ratio A/W one can observe that there is an increase in length and crack orientation angle, which
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Fig. 6. Variation of SIF along crack length A for different values of L: (a) KI , (b) KII

Fig. 7. Comparison of SIF between SFEM and the analytical method: (a) function of the ratio A/W ,
(b) function of the crack length A

Fig. 8. Evolution of the inclination angle α during crack propagation, comparison between the MCSC
and Richard criterion

causes an increase in KI and a decrease in KII . These results were obtained by Boulenouar et
al. (2014), Ariffin (2008). The results obtained by the SFEM method and the analytical method
show a good correlation between them and allow one to conclude that the numerical model is
used correctly.

The values of the stress intensity factors KI and KII and the orientation angle α are well
estimated. Figure 9 illustrates the variation of the estimated angle for each contour of the crack
length. There is a very good correspondence between the results obtained by the two methods.
In this example, the angle α varies between −14.79◦ and 2.049◦.
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Fig. 9. Tilt angle α according to SIF (KI , KII) for the two methods: SFEM and analytical

11. Conclusion

The proposed method for the modeling of crack propagation, the stretching finite element me-
thod, allows one to get similar results to those obtained through analytical solution. This has
been checked for the case in which the analytical solution is well established. The stress intensity
factor is rated by the finite element method and its results are in good agreement with those
from the exact solution.

Compared (in the case where A/W = 0.5 to 0.8) with the analytical method, the results
of the present approach provide favorably comparable values and prove its effectiveness in the
modeling of problems with crack propagation. The two MCS criteria and the Richard criterion
used to determine the angle of crack orientation show a good correlation between them.
On the other hand the estimation of the error of the stress intensity factors for modes I

and II is less than 4.591 per cent. It is assessed as an acceptable threshold. The SFEM method
as another finite element method is a function of mesh density. It gives more precision if we
increase the number of contours around a singularity point. We have used an example with
5 contours in this study, but our parametric mesh allows us to increase the number of contours,
which can improve the results even more. The advantage of this method is keeping the same
mesh with the same number of nodes and elements while analyzing crack propagation. It is the
only finite element method without remeshing during crack propagation.
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Mechanical behavior of a bilayer graphene cylindrical panel and nano-tube is studied based
on nonlocal continuum mechanics with regard to this aim, von-Karman assumptions and
nonlocal theory of Eringen are considered. Then, the governing equations and boundary con-
ditions have been derived applying energy method. While analyzing the bilayer cylindrical
panel, the van der Waals interaction between the layers is considered in calculations. The
constitutive equations are developed for nano-tubes under internal and external pressures.
In order to solve the governing equations, the semi-analytical polynomial method (SAPM),
which was presented by the authors before, is utilized and bending behavior of bilayer cylin-
drical panels and nano-tubes is investigated. Finally, the effects of temperature, boundary
conditions, elastic foundation, loading, van der Waals interaction between the layers and
single layer to bilayer analyses are studied for graphene cylindrical panels and nano-tubes.

Keywords: cylindrical graphene panels, nano-tube, nonlocal elasticity theory, first-order she-
ar deformation theory

1. Introduction

Shells and panels are the most frequently applied engineering structures and are categorized
in several groups. The curvature of shells is one basis of the categorization which is most si-
gnificant in geometric shapes (cylindrical, conical, and spherical, etc.) and related equations.
Another basis of the categorization is thickness of the shell, which divides into two groups of low
thickness (shell) and high thickness (plate), for the thickness-to-radius ratio of (h/R)max ¬ 1/20,
it is assumed to be a low thickness shell. According to ever-increasing application of shells in
industries, the significance of studying behavior of shell structures in different cases of loading
including bending and buckling becomes more pronounced. One interesting nano structure which
scientifics are devoted to is the carbon nano-tube. The tubes were discovered in 1991 (Iijima,
1991). Single wall carbon nano-tubes can be assumed as 2D single layer graphene sheets which
are rolled. The extraordinary attributes of graphene sheets, carbon nano-tubes and their exclu-
sive specifications made them a reason to progress and renovation of difference researches and
nano-science (Tans et al., 1997; Martel et al., 1998; Postma et al., 2001). Experimental tests
in nano scale are difficult and expensive. Therefore, developing a suitable mathematical model
for nano structures is important. Continuum mechanics model is an appropriate and a low-cost
solution. Disadvantages of the continuum method is that it is not possible to estimate the exact
small scale effects. When the size of structures is small, the effects of small scale on mechanical
behavior are very important. To eliminate the disadvantage in the classic continuum model,
Eringen and Edelen (1972) presented a nonlocal elasticity theory and modified the classical
continuum mechanics to consider the effects of small size. By considering the effects of size in
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related equations as material properties, the nonlocal theory of Eringen is extremely effective in
presenting an exact and appropriate model of nano structures. Hence to study behavior of nano
plates in many presented studies, the nonlocal theory is applied.

Murmu and Pradhan (2009) applied the theory of nonlocal elasticity to rectangular single
layer graphene sheets in elastic environment. They applied both models of Winkler and Pasternak
to simulate reactions of graphene sheets with their elastic environment. Reddy and Pang (2008)
studied bending and buckling of carbon nano-tubes based on nonlocal theory. Aghababaei and
Reddy (2009) investigated bending and free vibration equations based on the third-order shear
deformation theory/ The nonlocal effects were then solved analytically for a isotropic rectangular
sheet with simple boundary conditions. They concluded that two first order and third order
shear deformation theories had similar results while related results from nonlocal theory of thin
shell were difference. Pradhan (2009) analyzed buckling of isotropic graphene rectangular plates
based on the third-order shear deformation theory and the Navier method. He concluded that
by increasing the small scale effects or decreasing length of the plate, the ratio of nonlocal
buckling loads to the local case would be increased. The first solution of the buckling problem
of cylindrical shells under uniform lateral pressure was presented by Brush and Almroth (1975).
Then many extensive researches on buckling of cylindrical shells by different materials and
different boundary conditions have been done. Hoff and Soong (1965) studied buckling of a
cylindrical shell under axial load in different conditions. They showed that if the ratio of shell
length to its thickness was large enough, the value of stress in buckling mode would always be
independent from length of the shell and the maximum critical stress would occurr for simply
supported boundary conditions. Linghai et al. (2008) considered buckling of a cylindrical panel
under axial load by a differential quadrature method in which the load was perpendicular to
the surface. Zhao and Liew (2009) analyzed a cylindrical panel made of a functionally graded
material (FGM) under thermal and dynamic loads based on the first order nonlinear shear
deformation theory by applying the free element method. Nguyen and Hoang (2010) studied
stability of a cylindrical panel made of a functionally graded material under axial pressure and
simple supported boundary conditions. It was found that by increasing the ratio of length to
radius of the cylindrical panel, critical load always increased. Khazaeinejad et al. (2010) analyzed
buckling of cylindrical shells made of a functionally graded material under both axial loads and
internal pressure by using the first order shear deformation theory. They concluded that by
decreasing the power factor of material properties, critical load increased.

Lancaster et al. (2004) investigated the effect of imperfections on the buckling load in the form
of local initial stress, which were probably more typical in practice than in purely geometric ones.
Bisagni and Cordisco (2003) experimentally studied buckling and post-buckling behavior of four
unstiffened thin-walled CFRP cylindrical shells for which the test equipment allowed application
of axial and torsional loadings. Their results identified the effect of laminate orientation, showed
that the buckling loads were essentially independent of the load sequence and demonstrated that
the shells were able to sustain load in the post-buckling field without any damage. Degenhardt
et al. (2010) performed buckling tests and buckling simulations on CFRP cylindrical shells to
investigate the imperfection sensitivity and to validate the applied simulation methodologies.
Fazelzadeh and Ghavanloo (2014) purused vibration characteristics of curved graphene ribbons
(CGRs) embedded in an orthotropic elastic shell and investigated that there was significant
dependence of natural frequencies on the curvature change. Biswas (2014) presented nonlinear
analysis of plate and shell structures under mechanical and thermal loadings.

Ansari et al. (2016) studied size-dependent nonlinear mechanical behavior of third-order
shear deformable functionally graded microbeams using the variational differential quadrature
method. They used the gradient elasticity theory in their study. Zhang et al. (2016) applied
FSDT element free IMLS-Ritz method to analyze free vibration of triangular CNT-reinforced
composite plates subjected to in-plane stresses.
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Dastjerdi et al. (2016a) derived constitutive equations for graphene plates in Cartesian and
cylindrical coordinate systems based on the nonlocal first and higher order shear deformation
theories. Zhang et al. (2015) presented a nonlocal continuum model for vibration of single-layered
graphene sheets based on the element-free kp-Ritz method. All the mentioned solving methods
are popular in analyzing the small scale effects of nano structures. Continuing, Dastjerdi et al.
(2016b,c) worked on static analysis of single layer annular/circular graphene sheets (Dastjerdi
et al., 2016b) and the effect of vacant defects on bending analysis of circular graphene sheets
(Dastjerdi et al., 2016c) based on the nonlocal theory of Eringen. They presented a new semi-
analytical polynomial method (SAPM) for solving ordinary and partial differential equations.

In this paper, for the first time, the nonlinear bending analysis of bilayer graphene cylindrical
panels and nano-tubes has been studied. Nonlocal constitutive equations have been derived
and solved applying SAPM (Dastjerdi et al., 2016c). It has been tried to consider all effective
parameters on study such as boundary conditions, nonlocal parameter, temperature, loading,
elastic foundation, etc.

2. Nonlocal theory

Different non-classical theories have been presented to analyze structures in nano and micro
scales such as strain-gradient theories, couples stress and the nonlocal theory of Eringen. With
regard to considering the simplicity of the equations and satisfactory results of the nonlocal
theory, this theory has been applied by many researchers to analysis of mechanical behavior of
nano structures. In other words, this theory has been applied in the present article, considering
its advantages. According to the nonlocal theory of Eringen, stress in a specified point of surface
is a function of strain in all points of the surface. As below in the integral equation, it is shown
as a function of local stress (Eringen and Edelen, 1972)

σij =

∫

V

α(|χ′ − χ|)σLij(χ′) dV (χ′) (2.1)

The integral must be calculated on the total surface. χ is a point whose stress can be calculated
according to stress of all χ′ points of the structure. The indices i, j are the same for x, y, z of the
shell coordinate components. The distance between χ and χ′ can be presented by |χ′ − χ| and
α(|χ′ − χ|), which are nonlocal weight functions. σLij and σNLij are local and nonlocal stresses,
respectively. Finally, Eq. (2.1) can be expressed for the 2D case as

(1− µ∇2)σNLij = σLij µ = (e0a)
2 ∇2 = ∂2

∂x2
+

∂2

∂y2
(2.2)

In the above, a is related to internal dimensions and small size, e0 is the material coefficient which
results from experimental studies. The value of the nonlocal parameter µ is not specified exactly
and is dependent on boundary conditions, mode number, layer quantity and type of movement
(Eringen and Edelen, 1972). Wang and Wang (2007) illustrated that the value of the nonlocal
parameter (e0a) is between 0 and 2 nm. Consequently, many researchers have considered this
range of the nonlocal parameter in their investigations. As a result, in this paper, the nonlocal
parameter is assumed between 0 and 2 nm, too.

3. Governing equations

A bilayer graphene cylindrical panel is considered as shown in Fig. 1, resting on a Winkler-
-Pasternak elastic medium under uniform transverse loading q. The Winkler-Pasternak stiffness
coefficients are kw and kp, respectively. Winkler considers the elastic foundation to be completely
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Fig. 1. Schematic view of a bilayer graphene cylindrical panel rested on Winkler-Pasternak elastic
foundation

made of linear springs (P = kww). If the mentioned foundation is affected by a transverse
loading q, the springs would not be influenced beyond the loaded domain.

In the Pasternak elastic matrix, the effect of shear force among the spring elements is consi-
dered, which is completed by connecting the ends of the springs to the plate that only undergoes
transverse shear deformation. The relationship between the load and deflection is obtained by
assuming the vertical equilibrium of a shear layer (P = kww + kp∇2w). The amount of van der
Waals interaction depends on the distance between the layers. ko and k

∗
o can be introduced as

a stiffness of spring force (van der Waals interaction) as ko(w2 − w1) + k∗o(w2 − w1)3 in which
w1 represents defection of the upper layer and w2 – the bottom layer. In practical investiga-
tions, the values of w1 and w2 are close to each other. So, the term (w2 − w1)3 is extremely
insignificant. As a result, the non-linear term can be neglected for simplicity of calculations, and
the van der Waals interaction can be considered linear as ko(w2− w1).
In this study, the constitutive equations are derived based on the first-order shear deformation

theory (FSDT) in which the neglected assumptions in the classical plate theory are considered
with more accuracy. According to the first-order shear deformation theory, the displacement
field can be written as follows

Ui = ui+ zϕi V i = vi+ zψi Wi = wi (3.1)

where ui, vi and wi are the displacement components of the mid-plane along the x, y and z
directions, respectively. ϕi and ψi refer to the rotation functions of the transverse normal to y
and x directions. The index i = 1, 2 refers to the upper and bottom layers, respectively. The
strain filed is then as below
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εix =
∂ui

∂x
+
1

2

(∂wi
∂x

)2
+ z

∂ϕi

∂x
− α∆T

εiy =
wi

R
+
∂vi

∂y
+
1

2

(∂wi
∂y

)2
+ z

∂ψi

∂y
− α∆T

γixy =
∂vi

∂x
+
∂ui

∂y
+
(∂wi
∂x

∂wi

∂y

)
+ z

(∂ϕi
∂y
+
∂ψi

∂x

)

γixz = ϕi+
∂wi

∂x
γiyz = ψi+

∂wi

∂y
− vi

R

(3.2)

Now to obtain equilibrium equations, an energy method is applied in which variation of potential
energy for external loads and strain energy must be zero

δπ = δU + δV = 0 δV =

∫∫

A

(q − kww0) δw0 dA (3.3)

and

δU =

∫∫∫

A

(σijδεij) dv (3.4)

Equation (3.4) describes the strain energy which can be expanded as follows

δU =

∫∫∫

A

(σixδεix + σiyδεiy + σixyδεixy + σiyzδγiyz + σixzδγixz) dv i = 1, 2 (3.5)

The stress and moment resultants are specified as follows

[Nix, Niy, Nixy]
NL =

h/2∫

−h/2

[σix, σiy, σixy ]
NL dz

[Mix,Miy,Mixy]
NL =

h/2∫

−h/2

[σix, σiy, σixy]
NLz dz

[Qiy, Qix]
NL = ks

h/2∫

−h/2

[σiyz , σixz]
NL dz

(3.6)

where ks is the shear factor correction coefficient for the first-order shear deformation theory,
which is taken 5/6. Now by substituting Eqs. (3.6) into Eq. (3.3) and integrating with respect
to z, Eq. (3.3) can be developed. The obtained total energy equation must be equal to zero.
The equilibrium equations are based on the nonlocal theory of Eringen. Applying Eq. (2.2)
into the resultants (Eqs. (3.3)) and then substituting into the nonlocal governing equations, the
constitutive equations can be obtained in the local form of the resultants considering the effects
of the nonlocal parameter. Dastjerdi et al. (2016a) explained the process of obtaining the local
form of governing equations from nonlocal ones. Finally, the nonlocal constitutive equations for
the bilayer graphene cylindrical panel can be expressed as follows (some inconsiderable terms
are neglected)

∂NiLx
∂x
+
∂NiLxy
∂y

= 0
∂NiLy
∂y
+
QiLy
R
+
∂NiLxy
∂x

= 0

∂MiLx
∂x
+
∂MiLxy
∂y

−QiLx = 0
∂MiLy
∂y
+
∂MiLxy
∂x

−QiLy = 0
(3.7)
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— upper layer

− N1Ly
R
+
∂Q1Ly
∂y
+
∂Q1Lx
∂x
+ (1− µ∇2)

[
N1Lx

∂2w1

∂x2
+ 2N1Lxy

∂2w1

∂x∂y

+N1Ly
∂2w1

∂y2
+ q − ko(w2 − w1)

]
= 0

(3.8)

— bottom layer

− N2Ly
R
+
∂Q2Ly
∂y
+
∂Q2Lx
∂x
+ (1− µ∇2)

[
N2Lx

∂2w2

∂x2
+ 2N2Lxy

∂2w2

∂x∂y
+N2Ly

∂2w2

∂y2

+ ko(w2 −w1) + (−kww2 + kp∇2w2)
]
= 0

(3.9)

4. Boundary conditions

All possible boundary conditions have been assumed as simply supported (S), clamped (C) and
free (F) edges, which can be written as follows (for the first line 0 < x < Lx and for the second
line 0 < y < Ly)

S :
ui = vi = wi = ψi =Mix = 0

ui = vi = wi = ϕi =Miy = 0
C :

ui = vi = wi = ϕi = ψi = 0

ui = vi = wi = ϕi = ψi = 0

F :
Nix = Nixy = Qix =Mix =Mixy = 0

Nix = Nixy = Qiy =Miy =Mixy = 0

(4.1)

5. Solution

Taking a look on the governing equations, it is clear that a system of nonlinear partial differen-
tial equations has been obtained whose solution is not possible to be determined by common
analytical methods. In the paper, a new semi-analytical polynomial method (SAPM) is applied,
which was presented before by the authors (Dastjerdi et al., 2016c). The SAPM formulation is
extremely simple and its accuracy was proved before (Dastjerdi et al., 2016c). According to the
mentioned explanations for SAPM, to achieve a solution to the governing equations, the below
displacements and rotations can be introduced (Dastjerdi et al., 2016c) (i = 1, 2 for the upper
and bottom layers)

ui =
N∑

k=1

M∑

t=1

ai{k+t−[1−(k−1)(M−1)]}x
(k−1)y(t−1)

vi =
N∑

k=1

M∑

t=1

ai{k+t−[1−(k−1)(M−1)]+MN}x
(k−1)y(t−1)

wi =
N∑

k=1

M∑

t=1

ai{k+t−[1−(k−1)(M−1)]+2MN}x
(k−1)y(t−1)

ϕi =
N∑

k=1

M∑

t=1

ai{k+t−[1−(k−1)(M−1)]+3MN}x
(k−1)y(t−1)

ψi =
N∑

k=1

M∑

t=1

ai{k+t−[1−(k−1)(M−1)]+4MN}x
(k−1)y(t−1)

(5.1)
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By considering Eqs. (5.1) in constitutive equations (3.7)-(3.9), the partial differential equations
will be transformed into algebraic equations. The obtained equations can be solved by considering
boundary conditions.

6. Numerical results and discussion

The curvature radius of the graphene panel has been assumed to tend to infinity in order to obtain
a rectangular plate. Then, the results are compared with those by Dastjerdi and Jabbarzadeh
(2016). According to Fig. 2, it can be seen that the results are close to each other. The small
differences occurred because of tending the radius of the cylindrical panel to infinity. Also, it can
be concluded that the differences increase for more flexible boundary conditions. However, the
maximum difference is about 2.5%, which is insignificant. Consequently, the obtained results of
DQM (Dastjerdi and Jabbarzadeh, 2016) are in compliance with the results of SAPM in this
paper.

Fig. 2. Comparison between the results of the present paper and Dastjerdi and Jabbarzadeh (2016)

Table 1 indicates the effect of temperature on the results for different types of boundary
conditions. It is observed that in higher temperature, the maximum deflection increases. The
variations are approximately linear and there is not a considerable difference between CCCC and
SSSS boundary conditions. The variations are the same. Also, it is observed that by increasing
the nonlocal coefficient, the deflection decreases and the rate of variations remains constant. In
CCCC boundary conditions, by increasing the nonlocal effect, the deflection decreases faster, but
in SSSS boundary conditions, the variations are small. For example, deflections for e0a = 1nm
and e0a = 2nm are not considerably different, but in CCCC boundary condition, they are
different. It may result that in SSSS boundary conditions, due to its more flexibility, temperature
raise versus an increase in the small-scale effects is more than in CCCC boundary conditions,
and by increasing e0a, the deflection has a less descending rate. The properties of the panel are
presented below

Lx = 5nm θ = π h = 0.34 nm R = 5nm

Ex = Ey = 1.06TPa νxy = νyx = 0.3 q = 0.5GPa

kw = 1.13GPa/nm kp = 1.13Pam α = 2.02 · 10−6Co−1
(6.1)



890 S. Dastjerdi et al.

Table 1. Effect of temperature on nonlocal analysis

∆T w [nm]

[C◦] e0a = 0nm e0a = 1nm e0a = 2nm Rm =
w∗e0a=1nm
w∗
e0a=0nm

Rm =
w∗e0a=2nm
w∗
e0a=0nm

0 0.0307 0.0294 0.0249 0.9557 0.8086

CCCC
100 0.0321 0.0307 0.0262 0.9576 0.8156
500 0.0374 0.0362 0.0316 0.9653 0.8441
1000 0.0443 0.0432 0.0390 0.9746 0.8800

0 0.0326 0.0318 0.0311 0.9769 0.9560

SSSS
100 0.0340 0.0332 0.0325 0.9782 0.9572
500 0.0396 0.0389 0.0381 0.9822 0.9616
1000 0.0466 0.0461 0.0451 0.9873 0.9657

To survey the effect of Winkler-Pasternak elastic foundation, Tables 2 and 3 present different
types of boundary conditions. In both tables, higher values of elastic the foundation stiffness
lead to smaller deflections. As mentioned before, SSSS boundary conditions have more effects
on the results, as seen in Table 1. For example, in Table 2, it is considered that by increasing
e0a in CCCC boundary conditions, the normal falling rate is available, but in SSSS boundary
conditions, the falling rate is smaller. The mentioned variations can be observed in Table 3, too,
but it seems that the effect of Pasternak elastic foundation is more evident. Basically, Winkler
and Pasternak elastic foundations have a fairly important role in the analysis. It is due to the
direct effect of the nonlocal coefficient on the elasticity of Winkler and Pasternak foundations in
Eq. (3.9). Consequently, the availability and their values are important in the small scale effect
when the nonlocal elasticity theory is applied.

Table 2. Effect of Winkler elastic foundation on the results

kw w [nm]

[GPa/nm] e0a = 0nm e0a = 1nm e0a = 2nm Rm =
w∗e0a=1nm
w∗e0a=0nm

Rm =
w∗e0a=2nm
w∗e0a=0nm

0 0.0335 0.0336 0.0330 1.0020 0.9850

CCCC
1 0.0316 0.0311 0.0288 0.9841 0.9114
5 0.0259 0.0238 0.0188 0.9189 0.7259
10 0.0210 0.0183 0.0131 0.8714 0.6238

0 0.0354 0.0363 0.0377 1.0254 1.0649

SSSS
1 0.0333 0.0335 0.0325 1.0060 0.9759
5 0.0268 0.0255 0.0209 0.9514 0.7798
10 0.0214 0.0195 0.0144 0.9112 0.6729

The van der Waals force is a kind of force which depends on the distance between the layers
(Dastjerdi and Jabbarzadeh, 2016). As the distance between two layers decreases, the van der
Waals force increases. Figure 3a is drawn for CCCC boundary conditions, and Fig. 3b for SSSS
boundary conditions. According to the figures, it is observed that by increasing k0, the deflections
of two layers approach each other, and after a specified value, an increase in k0 has no impact
on the results. In both Figs. 3a and 3b, also it is observed that by increasing the nonlocal
parameter, the deflections of both layers approach each other faster than before. Therefore,
increasing the nonlocal effect results in an increase in van der Waals interaction between the
layers. In Fig. 3b, it can be concluded that by increasing small-scale effects, more variation
results rather than in CCCC boundary conditions. However, the variations are approximately
similar and no considerable change is observed. In this case, the elastic foundation is available
and the variations in both cases of CCCC and SSSS boundary conditions are approximately
similar.
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Table 3. Effect of Pasternak elastic foundation on the results

kp w [nm]

[Pam] e0a = 0nm e0a = 1nm e0a = 2nm Rm =
w∗e0a=1nm
w∗e0a=0nm

Rm =
w∗e0a=2nm
w∗e0a=0nm

0 0.0335 0.0336 0.0330 1.0029 0.9851

CCCC
1 0.0328 0.0321 0.0289 0.9786 0.8811
5 0.0302 0.0266 0.0182 0.8808 0.6026
10 0.0273 0.0216 0.0122 0.7912 0.4469

0 0.0354 0.0363 0.0377 1.0254 1.0650

SSSS
1 0.0349 0.0360 0.0367 1.0315 1.0516
2 0.0345 0.0355 0.0347 1.0289 1.0058
10 0.0302 0.0299 0.0251 0.9900 0.8311

Fig. 3. Variation of deflection versus van der Waals interaction between the layers for (a) CCCC,
(b) SSSS boundary conditions

Fig. 4. The effect of van der Waals interaction on the ratio Rb
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For better perception, Fig. 4 shows variation of the ratio between the deflections of the
bottom layer to the upper layer Rb versus an increase in the van der Waals force. It is clearly
observed that at the beginning of rising k0, the rate of variations is elevated, and in the following,
it decreases. Totally, variations in SSSS boundary conditions are greater than in CCCC boundary
conditions. This observation results from Figs. 3a and 3b too. Also, by increasing the nonlocal
effects, Rb becomes greater. In one specified k0, which in this case is about 10GPa/nm, Rb has the
maximum distance from other ones in four cases of boundary conditions and nonlocal coefficients.

An increase in radius of the nano graphene shell (R) makes curvature lower and the cylindrical
shell transforms into a flat rectangular sheet. Figure 5 shows the effects of increasing R on the
results. By increasing R, the deflection grows and the rate of variation is high. Continuing,
the rate becomes less and remains constant. An infinite value of R means that the cylindrical
shell is transformed into a flat rectangular plate. Therefore, by bending the rectangular plate,
its deflection subsequently decreases. In SSSS boundary conditions, due to its flexibility, the
deflection variations due to R are slow. Also the effect of nonlocal analysis in CCCC boundary
conditions is greater than in SSSS boundary conditions. According to Fig. 5, it is observed that
when R rises, the value of Rm in CCCC boundary conditions decreases more. In this case, the
nonlocal effects on the results are more evident (the specifications of panel are similar to Eq.
(6.1), only Ly = 5nm and ∆T = 0).

Fig. 5. Deflection due to the increase of radius R of the cylindrical panel

As told before, the nonlocal analysis is more effective in small scales. In this regard, Fig. 6a
and 6b are drawn. It is observed that by increasing length of the graphene shell, the deflection
increases too, and then, the rate of ascending becomes less and remains fixed at one specified
value whose further increase in size has no any considerable impact on the results. It is observed
that the increasing length results in smaller nonlocal effects, and the effects become greater by
decreasing the size. Increasing the size leads to a rise in the ascending rate of reduction of the
nonlocal effect, and this conclusion is clearly obvious for higher values of e0a. Generally, in small
sizes, the nonlocal effects are considerable and nonlocal analysis must be applied. But in larger
sizes, the classical theory gives acceptable results by considering a suitable approximation. So,
the classical theory is applied for the sizes greater than the nano scale.

Now a nano-tube under internal pressure is studied. This case could be assumed as a shell
with radius R whose curvature between both ending edges is 2π in θ direction, so that the
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Fig. 6. Variations of deflection versus of the length shell Lx for (a) CCCC, (b) SSSS boundary conditions

edges are connected to each other. Nano-tubes can be used widely. For example, to transfer fluid
through nano-tubes, the related mechanical properties must be specified. These nano-tubes can
be applied in medical purposes such as nano vessels. In this study, the value of expansion and
contraction of a nano graphene tube under internal and external pressure are surveyed. At
first, a bi-layer nano-tube is studied, whose layers are connected to each other by van der Waals
interaction. The ratio of deflection of the bottom layer to the upper layer is defined as Rb. Now, a
bilayer nano-tube is assumed with the specifications given below (Rb = wbottom layer/wupper layer )

Lx = 15nm h = 0.34 nm Ex = Ey = 1.06TPa

νxy = νyx = 0.3 q = 0.5GPa kw = 1.13GPa/nm

p = 1.13Pam ∆T = 0 e0a = 1nm

(6.2)

Fig. 7. Variation of nano-tube radius on Rb for different van der Waals interactions

Figure 7 shows the effect of increasing radius of the nano-tube on its expansion Rb for
different values of van der Waals forces. It is observed that by increasing the value of R, it leads
to an increase in Rb too, and in the following, its raising rate lowers and, finally, an increase
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in R, does not have any considerable effect on variation of Rb any longer. The obtained results
are similar with the related results for the shell type studied in Fig. 5. As it is expected, an
increase in the van der Waals force has direct effect on the deflection of two bottom and upper
layers. By increasing the van der Waals force, these deflections approach each other faster.
To reinforce single layer nano-tubes, bilayer nano-tubes can be applied. To survey the effect of

being bilayer nano-tubes on the results, Fig. 8 is presented (Rbs = wbilayer/wsingle layer ). Figure 8
shows variation of Rbs versus nano-tube radius. As it is observed, by increasing radius R, the
deflections of both bilayer and single layer nano-tubes approach each other, but for small values
of radius R, the deflection of the bilayer sheet is considerably less than the single layer one.
In this case, strength of the bilayer sheet is greater than the single layer one, but for a larger
radius, the strength becomes smaller and the deflection of the bilayer sheet approaches the single
layer sheet. Therefore, a single layer nano-tube can be used instead of nano-tube with R radius.
Figure 8 is very useful for selection a nano-tube based on the single layer or bilayer one. The
figure could be drawn for different conditions, and according to the requirements of the problem,
the design must be chosen (ko = 45GPa/nm)

Fig. 8. Single layer to bilayer Rbs versus variations of nano-tube radius

7. Conclusions

In this paper, for the first time, the mechanical behavior of a graphene cylindrical panel and nano-
-tube under internal and external pressure is studied. The system is embedded in an elastic
matrix and the effect of thermal conduction has been taken into account too. Remarkable conc-
lusions can be listed as follows:

• An increase in the nonlocal effect results in an increase in van der Waals interaction
between the layers.

• The small scale effect decreases along the increase of temperature.
• By increasing nonlocal effects, the deflections of the upper and bottom layers approach
each other.

• Whatever radius R of the shell is smaller, the nonlocal decrease effects. So, the maximum
nonlocal effects occur for rectangular plates (when radius R tends to infinity).
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• An increase in size leads to a rise in the ascending rate of reduction of the nonlocal effect.
• Whatever the radius of nano-tube R rises, the deflection of two layers approach each other.
• The strength of the bilayer nano-tube decreases due to an increase in radius. Consequently,
for a high range of radius R, a single layer nano-tube can be applied instead of a bilayer
one.
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This work considers a mathematical model that describes quasistatic evolution of an elastic
2D bar that may come in frictional contact with a deformable foundation. We present the
model and some of its underlying assumptions. In particular, the novelty in the model is
that both vertical and horizontal motions are taken into account, which makes it especially
useful when frictional contact is concerned. Contact is described with the normal compliance
condition and friction with the Coulomb law of dry friction. We introduce a hybrid variational
formulation of the problem and a numerical discretization based on a uniform time step and
the finite element method in space. The numerical algorithm has been implemented, and
we present computer simulations that illustrate the mechanical behavior of the system with
emphasis on frictional aspects of the problem.

Keywords: new 2D bar, contact, friction, computational results, finite element discretization

1. Introduction

A considerable progress has been achieved in the last two decades in the modeling, mathematical
analysis and numerical simulations of various processes involved in the mechanical contact of
solids. As a result, Mathematical Theory of Contact Mechanics (MTCM) has been reaching
a state of maturity. The theory is concerned with mathematical structures that underly the
modeling of general contact processes with different constitutive laws, i.e., different materials,
different possible geometries and different contact conditions, see for instance (Eck et al., 2005;
Han and Sofonea, 2002; Migórski et al., 2013; Panagiotopoulos, 1993; Shillor et al., 2004; Sofonea
and Matei, 2012) and the many references therein. MTCM aims to provide a sound, clear and
rigorous framework to construct models for processes involved in contact, and necessary tools
and ideas to prove the existence, possible uniqueness and regularity results for the solutions of
these models. Moreover, the variational formulation of these models leads directly and naturally
to sophisticated numerical methods for computer approximations of the solutions.
The interest in contact problems involving thin structures such as bars, rods, beams and

plates lies in the fact that their mathematical analysis is simpler as it avoids some of the com-
plications arising in 3D settings and often provide considerable insight into the possible types
of behavior of the solutions, i.e., behavior of such structures. Often, there is decoupling of some
of the equations, which simplifies the analysis and computer simulations. Moreover, one may
use such models as tests and benchmarks for computer schemes meant for simulations of more
complicated multidimensional contact problems. Models, analysis and computer simulations of
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various contact problems for rods and beams can be found in (Ahn et al., 2012; Andrews et al.,
2012; Kuttler et al., 2001; Shillor et al., 2001) and the references therein. A mathematical model
that describes unilateral contact of a beam between two deformable obstacles was studied in
(Barboteu et al., 2012b).

In this paper, we introduce a new mathematical model that describes quasistatic frictional
contact between a 2D bar and a foundation. The full model derivation and analysis can be found
in (Sofonea and Shillor, 2017). We assume that the foundation is deformable and we model the
contact with the normal compliance contact condition, and friction is described by the associated
Coulomb law. The model is two-dimensional and its main unknowns are vertical and horizontal
displacement fields, both defined on an arbitrary section of the bar. We state the variational
formulation of the model, which includes a set-inclusion related to the friction condition, then
present a numerical approach. Finally, we provide numerical simulations that illustrate the
mechanical behavior of the solution of the quasistatic frictional contact model. In particular,
we study the behavior of the numerical solution with respect to the stiffness coefficient of the
normal compliance law. This study clearly shows that the problem with a unilateral constraint,
in which the obstacle is assumed to be completely rigid, may be approached as closely as one
wishes by the solution to the contact problem with normal compliance, with a sufficiently large
stiffness coefficient.

The rest of paper is structured as follows. In Section 2, we describe our model. Section 3
introduces the variational formulation of the problem, and a fully discrete variational approxi-
mation by considering a hybrid formulation. Section 4 describes a special 2D finite rectangular
element used in the discretization of the 2D bar. In Section 5, we present numerical results on
the contact of the bar with a planar or circular foundation. Finally, in Section 6, we provide a
very short summary and mention some further topic for study.

2. The model

We consider an elastic 3D rectangular domain B identified with a region in R
3 that is the

undeformed reference configuration of the body. We denote by (x, y, z) the coordinates and we
assume that B is sufficiently long in the direction Oz so that the end effects in this direction
are negligible. Thus, B = (0, L) × (−h, h) × (−∞,+∞). Since B is a 3D body, which is infinite
in the z direction, we refer to B as a plate, and L and 2h represent its length and its thickness,
respectively. We denote in what follows by Ω = (0, L) × (−h, h) the cross section of the plate
and, therefore, B = Ω × (−∞,+∞). Moreover, when h ≪ L we refer to Ω as a 2D bar, which
is the topic of this paper.

Let ΓD = 0 × (−h, h), ΓN = (0, L) × {h}, ΓF = L × (−h, h) and ΓC = (0, L) × {−h}.
The plate is clamped on ΓD × (−∞,+∞) so the displacement field vanishes there. It is free on
ΓF × (−∞,+∞). On the top, ΓN × (−∞,+∞), it is being acted upon by distributed surface
tractions of density p. On the bottom, ΓC×(−∞,+∞), the plate may come in frictional contact
with a foundation or obstacle described by the function y = Ψ(x), which for the sake of simplicity
is assumed to be time independent. The physical setting (the cross section of the plate) is depicted
in Fig. 1. Contact is described with the normal compliance condition (in the vertical direction)
and friction with the Coulomb law of dry friction (in the horizontal direction). It is assumed
that the forces and tractions vary sufficiently slowly so that the quasistatic approximation is
valid. In addition, for the sake of simplicity, body forces are neglected.

We denote by ν the unit normal vector on the surface of B and we use the subscripts ν
and τ to represent normal and tangential components, respectively, of vectors and tensors. The
time interval of interest is [0, T ] (T > 0) and a dot above a variable represents its partial time
derivative. We denote by S3 the linear space of the second order symmetric tensors in R

3 or,
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Fig. 1. The setting of the problem; ΓC is the potential contact surface and Ψ describes
the obstacle or foundation

equivalently, the space of symmetric matrices of the order three, while “ · ” and ‖ · ‖ represent
the inner products and the Euclidean norms on R3 and S3.
The mathematical model for the quasistatic evolution of the state of the elastic plate, on the

assumptions described above, is the following (Sofonea and Shillor, 2017).

Problem P3D. Find a displacement field u : Ω × (−∞,+∞) × (0, T ) → R
3 and a stress field

σ : Ω × (−∞,+∞)× (0, T )→ S3 such that:

σ = λ( trε(u))I3 + 2δε(u) in Ω × (−∞,+∞)× (0, T ) (2.1)

Divσ = 0 in Ω × (−∞,+∞)× (0, T ) (2.2)

u = 0 on ΓD × (−∞,+∞)× (0, T ) (2.3)

σν = 0 on ΓF × (−∞,+∞)× (0, T ) (2.4)

σν = p on ΓN × (−∞,+∞)× (0, T ) (2.5)

−σν = λnc(uν − g)+ on ΓC × (−∞,+∞)× (0, T ) (2.6)

‖στ‖ ¬ µ|σν |

−στ = µ|σν |
u̇τ
‖u̇τ‖

if u̇τ 6= 0





on ΓC × (−∞,+∞)× (0, T ) (2.7)

u(0) = u0 in Ω × (−∞,+∞) (2.8)

We turn to a short description of equations and conditions (2.1)-(2.8). First, equation (2.1)
represents the linear elastic constitutive law in which λ and δ are the material Lamé coefficients,
ε(u) is the linearized strain tensor associated with the displacement field u = (u,w, v), trε(u)
denotes its trace and I3 represents the identity tensor or matrix in S3. Equation (2.2) represents
the balance of the forces. We use it in this simplified version since we assume that the process
is quasistatic and we neglect any body forces. Here, Divσ represents divergence of the stress
field σ. Condition (2.3) describes the clamping on ΓD, and conditions (2.4) and (2.5) represent
the traction conditions, described above.
Next, we describe the contact conditions. Equality (2.6) represents the so called normal

compliance condition in which g = −h−Ψ denotes the gap between the lower surface at −h and
the obstacle, measured in the direction of the outward normal, λnc is the normal compliance
stiffness coefficient of the foundation and r+ = max{0, r}. The normal compliance condition was
introduced in (Martins and Oden, 1987) and was studied extensively, see, e.g., Han and Sofonea
(2002), Klarbring et al. (1988, 1989), Shillor et al. (2004) and the many references therein,
where more general normal compliance conditions can also be found. Condition (2.7) represents
Coulomb’s law of dry friction in which µ is the coefficient of friction, assumed to be a positive
constant. We refer to references (Eck et al., 2005; Han and Sofonea, 2002; Shillor et al., 2004;
Sofonea and Matei, 2012), among the many others for explanation of this condition and related
generalizations.
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Finally, the problem is quasistatic since Coulomb’s condition contains the tangential spe-
ed ‖u̇τ‖, therefore, we need to provide initial condition (2.8), in which u0 denotes the given
initial displacement.

Next, we follow (Gao, 1998; Gao and Russell, 1994) and introduce additional assumptions
that allow us to derive a simplified two-dimensional model associated with Problem P3D. We
assume that

p = [q, f, 0] with f = f(x, t) and q = q(x, t) (2.9)

In other words, we assume that on the top y = h the plate is subjected to a distributed vertical
load f and tangential traction q, which do not depend on z. Also, we assume that the initial
displacement is such that

u0 = [u0, w0, 0] with u0 = u0(x, y) and w0 = w0(x) (2.10)

Load (2.9) and initial data (2.10), because of the symmetry, cause deformations of the elastic
plate with a displacement field u that is independent of z in the form

u = [u,w, 0] with u = u(x, y, t) and w = w(x, t) (2.11)

Here, u is the horizontal displacement, w is the vertical one, and the displacement in the
z-direction vanishes. We note that w does not depend on y, which is also an interesting part of
the model.

It follows that the components of the stress field do not depend on z. Therefore, we are in the
situation when both the data and the unknown of this problem do not depend on z. Thus, the
simplified problem with symmetry is two-dimensional and can be formulated in the domain Ω
as follows

Problem P2D. Under assumptions (2.9) and (2.10), find a displacement field u = (u,w) :
Ω × (0, T ) → R

2 and a stress field σ : Ω × (0, T ) → S3 such that (2.1) and (2.2) hold in
Ω× (0, T ), (2.3)-(2.5) hold in ΓD × (0, T ), ΓF × (0, T ) and ΓN × (0, T ), respectively, (2.6)
and (2.7) hold in ΓC × (0, T ) and, finally, (2.8) holds in Ω.

A detailed description of Problem P2D, together with its variational analysis, including the
existence and uniqueness results, can be found in our recent paper (Sofonea and Shillor, 2017).
We also refer to Sofonea and Bartosz (2017) where the analysis of a dynamic contact problem
for viscoelastic plates was provided. There, the model considered was two-dimensional and was
derived from the full three-dimensional problem by using very similar arguments.

3. Variational form and its approximation

In this Section, we present a hybrid variational formulation of Problem P2D and then its ap-
proximation that leads to our algorithm for its numerical solutions. The method is based on a
combination of the penalty method for normal compliance condition (2.6) and the augmented
Lagrangian method for the numerical treatment of friction conditions (2.7). The Lagrange mul-
tiplier is associated with the tangential frictional traction. Then, we present the approximation
of the problem by using a uniform discretization of the time interval and the finite element
method in the plane. We use arguments similar to those used in Barboteu et al. (2012a, 2014,
2016) and, for this reason, we skip many of the details.
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3.1. A hybrid variational formulation

To introduce the hybrid variational problem, we need the following function spaces. We note
that u = u(x, y, t) is defined on Ω × [0, T ] while w = w(x, t) is defined on [0, L] × [0, T ], which
is the peculiarity of our problem, hence we seek the displacement field in the spaces

V = {u ∈ H1(Ω) : u(0, ·) = 0} W = {w ∈ H1(0, L) : w(0) = 0} X = V ×W

These are real Hilbert spaces with inner products defined by

(u, ψ)V =

∫∫

Ω

(uw + uxψx + uyψy) dx dy ψ ∈ V

(w,ϕ)W =

L∫

0

(wψ + wxψx) dx w,ϕ ∈W

(u,v)X = (u, ψ)V + (w,ϕ)W u = [u,w], v = [ψ,ϕ] ∈ X

We seek for the stress field in the space

Q =
{
σ = (σij) : σij = σji ∈ L2(Ω)

}

endowed with its canonical inner product. Also, we consider the function f : [0, T ] → X given
by

(f(t),v)X =

L∫

0

q(x, t)ψ(x, h) dx+

L∫

0

f(x, t)ϕ(x) dx

for all u = [u,w], v = [ψ,ϕ] ∈ X and t ∈ [0, T ]. Note that the definition of f is based on Riesz’s
representation theorem, under appropriate regularity assumptions on q and f .

To deal with the Lagrange multiplier, we introduce the space Xτ = {ψ(x,−h) : ψ ∈ V },
equipped with its usual norm and denote by X ′τ its dual. Then, we introduce a function Iτ :
Xτ → (−∞,+∞] by

Iτ (ψ) =
L∫

0

|ψ(x,−h)| dx ψ ∈ Xτ

Next, we note that for all t ∈ (0, T ), friction condition (2.7) is equivalent to the subdifferential
inclusion

−ξτ (t) ∈ −µλnc(−w(t) − g)+∂Iτ (u̇(t)) in X ′ν (3.1)

where ∂Iτ denotes the subdifferential of Iτ in the sense of the convex analysis. Inclusion (3.1) le-
ads us to consider the Lagrange multiplier that is related to the friction traction and is considered
as an additional unknown. Then, the hybrid variational formulation of the contact problem P2D,
obtained by multiplying the equations with the relevant test functions and performing integra-
tion by parts, is as follows.

Problem PV2D. Given u0 ∈ X, find a displacement field u = [u,w] : [0, T ] → X, a stress field
σ : [0, T ]→ Q and a Lagrange multiplier ξτ : [0, T ]→ X ′τ such that for all t ∈ [0, T ]
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σ(t) = λ( trε(u(t)))I2 + 2δε(u(t)) in Ω (3.2)

∫∫

Ω

σ(t) · ε(v) dx−
L∫

0

λnc(−w(t)− g)+ϕ dx
(3.3)

−
L∫

0

ξτ (t)ψ(x,−h) dx = (f(t),v)X v = [ϕ,ψ] ∈ X

−ξτ (t) ∈ −µλnc(−w(t)− g)∂Iτ (u̇(t)) in X ′ν (3.4)

u(0) = u0 in Ω (3.5)

3.2. Numerical approximation

We turn to the numerical approximation of Problem PV2D. We use the finite element method
for spatial discretization of the domain Ω by introducing a specific finite rectangle element and
a uniform discretization of the time interval [0, T ]. Since Ω is a rectangular domain, we denote
by {T h} a regular family of rectangular finite element partitions of Ω that are compatible
with the boundary decomposition Γ = ΓD ∪ ΓN ∪ ΓF ∪ ΓC . Here and below, h represents the
spatial discretization parameter. In the numerical examples presented in the next Section, we
approximate the spaceX by the finite dimensional space of continuous piecewise affine functions,
denoted Xh. The space Q is approximated by the finite element space of piecewise constants,
denoted Qh. For the discretization of the Lagrange multiplier ξτ , we consider a discrete space
Y h
τ ⊂ X ′τ∩L2(ΓC). For the time discretization, we use a collection of discrete times {tn}Nn=0 which
define a uniform partition of the time interval [0, T ] =

⋃N
n=1[tn−1, tn] with t0 = 0, tn = tn−1 + k

and tN = T , where N > 0 is an integer and k = T/N is the time step size. We use the notation
gj = f(tj), 0 ¬ j ¬ N , for a continuous function g(t) with values in a function space. Additional
details about the discretization can be found in (Khenous, 2006a,b).
Let uh0 ∈ Xh be a finite element approximation of u0. Then, using the previous notations

and an implicit Euler scheme δuhkn = (u
hk
n −uhkn−1)/k for the approximation of the time direvative

u̇(x,−h), the fully discrete approximation of Problem PV h

2D at the time tn is the following.

Problem PV h

2D . Find a discrete displacement field u
hk = {uhkn }Nn=0 ⊂ Xh, a discrete stress field

σhk = {σhkn }Nn=0 ⊂ Qh and a discrete tangential traction ξhkτ = {ξτ hkn }Nn=0 ⊂ Y h
τ such that,

for all n = 1, . . . , N

σ
hk
n = λ( trε(u

hk
n ))I2 + 2δε(u

hk
n ) (3.6)

∫∫

Ω

σ
hk
n · ε(vh) dx−

L∫

0

λnc(−whk
n − g)+ϕh dx

(3.7)

−
L∫

0

ξτ
hk
n ψ
h(x,−h) dx = (fhkn ,vh)X ∀vh = (ϕh, ψh) ∈ Xh

−ξτ hkn ∈ −µλnc(−whk
n − g)+∂Iτ (δuhkn ) (3.8)

uhk0 = u
h
0 (3.9)

Concerning the numerical solution of hybrid variational Problem PV h

2D , we have the following
comments: The numerical treatment of condition (3.8) is based on a combination of the penalty
method for the normal compliance condition, with an augmented Lagrangian method for the
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friction condition. Then, the numerical approximation of Problem PV h

2D leads at each time step to
the solution of a system of nonlinear equations. Next, the unknown pair (u, ξτ ) of this nonlinear
system is computed by using a generalized Newton method which leads, at each iteration, to
the solution of a linear non-symmetric system. Details on this method can be found in (Laursen,
2002). Finally, the successive linear non-symmetric systems are solved by using a Conjugate
Gradient Squared Method (CGS) with Incomplete LU factorization preconditioners. We note
that the contact and friction terms lead to poor conditioning of the non-symmetric system matrix
that is overcome by using an element-by-element factorization, see Alart et al. (1997) for details.

4. A specific finite rectangular element

In this Section, we focus on the presentation of a 2D finite rectangular element used in the
discretization of the 2D linear elastic bar considered in this work. Since the domain Ω is rectan-
gular, we consider finite rectangular elements Ωe for the spatial discretization of Ω. Due to the
fact that the horizontal displacement u depends on x and y, and the vertical displacement w
depends only on x, the use of the usual isoparametric formulation is not possible. Therefore,
in each element we introduce the following displacement interpolations for u(x, y) and w(x),
respectively (see Fig. 2).

Fig. 2. 2D finite rectangular element

We write

u(ξ, η) = N(ξ, η)ue w(ξ) =M(ξ)we (4.1)

where the shape functions N and M are defined in the local coordinate system (ξ, η) by

N(ξ, η) =
1

4




(1− ξ)(1 − η)
(1 + ξ)(1 − η)
(1 + ξ)(1 + η)
(1− ξ)(1 + η)




T

M(ξ) =
1

2

[
1− ξ
1 + ξ

]T
(4.2)

In (4.1), we use ue and we to denote the vectors of displacements at the local nodes of the finite
rectangular element, that is

ue =




u1
u2
u3
u4


 we =

[
w1
w2

]
=

[
w3
w4

]
(4.3)

We note that in contrast with the displacement interpolations used in the literature, the
required mapping from the local coordinate system (ξ, η) to the global coordinate system (x, y)
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is based on the same shape function N, both for x and y. Then, the finite element mapping can
be defined by

x = N(ξ, η)xe y = N(ξ, η)ye (4.4)

Here, the local vectors xe and ye contain the value of the local coordinates at the nodes of the
rectangle, that is

xe =
[
x1 x2 x3 x4

]T
=
[
x1 x1 + a x1 + a x1

]T

ye =
[
y1 y2 y3 y4

]T
=
[
y1 y1 y1 + b y1 + b

]T

where a and b are real positive numbers that represent the width and height of the rectangle,
respectively.

Based on (4.1) and (4.4), we construct in what follows the element stiffness matrixKe arising
from the elementary discretization of the first term in (3.3). To this end, we consider a special
finite rectangular element oriented with its sides parallel to the x, y axes. Then, the Jacobian
mapping matrix J is defined by

J(ξ, η) =




∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η


 =




∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η







x1 y1
x2 y2
x3 y3
x4 y4




In our special case, by using the shape function N given in (4.2), we obtain

J(ξ, η) =
1

4

[
−1 + η 1− η 1 + η −1− η
−1 + ξ −1− ξ 1 + ξ 1− ξ

]



x1 y1
x1 + a y1
x1 + a y1 + b
x1 y1 + b




As is customary in the finite element method, we use a vectorial notation for the components
of both the strain tensor ε and the stress tensor σ, i.e.

ε =



εxx
εyy
2εxy


 =




ux
wy

uy + wx


 =




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x




[
u(x, y)
w(x)

]
(4.5)

and

σ =



σxx
σyy
2σxy


 = Eε (4.6)

Here, the matrix E takes into account the linear elastic constitutive behavior given in (3.2) and
is defined by

E =



λ+ 2δ λ 0
λ λ+ 2δ 0
0 0 δ


 =



E1 E2 0
E2 E3 0
0 0 E6
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Using (4.1) and (4.2), equalities (4.5) and (4.6) yield

ε = B(ξ, η) · de σ = EB(ξ, η) · de (4.7)

where de = [ue, we]T is the vector of nodal variables and B(ξ, η) is the deformation strain-
displacement matrix given by

B(ξ, η) =




∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

0 0

0 0 0 0 0 0

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y

∂M1
∂x

∂M2
∂x




(4.8)

It follows from forms (4.2) of the shape functions N and M that

B(ξ, η) =




− 1
2a
(1− η) 1

2a
(1− η) 1

2a
(1 + η) − 1

2a
(1 + η) 0 0

0 0 0 0 0 0

− 1
2b
(1− ξ) − 1

2b
(1 + ξ)

1

2b
(1 + ξ)

1

2b
(1− ξ) −1

a

1

a




Using now (4.7), the element stiffness matrix Ke of our 2D linear elastic bar can be written
as

Ke =

∫

Ωe

BTEB dΩ =
4∑

i=1

1

4
[B(ξi, ηi)]

TE[B(ξi, ηi)]|J |ωi.

Then, after some algebra, we derive the following element stiffness matrix

Ke =
ab

16




2
(E1
a2
+
E6
b2

)
−2E1

a2
0 −2E6

b2
2
E6
ab

−2E6
ab

−2E1
a2

2
(E1
a2
+
E6
b2

)
−2E6

b2
0 2

E6
ab

−2E6
ab

0 −2E6
b2

2
(E1
a2
+
E6
b2

)
−2E1

a2
−2E6

ab
2
E6
ab

−2E6
b2

0 −2E1
a2

2
(E1
a2
+
E6
b2

)
−2E6

ab
2
E6
ab

2
E6
ab

2
E6
ab

−2E6
ab

−2E6
ab

−4E6
a2

4
E6
a2

−2E6
ab

−2E6
ab

2
E6
ab

2
E6
ab

−4E6
a2

4
E6
a2




(4.9)

This form, (4.9), of the element stiffness matrix is the starting point in the construction of the
global stiffness matrix of the system to be solved.

5. Numerical simulations

The method described in the previous Section has been implemented and a number of compu-
ter solutions for the contact problem obtained. Here, we present numerical simulations of two
settings in which the foundation is either planar or curved. In the first case, the foundation is
defined by the function Ψ(x) = −0.1. In the second case, it is a circular arc lying on the circle
defined by the function y = Ψ(x) that is given by (x− 0.5)2 + (y + 1)2 = 0.92.
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Fig. 3. The bar in potential contact with a planar obstacle

Fig. 4. The bar in potential contact with a circular obstacle

The physical settings of these two configurations are depicted in Figs. 3 and 4. We pay
particular attention to the mechanical aspects of the frictional contact conditions (2.6) and
(2.7) and we provide a study of the dependence of the numerical solution with respect to the
stiffness coefficient of the normal compliance law.
In the computations, we use a rectangular mesh composed of a uniform partition of finite

rectangular elements introduced in the previous Section. The spatial discretization parameters
in both the x and y directions are hx = 1/128 and hy = 1/240, respectively. The rest of the data
are the following: L = 1m, h = 0.05m, E = 1000N/m2, G = 0.3, T = 1.1 s, N = 11, k = 0.1 s,
f = [0,−20] N/m2 on ΓN , µ = 0.4 (friction) and µ = 0 (frictionless), u0 = [0, 0] m in Ω.
Our numerical simulations are presented in Figs. 5-10 below in which the deformed con-

figuration of the bar, at the end of the time interval, is depicted. The arrows in the figures
that originate on the contact surface represent the frictional contact interface tractions exer-
ted by the bar on the foundation. Moreover, for the simulations presented in Figs. 5-8, we use
λnc = 100N/m

2. A detailed description of our numerical results is the following.

We observe in Fig. 5 that in the case of a planar obstacle, the contact takes place on a large
fraction of the contact nodes on the contacting surface y = −h and so the interface tractions
are nonzero there. Here, we chose the friction coefficient to be µ = 0.4, which is rather large, to
make the effects more noticeable. Moreover, it is seen that the nodes that are on the right side
of the contact region are in a stick state, a state in which u̇ = 0. The other nodes that are in
active contact are in a slip state. This is a state in which u̇ 6= 0 and the friction bound has been
reached by the friction traction. In the frictionless case, depicted in Fig. 6, when µ = 0, we note
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that the contact forces are vertical and all the nodes that are in active contact are in the slip
state (since the friction bound vanishes).

Fig. 5. Deformed mesh and interface tractions in the frictional case, µ = 0.4

Fig. 6. Deformed mesh and interface tractions in the frictionless case, µ = 0

We turn to describe the second case of contact with a circular obstacle, see Fig. 7. In contrast
to the first case, here active contact arises in fewer nodes on the contact boundary and the rest
of the boundary is in state of separation where the interface tractions vanish. We note that most
of the nodes in contact are in the slip state, and only a few nodes are in the stick state. In the
frictionless case, Fig. 8, all the contact nodes are in the slip state and the contact tractions are
oriented in the normal direction of the foundation.

Fig. 7. Deformed mesh and interface tractions in the case with friction

Fig. 8. Deformed mesh and interface tractions in the frictionless case
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We next describe our numerical experiments concerning the normal compliance stiffness co-
efficient λnc, since we expect the solutions to the problem with the normal compliance condition
to converge, as λnc → ∞, to the solutions of the problem with the Signorini nonpenetration
contact condition. The latter describes a perfectly rigid foundation. We present results obta-
ined in the case of the planar obstacle in Fig. 9, for four different values of λnc. We plot the
deformed configurations as well as the frictional contact interface tractions for λnc = 1N/m

2,
10N/m2, 100N/m2 and λnc = 1000N/m

2. We note that for λnc = 1N/m
2, a large proportion of

the contact nodes are in relatively large penetration into the foundation since, in this case, the
foundation is soft and so easily deformable. As the stiffness coefficient λnc becomes larger, the
penetration of the bar into the foundation decreases. For λnc = 1000N/m

2, we observe that the
penetration is negligible. This behavior of the numerical solution shows that for a large stiffness
coefficient λnc, the foundation behaves like a rigid one, and shows that we may use the normal
compliance as an approximation for very stiff foundations.

Fig. 9. Deformed mesh and interface tractions for various values of λnc

Fig. 10. Deformed mesh and interface tractions for various values of λnc

Finally, in Fig. 10, we present similar results for the case of the circular obstacle. These results
provide the same conclusion: the contact problem with unilateral constraint may be approched
by a contact problem with normal compliance, with a sufficiently large stiffness coefficient. Our
numerical results are sumarized in Table 1.
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Table 1

λnc = 1 λnc = 10 λnc = 100 λnc = 1000 λnc = 10000

max. penetration
0.242322 0.0285327 0.003274 0.000418 0.000438

(planar obstacle)

max. penetration
0.188659 0.032852 0.005161 0.000984 0.000101

(circular obstacle)

6. Conclusions and comments

This work presents a two-dimensional model for a long thin bar. It is simpler than a 2D model
of an elastic long object in which the vertical displacement depends only on x. This makes the
model easier to analyze and computationally simulate. The numerical simulations show that the
model is especially useful in dealing with frictional contact.

The extension of the model to include dynamic effects is straightforward. It may be of interest
to extend the model and set it as an optimal control problem by introducing the traction on the
top surface as the control. Finally, more numerical simulations with different friction coefficients
may be of interest (see, e.g., Barboteu et al., 2012b; Gao and Russell, 1994).
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8. Eck C., Jarušek J., Krbeč M., 2005, Unilateral Contact Problems: Variational Methods and
Existence Theorems, Pure and Applied Mathematics, 270, Chapman/CRC Press, New York

9. Gao D.Y., 1998, Bi-complementarity and duality: A framework in nonlinear equilibria with ap-
plications to the contact problems of elastoplastic beam theory, Journal of Mathematical Analysis
and Applications, 221, 672-697

10. Gao D.Y., Russell D.L., 1994, A finite element approach to optimal control of a ‘smart’ beam,
[In:] International Conference of Computational Methods in Structural and Geotechnical Engine-
ering, P.K.K. Lee, L.G. Tham and Y.K. Cheung (Edit.), Hong Kong, 135-140



910 M. Barboteu et al.

11. Han W., Sofonea M., 2002, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,
Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI, Interna-
tional Press, Somerville, MA

12. Khenous H.B., Laborde P., Renard Y., 2006a, On the discretization of contact problems in
elastodynamics, Lecture Notes in Applied and Computational Mechanics, 27, 31-38

13. Khenous H.B., Pommier J., Renard Y., 2006, Hybrid discretization of the Signorini problem
with Coulomb friction. Theoretical aspects and comparison of some numerical solvers, Applied
Numerical Mathematics, 56, 163-192

14. Kuttler K.L., Park A., Shillor M., Zhang W., 2001, Unilateral dynamic contact of two
beams, Mathematical and Computer Modelling, 34, 365-384

15. Kuttler K.L., Purcell J., Shillor M., 2012, Analysis and simulations of a contact problem for
a nonlinear dynamic beam with a crack, Quarterly Journal of Mechanics and Applied Mathematics,
65, 1-25

16. Klarbring A., Mikelic A., Shillor M., 1988, Frictional contact problems with normal com-
pliance, International Journal of Engineering Science, 26, 811-832

17. Klarbring A., Mikelic A., Shillor M., 1989, On friction problems with normal compliance,
Nonlinear Analysis, 13, 935-955

18. Laursen T., 2002, Computational Contact and Impact Mechanics, Springer, Berlin

19. Martins J.A.C., Oden J.T., 1987, Existence and uniqueness results for dynamic contact pro-
blems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA, 11, 407-428

20. Migórski S., Ochal A., Sofonea M., 2013, Nonlinear Inclusions and Hemivariational Inequ-
alities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26,
Springer, New York

21. Panagiotopoulos P.D., 1993, Hemivariational Inequalities, Applications in Mechanics and En-
gineering, Springer-Verlag, Berlin

22. Shillor M., Sofonea M., Telega J.J., 2004, Models and Analysis of Quasistatic Contact,
Lecture Notes in Physics, 655, Springer, Berlin

23. Shillor M., Sofonea M., Touzani R., 2001, Quasistatic frictional contact and wear of a beam,
Dynamics of Continuous, Discrete and Impulsive Systems, 8, 201-218

24. Sofonea M., Bartosz K., 2017, A Dynamic contact model for viscoelastic plates, Quarterly
Journal of Mechanics and Applied Mathematics, 70, 1, 1-19, DOI:10.1093/qjmam/hbw013

25. Sofonea M., Matei A., 2012,Mathematical Models in Contact Mechanics, London Mathematical
Society Lecture Note Series, 398, Cambridge University Press, Cambridge

26. Sofonea M., Shillor M., 2017, Modelling and analysis of a frictional contact problem for elastic
bars, submitted to Electronic Journal of Differential Equations

Manuscript received January 16, 2017; accepted for print March 31, 2017



JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 3, pp. 911-922, Warsaw 2017
DOI: 10.15632/jtam-pl.55.3.911

THERMAL MODELLING, SIMULATION AND EXPERIMENTAL
VALIDATION OF HEAT ACCUMULATION IN A FRAMED GLASS CABIN

Tarun K. Bera, Sushank Dixit
Mechanical Engineering Department, Thapar University, Patiala, India

e-mail: tarunkumarbera@gmail.com

Anirban Bhattacharya
Mechanical Engineering Department, Indian Institute of Technology (IIT) Patna, India

Devender Kumar
Mechanical Engineering Department, Thapar University, Patiala, India

Arun K. Samantaray
Mechanical Engineering Department, Indian Institute of Technology (IIT) Kharagpur, India

The present work concerns prediction of the amount of heat accumulation within the interior
of a framed glass cabin and proposes some remedial measures to reduce temperature in the
cabin. Various configurations such as double layer glass box filled with static air, static argon
gas and flowing argon gas within the space between the two glass-layers are considered to
conduct the experiments. Multi-physics bond graph models for these configurations are
developed considering thermo-fluidic aspects. The experimental results are compared with
the simulations using bond graph models. Though, direct application to a vehicle is not
made, without loss of generality, the modelling and experimental procedure can be extended
to analyze the heat accumulation inside a vehicle cabin when the vehicle is parked under
direct sunlight.

Keywords: car cabin, experimental thermal analysis, bond graph modelling, double layer
glass window

1. Introduction

During summer season, the environmental temperature generally varies between 40◦C-50◦C in
southern Asia. The interior of a vehicle heats up significantly when parked in an open envi-
ronment under direct sunlight in such conditions. As the heat wave passes through the glass,
the wavelength of the electromagnetic wave increases, and higher wavelength electromagnetic
waves cannot escape outside the car compartment. Thus, the heat entrapment expedites interior
temperature of the car by nearly 20◦C to 30◦C above the surrounding atmosphere (Dadour et
al., 2011).
As a solution to the problems, vanadium dioxide coating for window glasses has been pro-

posed (Chen et al., 2012). This multilayer coating structure is transparent to visible light and
is opaque to infrared light at high temperature. A mathematical study was done in (Xamána
et al., 2014) on two layer windows with a solar control film. It was shown therein that the use
of the solar control film along with the double pane window reduces the heat flow from inside
to outside by up to 52%. Transmittance of solar radiation through the glazed window can be
reduced by using two glass panes without any air space between these panes (Mazzoni, 1977).
The effect of solar radiation over the air flow and temperature distribution in the compartment
of a car was studied (Lee et al., 2014). The thermal modelling of the car cabin and controlling
the temperature by means of a fuzzy logic controller were developed in (Sanaye et al., 2012).
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A comprehensive review of different models developed to predict thermal comfort of vehicular
cabins in addition to different experimental techniques was provided in (Alahmer et al., 2011). In
(Al-Kayiem et al., 2010), experiments were performed by parking a salon car in direct sunlight
and in an un-shaded area. Temperatures at 12 different locations were measured and then those
values were used in 3-D CFD simulation performed with FLUENT software.
The bond graph is a multi-energy domain modelling tool (Merzouki et al., 2012). It was used

therein to model the heat transfer from the external environment to the inside of a building.
Many authors have worked on the bond graph modelling of thermo-fluidic systems: general
modelling framework development, thermo-fluid library for process engineering systems (Sa-
mantaray et al., 2004), multi-phase systems (Brown, 2002) and applications to steam generators
(Ould Bouamama et al., 2006).
The usual control of cabin temperature is based on the feed-back principle. However, when a

vehicle moves from a shaded zone to a sunny area or vice-versa, the feed-back control is usually
too slow to timely react due to the inherently slow dynamics of thermal systems. Therefore,
it is preferable to use feed-forward control strategies with estimation of the cabin temperature
change profile based on environmental temperature, air-conditioning load (number of passengers
and interior furniture), and exposure to sunlight and its intensity. It is further useful to combine
both feedback and feed-forward controls in a cascaded loop. However, such control laws require
a well-developed and validated thermal model of the system. In the present work, bond graph
models for such systems are developed and validated through experiments. The bond graph
model of a double layer toughened glass with air (stagnant) and argon (stagnant and flowing)
in between the two glasses is developed and experimentally validated.

2. Thermal model of the system through the bond graph method

A wooden frame structure with toughened glass windows each having a dimension of
548mm×310mm×5mm is constructed (shown in Fig. 1a) and exposed to direct sunlight for
experimentations. This assembly of wooden frame and the glass is assumed to be equivalent to
the internal compartment of a car. The glass is properly sealed with sealant (clay based) so that
no air can escape from the assembly. The frame is insulated with expanded polystyrene sheets
at the top and the bottom panels so that no heat or little heat could escape from those sides.

Fig. 1. (a) Cabin with single glass windows and (b) its bond graph model

2.1. Thermal modelling of the cabin system with single layer glass panel windows

The system made of single glass windows is modelled with the help of the bond graph so
that the results can be validated experimentally. The bond graph model of the system is given in
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Fig. 1b. Note that the pseudo-bond graph formalism is adopted here for simplicity of formulation
without unnecessarily bringing entropy into the picture.
The heat flux on the glass surface is absorbed, reflected or transmitted. An effort sensor or

detector (De) measures the temperature Tg of the glass. The stiffness K10 of the C10 element
is given by

K10 =
1

mgCg
(2.1)

where mg and Cg are mass and specific heat of the glass panel, respectively.
As shown in Fig. 1b, SF14 represents the amount of heat absorbed by the glass surface Qga,

and this is given by

Qga = IrAgag (2.2)

where Ir, Ag and ag are the irradiance, area and absorptivity of glass, respectively. The amount
of heat radiated by the glass surface into the surroundings Qro is modelled by SF12 element,
and is given by

Qro = egσAg(T
4
g − T 4s ) (2.3)

where eg, σ, Tg and Ts are the emissivity of glass, Stefan-Boltzmann constant, glass temperature
and space temperature, respectively.
Some of the heat from the glass surface is taken away by the surrounding air through convec-

tion. Qco is the heat flow by convection into the surroundings (modelled by SF13 in Fig. 1b),
and is given by

Qco = haoAg(Tg − Tao) (2.4)

where hao and Tao are the convective heat transfer coefficient of the outside air and atmospheric
temperature, respectively. Rci (modelled as R9 in the bond graph model) is the convective
thermal resistance to the heat transfer between the inside air and the inner surface of the glass.
The general heat transfer equation can be written as

Qci = Ahai∆T Qci =
∆T

Rci
(2.5)

Thus, the convective thermal resistance Rci is given by

Rci =
1

Ahai
(2.6)

where hai is the convective heat transfer coefficient of the fixed (inner) air.
Similarly, Rri is the radiative thermal resistance (denoted by the resistive element R7 in the

bond graph model) to the radiative heat flow from the inside air to the surface of the glass. This
heat flow can be obtained as

Tac − Tg =
Qri

Ageaσ(T 2ac + T
2
g )(Tac + Tg)

(2.7)

Defining the above in terms of resistance as Qri = ∆T/Rri, the radiative thermal resistance
Rri can be obtained as

Rri =
1

Ageaσ(T 2ac + T
2
g )(Tac + Tg)

(2.8)
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where Tac is the air temperature of the cabin. SF1 element represents the heat transmitted by the
glass, and this heat is absorbed by the air of the cabin. Thus, the amount of heat transmitted Qgt
by the glass is given by

Qgt = IrAgtg (2.9)

where tg is the transmissivity of glass. The element C3 models the heat stored by the inside air
and in the given integral causality, it outputs the effort information (temperature of the air of
the cabin). Its stiffness is defined as

K3 =
1

maCa
(2.10)

where ma and Ca are mass and specific heat of the inside air. The effort detector (De) is used
to measure the temperature of the air inside the glass compartment. In the bond graph model
given in Fig. 1b, all other parameters except Rri and the flow sources are constant values which
depend upon material properties and geometric dimensions. The parameter values used in the
simulation of the bond graph model shown in Fig. 1b are given in Table 1. The heat flux obtained
from the experiment has been used as the input to the bond graph model of a single layer of
the glass. The results obtained from the simulation of the bond graph model of the single
glass layer configuration are shown in Fig. 2a. It is seen from Fig. 2a that the central cabin
temperature increases very fast during the first half an hour and, after that, the rate of increase
of temperature slows down. The maximum temperature reached after 2.5 h is about 59.4◦C and,
after that, the temperature becomes steady. The temperature of the glass also increases in the
similar fashion as the cabin air; however, its value remains between temperatures of the cabin
air and the atmospheric air. After almost 2 h, the difference between temperatures of the central
cabin and the atmosphere becomes almost steady at 20.3◦C. This simulation indicates that the
temperature inside a closed car parked in direct sunlight increases rapidly.

Table 1. Parameter values of the single layer glass cabin

Parameter Value Description

ag 0.25 Absorptivity of glass

Ag 0.68m2 Total area of all four glasses

Ca 919 kJ/(kgK) Specific heat of air

Cg 720 kJ/(kgK) Specific heat of glass

ea 0.01 Emissivity of air

eg 0.9 Emissivity of glass

hai 8W/m2K Convective heat transfer coefficient of fixed air

hao 10W/m2K Heat transfer coefficient of outside
air with speed of 14 km/h

Ir 110W/m2 Heat flux

ma 0.063 kg Mass of air inside cabin

mg 23.4 kg Mass of glass

tg 0.5 Transmissivity of glass

Ts 12K Temperature of space

σ 5.67 · 10−8 Boltzmann constant

2.2. Thermal modelling of the cabin system with air-trapped two-layer glass panel windows

In the second phase of the experiment and simulation, two layers of toughened glass having
dimensions of 548mm×310mm×5mm are used in each window panel. These two layers are
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Fig. 2. Simulation results of (a) single layer glass and (b) double layer glass with entrapped air

assembled together in such a way that there is a fixed gap of 10mm in between them. For this
purpose, some separators are used. This entire setup is placed in an open environment under
direct sunlight. The bond graph model of this modified system is shown in Fig. 3a. A part of
the heat flux falling on the outer glass is absorbed by the glass; a part is reflected back and
the remaining part is transmitted. The heat absorbed by the outer glass is represented by Qga2
and is modelled by the SF14 element. As there are two layers of glasses separated by the air
gap of 10mm, the trapped air absorbs some part of the heat transmitted by the outer glass.
The remaining transmitted heat after getting absorbed by the air is reflected by the inner glass.
From this reflected heat, again a part of the heat is absorbed by the air present in between the
two glasses. The rest of the reflected heat after getting absorbed by the air in between the two
glasses is further absorbed by the outer glass. So, the total heat absorbed (Qga2) by the outer
glass is

Qga2 = IrAgag + IrAgtg(1− aa)rg(1− aa)ag (2.11)

where aa and rg are absorptivity of air and reflectivity of glass, respectively. The heat radiated
and convected from the outer glass are expressed by (2.3) and (2.4), respectively. The radiative
thermal resistance is obtained by replacing Tac and Tg by Ta2 (temperature of the atmospheric
air present in between two glasses) and Tga2 (temperature at the outer glass) in (2.8). The total
amount of heat Qaa2 absorbed by the air in between the two glasses is given by

Qaa2 = IrAgtgaa + IrAgtg(1− aa)rgaa (2.12)

The temperature of the inner glass is detected by the effort detector (De) connected to
0g1-junction. The heat absorbed Qga1 by the inner glass is given by

Qga1 = IrAgtg(1− aa)ag (2.13)

The transmitted heat Qgt1 that directly enters into the cabin is given by

Qgt1 = IrAgtg(1− aa)tg (2.14)

The parameter values in the earlier simulations are given in Table 1, and the additional
parameters related to the double layer configuration are given in Table 2.
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Fig. 3. Bond graph model of (a) double glass cabin with trapped air and (b) double layer glass cabin
with entrapped argon

Table 2. Parameter values of the double layer glass cabin with entrapped air

Parameter Value Description Parameter Value Description

aa 0.01 Absorptivity of air mg1 23.4 kg Mass of outer glass

Ir 118W/m2 Heat flux mg2 23.4 kg Mass of inner glass

ma2 0.00806 kg Mass of air present rg 0.25 Reflectivity of glass
between two glasses

The results obtained from simulations performed are shown in Fig. 2b. The initial tempera-
ture of atmosphere is 36.5◦C. The temperature of the central cabin after 2.5 h becomes 57.3◦C,
whereas for the single glass this temperature is 59.4◦C although the heat flux in the double glass
layer configuration (118W/m2) is greater than that in the single glass configuration (110W/m2).
Note that the environmental conditions for both simulations are different as they have been con-
ducted in different times. The maximum rise of the cabin temperature with the double glass
layer configuration is found to be 18.6◦C. The inner glass temperature is less than the outer glass
temperature for up to 1 h duration after exposure to direct sunlight. However, after the initial
1 h duration, the inner glass temperature exceeds the out glass temperature. Another important
observation is that the cabin air temperatures increases faster than the entrapped air.

2.3. Thermal modelling of the cabin system with argon-trapped two-layer glass panel
windows

The experiments for this configuration are performed in a similar manner to that performed
for the double glass layers with argon entrapped in between the glasses. The bond graph model
is given in Fig. 3b, which is similar to Fig. 3a in its structure. The total heat Qga2 absorbed by
the outer glass is given by

Qga2 = IrAgag + IrAgtg(1− aar)rg(1− aar)ag (2.15)

where aar is the absorptivity of argon. The total heat Qar absorbed by the argon gas is given by

Qar = IrAgtgaar + IrAgtg(1− aar)rgaar (2.16)
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where Rca30 (1/(Ahar) and the Rra29 are convective and the radiative thermal resistances, re-
spectively, for argon present between the outer and inner glass. The heat absorbed by the inner
glass is given as

Qga1 = IrAgtg(1− aar)ag (2.17)

Out of the total heat transmitted by the outer glass, some of the heat is absorbed by the
argon gas and the inner glass. The remaining heat is transmitted through the inner glass into
the internal chamber of the closed cabin. This transmitted heat Qgt1 is given by

Qgt1 = IrAgtg(1− aar)tg (2.18)

Most of the parameter values used in the simulation of the bond graph model developed in
Fig. 3b are given Table 1 and Table 2. The values of the modified and additional parameters are
listed in Table 3.

Table 3. Parameter values for the double layer glass cabin with entrapped argon

Parameter Value Description Parameter Value Description

aar 0.1 Absorptivity of argon har 5.3W/(m2K) Heat transfer
coeff. of argon

Car 520 kJ/(kgK) Specific heat of argon Ir 100W/m2 Heat flux

ear 0.05 Emissivity of argon mar 0.01209 kg Mass of argon

The simulation results for the double layer glass cabin with entrapped argon are shown
in Fig. 4a. The initial temperature of the surrounding is 36◦C. The temperature of the central
cabin after 2.5 h is 57.08◦C, whereas for the double glass with air, this temperature is 7.3◦C. The
temperature differences between the central cabin and the atmosphere are 16.7◦C and 18.6◦C,
respectively, for the double layer glass with argon and air insulation between the glass layers. So,
as expected, the use of the argon gas between the glass layers yields better thermal insulation.

Fig. 4. Simulation results of the double layer glass with (a) entrapped and (b) flowing argon

2.4. Thermal modelling of the cabin system with flowing argon between two-layer glass
panel windows

This configuration is intended for the double layer glass with the argon gas continuously
flowing through the system with a flow rate of 0.403182 g/s. The bond graph model of the
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system is similar to that for the earlier case. However, the heat transfer coefficient for flowing
argon is different. The parameter values for the simulation are given Tables 1, 2 and 3. The
convective heat transfer coefficient har of argon is considered as 7W/(m

2K) for the flow rate of
0.403182 g/s. The simulation results for the double layer glass with flowing argon are shown in
Fig. 4b. The initial temperature of the surrounding is 36.5◦C. The temperature of the central
cabin after 2.5 h is 55.07◦C whereas for the double glass with static argon, this temperature is
57.08◦C. The steady-state temperature difference between the central cabin and the atmosphere
is 16.7◦C and 16.1◦C for the double glass layer configuration with static argon and with flowing
argon, respectively. So, flowing argon between the two glass layers is preferable.

3. Experimental validation

3.1. Selection of the material and sensors

The materials and sensors used for the development of the experimental setup are wo-
oden frame, toughened glass, separator, air-oxygen separator, thermocouple, digital thermome-
ter, argon cylinder, pipe and T-connectors as shown in Fig. 5. The dimension of the frame
has been selected according to size of the toughened glass. The dimensions of the wooden
frame are 411.6mm×411.6mm×649.6mm. Laminated glass and toughened glass are widely
used in vehicles due to its non-breaking tendency. The size of the toughened glass used is
310mm×548mm×5mm. A solar power meter is used to measure the solar heat intensity x,
and this value is used to calculate the solar heat flux Y as obtained after calibrating with a
pyranometer (R2 = 0.99)

Y = 0.745x + 1.839 (3.1)

Fig. 5. Experimental accessories (a) glass supporting structure, (b) digital thermometer, (c) argon
cylinder, (d) separator, (e) solar power meter and (f) argon-oxygen separator
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3.2. Experimentation on the cabin system with single layer glass panel windows

It is the first phase of the experiment; toughened glass having dimensions 548mm×
310mm×5mm is fitted into the wooden frame. The glass is properly sealed with the sealant
(clay) so that no air can escape from the assembly. The frame is insulated with expanded po-
lystyrene from the top and the bottom so that very little heat could escape. The entire setup
is exposed to direct solar heat waves. The heat starts to accumulate in the interior of the cabin
by means of conduction, convection and radiation. Most of the accumulated heat is due to the
radiation. Two digital thermometers are used to measure cabin temperature and atmospheric
temperature. A solar power meter is used to measure the solar light intensity which eventually
gives the value of the solar heat flux. The experiment starts at 11 am on a hot sunny day of
summer and readings are taken at an interval of 15 minutes for the first half hour and then
onwards at 30 minute intervals. Initially, the temperature difference between the atmosphere
and the cabin compartment is less, but as the time passes, this temperature difference goes on
increasing. The results obtained by the experiment are compared with the results from the bond
graph modelling, and these are shown in Fig. 6a. As shown in Fig. 6a, the simulated results for
the central cabin temperature are very close to those obtained from the experiment.

Fig. 6. Experimental vs simulation results for (a) single layer glass and (b) double layer glass
with entrapped air

3.3. Experiments on the cabin system with air-trapped double layer glass panel windows

The top and the bottom portion of the cabin prepared with the double layer glass panel are
covered by expanded polystyrene sheets so that little heat could get escape through them. Two
digital thermometers are used to measure the temperature inside and outside the cabin. The
basic principle of such a type of arrangement is to form a barrier for the heat flow. The toughened
glass and trapped air inside the two layers of glasses have low thermal conductivity and thus
inhibit heat transfer. The experimental and simulation results for this configuration are shown in
Fig. 6b where the atmospheric temperature (an input to the simulation model) has a variation of
about 2◦-3◦C. Although there is not much variation in the atmospheric temperature, the central
cabin temperature goes on increasing. Initially, the temperature difference between the central
cabin temperature and the atmospheric temperature is less, but with time, this temperature
difference increases. When compared to Fig. 6a, i.e. the experiment performed on the single
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layer glass, the temperature difference obtained in the double layer glass panel configuration is
quite less.

3.4. Experiments on the cabin system with argon-trapped double layer glass panel windows

The experiments are performed on the double glass with argon entrapped in between the
glasses. A hole of 3mm is drilled through the separator. A pipe of 3mm diameter is inserted
through the hole of the separator and this pipe is further connected to the argon gas cylinder.
This assembly is prepared so as to fill the gap with argon (stored in the cylinder) and prevent any
leakage. A constant flow of the argon gas is maintained in all four double layer glass assemblies
so that atmospheric air is displaced by the pressurized argon gas. The constant flow is checked
by counting the bubbles coming out from the outlet pipe which is dipped in water. When the
bubble count per time unit is stabilized, the argon gas flow is stopped. The displacement of the
atmospheric air by the pressurized argon gas is also verified by a parallel arrangement installed
during the experiment. In this arrangement, the outlet line is made to pass through a closed
chamber (Fig. 5f) having a burning candle inside it. The candle stops burning as soon as there
is no oxygen available in the outlet pipe coming out from the double layered glass assemblies.
When the pressure at the supply and at the outlet of the assembly of the glasses becomes equal,
it indicates that the argon gas has been completely filled in the gap of the two glasses. Then the
entire setup is exposed to the sunlight at the scheduled time.
The experimental and simulation results for this case are shown in Fig. 7a. During this

experiment, the atmospheric temperature ranges between 36◦-40.4◦C and the rise in temperature
of the central cabin is 16.7◦C. Compared to the results obtained for the single glass panel cabin
(20.3◦C) and the double layer glass panel cabin with air insulation (18.6◦C), the rise in the cabin
temperature is less for the double layer glass panel cabin with argon gas insulation between the
glass layers. The cabin temperature has fallen by nearly 3.6◦C from the single layer glass panel
configuration.

Fig. 7. Experimental vs simulation results for the double layer glass with (a) entrapped argon and
(b) flowing argon

3.5. Experiments on the cabin system with two-layer glass panel windows and argon
flowing between the glass layers

Experiments were further conducted using the same setup with argon flowing at a rate of
0.403 g/s through the gap between the two glass layers. The simulation and experimental results
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for this configuration are shown in Fig. 7b. The temperature difference (16.1◦C) between the
central cabin temperature and atmospheric temperature is lower than that for the single glass
layer (20.3◦C) and the double glass with the entrapped air (18.6◦C), but nearly the same as
that of the double glass with entrapped argon (16.7◦C). The continuous flow of argon helps
carrying away the heat outside the cabin and, therefore, reduces a rise in the cabin temperature.
This reduction could be more effective if the argon flow rate is increased. In addition, while the
sealed glass panels with permanently entrapped air or argon can be easily fabricated as a unit,
the flowing argon configuration requires additional components like air/argon pump, pipes, etc.
due to which the manufacturing and maintenance problems encountered far outweigh the minor
performance gain.

4. Conclusions

Experiments have been conducted in a closed cabin of toughened glass to understand the heat
accumulation in the interior of a vehicle when it is exposed to direct sunlight. A bond graph
model of the setup has been developed to perform simulation studies. The simulations and
the experiments give an idea about the rate at which heat gets accumulated in the cabin.
Replacing the single layer toughened glass panels with double layer toughened glass panels with
static air trapped between the two glass layers, a reduction in the rate of increase of the cabin
temperature has been observed. When the argon gas was trapped between the two glass layers,
further reduction in temperature of the cabin air was observed. Moreover, when the argon gas
was allowed to flow continuously at a slow flow rate, the rate of heat accumulation inside the
cabin reduced further. The bond graph models developed for all these different configurations
give very good predictions of the rate of heat accumulation or temperature of the cabin air. Such
models can be used to develop predictive feed-forward or cascaded feedback and feed-forward
control systems for cabin temperature regulation in the place of purely feedback controllers
used in contemporary vehicles. This research work will be pursued further to deal with the heat
transfer and storage through/in the roof and interior materials of a vehicle with aim to develop
an optimized model-based control system of the cabin temperature.
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The ductile damage of automotive aluminum sheet alloy AA5754-H111 is investigated by
experiments and numerical simulation using the Gurson-Tvergaard-Needleman (GTN) mo-
del. The GTN parameters were determined by a uni-axial tensile test and the inverse finite
element method. The same parameters were employed to provide the ductile damage beha-
vior of central cracked panel (CCP) specimens. A good prediction can be established among
the numerical simulation and experimental data in from of the force opening displacement.
As an application, the identified GTN model is used to predict the influence of cold wor-
king on deformation and ductile damage. The numerical simulation results obtained are
assimilated with experimental data.
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1. Introduction

In automotive applications, the aluminum alloys are extensively used for obtaining light mass and
high strength structures. Aluminum-Magnesium (Al-Mg) aluminum alloys, indicated by 5xxx
series, have a very good formability but a relativity low strength. This series of alloys strengthen
only by work hardening (Burger et al., 1995). The results of investigation of mechanical damage
of 5754-H111 aluminum alloy has indicated that damage and fracture are mostly results of nuc-
leating, growing and coalescing of micro cavities or micro voids. In order to predict the ductile
fracture process, several theoretical models using local approaches have been presented in the
literature (Betegon et al., 1997; Corigliano et al., 2000; Imad et al., 2003; Achouri et al., 2012).
So, the selection of an adapted micromechanical model allows understanding of the fracture me-
chanism of 5457-H111 aluminum alloy. The basic research was started by McClintock (1968) and
afterwards by Rice and Tracey (1969) who investigated the growth of cylindrical and spherical
voids in ductile solids. Founded on theses analysis, Gurson (1977) proposed a micromechanical
approach model. Later, the Gurson model was modified by Tvergaard and Needleman (1984) by
introducing parameters q1 and q2. They founded the void fusion equation f

∗ to describe ductile
failure by nucleation, growth and coalescence of spherical micro voids. Generally, the modified
Gurson model is named the GTN model. Many researchers have used the GTN model to provide
ductile porous materials. Benseddiq and Imad (2007) used the GTN damage model to investiga-
te ductile tearing of 2024-T351 aluminum alloy. Oh et al. (2007) proposed a phenomenological
model of ductile fracture for API X65 using the GTN model. Yan et al. (2013) employed the
GTN damage model to study the initiation and propagation of the crack near the edge under
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rolling condition. Guo et al. (2013), Zhang et al. (2000), Huang et al. (2007) and Hu et al. (2014)
used numerical results and experimental data to obtain parts of the GTN parameters. Unknown
parameters of the model were obtained by using the inverse finite element method.

In the present research, ductile tearing of 5754 aluminum alloy has been analyzed by using the
GTN model. The GTN parameters are identified by combining uni-axial tensile tests and detailed
finite element analyses. The identified parameters have been employed to predict ductile failure
of central cracked panel specimens. A good agreements can be established between the numerical
and experimental results in form of the force versus displacement curves. As an application, the
calibrated model is used to measure the cold working influence on deformation and fracture of
5754 aluminum alloy. The theoretical results are compared with experimental ones in the case
of cold worked tensile and central cracked panels (CCP).

2. The GTN model

Gurson (1977) proposed a model to describe damage of ductile materials based on a micro-
mechanical approach to porous plastic solids. This model takes into account degradation of the
load carrying capacity due to the presence of porosity in isotropic materials. The original Gurson
model was modified by Tvergaard and Needleman (1984) who relied on the coalescence of voids.
The yield surface is presented by

Φ(σy, σeq, f) =
σ2eq
σ2y
+ 2f∗q1 cosh

(3
2
q2
σm
σy

)
− [1 + q3(f∗)2] = 0 (2.1)

where q1, q2 and q3 = (q1)
2 are the constitutive parameters incorporated by Tvergaard (1981)

to amplify the hydrostatic stress effect for all strain levels. σeq is the conventional von Mises

equivalent stress defined by: σeq =
√
3
2SijSij (Sij is the stress deviator) and σy is the yield stress

of the undamaged matrix material.

For good prediction of the effect of void coalescence, Tvergaard and Needlemen (1984) in-
troduced the damage function f∗ defined as follows

f∗(f) =





f for f < fc

fc + δ(f − fc) for fc ¬ f ¬ fF
f∗u for f  fF

(2.2)

where δ = (f∗u − fC)/(fF − fC) is the void growth acceleration factor, fc is the critical value of
the void volume fraction corresponding to the beginning of the void coalescence, f∗u = 1/q1 is
the ultimate value of the void volume fraction when the material load capacity is reduced to
zero, fF is the final void volume fraction.

The evolution of the void volume fraction f during plastic deformation is assumed to be a
result of both the void growth and new voids nucleation given by

ḟ = fnucleation + fgrowth (2.3)

Nucleation is considered to depend exclusively on the effective strain of the matrix material and
can be estimated by the following equation

fnucleation = Aε̇
p
eq (2.4)

where ε̇peq is the equivalent plastic strain rate.
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The parameter A is defined as a function of the matrix equivalent plastic strain

A =
fn

Sn
√
2π
exp

(
−1
2

(εp − εn
Sn

)2)
(2.5)

where fn is the volume fraction of void nucleating particles, εn is the mean void nucleation
strain, Sn is the corresponding standard deviation and εp is the effective plastic strain.
The void growth is a function of the plastic strain rate, such that

ḟgrowth = (1− f)ε̇pkk (2.6)

where ε̇pkk is the plastic part of the strain rate tensor.

3. Experimental results

In the present investigation, 2.45mm in thickness 5754 aluminium alloy sheets have been used.
The chemical composition of this alloy is given in Table 1.

Table 1. Chemical composition of the studied 5754-H111 aluminum alloy (wt%, rest: Al)

Si Fe Cu Mn Mg Cr Zn Ti

0.40 0.40 0.1 0.5 2.6-3.6 0.3 0.2 0.15

Tensile testing has been performed at room temperature using a 50KN LLOYD universal
test machine (Fig. 1). The tensile specimens have been stretched in the rolling direction (RD),
the transversal direction (TD) and the diagonal direction (DD 45◦ between RD and TD) of the
sheets. For each condition, three specimens have been tested at a constant speed of 1mm/min.
During testing, the axial displacement was monitored using an axial extensometer with length of
25mm. The geometry and dimensions of the employed specimen work are presented in Fig. 2a.

Fig. 1. Configuration of tensile tests

The uniaxial plastic flow behavior has been assumed to follow the Ramberg-Osgood stress-
-strain law presented as follows

ε = εe + εp σ =

{
Eεe if σ ¬ σy
σy + kε

n
p if σ > σy

(3.1)

with the hardening exponent n and ductility coefficient k.
The mechanical proprieties of 5457-H111 aluminum alloy are summarized in Table 2.
As shown in Fig. 3, the true stress-strain results of 5457-H111 aluminum alloy are similar in

the three directions.
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Fig. 2. (a) Geometry of the tensile specimen (in mm), (b) dimensions of the CCP specimens (in mm)

Table 2. Mechanical proprieties of 5457-H111 aluminum alloy in three directions: E – Young’s
modulus, σy – yield stress, σu – ultimate stress, A% – elongation, n – hardening exponent and
k – ductility coefficient

E [MPa] σy [MPa] σu [MPa] δ [%] n K [MPa]

RD 70612 100 270 15.28 0.586 575.554

TD 70134 99 265 14.89 0.589 599.659

DD 69978 98 259 15.13 0.580 590.034

Fig. 3. Strain-stress curves of 5754-H111 aluminum alloy in the rolling direction (RD), transverse
direction (TD) and diagonal direction (DD)

Ductile tearing tests were carried out on central cracked panels (CCP) at a constant displa-
cement rate of 1mm/min. The specimen geometry is presented in Fig. 2b. The ductile tearing
specimens were manufactured in the rolling direction (RD) and transverse direction (TD) of
the plates. In order to obtain a normalized crack length ratio a/w equal to 0.36, the specimens
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were pre-cracked by the fatigue test. These tests were achieved using the single specimen me-
thod (Taktak et al., 2009). Three specimens were operated at a constant cross-head speed of
1mm/min.
The experimental load versus displacement curves of 5754-H111 aluminum alloy are exposed

in Fig. 4. It is noted that these curves show a low experimental dispersion.

Fig. 4. Load versus displacement curves of 5754 aluminum alloy in the rolling direction (RD) and
transverse direction (TD)

Also the fractographic examinations of 5754 aluminum alloy were performed on the fracture
surfaces of the broken specimens from tensile testing by employing a scanning electron micro-
scope (SEM). The SEM fractographs for 5754 aluminum alloy indicate the significant presence
of ductile dimples (large voids beside smaller voids), which show the characteristic micro-void
coalescence mechanism of ductile fracture (Fig. 5a-5d).

Fig. 5. SEM fractographs of the facture surface for a tensile specimen abstracted from 5754 aluminum
alloys under different magnifications: a overview morphology; b extended image of indicated region of
the picture (a), c extended image of the indicated region of the picture (b), and d extracted image of

the indicated region of the picture (c)
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4. Numerical analysis

4.1. The meshing and boundary conditions

To obtain the theoretical force versus displacement curves, three-dimensional computation
was performed using the finite element program ANSYS. In this study, the material is supposed
to be elastoplastic, homogeneous and exhibit isotropic hardening. Two forms have been studied:
the tensile specimen (Fig. 1a) and the CCP specimen (Fig. 1b). The meshing corresponding to
each specimen using SOLID 185 finite element of ANSYS is presented in Fig. 6. The meshing
near the crack tip consists of square mesh with 0.2mm size (Taktak et al., 2008). All the nodes
on the ligament in front of the crack tip are fully constrained to have a zero displacement in
the y-direction normal to the plane of the crack. Due to symmetry, only a quarter of the tensile
specimen (Fig. 6a) and CCP specimen (Fig. 6b) are modeled.

Fig. 6. (a) Meshing of a quarter of tensile specimen, (b) meshing of a quarter of the CCP specimen

4.2. Identification of damage parameters

The (GTN) ductile damage model has 9 necessary parameters: Three constitutive parame-
ters related to the refined yield locus, q1, q2 and q3, three void nucleation parameters εn, Sn
and fn and three parameters for void growth and coalescence f0, fc and fF . In the present inve-
stigation, seven parameters are determined by typical values proposed in literature (Tvergaard
and Needleman, 1984; Lievers et al., 2004): εn = 0.65, Sn = 0.03, fn = 0.00035, q1 = 1.5, q2 = 1,
q3 = q

2
1 = 2.25 and ff = 0.25. In accordance with the discussion in (Zhang et al., 2000; Rousse-

lier, 2001), the critical void volume fraction fc can be chosen as 0.15 for aluminum alloys. Thus,
only the initial volume fraction f0 needs to be determined. Generally, in aluminum alloys, the
void is made up of a fragile intermetallic phase (Ghahremaninezhad and Ravi-Chandar, 2012).
The evaluation of the initial void volume fraction f0 is obtained by metallorgraphic examina-
tion on a polished surface of undamaged materials. Also, f0 is very little for this kinds of alloy.
The initial void volume fraction f0 can be estimated by the inverse finite element method using
the finite element modeling and experiments. Guo et al. (2013) identified this parameter using
the original Rousselier model to obtain three values of f0 0.0001, 0.001, 0.005, respectively. By
comparison with experimental results, he found a good agreement with f0 = 0.0001 for AA5052.
Hu et al. (2014) identified the parameter f0 by an inverse method using experimental results.
The simulations were done by setting the value of f0 from 0.001 to 0.03. The initial void volume
fraction f0 for AA 6016 equal 0.001 improved the good agreement between the simulation and
experimental results.
In this work, to estimate the parameter f0, an inverse method is used based on the FE method

presented in this Section and the experimental results presented in Section 2. Six analyses have
been made using the GTN model and the following initial void volume fraction f0: 0.00001,
0.0001, 0.001, 0.01, 0.05 and 0.1, respectively.
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Fig. 7. The true stress-strain curves with different initial void volume fractions f0 obtained by FE
using the GTN model

The true stress-strain curves made by simulations with different f0 are shown in Fig. 7. It can
also be shown that, for f0 = 0.001, the difference between the simulation and experiment results
is admissible. So, the initial void volume fraction f0 was identified as 0.001 for this material.
The whole GTN parameters of the material are now presented in Table 3.

Table 3. Calibrated parameters of the GTN model for the 5754-H111 aluminum alloy

q1 q2 q3 f0 fn εn Sn fc ff

1.5 1 2.25 0.001 0.00035 0.65 0.03 0.15 0.25

To validate the identified parameters listed in Table 3, the experimental load versus displa-
cement curve issued from tearing tests on the CCP specimen are compared with the simulated
ones using these parameters in Fig. 8. A good agreement is observed between the experimental
results and those prediced by the finite element method. This shows that the GTN parameters
identified in this work are acceptable.

5. Application to cold working effects

In the preceding Sections, the ductile fracture model based on the GTN model has been found
for 5754-H111 aluminum alloy. This model has many potential application domains: it can be
used for predicting not only the failure behavior of ductile tearing tests specimens but also for
predicting size effects of ductile tearing tests specimens. The application of 5754-H111 aluminum
alloy in automotive industry needs a high strength/weight ratio (Burger et al., 1995). So, it
is possible to carry out the strain hardening in the rolling direction. In the literature, many
experimental investigations have been published on quantification of the strain hardening impact
on mechanical cold working fracture properties for aluminum alloys. Our essential interest in this
Section is the application and validation of the identified GTN model to measure cold working
effects on numerical simulation. Tests were carried to measure the cold working effects on tensile
and ductile tearing proprieties of 5754-H111 aluminum alloy. In these tests, the used material was
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Fig. 8. Load versus displacement. Comparison between the experiment and FE simulation
for the GTN model

similar condition to the one used in the previous Sections. A plate of the alloy (with thickness
of 2.45mm, width 150mm and length of 150mm) was cold rolled by a laboratory rolling mill to
the reduction of 25% and 50% in area (CW = 25% and CW = 50%).

Both the tensile and CCP specimens were abstracted from the plate in the longitudinal
direction. The experimental conditions and geometry of the tensioned specimen and ductile te-
aring tests were same as those in the previous Sections. The tensile properties of the material
subjected to different cold working rates are summarized in Table 4. It shows that the yield and
tensile strength increase with the increasing percent of cold working, but the ductility decre-
ases (Cosham, 2001; Mansourinejad and Mirzakhani, 2012). The strengthening of the material
can be described by the increase of dislocation density with plastic deformation. The average
distance between dislocations decreases and the dislocations start blocking motion of each other
(Hajizadeh et al., 2014).

It is widely acknowledged that the cold working effect on tensile curves can be quantified
simply by shifting the true strain-stress curve by an increase of cold working (Ainsworth, 1986;
Cosham, 2001), which is carried out by analyzing the present experimental results, as shown in
Fig. 9.

Table 4. Main mechanical characteristics for different cold working rates: E – Young’s modulus,
σy – yield stress, σu – ultimate stress, A% – elongation

CW E [MPa] σy [MPa] σu [MPa] A [%]

0% 70612 100 270 15.28

25% 71334 168 278 7.50

50% 69789 190 307 5.29

As shown in Fig. 10, the values of the hardening exponent n and ductility coefficient k
are similar in the two directions. For this reason, we can consider that the behavior of these
work-hardened materials is isotropic.
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Fig. 9. Experimental results of the cold working effect on tensile curves

Fig. 10. Values of the hardening exponent n and ductility coefficient k in the rolling direction (RD),
transverse direction (TD)

The SEM pictures of the cold worked specimens indicated a fine network of dimples (elonga-
ted voids with the fibrous structure) and little quasi-cleavage parts corresponding to the ductile
fragile failure mechanism when the percentage of cold working increases (shown in Fig. 11). Ge-
nerally, in FCC metals like 5457-H111 aluminum alloys, even at low temperature, the dislocation
of leavings is important and the material rests ductile enough.

Thus, the morphology of fracture ought to be fundamentally fibrous plus some cleavage,
reflecting the fragile failure behavior of the alloys when the percentage of cold working high.

The experimental load-displacement curves are summarized in Fig. 12. It indicates that the
maximum loads for cold working are lower than those for without cold working.

Using the overhead information, finite element damage analyses based on the GTN model
are used for simulating tensile tests and ductile tearing using ANSYS. To incorporate cold
working into finite element damage analyses, two modifications are added. First, the true stress-
-strain curve is modified according to cold working. Secondly, the value of the initial void volume
fraction f0 is changed (Oh et al., 2007). As noted, the value of the initial void volume fraction f0
increases when the cold working rate increases (Oh et al., 2007).
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Fig. 11. SEM fractographs of 5457 aluminum alloy at different percentage of cold working: (a) 0%,
(b) 25% and (c) 50%

Fig. 12. Experimental results of cold working effects on load versus displacement curves

Figure 13 compares the experimental true stress-strain results with the numerical ones from
finite element damage analyses based on the GTN model for different choices of f0 for selected
cases (CW = 25% and 50%).

From Figs. 13a and 13b, it can be seen that the choice of f0 = 0.006 and f0 = 0.009 for the
cold working rate 25% and 50%, respectively, enables achieving the best agreement between the
(FE) damage analyses and experimental results.

For validation, the results from finite element damage analyses for cold working rates 25%
and 50% are compared with the experimental load-displacement curves, and reasonably good
comparisons are found. It is shown in Fig. 14.



Study of the influence of cold working on mechanical behavior and... 933

Fig. 13. True stress-strain curves with different initial void volume fractions f0 obtained by FE using
the GTN model. (a) The initial void volume fraction f0 is calibrated as 0.006 for CW = 25%. (b) The

initial void volume fraction f0 is calibrated as 0.009 for CW = 50%

Fig. 14. Comparisons of FE simulations with experiments for the load versus displacement curves
(a) CW = 25%, (b) CW = 50%

The results show that the experimental tensile tests and load versus displacement have been
successfully predicted by the GTN model, and can take into account the cold working effect not
only on plastic deformation but also on ductile fracture.

6. Summary and conclusions

• The continuum damage mechanics model (GTN) has been used to simulate the ductile
tearing behavior of 5754-H111 aluminum alloy sheet metal.

• The parameters of the GTN model have been identified by an experimental tensile test
(true stress versus true strain) and the inverse finite element method.

• The validity of the proposed parameters has been investigated by comparing the simulated
results with the experimental ones from the tensile and ductile tearing tests (load versus
displacement).

• The determined GTN model has been applied to predict the cold working influence on
deformation and fracture. Comparison of experimental data of cold working, tensile tests
and ductile tearing tests with finite element damage analyses have shown good agreements.
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This work investigates the vibrational response of thermoelastic nanobeam resonators in-
duced by ramp-type heating and subjected to exponential decaying time varying load via
Euler-Bernoulli beam theory. Governing equations are derived in the context of nonlocal
generalized thermoelasticity theory with dual phase lags. The nonlocal nanobeam theory
incorporates a nonlocal parameter to capture the small scale effect. Using the Laplace trans-
form technique, an analytical solution has been attained. and inversions of the transformed
solutions have been carried out by means of calculus of residues. The effects of nonlocal, po-
int load and ramping-time parameters on all studied fields of the nanobeam are investigated
and discussed.

Keywords: thermoelasticity, nonlocal nanobeam, varying load, ramp-type heating

1. Introduction

The fields of micro-, electro-, and mechanical systems (MEMS) have become quickly and gone
into many resistances and correspondence technologies. Advanced applications for fabricating a
variety of MEMS gadgets have been created to deal with all requirements for industries. It is
known that all MEMS systems have mechanical flexible components. Microscales of cantilevers,
bridges and membranes with various geometrical measurements and arrangements that often
carry load are considered as MEMS systems (Younis, 2011). For MEMS designers, it is essential
to understand mechanical properties of flexible micro-devices keeping in mind the end goal to
predict the amount of transverse displacement from a distributed load and the other way around
to forestall cracking-fracture, improve performance and to increase lifetime of MEMS gadgets
(Allameh, 2003).

Both investigational and atomistic reproduction computations have demonstrated a signifi-
cant dimension influence in mechanical properties when the sizes of such structures become very
small. For this purpose, the size influence has a crucial role in dynamic and static behavior of
micro-/nano-structures and cannot be neglected. It is famous that classical continuum mecha-
nics does not represent such dimension influences in microscale and nanoscale structures. It is
well known in the classical (local) elasticity theory that the stress at a point depends just on the
strain at the same point. That is not the same in nonlocal elasticity theory, in which the stress
at a point may be a function of strains at all points in the solid.
The nonlocal elasticity theory of Eringen (1983, 2002) has been increasingly used to deal

with nanostructures as a reliable and quick technique. Nonlocal elasticity has been applied to
micro- and nanomaterials and it recently received much attention among nanotechnology. The
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basic difference between both classical and nonlocal elasticity theories is based on the definition
of stress. Eringen’s nonlocal theory includes more information about long range forces about
atoms and, thus, internal scale length is introduced (Arefi and Zenkour, 2016; Zenkour, 2016a,c;
Zenkour and Abouelregal, 2014a,b, 2015, 2016).
Lord and Shulman (LS) (1967) presented generalized theory of thermoelasticity with first

relaxation time for isotropic homogeneous materials, in which an altered law of heat conduc-
tion that incorporates both time derivative of the heat flux and the heat flux itself, replaces
Fourier’s law conventional. The heat equation associated with LS theory is of hyperbolic type
and consequently eliminates the paradox of infinite velocity of propagation inherent in both
coupled (CTE) and uncoupled theories of thermoelasticity. Tzou (1995, 1997) presented another
alteration with Fourier’s law to investigate two time lags (see also Abbas and Zenkour, 2014;
Abouelregal, 2011; Abouelregal and Abo-Dahab, 2012; Zenkur, 2016b; Zenkour et al., 2013).
The objective of this paper is to derive governing equations of motion for free vibration of

nonlocal Euler-Bernoulli nanobeams subjected to time-varying transverse load. In this work, a
thermoelastic model based on the dual-phase-lag modification (DPL) heat conduction equation
is used. The Laplace transform method and its inversion is used in the derivation. The effects
due to nonlocal, point load and ramping time parameters will be studied. The current model
may be used in micro-electro-mechanical applications such as frequency filters, relay switches,
accelerometers, mass flow sensors and resonators.

2. Mathematical model and problem formulation

A schematic diagram of a thin elastic nanobeam is illustrated in Fig. 1 in which geometri-
cal parameters of length (0 ¬ x ¬ L), width b (−b/2 ¬ y ¬ b/2) and uniform thickness h
(−h/2 ¬ z ¬ h/2) are also indicated. We take x-axis along the axis of the nanobeam and y-
and z-axes correspond to width and thickness, respectively. The nanobeam is considered to be
unstrained, unstressed and at environment temperature T0 in equilibrium.

Fig. 1. Schematic diagram of the nanobeam

The linear Euler-Bernoulli theory is used to investigate bending vibration of the nanobeam.
Any plane cross-section in the beginning perpendicular to the axis of the nanobeam remains
plane and perpendicular to the neutral surface through bending. Hence, displacements of any
point of the nanobeam can be written as

u = −z ∂w
∂x

v = 0 w = w(x, t) (2.1)

in which w represents the lateral transverse deflection.
According to Eringen’s nonlocal theory of elasticity (Eringen, 1983), with the aid of Eq.

(2.1), the one-dimensional constitutive relation can be simplified to

σx − ξ
∂2σx
∂x2
= −E

(
z
∂2w

∂x2
+ αT θ

)
(2.2)

where σx is the nonlocal axial stress, αT = αt/(1 − 2ν) in which αt is the thermal expansion
coefficient and ν is Poisson’s ratio, ξ = (e0a)

2 represents the nonlocal parameter in which
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a is internal characteristic length and e0 is a constant appropriate to each material and being
determined by experiment. It can be observed that when the parameter a is ignored, i.e., the
elements of a medium are considered to be continuously distributed, then ξ = 0, and then Eq.
(2.2) may be reduced to be the constitutive equation of the classical case. Then, the bending
moment of cross-section may be represented as

M(x, t) =

h/2∫

−h/2

zσx dz (2.3)

Upon using Eqs. (2.2) and (2.3), we obtain

M(x, t)− ξ ∂
2M

∂x2
= −EI

(∂2w
∂x2
+ αTMT

)
(2.4)

in which I = bh3/12 represents inertia moment of the nanobeam cross-section, EI represents
flexural rigidity and MT is the moment of the beam due to presence of thermal effects, which is
given by

MT =
12

h3

h/2∫

−h/2

θ(x, z, t)z dz (2.5)

If the nanobeam is subjected to a distributed transverse load q(x, t), the equation of transverse
motion will be in the following form (Zhang et al., 2005)

∂2M

∂x2
= −q(x, t) + ρA∂

2w

∂t2
(2.6)

in which A = bh represents the area of nanobeam cross section. The flexure moment can be
determined from Eqs. (2.4) and (2.6) as

M(x, t) = ξ
(
ρA

∂2w

∂t2
− q

)
− EI

(∂2w
∂x2
+ αTMT

)
(2.7)

Eliminating the moment M from Eq. (2.6) with the aid of Eq. (2.7), we get the equation of
motion of the nanobeam as

[ ∂4

∂x4
+
ρA

EI

∂2

∂t2

(
1− ξ ∂

2

∂x2

)]
w − 1

EI

(
1− ξ ∂

2

∂x2

)
q + αT

∂2MT
∂x2

= 0 (2.8)

The generalized heat conduction equation in terms of the constitutive relations in the context
of Tzou theory (Tzou, 1995, 1997) of generalized (non-Fourier) thermoelasticity is given by

(
1 + τθ

∂

∂t

)
(Kθ,i),i +

(
1 + τq

∂

∂t

)
(ρQ) =

(
1 + τq

∂

∂t

) ∂
∂t
(ρCEθ + γT0e) (2.9)

where K denotes the thermal conductivity, CE represents specific heat per unit mass at uniform
strain, Q is heat source, θ = T − T0 is the excess temperature distribution, in which T0 denotes
environmental temperature, τq denotes the phase-lag of heat flux, and τθ denotes the phase-lag
of gradient of temperature, and e = ∂u∂x +

∂w
∂z is volumetric strain. Substituting Eq. (2.1) into

heat equation Eq. (2.9), without considering heat source (Q = 0), gives

K
(
1 + τθ

∂

∂t

)( ∂2

∂x2
+

∂2

∂z2

)
θ =

(
1 + τq

∂

∂t

) ∂
∂t

(
ρCEθ − γT0z

∂2w

∂x2

)
(2.10)

Equations (2.8) and (2.10) describe the nonlocal thermoelasticity theory with phase lags.
The classical thermoelasticity theory may be recovered by putting ξ = 0 in the above equations.
For τθ = 0 and τq > 0, one obtains the Lord and Shulman model (LS), and the classical coupled
theory (CTE) is also obtained when τq = τθ = 0.
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3. General solution along the direction of thickness

Let the temperature increment vary sinusoidally through-the-thickness of the nanobeam as

θ(x, z, t) = Θ(x, t) sin
(π
h
z
)

(3.1)

Using Eq. (3.1) in governing equations (2.7), (2.8) and (2.10), we obtain

M(x, t) = ξ
(
ρA

∂2w

∂t2
− q

)
− EI

(∂2w
∂x2
+
24T0αT
π2h

Θ
)

[ ∂4

∂x4
+
ρA

EI

∂2

∂t2

(
1− ξ ∂

2

∂x2

)]
w − 1

EI

(
1− ξ ∂

2

∂x2

)
q +
24αT
π2h

∂2Θ

∂x2
= 0

(
1 + τθ

∂

∂t

)(∂2Θ
∂x2
− π2

h2
Θ
)
=
(
1 + τq

∂

∂t

) ∂
∂t

(ρCE
K

Θ − γT0π
2h

24K

∂2w

∂x2

)

(3.2)

For convenience, one can present the following dimensionless variables

{u′, w′, x′, z′, L′, b′, h′} = ηc{u,w, x, z, L, b, h} {t′, τ ′q, τ ′θ} = ηc2{t, τq, τθ} (3.3)

and

Θ′ =
1

T0
Θ ξ′ = η2c2ξ M =

1

ηcEI
M

q′ =
A

EI
q c2 =

E

ρ
η =

ρCE
K

(3.4)

Upon introducing the above dimensionless quantities into the governing equations, we can obtain
(dropping the primes for convenience)

M(x, t) =
12ξ

h2
∂2w

∂t2
− ξq − ∂2w

∂x2
− 24T0αT

π2h
Θ

[ ∂4

∂x4
+
12

h2
∂2

∂t2

(
1− ξ ∂

2

∂x2

)]
w −

(
1− ξ ∂

2

∂x2

)
q +
24T0αT
π2h

∂2Θ

∂x2
= 0

(
1 + τθ

∂

∂t

)(∂2Θ
∂x2
− π2

h2
Θ
)
=
(
1 + τq

∂

∂t

) ∂
∂t

(
Θ − γπ2h

(24Kη

∂2w

∂x2

)
(3.5)

Now, we consider an exponentially decaying time varying load in the form

q(x, t) = −q0(1− δe−Ωt) (3.6)

where q0 is the dimensionless magnitude of the point load and Ω represents the dimensionless
frequency of the applied load, respectively (δ = 0 for the uniformly distributed load).
Initially, the considered nanobeam has been assumed to be homogeneous, at rest, undeformed

and at uniform temperature T0. So, the dimensionless initial conditions of the problem may be
reconsidered as

w(x, t)
∣∣
t=0
=
∂w(x, t)

∂t

∣∣∣∣∣
t=0

= 0 Θ(x, t)
∣∣
t=0
=
∂Θ(x, t)

∂t

∣∣∣∣∣
t=0

= 0 (3.7)

The above conditions can be completed by adding other conditions at the ends of the nanobeam.
Let these ends satisfy the following simply-supported boundary conditions

w(x, t)
∣∣
x=0,L

= 0
∂2w(x, t)

∂x2

∣∣∣∣∣
x=0,L

= 0 (3.8)
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Let us also consider that the nanobeam is thermally loaded on the boundary x = 0. Then,
according to Eq. (3.1), we can put

Θ = θ0f(x, t) on x = 0 (3.9)

in which θ0 is a constant and f(x, t) is a varying ramp-type function with time described ma-
thematically as follows

f(x, t)
∣∣
x=0
=





0 for t ¬ 0
t

t0
for 0 ¬ t ¬ t0

1 for t > t0

(3.10)

in which t0 represents a positive constant called the ramp-type parameter of the same dimen-
sionless as time t. Also, the temperature at the edge of the nanobeam satisfies the relation

∂Θ

∂x

∣∣∣∣∣
x=L

= 0 (3.11)

4. Laplace transform space solution

If we apply the Laplace transform method to both sides of Eqs. (3.5), we can get

M(x, s) = −
( d2

dx2
−A3s2

)
w −A2Θ + ξg(s)

[ d4

dx4
−A3s2

d2

dx2
+A1s

2
]
w = −A2

d2Θ

dx2
− g(s)

( d2

dx2
−B1

)
Θ = −B2

d2w

dx2

(4.1)

where

A1 =
12

h2
A2 =

24T0αT
πh

A3 = ξA1 A4 =
π2

h2
A5 =

γπ2h

24Kη

B1 = A4 +
s(1 + τqs)

1 + τθs
B2 =

s(1 + τqs)

1 + τθs
A5 g(s) = q0

(1
s
− δ

Ω + s

) (4.2)

Eliminating the function Θ from Eqs. (4.1)2 and (4.1)3, we get the six-order differential equation
for w in the form

[ d6

dx6
−A d4

dx4
+B

d2

dx2
− C

]
w = 0 (4.3)

where

A = B1 +A2B2 +A3s
2 B = s2(A1 +A3B1) C = A1B1s

2 (4.4)

The general solution of w can be obtained as

w(x, s) =
3∑

j=1

(Cje
−mjx + Cj+3e

mjx) (4.5)

where m21, m
2
2 and m

2
3 represent roots of the characteristic equation

m6 −Am4 +Bm2 − C = 0 (4.6)
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Substituting Eq. (4.1)3 into Eq. (4.1)2, leads to

Θ(x, s) = − 1

A2B1

[d4w
dx4
− (A2B2 +A3s2)

d2w

dx2
+A1s

2w + g(s)
]

(4.7)

The general solution to Eq. (4.7) with the help of Eq. (4.5) can be simplified as

Θ(x, s) =
3∑

j=1

Hj(Cje
−mjx + Cj+3e

mjx)−H4 (4.8)

where

Hj = −
1

A2B1
[m4j − (A2B2 +A3s2)m2j +A1s2] H4 =

g(s)

A2B1
(4.9)

Substituting the expressions of w and Θ from Eqs. (4.5) and (4.8) into Eq. (4.1)1, we get the
solution for the bending moment M as

M(x, s) = −
3∑

j=1

(m2j −A3s2 +A2Hj)(Cje−mjx + Cj+3emjx) +A2H4 + ξg(s) (4.10)

In addition, the axial displacement u after using the deflection w(x, s) appearing in Eq. (4.5)
can be expressed as

u = −z dw
dx
= z

3∑

j=1

mj(Cje
−mjx − Cj+3emjx) (4.11)

Finally, the boundary conditions in Eqs. (3.8), (3.9) and (3.11) in the Laplace transform domain
are reduced to

w(x, s)
∣∣
x=0,L

= 0
d2w(x, s)

dx2

∣∣∣∣∣
x=0,L

= 0

Θ(x, s)
∣∣
x=0
= θ0

(1− e−t0s
t0s2

)
= G(s)

dΘ

dx

∣∣∣∣∣
x=L

= 0

(4.12)

The above boundary conditions are applied to Eqs. (4.5) and (4.8) to determine the unknown
parameters Cj and Cj+3 as




1 1 1 1 11
e−m1L e−m2L e−m3L em1L em2L em3L

m21 m22 m23 m21 m22 m23
m21e

−m1L m22e
−m2L m23e

−m3L k1e
m1L m22e

m2L m23e
m3L

H1 H2 H3 H1 H2 H3
−m1H1e−m1L −m2H2e−m2L −m3H3e−m3L m1H1e

m1L m2H2e
m2L m3H3e

m3L




·





C1
C2
C3
C4
C5
C6





=





0
0
0
0

G(s) +H4
0





(4.13)

It is difficult to get an inversion to the Laplace transform of the complicated solutions for the
lateral vibration, displacement, thermodynamic temperature, stress and strain in the Laplace
transform space. Therefore, the results will be analyzed numerically using a method based on
the Fourier series expansion technique.
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5. Numerical results

This Section is devoted to investigate some numerical examples of field quantities using material
properties of silicon as

E = 169GPa ρ = 2330 kg/m3 CE = 713 J/(kg K)

αT = 2.59 · 10−9 (1/K) ν = 0.22 K = 156W/(mK)
(5.1)

The environment temperature of the nanobeam is considered as T0 = 293K. In addition,
some parameters like the length-to-thickness (L/h) ratio, width-to-thickness (b/h) ratio, magni-
tude (q0), frequency (Ω) of the applied load and the dimensionless nonlocal parameter ξ are
fixed to be

L

h
= 10

b

h
=
1

2
q0 = 1 · 10−8 Ω = 0.1076 ξ = 106ξ (5.2)

Also, Figures 2-5 are plotted by considering the non-dimensional forms appearing in Eqs. (3.3)
and (3.4) for a wide range of nanobeam length taken into account that

L = 1 t = 0.1 z =
h

3
(5.3)

Fig. 2. The transverse deflection, temperature, displacement and bending moment distributions of the
nanobeam for different values of the nonlocal thermoelastic parameters ξ: (a) transverse
deflection w versus x, (b) temperature θ versus x, (c) displacement u versus x,

(d) bending moment M versus x
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Fig. 3. The transverse deflection, temperature, displacement and bending moment distributions of the
nanobeam for different values of the ramping time parameter t0: (a) transverse deflection w versus x,

(b) temperature θ versus x, (c) displacement u versus x, (d) bending moment M versus x

The first example discussed here is to investigate the dimensionless forms of lateral vibration
(deflection), temperature, axial displacement and bending moment with different dimensionless
nonlocal parameters ξ. In this example, one considers the ramping time parameter t0 = 0.1 and
phase-lags τq and τθ remaining constants (τq = 0.02, τθ = 0.01). It is clear that the case of
ξ = 0 indicates the local thermoelasticity theory. However, the values ξ = 1 and ξ = 3 indicate
the nonlocal thermoelasticity theory. The effect of ξ on vibration characteristics along the axial
direction of the nanobeam is shown in Figs. 2a-2d. From these figures, we can see that:

1) The deflection w is no longer increasing and vanishes again at the boundaries. Its maximum
values occur near the center of the nanobeam.

2) The lateral vibration w decreases as the nonlocal parameter ξ increases.

3) The nanobeam exhibits the maximum deflection near the mid-point of the nanobeam at
all times and irrespective of the value of ξ.

4) The thermal temperature θ is decreasing as the distance x increases and it is moving in
the direction of wave propagation.

5) As ξ increases, the temperature θ decreases.

6) Distribution of the axial displacement u starts increasing with the nonlocal parameter ξ
in the interval 0 ¬ x ¬ 0.45, thereafter it increases up to maximum amplitudes in the
interval 0.45 ¬ x ¬ 1.



Thermoelastic response of nanobeam resonators subjected to... 945

7) The bending moment M is decreasing with the increasing distance x. Also, we observe
that an increase in ξ leads to growth of the distribution of M .

8) All plots show that this parameter has a significant effect on the field quantities.

9) It is obvious that according to the value of ξ, the difference between the local and nonlocal
generalized thermoelasticity theory is evident.

The second example discussed here is to investigate the variation of dimensionless lateral
vibration, temperature, displacement and bending moment versus the ramping time parameter t0
when the phase-lags τq and τθ and nonlocal parameter ξ remain fixed. The plots of this example
are illustrated in Figs. 3a-3d. It is concluded in this case that:

1) Values of the deflection, temperature and bending moment are increasing as the ramping
time parameter t0 is decreasing.

2) As t0 increases, the displacement u increases in the interval 0 ¬ x < 0.48 and decreases in
the interval 0.48 < x ¬ 1. The axial displacement u increases along the axial direction.

3) The distribution of all variables is very sensitive to the variation of the ramping time
parameter t0.

Fig. 4. The transverse deflection, temperature, displacement and bending moment distributions of the
nanobeam for different values of the phase lags τq and τθ: (a) transverse deflection w versus x,
(b) temperature θ versus x, (c) displacement u versus x, (d) bending moment M versus x

In the third example, Figs. 4a-4d are plotted to give a comparison of the results obtained for
dimensionless lateral vibration, temperature, displacement and bending moment distributions



946 A.E. Abouelregal, A.M. Zenkour

for different values of τq and τθ at t0 = 0.2 and ξ = 2. The graphs in Figs. 4a-4d represent
four curves predicted by two thermoelasticity theories, the coupled theory (CTE) and the Lord-
-Shulman theory (LS), obtained as special cases of the dual-phase-lag model. The computations
have been performed for one value of time, namely for t = 0.12 and various values of the
parameters τq and τθ. The coupled theory (CTE) is given by setting (τθ = τq = 0), the Lord-
Shulman theory (LS) is given by putting (τθ = 0 and τq = τ0 > 0) and the DPL is given by
setting τq > 0 and τθ > 0. It can be found from Figs. 4a-4d that the distribution in LS model is
near to that in DPL theory, whereas the distributions in CTE theory are different from that in
DPL theory. Also, values of τq and τθ can judge whether the wavelike behavior in the phase-lag
heat conduction is dominant or not.

Fig. 5. The transverse deflection, temperature, displacement and bending moment distributions of the
nanobeam for different values of the point load q0: (a) transverse deflection w versus x,
(b) temperature θ versus x, (c) displacement u versus x, (d) bending moment M versus x

In the last example, three different values of the dimensionless magnitude of the point load q0
are considered. For a uniformly distributed load, we put δ = 0, and for an exponential decaying
time varying load, we take δ = 1. We found from Figs. 5a-5d that, as the point load q0 increases,
the values of lateral vibration, temperature, moment fields are also increasing. Once again, the
displacement u increases in the interval 0 ¬ x < 0.48 and decreases in the interval 0.48 < x ¬ 1.
Finally, all variables are very sensitive to the variation of the point load q0.
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6. Conclusions

In this work, a mathematical model that governs the nonlocal generalized theory of thermoelasti-
city with phase lags for nanobeams subjected to dynamical transverse loads is established. The
first boundary of the nanobeam is subjected to a ramp-type heating. The Laplace transforma-
tion numerical technique has been used. The effects of dynamic loads q0, nonlocal parameter ξ
and ramping time parameter t0 on all quantities are investigated and illustrated graphically.
One can conclude, according to the numerical results shown in all figures, that:

• The nonlocal ξ and ramping time t0 parameters have significant effects on all quantities.
• Some quantities like thermoelastic moment, displacement and temperature are strongly
dependent on the ramping time parameter t0.

• A phenomenon of finite speeds of propagation is observed in all depicted figures . This is
predictable since the thermal wave travels with a finite speed.

• The effects of dynamic loads on all the studied fields are very significant.
• Significant differences in the physical quantities are observed between the exponential
decaying time varying load and the uniformly distributed load.

• Vibration of nanotubes is an important subject in the study of nanotechnology since it
relates to electronic and optical properties of multiwall carbon nanotubes.

• This study is required for researchers and designers to be applied in the design and de-
velopment of different devices, especially those being under environmental loads, likes
resonators.
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New closed form solutions for harmonic vibrations of infinite Kirchhoff plates subjected to a
constant harmonic ring load, a constant harmonic circular load and an alternating harmonic
circular load are derived. Two different approaches are used to define the closed form solu-
tions. The first approach uses the integration of the harmonic point force and the addition
theorem for Bessel functions, while the second approach applies the Hankel transform to
solve the inhomogeneous partial differential equation of the Kirchhoff plate theory. The new
closed form particular solutions can especially be used in Trefftz like methods and extend
their field of application.

Keyword: Kirchhoff plate theory, infinite plate, ring load, circular load, Hankel transform

1. Introduction

The simulation of vibrations and emitted sound of plates is an important step in the development
of new products, since the noise and vibration characteristics have to be considered in an early
design phase. The most common method to simulate vibrations of plates is the Finite Element
Method (FEM) (Bathe, 2006), which is especially well applicable for low frequency vibrations.
In the recent years, several methods which use the concept presented by Trefftz in 1926 (Trefftz,
1926), have been developed to calculate vibrations of plates more efficiently for higher frequen-
cies. Among these methods one can mention the Wave Based Method (Vanmaele et al., 2007;
Klanner and Ellermann, 2015) and the Variational Theory of Complex Rays (VTCR) (Rouch
and Ladevèze, 2003; Riou et al., 2013). In general, the so-called indirect Trefftz methods require
a particular solution of the inhomogeneous partial differential equation to be applied efficiently.
This is the motivation to develop new closed form solutions for the vibrations of Kirchhoff plates
in this paper.

To the authors knowledge, closed form particular solutions for infinite Kirchhoff plates only
exist in literature for undamped plates excited by a concentrated point force, which can be found
in e.g. (Junger and Feit, 1986).
The Kirchhoff plate theory was introduced by Kirchhoff in 1850 (Kirchhoff, 1850) and ne-

glects rotatory inertia and shear deformation. Therefore, it is only applicable if the ratio of the
plate thickness to the lesser of the other two dimensions is smaller than 1 : 20 (Chandrashekha-
ra, 2001) and the ratio of the plate thickness to the bending wave length is smaller than 1 : 6
(Cremer et al., 2005). In many practical problems, these limits are fulfilled and the Kirchhoff
plate model can be used very sufficiently compared to a full 3D model.
The paper is structured in Sections as follows: The particular solution of an infinite Kirchhoff

plate excited by a concentrated point force in the case of a damped plate is derived in Section 2.
In Section 3, other axisymmetric load cases, the constant ring load and the constant circular load,
are considered and two different approaches are shown to determine the closed form solutions.
In Section 4, a non-axisymmetric load is considered, which represents an alternating circular
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load. The vibrations in the case of an undamped plate are derived in Section 5. The responses to
the mentioned excitations are plotted in Section 6 for an aluminum plate. Finally, a conclusion
is given and further research topics are discussed.

2. Point force excitation

In this Section, the governing equation of the Kirchhoff plate theory is stated and the governing
equation in the special case of an axisymmetric vibration is shown. The Hankel transform of
the order zero is briefly presented and the closed form solution for the Kirchhoff plate under
harmonic point force excitation is derived.

2.1. Governing equation for time harmonic problems

The governing equation of the Kirchhhoff plate theory for time harmonic vibrations in Car-
tesian coordinates is given by (Rao, 2007)

∇4w(x, y)− k4bw(x, y) =
q(x, y)

D
(2.1)

where ∇4 = ∂4

∂x4 +2
∂4

∂x2∂y2 +
∂4

∂y4 , the bending wavenumber k
4
b = ρhω

2/D and the plate bending

stiffness D = Eh3/[12(1− ν2)], E is Young’s modulus, h – plate thickness, ρ – plate density, ν –
Poisson’s ratio, ω – angular frequency and q(x, y) – external force distribution. For axisymmetric
problems, e.g. the point force excitation, the governing equation in polar coordinates

(
d2

dr2
+
1

r

d

dr

)2
w(r)− k4bw(r) =

q(r)

D
(2.2)

depends only on the radius r. Using a complex elastic modulus introduces damping of the plate,
and the plate parameters become complex

E → Ẽ = E(1 + iη) D → D̃ = D(1 + iη) k4b → k̃4b =
k4b
1 + iη

= k4bde
−iΦ (2.3)

with

k4bd =
k4b√
1 + η2

k4bd ∈ R
+ Φ = arctan η 0 < Φ <

π

2
(2.4)

and η > 0 the material loss factor.

2.2. Hankel transform of the order zero

The Hankel transform of the order zero is defined by (Debnath and Bhatta, 2014)

f̃(kr) =

∞∫

0

f(r)rJ0(krr) dr and f(r) =

∞∫

0

f̃(kr)krJ0(krr) dkr (2.5)

with the operational property for the axisymmetric Laplace operator (Debnath and Bhatta,
2014)

(
d2

dr2
+
1

r

d

dr

)
f(r) 7→ −k2r f̃(kr) (2.6)

In the case of axisymmetric vibrations, the governing equation of the Kirchhoff plate (Eq. (2.2))
transforms to

w̃(kr) =
1

D̃

q̃(kr)

k4r − k̃4b
(2.7)
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2.3. Point load at the origin of the coordinate system

A point load at the origin of the coordinate system (x = 0, y = 0 or r = 0) is given by

qpoint (x, y) = q0δ(x)δ(y) ⇒ qpoint (r) =
q0δ(r)

2πr
7→ q̃point (kr) =

q0
2π

(2.8)

with q0 being the amplitude of the harmonic point load. The inverse Hankel transform leads to
the solution for the out-of-plane displacement in an integral form

wpoint (r) =
q0

2πD̃

∞∫

0

kr

k4r − k̃4b
J0(krr) dkr (2.9)

To obtain a closed form solution, the integral representation of the Bessel function of the first
kind (Watson, 1944)

J0(krr) =
2

π

∞∫

0

sin(krr coshu) du (2.10)

is used in Eq. (2.9). Interchanging the order of integraton leads to

wpoint (r) =
q0

π2D̃

∞∫

0

( ∞∫

0

kr

k4r − k̃4b
sin(krr cosh u) dkr

)
du (2.11)

The integral is symmetric with respect to kr and, therefore, can be written as

wpoint (r) =
iq0

2π2D̃

∞∫

0

( ∞∫

−∞

kr

k4r − k̃4b
e−ikrr cosh u dkr

)
du (2.12)

since the integral of an odd function over a symmetric interval vanishes. The integral with respect
to kr can be performed using the residue theorem and Jordan’s lemma (Mitrinović and Kečkić,
1984). The integrand in Eq. (2.12) has first order poles, if k4r − k̃4b = 0, which leads to the four
poles

kr1 = kbde
−iΦ
4 with Im(kr1) < 0

kr2 = −kbde−i
Φ
4 with Im(kr2) > 0

kr3 = ikbde
−iΦ
4 with Im(kr3) > 0

kr4 = −ikbde−i
Φ
4 with Im(kr4) < 0

(2.13)

with

kbd =
4

√
k4b√
1 + η2

(2.14)

According to the residue theorem and Jordan’s lemma (Mitrinović and Kečkić, 1984)

∞∫

−∞

f(x)eiax dx =





2πi
s+∑

k=1

Res
z=z+

k

[
f(z)eiaz

]
+ πi

m∑

k=1

Res
z=pk

[
f(z)eiaz ] for a > 0

−2πi
s−∑

k=1

Res
z=z−

k

[
f(z)eiaz

]− πi
m∑

k=1

Res
z=pk

[
f(z)eiaz

]
for a < 0

(2.15)
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with z+k poles in the upper half plane, z
−
k poles in the lower half plane, pk poles on the real axis

and Res[·] for the residue at the pole. The residue for simple poles is given by (Mitrinović and
Kečkić, 1984)

Res
z=zk

[
f(z)eiaz

]
= lim
z→zk
(z − zk)f(z)eiaz (2.16)

In the integral of Eq. (2.12) the function f(z) = z/(z4−k̃4b ) and the parameter a = −r coshu < 0
and, therefore, according to Eq. (2.15)2, only the poles kr1 and kr4 with the negative imaginary
part contribute to the integral. The residues for these two poles are

Res
z=kr1

[
f(z)eiaz

]
=
e−ir cosh(u)̃kb

4k̃2b
Res
z=kr4

[
f(z)eiaz

]
= −e

−r cosh(u)̃kb

4k̃2b
(2.17)

with

k̃2b = k
2
bde
−iΦ
2 k̃b = kbde

−iΦ
4 (2.18)

Using Heine’s formulas for the integral representation of the Hankel functions (Magnus et al.,
1966)

H
(1)
0 (z) = −

2i

π

∞∫

0

eiz cosh u du 0 < arg(z) < π

H
(2)
0 (z) =

2i

π

∞∫

0

e−iz cosh u du − π < arg(z) < 0
(2.19)

leads to the final result

wpoint (r) =
iq0

8D̃k̃2b

(
H
(1)
0 (−rk̃b) +H

(2)
0 (−irk̃b)

)
(2.20)

The result in Eq. (2.20) can be given in different forms using the relations (Abramowitz and
Stegun, 1972)

K0(z) =
1

2
πiH

(1)
0 (iz) −π < arg(z) ¬ 1

2
π

K0(z) = −
1

2
πiH

(2)
0 (−iz) −1

2
π < arg(z) ¬ π

H
(1)
0 (iz) = −H

(2)
0 (−iz) −1

2
π < arg(z) ¬ 12π

(2.21)

which leads to

wpoint (r) =
q0

4πD̃k̃2b

(
K0(irk̃b)−K0(rk̃b)

)
=
iq0

8D̃k̃2b

(
H
(2)
0 (−irk̃b)−H

(2)
0 (rk̃b)

)
(2.22)

The displacement at r = 0 can be computed with the limiting case r → 0

wpoint (0) = lim
r→0

wpoint (r) = −
iq0

8D̃k̃2b
(2.23)
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2.4. Point load at an arbitrary point of the coordinate system

The out-of-plane displacement wpoint depends only on the distance between the response
point (x, y) and the point of excitation (x, y), which is given by r =

√
(x− x)2 + (y − y)2.

The out-of-plane displacement of the plate subject to a point force at the drive point (x, y) is,
therefore, given by

wpoint (x, y) =
iq0

8D̃k̃2b

(
H
(1)
0

(
−
√
(x− x)2 + (y − y)2k̃b

)
+H

(2)
0

(
−i
√
(x− x)2 + (y − y)2k̃b

))

(2.24)

Using a coordinate transformation to polar coordinates with

x = r cosϕ y = r sinϕ x = r cosϕ y = r sinϕ (2.25)

leads to

wpoint (r, ϕ) =
iq0

8D̃k̃2b

(
H
(1)
0

(
−
√
r2 + r2 − 2rr cos(ϕ− ϕ)k̃b

)

+H
(2)
0

(
− i
√
r2 + r2 − 2rr cos(ϕ− ϕ)k̃b

)) (2.26)

3. Other axisymmetric loadings

In this Section, the solutions for a constant ring load and a constant circular load, shown in
Figs. 1a and 1b, are derived. Two different solution techniques are shown. The first technique
uses the integration of the point force response given in Eq. (2.26), which was also used in
(Matrinček, 1994) for the dynamic response of pavement structures. The second approach uses
the Hankel transform defined in Eqs. (2.5) to obtain the results.

Fig. 1. Other axisymmetric load cases: (a) constant ring load, (b) constant circular load

3.1. Constant ring load

The constant ring load in Fig. 1a is given by

qring(r) =
q0
2πr

δ(r − r0) (3.1)
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with δ(·) being the Dirac delta function, r0 – radius of the ring load and q0 – total external force.
According to the theory of linear partial differential equations, the response to an arbitrary load
can be found by integration of the point force solution (harmonic Green’s function). This leads
to

wring(r, ϕ) =

∞∫

0

( 2π∫

0

qring(r)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

16πD̃k̃2b

∞∫

0

( 2π∫

0

δ(r − r0)
r

(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r dϕ

)
dr

(3.2)

with a =
√
r2 + r2 − 2rr cos(ϕ− ϕ). The integration with respect to ϕ can be carried out using

the addition theorem for Bessel functions (Magnus et al., 1966)

H
(n)
0 (γz) = J0(γρ)H

(n)
0 (γρ) + 2

∞∑

m=1

Jm(γρ)H
(n)
m (γρ) cos(mψ)

n = 1, 2
ρ > ρ

(3.3)

with z =
√
ρ2 + ρ2 − 2ρρ cosψ. Using that the integral

2π∫

0

cos(m(ϕ− ϕ)) dϕ = 0 for m = 1, 2, . . . (3.4)

leads to

wring(r)=





iq0

8D̃k̃2b

∞∫

0

δ(r − r0)
(
J0(−k̃br)H(1)0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
dr r > r

iq0

8D̃k̃2b

∞∫

0

δ(r − r0)
(
J0(−k̃br)H(1)0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
dr r < r

(3.5)

Using the integral property of the dirac delta function gives the final result

wring(r) =





iq0

8D̃k̃2b

(
J0(−k̃br0)H(1)0 (−k̃br) + J0(−ik̃br0)H

(2)
0 (−ik̃br)

)
r > r0

iq0

8D̃k̃2b

(
J0(−k̃br)H(1)0 (−k̃br0) + J0(−ik̃br)H

(2)
0 (−ik̃br0)

)
r < r0

(3.6)

The function depends only on r, and it is obvious that the function is continuous at r = r0.

Another possibility to get the result is the Hankel transform. The Hankel transform of the
constant ring load is given by

qring(r) =
q0
2πr

δ(r − r0) 7→ q̃ring(kr) =
q0
2π
J0(krr0) (3.7)

and combined with the transformed governing equation (Eq. (2.7)), the result in an integral
form is given by

wring(r) =
q0

2πD̃

∞∫

0

kr

k4r − k̃4b
J0(krr0)J0(krr) dkr (3.8)
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The result of this integral can be found by the general formula for integrals involving products
of two Bessel functions (Lin, 2014)

∞∫

0

xµ−ν+2ℓ+1

x2 + a2
Jµ(px)Jν(qx) dx = (−1)ℓaµ−ν+2ℓKµ(pa)Iν(qa) ℓ ∈ N0 (3.9)

with the restrictions

−(ℓ+ 1) < Re(µ) < Re(ν)− 2ℓ+ 2 and p > q and − π

2
< arg(a) <

π

2
(3.10)

Choosing µ = 0, ν = 0 and ℓ = 0 and the partial fraction decomposition

kr

k4r − k̃4b
=
1

2k̃2b

(
kr

k2r + (−k̃2b )
− kr

k2r + k̃
2
b

)
(3.11)

leads to the final result

wring(r) =






q0

4πD̃k̃2b

(
K0(ik̃br)I0(ik̃br0)−K0(k̃br)I0(k̃br0)

)
r > r0

q0

4πD̃k̃2b

(
K0(ik̃br0)I0(ik̃br)−K0(k̃br0)I0(k̃br)

)
r < r0

(3.12)

Using the relations in Eqs. (2.21) and the relation (Abramowitz and Stegun, 1972)

I0(z) = J0(iz) − π < arg(z) ¬ 1
2
π (3.13)

the results in Eqs. (3.6) become equivalent to Eqs. (3.12).

3.2. Constant circular load

The constant circular load in Fig. 1b is given by

qcirc(r) =
q0
r20π

H(r0 − r) (3.14)

where H(·) is the Heaviside step function, r0 – radius of the circular load and q0 – total external
force. The integration of the point load response leads to

wcirc(r, ϕ) =

∞∫

0

( 2π∫

0

qcirc(r)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

8πr20D̃k̃
2
b

∞∫

0

( 2π∫

0

H(r0 − r)
(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r dϕ

)
dr

(3.15)

The integration with respect to ϕ is equivalent to integration from Eq. (3.2) to Eqs. (3.5). Using
the property of the Heaviside step function and distinguishing between the case r > r0 and
r < r0 leads to

wcirc(r)=






iq0

4r20D̃k̃
2
b

r0∫

0

(
J0(−k̃br)H(1)0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr r > r0

iq0

4r20D̃k̃
2
b

( r∫

0

(
J0(−k̃br)H(1)0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr

+

r0∫

r

(
J0(−k̃br)H(1)0 (−k̃br) + J0(−ik̃br)H

(2)
0 (−ik̃br)

)
r dr

)
r < r0

(3.16)
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The recurrence formulas for Bessel and Hankel functions are given by (Watson, 1944)

d

dz
(zJ1(z)) = zJ0(z) → zJ1(z) =

∫
zJ0(z) dz

d

dz

(
zH
(n)
1 (z)

)
= zH

(n)
0 (z) → zH

(n)
1 (z) =

∫
zH
(n)
0 (z) dz n = 1, 2

(3.17)

which allows the evaluation of the integrals in Eqs. (3.16). The final results are given by

wcirc(r)=






−iq0
4r0D̃k̃

2
b

(
1

k̃b
J1(−k̃br0)H(1)0 (−k̃br) +

1

ik̃b
J1(−ik̃br0)H(2)0 (−ik̃br)

)
r > r0

−iq0
4r20D̃k̃

2
b

(
4

iπk̃2b
+
r0

k̃b
J0(−k̃br)H(1)1 (−k̃br0) +

r0

ik̃b
J0(−ik̃br)H(2)1 (−ik̃br0)

)
r < r0

(3.18)

In the computation of Eq. (3.18)2, the formulas for Wronskian determinants of Bessel functions
(Magnus et al., 1966)

J1(z)H
(1)
0 (z)− J0(z)H

(1)
1 (z) =

2

iπz

J1(z)H
(2)
0 (z)− J0(z)H

(2)
1 (z) = −

2

iπz

(3.19)

are used.
The response of the plate to a constant circular load can also be derived using the Hankel

transform. Inserting the Hankel transform of a constant circular load

qcirc(r) =
q0
r20π

H(r0 − r) 7→ q̃circ(kr) =
q0

r0πkr
J1(krr0) (3.20)

in transformed governing equation (Eq. (2.7)) leads to

wcirc(r) =
q0

r0πD̃

∞∫

0

1

k4r − k̃4b
J1(krr0)J0(krr) dkr (3.21)

The integral in Eq. (3.21) can be evaluated using the general formula from Eq. (3.9). The partial
fraction decomposition

1

k4r − k̃4b
=
1

2k̃2b

(
1

k2r + (−k̃2b )
− 1

k2r + k̃
2
b

)
(3.22)

and the parameters µ = 0, ν = 1 and l = 0 lead to the result for r > r0. The result for r < r0
can be found by expanding the partial fraction decomposition in Eq. (3.22) to

1

2k̃2b

(
1

k2r + (−k̃2b )
− 1

k2r + k̃
2
b

)
=
1

2k̃4b

(
− 2 + k2r

k2r + (−k̃2b )
+

k2r

k2r + k̃
2
b

)
(3.23)

The integrals involving the rational functions can be evaluated using Eq. (3.9) with the para-
meters µ = 1, ν = 0 and l = 0, while the integral with the constant factor is a discontinuous
Weber-Schafheitlin integral (Watson, 1944)

∞∫

0

J0(at)J1(bt) dt =





0 b < a

1

b
b > a

(3.24)
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The final results are

wcirc(r))=





−q0
2r0πD̃k̃2b

(
1

k̃b
I1(k̃br0)K0(k̃br)−

1

ik̃b
I1(ik̃br0)K0(ik̃br)

)
r > r0

−q0
2r20πD̃k̃

2
b

(
2

k̃2b
− r0

k̃b
I0(k̃br)K1(k̃br0) +

r0

ik̃b
I0(ik̃br)K1(ik̃br0)

)
r < r0

(3.25)

Using the relations between the Bessel functions, the results become equivalent to the results in
Eqs. (3.18).

4. Non-axisymmetric loading

A closed-form solution for the out-of-plane displacement of a plate can also be calculated for
certain types of non-axisymmetric loading by the integration of the point force response. Espe-
cially, the loading shown in Fig. 2 has a practical value, since it appears when a circular cylinder
is mounted to a plate and loaded with a harmonic horizontal force (Korenev, 2002).

Fig. 2. Alternating circular load

The load shown in Fig. 2 is given in the polar coordinates by

qnonaxi (r, ϕ) =
q0r

r0
H(r0 − r) cosϕ. (4.1)

Integrating the point load response leads to

wnonaxi (r, ϕ) =

∞∫

0

( 2π∫

0

qnonaxi (r, ϕ)wpoint (r, ϕ, r, ϕ)r dϕ
)
dr

=
iq0

8r0D̃k̃2b

∞∫

0

( 2π∫

0

H(r0 − r)
(
H
(1)
0 (−ak̃b) +H

(2)
0 (−iak̃b)

)
r2 cosϕ dϕ

)
dr

(4.2)

The integration with respect to ϕ can be carried out using the addition theorem for Bessel
functions, given in Eq. (3.3) and the integral

2π∫

0

cosϕ cos(n(ϕ− ϕ)) dϕ =
{
π cosϕ n = 1

0 n ∈ N0|n 6= 1
(4.3)
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Using the property of the Heaviside step function and distinguishing between the case r > r0
and r < r0, the integrals with respect to r are given by

wnonaxi (r, ϕ)=





iq0π cosϕ

4r0D̃k̃2b

r0∫

0

(
J1(−k̃br)H(1)1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr r > r0

iq0π cosϕ

4r0D̃k̃2b

( r∫

0

(
J1(−k̃br)H(1)1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr

+

r0∫

r

(
J1(−k̃br)H(1)1 (−k̃br) + J1(−ik̃br)H

(2)
1 (−ik̃br)

)
r2 dr

)
r < r0

(4.4)

Using the recurrence formulas for Bessel and Hankel functions (Watson, 1944)

d

dz

(
z2J2(z)

)
= z2J1(z) → z2J2(z) =

∫
z2J1(z) dz

d

dz

(
z2H

(n)
2 (z)

)
= z2H

(n)
1 (z) → z2H

(n)
2 (z) =

∫
z2H

(n)
1 (z) dz n = 1, 2

(4.5)

and the formulas for Wronskian determinants of the Bessel functions given in Eqs. (3.19), the
integration with respect to r leads to the final result

wnonaxi (r) =






−iq0πr0 cosϕ
4D̃k̃2b

( 1
k̃b
J2(−k̃br0)H(1)1 (−k̃br)

+
1

ik̃b
J2(−ik̃br0)H(2)1 (−ik̃br)

)
r > r0

−iq0π cosϕ
4D̃k̃2b

( 4r
ir0k̃2bπ

+
r0

k̃b
J1(−k̃br)H(1)2 (−k̃br0)

+
r0

ik̃b
J1(−ik̃br)H(2)2 (−ik̃br0)

)
r < r0

(4.6)

5. Limit absorption principle – the undamped plate

The limit absorption principle states that a purely elastic solid is an idealization of a weakly
absorbing material and, therefore, the solution of the undamped plate can be found by the
limiting case η → 0 and Φ → 0 (Filippi, 2010). Replacing D̃ → D and k̃b → kb in Eqs. (2.20),
(3.6), (3.18) and (4.6) gives the resulting displacement of the undamped plate. The solution for
the point force excitation in Eq. (2.20) becomes identical to the solutions, which can be found
in the literature, e.g. (Vanmaele et al., 2007) for the undamped plate.

6. Numerical example

In this Section, the harmonic response of an infinite aluminium plate with a Young’s modulus
E = 7·1010 N/m2, Poisson’s ratio ν = 0.3, density ρ = 2790 kg/m3, material loss factor η = 0.001
and thickness h = 0.002m is shown. For all load cases, the excitation frequency is f = 50Hz.
The real and imaginary part of the out-of-plane displacement w of the plate excited by a

harmonic point force (q0 = 1N), harmonic constant ring load (q0 = 1N, r0 = 2.5m), harmonic
constant circular load (q0 = 1N, r0 = 2.5m) and a harmonic alternating circular load (q0 = 1N,
r0 = 2.5m) is shown in Figs. 3-6. The point load solution shows the highest displacement
amplitude at the center of the excitation (r = 0).
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Fig. 3. Plate response to a harmonic point load: (a) real part of w(r), (b) imaginary part of w(r)

Fig. 4. Plate response to a harmonic ring load: (a) real part of w(r), (b) imaginary part of w(r)

Fig. 5. Plate response to a harmonic circular load: (a) real part of w(r), (b) imaginary part of w(r)
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Fig. 6. Plate response to a harmonic alternating circular load: (a) real part of w(r, ϕ),
(b) imaginary part of w(r, ϕ)

7. Conclusion and future research topics

New closed-form solutions for the harmonic vibrations of infinite Kirchhoff plates have been
developed for different load cases. The response to a harmonic point load has been reviewed and
two different techniques, the Hankel transform and the integration of the point load solution,
have been used to calculate the response to a harmonic ring load, harmonic circular load and
a harmonic alternating circular load. The new particular solutions can be used to extend the
applicability of indirect Trefftz methods for the analysis of forced Kirchhoff plate vibrations.
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8. Kirchhoff B., 1850, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, Journal
für die reine und angewandte Mathematik, 40, 51-88

9. Klanner M., Ellermann K., 2015, Wave Based Method for the steady-state vibrations of thick
plates, Journal of Sound and Vibration, 345, 146-161

10. Korenev B., 2002, Bessel Functions and their Applications, London, Taylor & Francis

11. Lin Q.-G., 2014, Infinite integrals involving Bessel functions by an improved approach of contour
integration and the residue theorem, The Ramanujan Journal, 35, 3, 443-466



Solutions of vibration problems for thin infinite plates... 961

12. Magnus W., Oberhettinger F., Soni R., 1966, Formulas and Theorems for the Special Func-
tions of Mathematical Physics, Berlin, Springer Verlag
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In this paper, we analyze the spin dynamics of an aerodynamically asymmetric aircraft in
open-loop configuration and also evaluate the performance of gain scheduled flight control
law in improving dynamic characteristics of aircraft spin. A look-up tables based aerody-
namic model is developed from static, coning and oscillatory coning rotary balance wind
tunnel test data. As a starting point, all possible steady spin modes are identified by so-
lving the aircraft dynamic model comprising moment equations. The influence of high-alpha
yawing moment asymmetry on predicted right and left spin modes is discussed. Six degree
of freedom simulations of left and right flat spins are performed in open-loop and closed-loop
configurations with the flight control law. Our studies reveal that large amplitude oscillations
in the angle of attack and sideslip observed in the open-loop configuration are significantly
damped by the control law. The control law reduces the recovery time of the left flat spin.
However, the aircraft natural tendency to rotate rightwards due to yawing moment asym-
metry at high angles of attack renders flight control law ineffective in aiding the recovery of
the right flat spin.

Keywords: aerodynamic model, steady spin modes, unsteady effects, simulations

Nomenclature

α, β – angle-of-attack; sideslip angle, [deg]
φ, θ, ψ – roll, pitch, yaw Euler angles, [deg]
p, q, r – roll, pitch, yaw rates in body axes, [deg/s]
v – velocity, [m/s]
Ω – wind axis rotation rate, [deg/s]
Ω∗ – non-dimensional wind axis rotation rate, Ωb/(2v) [rad]
h – altitude, [m]
δa, δe, δr – aileron, elevator and rudder deflections, [deg]
CA, CY , CN – axial, side and normal force coefficients in body axes
Cl, Cm, Cn – rolling, pitching and yawing moment coefficients in body axes
CL, CD – coefficient of lift and drag in wind axes
Ix, Iy, Iz – moments of inertia about X, Y and Z body axis respectively, [kgm2]
m – mass, [kg]
Sw, b – wing area, [m2] and b wing span, [m], respectively
c – mean aerodynamic chord, [m]
ρ – air density, [kg/m3]
∆ – increment



964 B. Malik et al.

1. Introduction

Good high angle of attack characteristics are required for modern fighter aircraft to enhance
maneuverability during actual combat and tactical training missions. While performing high-
-alpha maneuvers, fighter aircraft become susceptible to loss of controlled flight due to significant
degradation in stability and control characteristics. Moreover, fighter configurations featuring
long pointed nose and slender fuselage may also experience large asymmetric yawing moments at
high angles of attack that result in loss of directional stability (Cobleigh, 1994). This phenomenon
may cause yaw divergence and subsequent entry into spin, in the direction depending upon
orientation of yawing moment asymmetry. Past statistics show that such inadvertent loss of
control caused numerous stall/spin related accidents resulting in loss of aircraft/aircrew or both.
As a result, prediction and analysis of post stall maneuvers using wind tunnel data and computer
techniques in the early design/production stage of aircraft has received enormous attention from
aeronautical engineering community.

A detailed account of evolution of aircraft spin and corresponding research to meet the chal-
lenges, since early years of aviation, was given by Abzug and Larrabee (2005). Aerodynamic
models developed around the 1930’s for studying aircraft spin were based on Bryan and Hartley
(1911), which assumed that instantaneous values of aerodynamic coefficients depended only on
instantaneous values of flight parameters and also that those coefficients varied linearly with
those parameters. Such aerodynamic models, though suited for analyzing low angle of attack
flights, proved inaccurate and inadequate for predicting and analyzing aircraft spin characteri-
stics, because such high-alpha maneuvers involve aerodynamic loads that are highly nonlinear
and show time lag with respect to flight parameters. Considerable efforts have, therefore, been
put in by various countries in design and development of dynamic wind tunnel test facilities
like rotary balance apparatus, forced oscillation motion rigs, oscillatory coning motion rigs, etc.,
that can emulate aircraft motion in post stall maneuvers (Bergmann, 2009; Jin et al., 2015;
Zhang et al., 2015). Aerodynamic data from such dynamic wind tunnel test setups has been
used effectively in identifying aircraft steady spin modes and simulation of post stall maneuvers
(Bihrle, 1990; Murch and Foster, 2007; Khrabrov et al., 2013; Paul and Gopalarathnam, 2012).

Traditionally, a spin maneuver consists of three phases; incipient, fully developed spin and
recovery phase. During incipient phase, aircraft transients from an aggravated stall to auto-
rotation and flight path changes from horizontal to vertical. In the fully developed or steady
spin phase, equilibrium is attained between inertia and aerodynamic forces and moments, and
the aircraft descends downwards in a spiral trajectory about the vertical spin axis. The steady
spin phase is extremely critical because if requisite anti-spin controls are not applied promptly,
the spin may continue until the aircraft hits the ground. In the spin recovery phase, normally
initiated by control inputs, the rotation rate decreases, aircraft nose attitude steepens, airspeed
builds up and aircraft returns to the low-alpha flight regime. Bifurcation analysis and numerical
continuation algorithms were used in the past to predict characteristics of steady spin such as
flat or steep, stable or unstable, left or right, erect or inverted, steady or oscillatory, etc. (Pa-
ranjape and Ananthkrishnan, 2010). However, such methods present only a quasi-static state of
the aircraft dynamics, and do not provide any details about transient motion (Raghavendra et
al., 2005). Numerical continuation methods also require smooth functional representation of ae-
rodynamic loads; as a result they are not suitable for look-up tables based aerodynamic models
(Kolesnikov and Goman, 2012).

This paper addresses the problem of analyzing spin dynamics of a fighter aircraft cosponso-
red by China and Pakistan (Hewsom, 2005). As a starting point, all possible steady spin modes
are identified by numerically solving the aircraft dynamic model comprising moment equations.
Influence of high-alpha yawing moment asymmetry on identified left and right spin modes is illu-
strated with a steady spin modes location diagram. Flight parameters corresponding to the spin
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modes are used as initial conditions for six degree-of-freedom simulations of the aircraft spin. For
this purpose, the flight dynamic model of the aircraft is developed in MATLAB/SIMULINK envi-
ronment that can accurately simulate post-stall maneuvers. Six degree of freedom simulations of
the aircraft spin are performed in open-loop configuration to study spin dynamic characteristics.
Simulations in closed-loop configuration are also performed to evaluate the performance of the
gain scheduled flight control law in improving aircraft spin dynamic characteristics and aiding
spin recovery.

The past spin research focused on general aviation and fighter configurations that either did
not experience aerodynamic asymmetries at high angles of attack or influence of such aerodyna-
mic asymmetries on dynamic characteristics of spin are not addressed explicitly (Tischler and
Barlow, 1981; Sibilski and Wróblewski, 2012). The work presented in this paper is, therefore,
aimed at providing better physical insight into the effect of high-alpha yawing moment asym-
metry on spin dynamics and recovery characteristics by performing computer simulations of
left and right flat spins. Our results show that computer simulations can be effectively used in
predicting and analyzing the key dynamic characteristics of aircraft spin like dynamic stabili-
ty, rotation rate about spin axis, number of rotations before recovery, altitude loss during spin
recovery, and contribution of the control law in aiding spin recovery, etc.

2. Aircraft flight dynamics model

The aircraft flight dynamical model is based on full six degree of freedom nonlinear equations of
motion and utilizes the aerodynamic model stored in the form of look-up tables. The model also
incorporates the actuator dynamics with range saturations and rate limitations, sensor dynamics
and engine dynamics.

2.1. Development of aerodynamic model

A high fidelity aerodynamical model, in the form of look-up tables, is developed using expe-
rimental data from static, rotary balance coning motion and oscillatory coning motion tests.
Broadly, each aerodynamic coefficient in the system of body axes can be represented as the sum
of three components: the static aerodynamic component, increment due to steady rotations and
increment due to unsteady aerodynamic effects

Ci = Ci,static +∆Ci,steady +∆Ci,unsteady (2.1)

where Ci = CA, CY , CN , Cl, Cm, Cn.

The static component Ci,static is measured from static wind tunnel tests for the angle of
attack range −45◦ < α < 90◦ and sideslip angles −15◦ < β < 15◦. The static aerodynamic
component is modeled as

Ci,static = Ci(α, β, δ = 0) +∆Ci(α, δa) +∆Ci(α, δe) +∆Ci(α, δr)

+∆Ci(α, δe, δr) +∆Ci(α, β, δr)
(2.2)

The first term on the right-hand side of equation (2.2) represents the static effect for different
angles of attack and sideslips, with all control surfaces set at the neutral position. The 2-nd to
4-th terms represent increments due to deflections of the aileron, elevator and rudder, respecti-
vely. The last two terms are aerodynamic increments due to rudder-horizontal tail and rudder-
-sideslip couplings.
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The steady aerodynamic component ∆Ci,steady is measured from rotary balance coning mo-
tion tests carried out on an aircraft model over the same range of aerodynamic angles as static
tests and rotation rates between −700◦/s and 700◦/s. The steady aerodynamic component is
modeled as

∆Ci,steady = Ci(α, β,Ω, δa,e,r = 0) +∆Ci(α,Ω, δa) +∆Ci(α,Ω, δe) +∆Ci(α,Ω, δr) (2.3)

The first term on the right hand side of equation (2.3) represents the rotational effects
with aerodynamic controls at the neutral position; whereas the last three terms represent the
aerodynamic increment due to the ailerons, elevator and rudder deflections, respectively. Each
individual term in equations (2.2) and (2.3) represent an n-dimensional lookup table, where
n is the number of independent variables. Values of the coefficients are obtained by linear
interpolation between the table nodes.

In coning motion dynamic wind tunnel tests, the aircraft model emulates a steady spin
flight and, hence, the data from these tests is used to predict steady spin modes of the aircraft
(Bihrle, 1990). During post stall maneuvers like oscillatory spins, incipient spins, spin recovery,
etc., aerodynamic effects are highly nonlinear and time dependent (Bergmann, 2009). Accurate
modeling of these unsteady aerodynamic effects is essential for correct simulations of the aircraft
flight during such post stall maneuvers.

2.2. Modeling of unsteady aerodynamic effects

Generally, two approaches are followed to address the problem of modeling unsteady aero-
dynamic effects; computational fluid dynamics (CFD) (Luchtenburg et al., 2015; Ghoreyshi et
al., 2014) and an experimental approach where the data from wind tunnel tests is used in con-
junction with the system identification (SID) to obtain an adequate mathematical model from
the data, such as a differential equation model (Abramov et al., 2004), neural network model
(Ignatyev and Khrabrov, 2015), support vector machine (Wang et al., 2015), etc. Modeling of
unsteady aerodynamic effects using CFD have shown very promising results, however its use in
aircraft simulation applications remains limited because simultaneous solution of equations of
fluid dynamics in conjunction with integration of aircraft equations of motion become extremely
resource consuming. In the present work, a differential equation based model of the following
form is used for the modeling of unsteady aerodynamic effects

τi(α)
d∆Ci,unsteady

dt
+∆Ci,unsteady = ki(α)α̇ (2.4)

The coefficient k represents the instantaneous response, whereas the time constant τ corre-
sponds to the time lag response. The values of τ and k are computed from oscillatory coning
motion test data using the least squares method. In Fig. 1, the model for the unsteady aerody-
namic effect in the normal force coefficient is plotted with oscillatory coning data, whereas Fig. 2
shows the same plot for the pitching moment coefficient. The modeling is done for three different
mean angles of attack α0 = 35

◦, 40◦, 50◦. It is observed that the proposed model response in
the two cases is reasonably close to the experimental data. The unsteady aerodynamic models
are integrated with the overall aircraft dynamic model for simulation of flat oscillatory spins.

2.3. High angle of attack aerodynamics

Wind tunnel tests carried out on an aircraft model reveal two aerodynamic phenomena in
the high angle of attack regime: strong aerodynamic asymmetry in the yawing moment and
ineffectiveness of the rudder at high angles of attack. Variation of the static yawing moment
coefficient Cn with the angle of attack is illustrated in Fig. 3 for three rudder settings.
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Fig. 1. Unsteady aerodynamic model response compared with test data: normal force CN

Fig. 2. Unsteady aerodynamic model response compared with test data: pitching moment Cm

As seen in Fig. 3, the yawing moment coefficient Cn remains symmetric below 40
◦ angles of

attack region, which is expected. However, as the angle of attack increases beyond 40◦, strong
asymmetry in the yawing moment is observed. Since the yawing moment coefficient Cn is seen
to remain positive in the region of asymmetry, the aircraft has inherent tendency to yaw towards
right thus promoting departure and spin entry in the same direction. The exact reason of the
observed high angle of attack yawing moment asymmetry is under investigation by conducting
further wind tunnel tests and extended CFD simulations. Moreover, for angles of attack be-
low 40◦, the rudder is observed to be effective. As the angle of attack exceeds 40◦, the rudder
deflection does not produce a corresponding change in yawing moment, thus rendering the rud-
der ineffective at high angles of attack. This inefficiency of the rudder is due to influence of the
wing and fuselage wake on the vertical tail surface.
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Fig. 3. Variation of yawing moment coefficient Cn with angle of attack

2.4. Control law architecture

Flight control systems of modern fighter aircraft are designed to attain benefits like stabi-
lization and control of a relatively unstable airframe, enhanced maneuverability at high angles
of attack, automatic departure/spin prevention, enhanced safety and reduced pilot workload.
This section presents high level description of the gain-scheduled flight control law selected for
studying closed-loop spin dynamics. Conceptually, the control law can be divided into two main
sections: longitudinal control law and lateral/directional control law. Functional block diagrams
of longitudinal and lateral/directional control laws are illustrated in Figs. 4 and 5, respectively.

Each main section of the control law comprises of three main functional units: a command
shaping module, feed-forward path and feedback path. The control law accepts pilot pitch, roll
and yaw commands through longitudinal, lateral stick deflections and rudder pedals, respectively.
These pilot inputs are fed to the command shaping modules where they are processed by a
stick gradient, command limiter and command filter sub-modules to provide desired command
augmentation properties. The outputs of the command shaping modules are then summed with
the feedback signals to form command error signals ep, er and ey. The pitch error signal ep is
multiplied with the main gain of the longitudinal flight control path Kp to form the feedforward
command which after passing through a proportional plus integral compensation filter is sent to
the horizontal tail actuator. The roll error signal er after multiplication with the main gain of
the roll control law Kr and passing through the proportional compensation filter is sent to the
aileron actuator. Similarly, the yaw error signal ey is multiplied with the main gain of the yaw
control law Ky which after passing through the proportional compensation filter is sent to the
rudder actuator.

The dynamic feedback compensation module contains lead-lag filters and washout filters for
achieving requisite gain and phase margins and improving the damping response, respectively.
The notch filters in the feedback path attenuate the aircraft structural modes. The alpha-limiting
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Fig. 4. Longitudinal control law: block diagram

Fig. 5. Lateral-directional control law: block diagram

control law in the longitudinal feedback prevents aircraft excursions beyond the requisite angle
of attack limits. The Aileron Rudder Interconnect (ARI) is provided to mitigate some of the
adverse yaw effects encountered in fighter aircraft by aileron deflection, particularly at high
angles of attack.
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3. Identification of steady spin modes

The first step in the prediction of aircraft spin characteristics is the identification of all possible
steady spin modes and their sensitivity to aerodynamic control settings. The aircraft equations
of motion in the steady spin phase were derived in detail by Pamadi (2004). In the steady
spin phase, all accelerations along and about the aircraft body axes system are zero. Figure 6
illustrates forces acting on the aircraft in the steady spin. The resultant aerodynamic force acts
normal to the wing chord line and the side-force is negligibly small. The resultant aerodynamic
force is decomposed into two components: the lift (L) acting in the horizontal direction and
the drag (D) in the vertical plane. The force equilibrium condition is satisfied when the drag
balances aircraft weight (W ) and the lift balances the centrifugal force acting on the aircraft

D =
1

2
ρv2SwCD =W L =

1

2
ρv2SwCL = mrΩ

2 (3.1)

Fig. 6. Aircraft in steady spin

With the above stated flight conditions, the force equations are decoupled from the aircraft
moment equations. Since force equilibrium can be attained at any attitude and spin rate by
adjusting the spin radius and rate of descent, it is the balance of inertial and aerodynamic
moment terms in the following moment equations that must be satisfied to ensure the steady
spin condition

4(Iy − Iz)
ρSwb3

Ω∗2 sinα sin(2β) +Cl(α, β,Ω
∗) = f1(X,U)

4(Iz − Ix)
ρSwcb2

Ω∗2 sin(2α) cos2 β +Cm(α, β,Ω
∗) = f2(X,U)

4(Ix − Iy)
ρSwb3

Ω∗2 cosα sin(2β) + Cn(α, β,Ω
∗) = f3(X,U)

(3.2)

where X = [α, β,Ω∗] represents the state vector and U = [δa, δe, δr, h,m] the control input.
Equilibrium is reached when the inertial terms (first terms on the left hand side of equations
(3.2)) balance the aerodynamic terms (second terms on the left-hand side of the same equations).
Since the inertial as well as aerodynamic terms are functions of X, the steady spin modes are
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computed by simultaneous solution of the moment equations for the unknown state vector X
at a specific control input U. Locations of the computed left and right spin modes in terms of
the angle of attack, for the complete range of aileron deflections and for all elevator settings,
are illustrated in Fig. 7. As seen, the right spin modes are significantly higher than the left
spin modes. This correlates well with fact that high-alpha yawing moment asymmetry results in
natural tendency of the aircraft to yaw toward right thus promoting departure and spin entry
in the same direction.

Locations of the spin modes in Fig. 7 provide insight into their recoverability characteristics.
As highlighted by Bihrle and Barnhart (1983), if the spin mode exists for pro-spin control settings
and none for recovery or neutral control settings, the recovery is assisted by setting controls at
positions where the spin mode does not exist. As seen in Figs. 7a and 7b, the left flat spin modes
exist for elevator settings at 0◦ and −30◦ and for the aileron deflection range δa < 0◦. No left
flat spin modes exist for the elevator settings at 15◦ (Fig. 7c). Hence, the recovery of left flat
spins seems to be aided if the elevator is fully pitched down, i.e. δe = 15

◦ and the aileron set
to δa  0◦. However, for the right flat spins, which exist for all elevator settings and across the
complete range of aileron deflections, the recovery through control surfaces input is seen to be
problematic.

Fig. 7. Locations of steady spin modes for various elevator settings: (a) δe = 0
◦, (b) δe = −30◦,

(c) δe = 15
◦

4. Time history simulations

Time history simulations provide clear understanding on dynamic stability of identified spins,
their oscillatory characteristics and effectiveness of flight control law in aiding the spin recovery.
Simulations are carried out in MATLAB/SIMULINK environment, by integrating the full set of
aircraft non-linear equations using the fourth-order Runge-Kutta routine. The force equations
are taken in the aircraft wind axis and the moment equations are taken in the body axis system.
Time history simulations are initialized with flight parameters corresponding to the aircraft
steady spin and the results are demonstrated for two flat spins, left and right, listed in Table 1.
The aircraft is said to be recovered from spin when the angle of attack reduces to 20◦, which is
safely below the stall region, and attain full effectiveness of control surfaces.
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Table 1. Right and left flat spins: initial conditions

Spin type
α β Ω∗ v φ θ ψ p q r z δa δe δr

Right flat spin 72.1 −3.1 0.08 59.3 0 −11.9 0 28.3 −5.2 88.3 3000 10 0 0
Left flat spin 78.2 2.8 −0.11 58.8 0 −17.8 0 −25.3 −5.8 −120 3000 −20 0 0

4.1. Dynamic characteristics of right flat spin

Time histories of the right flat spin in closed-loop configuration (solid curves) are plotted
in Fig. 8 and compared with spin simulations in open-loop configuration (dashed curves). The
right flat spin is oscillatory in nature, since the angle of attack (Fig. 8d) and sideslip (Fig.8e)
exhibit oscillations about the steady spin equilibrium point. Natural spin recovery is seen to
occur because as the time passes, the aircraft descends downwards (Fig. 8f), airspeed increases
(Fig. 8g), rotation rate about the spin axis decreases (Fig. 8j), angle of attack decreases well
below the stalling angle and the aircraft enters the low alpha flight regime (Fig. 8d), where
the aerodynamic controls become fully effective to attain low alpha steady flight conditions.
Since the aircraft recovers naturally from the steady spin state, the right flat spin is unstable or
divergent. It takes about 2.5 rotations for the aircraft to recover naturally from spin (Fig. 8h).

Fig. 8. Comparison of open loop (dashed) and closed loop (solid) time history simulations: right flat spin

It is seen from Fig. 8d that the gain scheduled flight control law does not reduce the recovery
time of the right flat spin, since the aircraft enters the low-alpha flight regime at the same
time in both cases, i.e. open-loop and closed loop configurations. The aircraft natural tendency
to yaw rightwards due to high-alpha yawing moment asymmetry and existence of right steady
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spin modes across the entire aileron deflection range and elevator settings renders the control
law ineffective in aiding the spin recovery. However, large amplitude oscillations in the angle of
attack and sideslip (Fig. 8d and 8e), observed in the open loop spin dynamics, are significantly
damped by the flight control law.

4.2. Dynamic characteristics of left flat spin

Time histories of the left flat spin in closed-loop configuration (solid curves) are plotted
in Fig. 9 and compared with spin simulations in open-loop configuration (dashed curves). As
observed from the time histories, the left flat spin is also oscillatory and divergent. As the spin
gets flatter with the increasing angle of attack, the rotation rate about the spin axis increases
and the recovery becomes difficult or may take a longer time (Pamadi, 2004). This phenomenon
is observed in the case of the left flat spin, which is more flat (α = 78.2◦) as compared to the
right flat spin (α = 72.1◦). The left flat spin in open-loop configuration is seen to have a high
rotation rate and takes almost 17.5 seconds (Fig. 9d) and five turns (Fig. 9h) to transit from the
steady spin flight phase to the low alpha-flight regime. It is observed that the gain scheduled
flight control law is effective in reducing the recovery time of the left flat spin (Fig. 9d), and also
damping of large amplitude oscillations in the angle of attack and sideslip observed in open-loop
spin dynamics (Figs. 9d and 9e).

Fig. 9. Comparison of open loop (dashed) and closed loop (solid) time history simulations: left flat spin

The gain scheduled approach to designing of the flight controller has limitation since the
controllers are designed only at equilibrium operating points within the prescribed flight envelope
and therefore, may not cope with highly nonlinear aerodynamic effects encountered in the post
stall flight regime. Moreover, problems may also be faced when scheduling with respect to rapidly
changing state variables (Gill et al., 2015). To overcome such limitations, nonlinear control
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law designs such as dynamic inversion (Slotine and Li, 1991) and various adaptive techniques
(Crespo et al., 2012) may be tested with the aircraft flight simulation model for obtaining further
improvements in dynamical characteristics of the aircraft spin.

5. Conclusion

The results presented in this paper demonstrate that computer simulations are an effective tool
for prediction and analysis of dynamic characteristics of aircraft post-stall and spin maneuvers.
For correct simulation of high alpha maneuvers, an accurate aerodynamic model which incorpo-
rates non-linear and unsteady aerodynamic effects encountered in such maneuvers is required.
Whilst the dynamical system theory based approach facilitates understanding of asymptotic
characteristics of the aircraft dynamics, time history simulations are vital to investigate dyna-
mic effects in transitory flights such as dynamic stability of developed spins, ease or difficulty
with which aircraft enters or recovers from a spin etc.

The spin dynamics of fighter configuration with high-alpha yawing moment asymmetry is
analyzed in open loop and closed loop configurations, and the performance of the gain scheduled
flight control law in improving recovery and oscillatory characteristics of fully developed spins
is evaluated. The aircraft natural tendency to rotate towards right due to high alpha yawing
moment asymmetry has strong influence on the predicted spin modes. The right flat spins are
found to exist across the entire aileron deflections and for all elevator settings. The right and
left flat spins are oscillatory and unstable. The left spin being more flat than the right one,
takes longer to recover and has a higher rotation rate. The control law is effective in reducing
the recovery time for left spins; however fails to do the same for right flat spins as they exist
across the full range of ailerons deflections and all elevator settings. Moreover, the control law
effectively damps large amplitude oscillations observed in the left and right flat spins in open
loop configuration.
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The analysis and solution of many modern flexible multibody dynamic problems require
formulations that are able to effectively model bodies with nonlinear materials undergoing
large displacements and deformations. The absolute nodal coordinate formulation (ANCF)
in connection with a continuum-based approach is one way to deal with these systems. The
main objective of this work is to extend an existent approach for the modelling of slen-
der structures within the ANCF framework with nonlinear, nearly incompressible materials
using the volumetric energy penalty technique. The main part of the study is devoted to the
evaluation of multi-layer beam models and simplifications in the locking suppression me-
thod based on F -bar projection. The results present significantly better agreement with the
reference solution for multi-layer structures built with the standard ANCF beam element as
compared with the earlier implementation.

Keywords: multibody dynamics, ANCF, incompressibility, locking phenomena, multi-layer
beams

1. Introduction

The dynamic analysis of bodies that undergo large deformations and are built with complex and
nonlinear materials is a vital part of the modern computer-aided design and modelling techniqu-
es. Therefore, such features should be included in a reliable manner in the advanced multibody
system (MBS) simulation software. In flexible multibody dynamics, the most frequently used
method is the floating frame of reference formulation (Shabana, 1997b) that is usually limited to
linear-elastic deformations. The geometrical and material nonlinearities can be included within
the finite element analysis (FEA) (Bathe, 1996), however, the FEA is not perfectly compatible
with the MBS (Wasfy and Noor, 2003).
The absolute nodal coordinate formulation (ANCF) proposed by Shabana (1997a) can be

efficiently used within the flexible multibody dynamics. The unique characteristics of this method
allow straightforward modelling of beam and plate elements using nonlinear material models.
ANCF employs the slope coordinates rather than rotations to describe local orientation, which
enables, among other things, representation of complicated shapes using just a few elements.
Flexible ANCF bodies can exactly represent rigid body modes, including large rotations, and
model large body deformations. Additionally, the ANCF beam elements may employ general
constitutive formulations (in addition to the classical beam theories) for a variety of nonlinear
material models, including incompressible ones. All these features cause that the ANCF is well
suited for the dynamic analysis of highly flexible beam structures using nonlinear material models
within the MBS framework (Shabana, 2008).
Incompressible rubber-like materials are used in many engineering and industrial applications

like defence, automotive, safety and others. Consequently, reliable and effective application of the
incompressible nonlinear materials in many biomechanical and engineering models is one of the
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key goals. However, commercial FEA packages restrict the work with incompressible materials to
shell and solid elements (ANSYS® Academic Research, 2010), also when slender structures are
considered that are otherwise modelled with beam elements. One can overcome this limitation
in the mentioned kind of common applications by applying fully parameterized ANCF beam
elements (Shabana, 2008; Orzechowski and Frączek, 2015).

Most investigations devoted to the ANCF framework assume a linear-elastic material mo-
del. Compressible and incompressible hyperelastic and isotropic material models were firstly
used within the ANCF by Maqueda and Shabana (2007). Furthermore, Maqueda et al. (2010)
presented the application of the ANCF beams with incompressible materials to rubber chains
systems. Moreover, the validation of the ANCF model based on the experiment that captured
motion of the rubber-like beam was presented in (Jung et al., 2011). Nonetheless, none of the
above works have stressed the importance of using the locking alleviation techniques. It is worth
to point out that many issues that are actively researched in the ANCF field have already been
studied for nonlinear finite elements.

The main objective of this paper is to recall and extend the volumetric locking elimina-
tion techniques for nonlinear, hyperelastic, nearly incompressible material models applied to the
ANCF beams. The previous paper by Orzechowski and Frączek (2015) showed an importance
of volumetric locking elimination techniques in typical applications, however, only higher-order
elements, like those presented in Orzechowski and Shabana (2016), which were also numerically
expensive due to the high number of coordinates and integration points, provided a reasonable
results. Therefore, exemplary techniques that may reduce the computational cost are introdu-
ced and validated with several numerical examples. Strictly speaking, the implementation of
multi-layer beam models with appropriate continuity between layers make it possible to use the
lower-order ANCF beam element, while the use of lower-order projection basis with the F -bar
projection technique simplifies this locking suppression formulation. Therefore, in the current
study, the standard three-dimensional fully parameterized element is used (Shabana and Yako-
ub, 2001; Yakoub and Shabana, 2001) together with two simple incompressible material models:
one-parameter Neo-Hookean and two-parameter Mooney-Rivlin (Shabana, 2008). Incompressi-
bility of the materials is ensured by the penalty method, which is chosen due to its simple form
and common use, and two methods of the locking suppression are applied. Due to introduced
multi-layer structures, the results of numerical tests are in significantly better agreement with
the reference for models built with the standard ANCF beam element as compared with the
earlier implementation.

2. Kinematics and dynamics of deformable bodies

The nodal coordinates of the ANCF elements are prescribed with respect to the global refe-
rence frame and they include translational and slope coordinates. Consequently, no rotational
coordinates are used to identify the element orientation. Thus, the independent rotation field
interpolation is not required and only the displacement field is interpolated (Sugiyama et al.,
2006).

In this investigation, the fully parameterized ANCF beam element with twenty-four nodal
coordinates is used (Shabana and Yakoub, 2001; Yakoub and Shabana, 2001). Twelve nodal

parameters of this beam are ei
T
=
[
ri
T
ri,x
T
ri,y
T
ri,z
T
]
, where ei is the vector of nodal co-

ordinates of the i-th node, ri is the vector of the i-th node global position, while ri,k = ∂ri/∂k
for k = x, y, z are vectors of the slope coordinates of the i-th node. The beam element used in
the study consists of two nodes, therefore, the vector of the nodal coordinates for a single-beam

element is given by eT =
[
eA
T
eB
T
]
, where A and B indicate nodes at the beam ends. The

position of an arbitrary point on the ANCF element can be obtained as follows
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r(x, t) = S(x)e(t) (2.1)

where x = [x y z]T, S(x) = [s1I s2I · · · s8I] is the element shape function matrix, I is a
3× 3 identity matrix, and

s1 = 1− 3ξ2 + 2ξ3 s3 = l(η − ξη) s5 = 3ξ
2 − 2ξ3 s7 = lξη

s2 = l(ξ − 2ξ2 + ξ3) s4 = l(ζ − ξζ) s6 = l(−ξ2 + ξ3) s8 = lξζ
(2.2)

where l is length of the element in the undeformed state while ξ = x/l, η = y/l and ζ = z/l
are element dimensionless coordinates. It can be shown that the shape function matrix S can
describe arbitrary rigid body motion (Yakoub and Shabana, 2001).
The mass matrix M of the element can be written as M =

∫
V ρS

TS dV , where ρ and V
are, respectively, density and volume of the element. In the ANCF, the mass matrix is constant.
In addition, the forces resulting from differentiation of kinetic energy, like Coriolis, tangential,
centrifugal and others, are equal to zero. Therefore, the only nonzero quantities in the system
equations of motion are the vectors of the elastic and external forces.
To derive the vector of the external forces, which comprise, for example, the gravitational

forces, the principle of virtual work can be used in the form δWe = F
T
e δr = F

T
e Sδe = Qe

Tδe,
where δWe is the virtual work of the external force Fe and Qe is the vector of the genera-
lized external forces. For example, the nodal force vector due to gravity can be obtained as
QTeg =

∫
V F
T
egS dV , where F

T
eg = [0 −mg 0] is the gravity force vector acting along the vertical

axis, m is total mass of an element and g is the gravitational constant.
The position vector gradient of the fully parameterized ANCF element may be expressed by

F = ∂r/∂X where r is given by Eq. (2.1) and X = [X Y Z]T. Using directly the expression
of the tensor F, one can evaluate the value of the strain energy for an element. In the case of
the linear-elastic material model, the strain energy can be written as Us =

1
2

∫
V ε
TEε dV , where

ε is the strain vector associated with the Green-Lagrange strain tensor and E is the matrix of
elastic coefficients (Sopanen and Mikkola, 2003). The vector of the elastic forces for an element
can be defined using the strain energy Us as follows

Qs =
(∂Us
∂e

)T
(2.3)

The present study is mainly devoted to isotropic, hyperelastic, nonlinear, and nearly incom-
pressible material models, and the proper value of the strain energy density function for these
materials is presented in the next Section of the paper.
The mass matrices and vectors of external and elastic forces of the elements follow the

standard finite element assembly procedure for each flexible body. In the case of the ANCF,
usually all the position and slope coordinates are shared between the elements. Finally, one can
write dynamic equations of motion of the constrained flexible multibody system in the general
form (Shabana, 2013)

Më+Qs +Φ
T
e λ = Qe Φ = 0 (2.4)

where M, Qs and Qe are, respectively, the mass matrix, the vector of elastic forces and the
vector of external forces of the system, ë is the acceleration vector of the system, Φ represents
the vector of constraint equations (Sugiyama et al., 2003), Φe = ∂Φ/∂e is the Jacobian ma-
trix of constraints and λ is the vector of Lagrange multipliers. Equations of motion (2.4) form
a set of differential-algebraic equations with the differential index equal to 3. Finding the so-
lution to these equations is usually a more demanding task than for the solution to ordinary
differential equations (Brenan et al., 1996). Moreover, differential-algebraic equations require
special numerical techniques, as denoted by Hairer and Wanner (1996). For a review of the
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methods used to solve Eq. (2.4), see e.g. Garćıa de Jalón and Bayo (1994). However, the most
common methods for solving differential-algebraic equations are the direct integration with,
e.g., implicit Runge-Kutta schemes (Hairer and Wanner, 1996), integration of the transformed
system with a lower index and stabilization (Gear et al., 1985) or the generalized coordinate
partitioning scheme (Wehage and Haug, 1982). In the present work, a Fortran-based research
code is used and the implicit Runge-Kutta Radau IIA scheme is utilized. It is worth noting
that if all the constrained equations were linear and time independent, system (2.4) would come
down to a set of ordinary differential equations M̂¨̂e+ Q̂s = Q̂e where the vectors and matrices
with hat are obtained after linear transformation due to constraint elimination (Garcia-Vallejo
et al., 2003).

2.1. Multi-layer beam models

Figure 1 presents a two-layer beammodel. Two beams, I and II with local coordinate systems
xIyIzI and xIIyIIzII (for clarity local z axes are omitted) are connected across their height. Each

Fig. 1. Two-layer beam model

beam has length l, width w and height h/2, therefore, the two-beam model has height equal to h.
The nodes are marked as black dots and they are shared between the elements in each layer, i.e.,
they follow the standard assembly procedure. The white dots (denoted as L1 and L2) represent
the layer connectivity points at which one can impose linear constraint equations between two
adjacent elements. X1X2X3 is the global reference frame, while the position vectors r

L2
I and r

L2
II

points to the L2 using the parameters, respectively, of elementhe I and II. The layer connectivity
constraints can be enforced at the position and slope level, thus the required continuity might be

achieved. For example ΦT =
[
(rL1I − rL1II )T (rL2I − rL2II )T

]
enforces the continuity at the position

level only, while constraints ΦT =
[
(rL1I − rL1II )T (rL1I,x − rL1II,x)T (rL2I − rL2II )T (rL2I,x − rL2II,x)T

]
,

which are used in the numerical examples Section, impose additional constraints on the slope
along the local x axis. The total constraint vector should consist of constraints for each layer
connectivity point. This approach might be used to build a beam structures with more than
two layers across the height or to create a model with layers in both transversal directions.
In addition, the use of multi-layer structures further enables the modelling of complex systems
like vehicle tires (Patel et al., 2016). As will be shown later in the paper, the multi-layer beam
model may ensure a better convergence when the nearly incompressible materials are used. It
is worth noting that the approach for modelling a multi-layer beam used by Patel et al. (2016)
and introduced in (Liu et al., 2011) is based on subdomains with different material properties
created within a single element and cannot be easily adopted for hyperelastic and nonlinear
material models.
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3. Nearly incompressible polynomial material models

The hyperelastic material models, which are shown in this Section, are in the well-known form
of the Mooney-Rivlin models (Bonet and Wood, 1997; Orzechowski and Frączek, 2015). The-
se models are commonly used to represent incompressible rubber-like materials. To fulfil the
incompressibility condition, the penalty technique is employed, due to its efficiency and sim-
plicity. Therefore, any member of the Mooney-Rivlin models family can be adopted. Herein,
two simplest incompressible models are used and mentioned, namely the Neo-Hookean and two-
parameter Mooney-Rivlin.

The strain-energy density function can be written for isotropic materials as a function of
the invariants of the deviatoric part of the right Cauchy-Green deformation tensor Cr = F

TF,
defined as I1 = J

−2/3I1 and I2 = J
−4/3I2, where J = det(F) and the invariants of the tensor Cr

itself are I1 = tr (Cr) and I2 =
1
2 [ tr (Cr)

2 − tr (C2r)]. In addition, the constraint J = 1 must
be ensured through the body in order to account for the material incompressibility. The strain
energy density function in the form of the Mooney-Rivlin models is the following

Us =
K∑

i+j=1

µij(I1 − 3)i(I2 − 3)j (3.1)

where µij are material coefficients, usually determined from an experiment. K may be an arbi-
trarily large number, but in practice values of K > 2 are rarely used. In the present paper, only
material models with K = 1 are considered.

The material models from Eq. (3.1) implicitly assume that the incompressibility is ensured
by setting J equal to one. This condition is fulfilled by the penalty method (Maqueda and
Shabana, 2007; Orzechowski and Frączek, 2015). In this technique, the volumetric energy penalty
function Up is added to the expression of the strain energy function. This term can be expressed
as

Up =
1

2
k(J − 1)2 (3.2)

where k is the penalty coefficient that represent the bulk modulus, a real material property
(Bonet and Wood, 1997). In practice, k should be selected sufficiently large to assure incom-
pressibility, but also not too large to avoid numerical complications. The use of energy function
from Eq. (3.2) with a finite coefficient k causes that the material can be considered as nearly
incompressible only.

Finally, one can combine Eqs (3.1) and (3.2) as

Usic = Us + Up (3.3)

To obtain the vector of the elastic forces Qs, the above expression should be integrated over the
flexible body volume and inserted into Eq. (2.3). Below, two models based on that representation
are shown.

3.0.1. Incompressible Neo-Hookean material

The incompressible Neo-Hookean is the simplest member of the Mooney-Rivlin models fa-
mily, which depends on only one elastic coefficient µ10. Therefore, the expression for the strain
energy function can be written as Unhs = µ10(I1− 3), and µ10 is initially equal to one-half of the
shear modulus.
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3.0.2. Incompressible Mooney-Rivlin material

A two-parameter incompressible Mooney-Rivlin material is another widely used and simple
material model which is obtained by assuming that two elastic parameters, µ10 and µ01, are not
equal to zero. Therefore, the strain energy density function takes the form Umrs = µ10(I1− 3)+
µ01(I2−3). It can be shown that in the case of small strains, Young’s modulus is E = 6(µ10+µ01)
and the shear modulus is equal to µ = 2(µ10 + µ01) (Bathe, 1996).

4. Locking elimination techniques for nearly incompressible materials

The locking phenomena can be noticed in the case of many ANCF elements both for linear-
-elastic (Gerstmayr and Shabana, 2006) and nonlinear (Orzechowski and Frączek, 2015) material
models. Its occurrence often causes an erroneously stiff bending characteristic, and is especially
noticeable for approaches that directly employ the continuum mechanics. Moreover, a far greater
impact of the locking is observed in the case of an incompressible material than in the case of
compressible models. The paper presents shortly two methods that can be used for locking
suppression for incompressible material models. Both methods were introduced in the previous
work (Orzechowski and Frączek, 2015). In addition, simplifications of the projection space of
the F -bar method are introduced.

4.1. Selective reduced integration

This locking alleviation technique is commonly used to prevent Poisson’s locking in many
FEA elements (Zienkiewicz and Taylor, 2005) as well as in continuum-based ANCF elements
with a linear material model (Gerstmayr et al., 2008). In this method, the integral of the strain
energy function is split into two parts that are treated differently. In the first part, which is
fully integrated in the total element volume, one does not consider the Poisson effect, while
in the second part, which is integrated only along the beam centerline or plate midplane, i.e.
uses a reduced integration scheme, one takes the Poisson effect into account. Adequately, the
expression of the strain energy density function given by Eq. (3.1) can also be split. The first
part of the Mooney-Rivlin material model, denoted as Us, can be fully integrated as it does not
consider the volumetric effect. However, the volumetric energy penalty function Up should be
considered only at the beam axis, as it accounts for the volumetric behaviour. Therefore, the
following formula is used

U srisic =

∫

V

Usd V +A

∫

l

Up dl (4.1)

where l is length of the element, A denotes cross-section area and the index sri designates the
selective reduced integration technique.

4.2. F -bar projection method

The F -bar projection method involves product decomposition of the position vector gra-
dient into volumetric and deviatoric parts (Bonet and Wood, 1997; Elguedj et al., 2008) and is
especially convenient to use when the split of the energy density function into deviatoric and
volumetric parts is not straightforward and the use of the selective reduced integration might
be troublesome. This method is a generalization of the strain projection B-bar technique to
finite-strain analysis which is considered as an extension of the selective and reduced integration
approaches (Hughes, 1987).



Volumetric locking suppression method for nearly... 983

The gradient tensor F may be split as F = FdilFdev where Fdev = J−1/3F is the deviatoric
(volume preserving) part and Fdil = J1/3I is the volumetric-dilatational part, and I is the
identity matrix. One can notice that det(Fdev) = 1 and det(Fdil) = J . Now, the tensor F can

be modified by the use of the modified dilatational part as F
dil
= J1/3I, where

J1/3 = π(J1/3) (4.2)

and π is the linear projection operator presented in details below. Consequently, one can write

F = F
dil
Fdev =

J1/3

J1/3
F (4.3)

The modified tensor F can be directly employed to calculate the energy density function given
by Eq. (3.1). However, because Us is volume preserving, only the penalty function Up can be
affected.

4.2.1. Projection operator π

Studies performed for the isogeometric analysis beam by Elguedj et al. (2008) and further
carried out in the ANCF framework by Orzechowski and Frączek (2015) show that the L2

projection of strains is a good candidate for the projection space. Whilst the associated space on
which this projection is performed, it should have a constant value in the transversal directions.
Therefore, in the previous work (Orzechowski and Frączek, 2015), the following lower-order basis
was employed

S̃4 =
[
1− 3ξ2 + 2ξ3 l(ξ − 2ξ2 + ξ3) 3ξ2 − 2ξ3 l(−ξ2 + ξ3)

]
(4.4)

where S̃4 denotes a lower order cubic basis with four components. However, even a lower order
basis may be introduced as constant, linear or quadratic (with one, two and three components,
respectively) in the longitudinal direction

S̃1 = [1] S̃2 =
[
1− ξ ξ

]

S̃3 =
[
2ξ2 − 3ξ + 1 4ξ − 4ξ2 2ξ2 − ξ

] (4.5)

Next, Eq. (4.2) may be written in the new space (using any basis from Eqs (4.4) and (4.5)) as

J1/3 = S̃J̃1/3 (Elguedj et al., 2008; Hughes, 1987) where

J̃1/3 =



∫

V

S̃TS̃ dV



−1 ∫

V

S̃TJ1/3 dV (4.6)

The presented procedure corresponds to L2 projection of J1/3 into the S̃ basis. Next, the newly
calculated value of J1/3 may be substituted into Eq. (3.2) to obtain a modified volumetric
penalty function as

Up =
1

2
k
[
(J1/3)3 − 1

]2
(4.7)

Finally, the strain energy density function for the F -bar strain projection method is expressed
as follows

UF−barsic =

∫

V

Us dV +A

∫

l

Up dl (4.8)

where Up can be calculated only at the element centerline, as the value of J1/3 depends only on
the longitudinal coordinate.
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5. Numerical examples

Exemplary numerical calculations are carried out with the fully parameterized three-dimensional
ANCF beam element with twelve nodal coordinates at each of its two nodes. In order to ef-
fectively model bodies with nearly incompressible materials, the techniques of alleviating the
volumetric locking presented in Section 4 are applied. In addition, to assembly multi-layer beam
structures, the procedure described in Section 2.1 is used. In this study, three simple models
of highly deformable clamped beams and physical pendulums are shown. All examples use the
standard, spatial, two-node ANCF beam element with twenty-four coordinates (Shabana and
Yakoub, 2001; Yakoub and Shabana, 2001).

5.1. Physical pendulum

A dynamical analysis of a flexible beam attached at one end to the ground by a spherical
joint and falling under the gravity forces is carried out for the purpose of numerical verification.
A similar pendulum was examined by Maqueda and Shabana (2007). In the undeformed state,
the beam has 1m in length, a square cross-section of dimension 20mm, and a material den-
sity of 7200 kg/m3. In this example, the elastic coefficient for the incompressible Neo-Hookean
model is µ10 = 1MPa, while in the case of the two-parameter Mooney-Rivlin material, the
values of its coefficients are µ10 = 0.8MPa and µ01 = 0.2MPa. The material properties allow
large deformations of the body. To ensure incompressibility, the penalty term is assumed to be
k = 103MPa. The pendulum model is shown in Fig. 2. To increase body deformations, the base
of the pendulum is subjected to prescribed motion. The constraint equations for this model can

be written as ΦT =
[
rN1 + 0.02 sin(2πt) r

N
2 rN3

]
, where rNi for i = 1, 2, 3 denotes the component

of the position vector of the node N (in meters), and t is time expressed in seconds.

Fig. 2. Very flexible physical pendulum, three-layer model

The pendulum body is built of four beam elements along its length. Figures 3a and 3b show
displacements of the pendulum free end tip resulting from performed dynamical simulations
for three types of models: without the locking suppression method, with the F -bar projection
and the three-layer model with the F -bar projection. Figure 3a presents results for the Neo-
Hooken material, while in Fig. 3b results for the Mooney-Rivlin material are shown. Despite
the differences in materials, the results in both figures are very similar. The models without the
locking suppression method show very small deformations as they behave almost like a rigid body,
despite very low elastic coefficients and large pendulum density. On the other hand, all models
that employ the locking elimination by the F -bar projection show reasonable deformations.
The lack of the over-stiff response in the incompressible models during bending indicates that
the influence of the volumetric locking has been suppressed (Orzechowski and Frączek, 2015).
Therefore, it can be concluded that the influence of the volumetric locking on the results of
hyperelastic nearly incompressible material models might be enormous, and that the multi-layer
beam model produces acceptable results, comparable with those of the standard beam model.
The results for the selective reduced integration exhibit very similar behaviour.

Figures 4a and 4b show how well the incompressibility condition is preserved by the analysed
models by plotting the value of the determinant of the deformation gradient tensor J = det(F).
Figure 4a presents the value of J as a function of time at the point A of the body (see Fig. 2).
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Fig. 3. Vertical position of the beam free end tip for (a) incompressible Neo-Hookean and
(b) incompressible Mooney-Rivlin material: ( ) without the locking suppression method, ( ) with

the F -bar projection, ( ) with the F -bar projection, three-layer model

Fig. 4. Value of J = det(F) (a) in time and (b) along beam thickness for incompressible Neo-Hookean
material: ( ) without the locking suppression method, ( ) with the F -bar projection, ( ) with

the F -bar projection, three-layer model

Likewise, Fig. 4b presents the value of J along the line connecting points A and B of the body
(shown in Fig. 2) for a specific time instant (at t = 0.2 s). It can be clearly seen that the
incompressibility condition for the whole body volume is preserved only for the formulation that
does not use any locking alleviation technique.

For beams using the F -bar strain projection method, the value of J is changing noticeably,
however, in the case of the three-layer model this violation is significantly smaller than for the
one-layer beam as the region of constraint violation is bounded to the beam boundaries. Since
the lack of continuity of the J value between the beam layers is crucial for preventing the locking
behaviour (continuous J would result in its constant value equal to one), it must be ensured
that the continuity does not occur on the gradient perpendicular to the layer boundary.

5.2. Cantilever beam

In this example, static simulation of the cantilever beam, similar to that shown in Figure 5,
is employed. The beam is clamped at one end with the help of a linear constraint equation in
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the form of Φ = eN . The gravitational force is the only external force that acts on the system.
The material and geometrical properties of the flexible body are the same as in the previous
example, except for the size of the cross section that is increased to 40mm for both height and
width. For a verification purpose, the ANCF models with one, two and three layers are examined
and the results of simulations are compared with the solution of an analogous model obtained
with a commercial FEA package (ANSYS® Academic Research, 2010).

Fig. 5. Very flexible cantilever beam under gravity forces

The main purpose of this example is to assess the impact of the new modelling techniques, like
the use of the multi-layer beams and the low order projection basis, on the obtained solution. The
results are shown for both presented locking elimination techniques, the F -bar strain projection
and the selective reduced integration as well as for both material models, the incompressible Neo-
Hookean and two-parameter Mooney-Rivlin. For the F -bar method, four different projection
bases are employed as has been proposed in Section 4.2. The results are compared against the
FEA package solution. For this reason, we applied a very fine mesh in the FEA package consisting
of 1600 higher-order solid elements (SOLID186).

In Table 1, the results of static ANCF analysis are presented for the models with one, two
and three layers across thickness, together with reference FEA results. The results show for both
locking elimination procedures, the SRI and F -bar, the convergence to nearly the same solution
for a given number of layers and irrespective of the employed projection basis.

Table 1. Deformation of the free end tip of the clamped beam for models with 48 elements in each
layer (NoL – number of layers, ICNH – incompressible Neo-Hookean, ICMR – incompressible
Mooney-Rivlin, SRI – selective reduced integration). Results for one-layer models for SRI and
cubic F -bar locking suppression methods are taken from (Orzechowski and Frączek, 2015)

Method NoL
ICNH analysis ICMR analysis
X [m] Y [m] X [m] Y [m]

FEA – −0.828 −0.940 −0.828 −0.941
1 −0.894 −0.965 −0.893 −0.964

ANCF SRI 2 −0.838 −0.941 −0.838 −0.941
3 −0.829 −0.938 −0.830 −0.938

ANCF F -bar constant
projection basis

1 −0.894 −0.965 −0.893 −0.965
2 −0.840 −0.943 −0.840 −0.943
3 −0.832 −0.940 −0.832 −0.941

ANCF F -bar linear
projection basis

1 −0.894 −0.965 −0.893 −0.965
2 −0.837 −0.941 −0.838 −0.941
3 −0.829 −0.938 −0.830 −0.939

ANCF F -bar quadratic
projection basis

1 −0.892 −0.963 −0.891 −0.962
2 −0.837 −0.941 −0.838 −0.941
3 −0.829 −0.938 −0.830 −0.938

ANCF F -bar cubic
projection basis

1 −0.891 −0.962 −0.890 −0.962
2 −0.837 −0.941 −0.838 −0.941
3 −0.829 −0.938 −0.830 −0.938
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The results presented in Table 1 show that the convergent solutions given by ANCF are no-
ticeably different when different numbers of layers are used. For the one-layer model, the ANCF
results are significantly different from the reference. The noticeable discrepancy between the
reference FEA results and the ANCF models is mainly due to violation of the incompressibility
assumption at the beam surface. Nevertheless, this behaviour is consistent with the characteri-
stics of the finite element analysis, where incompressibility is ensured only on the average (Adler
et al., 2014). The standard approach to deal with such a problem is to employ a larger number
of elements across thickness, and the results in Table 1 show that the beam models with two and
three layers conform much better to the reference. Therefore, when the incompressible material
model employs the locking elimination technique based on reduced integration, it is crucial to
apply more elements across the transversal direction in order to obtain reasonable results. In
addition, in the case of the F -bar method, the simplest constant projection basis is able to
reproduce a proper solution that is only slightly different than the reference one, while offering
the smallest computational complexity.

5.3. Cantilever rubber-like beam

The last example is the dynamic analysis of the clamped beam model, wherein the constraint
equations are identical as those in the previous Section. The system is similar to the model shown
by Jung et al. (2011). The body undergoes the gravitational force, and is made of a rubber-like
material having density of 2150 kg/m3, Kirchhoff’s modulus of 1.91MPa and the penalty term of
103MPa. The beam has a rectangular cross section of 7mm width and 5mm height, and 0.35m
in length. The models use thirty fully parameterized ANCF beam elements for each layer, whilst
one- and three-layer models are compared. Such a large number of elements is needed to obtain
a converged solution for both locking elimination procedures. The results of ANCF simulations
are compared with the results obtained with the FEA package. The beam elements from the
classic FEA package cannot be used with nonlinear incompressible material models. Therefore,
SOLID185 (ANSYS® Academic Research, 2010) elements with reduced integration are used.
To obtain a convergent solution, the use of 336 solids is sufficient. In this example, the only
considered material model is the incompressible Neo-Hookean.

Fig. 6. Beam end tip displacements, (a) one-layer model, (b) three-layer model: ( ) reference FEA,
( ) ANCF with selective reduced integration, ( ) ANCF full integration with F

Figure 6a shows the results for two ANCF models with different locking suppression methods
and for the reference FEA solution (Orzechowski and Frączek, 2015). The results are recalled
here for easier comparison with the three-layer model. Both ANCF models provide almost the
same results, and for the one-layer model a reasonably good agreement with the reference can
be observed. However, the results in Fig. 6b show a large improvement for the three-layer model,
irrespective of the employed projection basis. The results for the SRI present a similar advance.
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One can conclude that the alleviation of the volumetric locking effect and introduction of the
multi-layer structures leads to a substantial improvement as compared with the one-layer model
and ensures the quality of the results obtained using higher-order beam elements with forty-
-two nodal parameters as shown by Orzechowski and Frączek (2015). In addition, in comparison
with the FEA solid model, the number of parameters involved is, in the given application, more
than four times less in the ANCF one-layer beam model, and two times less in the case of the
three-layer model.

6. Conclusions

The ANCF is used successfully in the analysis of flexible bodies undergoing large deformations.
The current study presents that nonlinear and nearly incompressible material models can be
included in the ANCF in a straightforward way. The implementation of nonlinear incompressible
materials and locking elimination techniques within the ANCF framework presented so far in the
literature exhibit inaccurate behaviour in bending-dominated examples for a standard twenty-
-four parameter three-dimensional beam element.

In order to carry out accurate and efficient model simulations with incompressibility, two
locking elimination techniques are presented – the F -bar strain projection method and the
selective reduced integration. Both methods are implemented in the ANCF framework and
tested with multi-layer beam structures. In addition, for the F -bar method, different projection
spaces are investigated. Numerical tests show that the locking influence for an incompressible
material models is enormous. The results of ANCF simulations are compared with a commercial
FEA package and a very good agreement is found, especially for three-layer models. In the case
of the F -bar method, the order of the projection space has aminor influence on the quality of
the solution.

In the classical FEA, solid elements must be used when the materials with a nonlinear
characteristic are used to model slender structures. In contrast, in the ANCF, fully parameterized
beam elements can be employed in such systems, the result of which are models with much less
parameters than for the FEA. However, the application of ANCF beams modelled with nonlinear
materials to complex cross-sectional shapes might require further investigations (Orzechowski,
2012; Orzechowski and Shabana, 2016).

A desirable direction for future research is the development of alternative methods that would
enable efficient locking elimination. In addition, it is indicated in the literature that, applying
the systems which use incompressible material models, one may obtain solutions that are highly
imprecise in stresses, although a proper solution exist for displacements (Bathe, 1996). Hence,
the distribution of stresses in such models should also be taken into account as an essential
research topic.
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The paper presents an analysis of the specific dynamic capacity of a planetary roller screw
including random deviations of the thread pitch. Results are based on a statistical analysis
of loads between the screw and the roller obtained for the accepted bar model to determine
the load distribution. Furthermore, the finite element analysis has been applied to deter-
mine stiffness coefficients of the screw-roller and the roller-nut cooperation. The purpose of
the following considerations is to assess a decrease in the specific dynamic capacity of the
planetary roller screw depending on random deviations of the thread pitch.

Key words: planetary roller screw, specific dynamic capacity, random deviations

1. Introduction

The planetary roller screw (PRS) is a highly efficient mechanical actuator for demanding appli-
cations (Fig. 1). The mechanism is used to convert rotational motion into linear motion or in
the other way round. The main advantage of PRS is very high load capacity while maintaining
high speed of operation and high positioning accuracy.

Fig. 1. Structure of the planetary roller screw (exploded view); 1 – screw, 2 – roller, 3 – nut, 4 – satellite
gear, 5 – ring gear, 6 – retainer ring, 7 – annular hoop

One of the major problems concerning planetary roller screws is the carrying capacity related
to the load distribution between cooperating elements. Theoretical load characteristics provide
information about the most loaded regions of threads and enable determination of the equivalent
load. Several authors of previous publications related to the planetary roller screw considered
models for determination of the load distribution. Ma et al. (2012) adopted a model developed
for ball screws given by Xuesong et al. (2003) to determine the static load distribution. The
rollers were assumed as rigid bodies and only contact deformations of threads were involved
in calculations based on the Hertzian theory. Ryś and Lisowski (2014) presented an analytical
model for determination of the load distribution between cooperating elements for an arbitrary
number of rollers. The idea of the model was to consider deformations of engaged elements as
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deformations of rectangular volumes subjected to shear stresses. Contact deformations of threads
and deformations of the screw and nut cores were taken into account by a properly chosen shear
modulus. However, the model was intended only for the preliminary design. Lisowski (2014)
proposed a model to determine the load distribution between the roller and the screw as well
as between the roller and the nut, which allowed one to take into account contact deformations
of threads and deformations of the screw and nut cores. Also, the various thread profiles were
considered.

Lastly, Jones and Velinsky (2014) used the direct stiffness method to construct a model which
considered the roller screw mechanism as a large spring system composed of individual springs
referred to various elements. The authors used their method to calculate the axial stiffness of
PRS and the load distribution between particular elements. In an earlier article, Velinsky et al.
(2009) analysed kinematics, efficiency and the load carrying capacity. The load carrying capacity
was derived based on geometric conditions and equilibrium of forces.

Recently, Abevi et al. (2015) presented a method to compute the static load distribution
in any type of planetary roller screw based on a hybrid model including one-dimensional finite
elements and non-linear springs.

However, apart from theoretical load distributions determined for nominal dimensions of
cooperating threads, it is also essential to take into account the impact of manufacturing devia-
tions. Deviations of the thread pitch affect theoretical load distributions between cooperating
elements and, therefore, they impact the specific dynamic capacity of the planetary roller screw.

Although some authors have mentioned the importance of the impact of random deviations
on the load distribution, the problem related to PRS has not been analysed in publications yet.
In turn, a similar problem but related to helical gears was analysed by Ryś (1990). The author
studied the impact of random deviations of the gears pitch on static and dynamic loads. Owing
to dynamic overload, mostly the problem of start-up was analysed.

This paper presents an analysis of the impact of random deviations of the thread pitch on
the specific dynamic capacity of the planetary roller screw mechanism. The results are based on
a statistical analysis of the loads on threads, obtained based on the bar model.

2. The load distribution between cooperating elements – bar model

In order to determine the load distribution between cooperating elements of the planetary roller
screw, a bar model proposed by Lisowski (2014), has been accepted. This model is preferable
as it enables taking into account random deviations of the thread pitch for particular pairs of
threads. However, determining the stiffness of a single pair of cooperating threads of the screw
and the roller as well as the roller and the nut requires doing an additional finite element analysis.

The model refers to the section of PRS including one roller cooperating with the screw and
the nut as shown in Fig. 2. The number of cooperating threads is arbitrary. Also, various thread
profiles can be accepted by assuming proper stiffness parameters obtained from FEA.

For further considerations, the following assumptions have been made: the core of the roller
is non-deformable; cores of the screw and the nut are deformable; threads of the roller, screw
and the nut are deformable; stiffness of the screw core is close to stiffness of the nut core; forces
in the screw and nut cores change in steps. Due to the small helix angle, the forces qsj and qnj
belong to the same plane; the external force Q is distributed proportionally into the rollers.

The axial forces in the screw and nut cores can be consistent or opposite. The system of forces
shown in Fig. 2 which refers to the case when both the screw and the nut are compressed (a) or
the screw is compressed while the nut is tensioned (b). However, depending on locations where
the forces are applied, it is also possible to obtain two other cases in which both the screw
and the nut are tensioned or the screw is tensioned while the nut is compressed. In further
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Fig. 2. Dimensions and the system of forces of the bar model: (a) screw and nut compressed, (b) screw
compressed, nut tensioned, (c) cross-sections of cooperating elements

considerations, the cases of consistent and opposite loads in the screw and in the nut (Fig. 2a,b)
will be considered as an example.

Under the load Q, the cores of the screw and the nut undergo axial displacements ∆si
and ∆ni. At the same time, the thread displacements occur: δsj at the screw-roller thread inter-
face and δnj at the nut-roller threads interface. These displacements include contact deformations
as well as shear strains. The displacements of cooperating elements and dimensional chains are
shown in Fig. 3.

Fig. 3. Deformations of planetary roller screw elements: (a) unloaded model, (b) loaded model,
(c) dimensional chains

According to Hooke’s law, assuming that stress in cross-sections of the screw and nut cores
is distributed uniformly, the axial displacements of the screw core for any value of ξ < |AC| and,
respectively, the axial displacement of the nut core for any value of η < |DF | are obtained from
the following equation

∆s =

ξa∫

0

σs(ξ)

Es
dξ =

ξa∫

0

Qs(ξ)

EsFs
dξ ∆n =

ηa∫

0

σn(η)

En
dη =

ηa∫

0

Qn(η)

EnFn
dη (2.1)

where σs(ξ), σn(η) are normal stresses in cross-sections of the screw and nut cores; Qs(ξ), Qn(η)
– axial forces in the screw and in the nut; Es, En – Young’s modules of the screw and the nut;
Fs, Fn – cross-sectional areas of the screw and nut cores.

Assuming a step change of forces in cross-sections of the screw and nut cores (wherein the
step is equal to the thread pitch) and accepting n intervals of force variation, Eq. (2.1) takes
the form
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∆s =
n∑

i=1

∆si =
n∑

i=1

Qsip

EsFs
∆n =

n∑

i=1

∆ni =
n∑

i=1

Qnip

EnFn
(2.2)

where ∆si , ∆ni are axial displacements of cross-sections of the screw and nut cores; Qsi , Qni –
axial forces in the screw and in the nut for the i-th interval (i = 1, . . . , n, n – number of intervals
of force variation); p – thread pitch.
Axial displacements at the interfaces of the screw-roller and roller-nut threads, which include

contact deformations as well as shear strains, can be determined as

δsj =
qsj
Csr

δnj =
qnj
Cnr

(2.3)

where Csr, Cnr are stiffness coefficients of the screw-roller and the roller-nut cooperation; qsi, qni
– axial forces at the interfaces of the screw-roller and the roller-nut threads (j = 1, . . . ,m, m –
number of threads). Considering the system of forces shown in Fig. 2a, the axial forces in
the screw and in the nut in the case of consistent loads can be determined using Eqs. (2.4).
Consequently, for the opposite loads in the screw and in the nut (Fig. 2b), Eqs. (2.5) can be
used. The axial load is a sum of forces on threads as given by Eqs. (2.6)

{
Qs1 = Q− qs1
Qs2 = Q− qs1 − qs2

{
Qn1 = Q− qn3 − qn2
Qn2 = Q− qn3

(2.4)

{
Qs1 = Q− qs1
Qs2 = Q− qs1 − qs2

{
Qn1 = Q− qn1
Qn2 = Q− qn1 − qn2

(2.5)

Q = qs1 + qs2 + qs3 Q = qn1 + qn2 + qn3 (2.6)

Considering the dimensional chains obtained for the loaded model (Fig. 3b,c), the displacement
equilibrium equations take the following form

∆S1 = δS1 − δS2 ∆N1 = δN2 − δN1
∆S2 = δS2 − δS3 ∆N2 = δN3 − δN2

(2.7)

Taking into account Eqs. (2.2)-(2.7), the system of equations for determination of the load
distribution are obtained. Equations (2.8) refer to the case of the consistent load in the screw
and the nut while Eqs. (2.9) refer to the case of the opposite load in the screw and the nut. In
both cases, the sum of loads on threads is equal to the axial load as given by Eq. (2.10)

p

EsFs

(
Q−

i∑

j=1

qsj

)
= (Csr)

−1(qsi − qsi+1) (n equations)

p

EnFn

(
Q−

m∑

j=i+1

qnj

)
= (Cnr)

−1(qni − qni+1) (n equations)

(2.8)

p

EsFs

(
Q−

i∑

j=1

qsj

)
= (Csr)

−1(qsi − qsi+1) (n equations)

p

EnFn

(
Q−

i∑

j=1

qnj

)
= (Cnr)

−1(qni+1 + qni) (n equations)

(2.9)

Q =
m∑

j=1

qsj Q =
m∑

j=1

qnj (2.10)

j = 1, . . . ,m, m – number of threads; i = 1, . . . , n, n – number of intervals of force variation.
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2.1. Determination of the stiffness coefficients

Stiffness coefficients of the screw-roller thread pair (Csr) as well as the nut-roller thread
pair (Cnr) can be determined using FE analysis. The finite element models including sections
of cooperating pairs of threads and the accepted boundary conditions are shown in Fig. 4. A
triangular thread profile with the pressure angle α0 = 45

◦ has been accepted. The helix angle
has been omitted.

Fig. 4. Finite element models of the screw-roller, nut-roller sections with boundary conditions

The load is applied to the roller core as a normal pressure. The axial displacement uy is
measured in the point H. The stiffness coefficients are determined using the following equations

Csr =
PH
uy

Cnr =
PH
uy

PH =
Pnxc

rr − hz/2
(2.11)

where Pn is the normal load on the roller core surface (axial load per single pair of cooperating
threads), PH – normal load on the roller core surface reduced to the point H, xc – distance
between the gravity centre of the roller core cross-section and the roller axis, hz – height of the
thread profile, rr – pitch diameter of the roller.

Stiffness coefficients for various load levels and for a series of pitch diameter combinations
referred to the triangular thread profile, can also be assumed using the graphs presented by
Lisowski (2015).

2.2. Load distribution based on the bar model

Examples of theoretical load distributions obtained for the bar model are shown in Figs. 5a
and 5b. The accepted parameters of the planetary roller screw and load conditions are presented
in Table 1. The stiffness coefficients of the screw-roller thread pair and the nut-roller thread pair
have been determined as has been stated in the previous Section.

3. Specific dynamic capacity of the planetary roller screw

Taking into account a formula for the rolling contact life, the specific dynamic capacity of the
planetary roller screw depends on the equivalent load transferred by the mechanism, as given
by

N =
(C
P

)3
N0 (3.1)
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Fig. 5. Load distribution on the screw (qsi) and nut (qni) threads – (a) consistent and (b) opposite loads
in the screw and the nut; rs = 15mm, rr = 5mm, rn = 25mm, p = 2mm, m = 5, Pn = 25N

Table 1. Planetary roller screw parameters

Pitch radius of screw rs = 15mm

Pitch radius of roller rr = 5mm

Pitch radius of nut rn = 25mm

Lead p = 2mm

Pressure angle α0 = 45
◦

Number of intervals of force variation n = 19

Number of threads m = 20

Axial load per one roller Q = 500N

Axial load per single pair of cooperating threads Pn = 25N

Stiffness coefficient of screw-roller thread pair Csr = 2505N/mm

Stiffness coefficient of nut-roller thread pair Cnr = 7482N/mm

where N is life in million cycles, N0 – life equal to 1 million cycles, C – specific dynamic
capacity, P – equivalent load. According to Lisowski (2015), limitation of the planetary roller
screw capacity is related to the permissible contact pressure between threads of the screw and
the roller. Therefore, the analysis of PRS capacity is referred to cooperation of the screw and
the roller. Considering the screw-roller cooperation, the equivalent load can be accepted as the
average load on all threads.
However, the actual dimensions of threads would be subjected to random deviations. Di-

stributions of the deviations are very diverse and usually have an irregular form. They can be
determined based on the results of measurements of a large batch of machined parts under sta-
ted conditions, for example by building a histogram of deviations. However, in many cases, a
theoretical distribution determined empirically can be accepted. Referring to (Białas, 1986), if
many independent factors affect manufacturing deviations, the normal distribution, defined by
the density function of deviations, is obtained.
Taking into account the random deviations of the thread pitch, the load density distribution

related to the average load of threads (x = Pi/Pave) is a normal distribution given by

ψ(x) =
1

σ
√
2π
exp

(−(x− µ)
2σ2

)
(3.2)

where σ is the standard deviation, µ – expected value.
Assuming that the PRS life N = N0 = 1 million cycles, the specific dynamic capacity

is proportional to the equivalent load. Consequently, the same relation is obtained when the
random deviations of the thread pitch are taken into account
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C = P Cdev = Pdev (3.3)

Since in Eq. (3.1) the relation between the specific dynamic capacity and the equivalent force
is to the third power, the function given by Eq. (3.4)1 is accepted. The integral of this function,
which can be expressed as a sum, is given by Eq. (3.4)2

η(x) = [ψ(x)]3 η1 =

x∫

0

[ψ(x)]3 dx =
1

ni

∑( Pi
Pave

)3
ni = nt + nd (3.4)

where Pi are axial forces on particular threads in the case with random deviations of the thread
pitch, Pave – average load of all threads, ni – number of forces including the number of coope-
rating threads and the number of intervals of deviation variation, nt – number of cooperating
threads, nd – number of intervals of deviation variation.
The equivalent force as well as the specific dynamic capacity, including random deviations

of the thread pitch, can be determined using Eqs. (3.5)1,2. The decrease of the specific dynamic
capacity caused by the occurrence of random deviations can be estimated as

Pdev = Pave
3

√
1

ni

∑( Pi
Pave

)3
Cdev = C

3

√
1

ni

∑( Pi
Pave

)3

∆dev =

∣∣∣∣
Cdev
C
− 1

∣∣∣∣

(3.5)

where Pdev is the equivalent load including random deviations of the thread pitch C – specific
dynamic capacity of PRS excluding random deviations of the thread pitch, Cdev – specific dy-
namic capacity including random deviations of the thread pitch, ∆dev – decrease of the specific
dynamic capacity caused by the random deviations of the thread pitch.

3.1. The impact of random deviations of the thread pitch on the decrease of the specific
dynamic capacity of PRS

A series of calculations using the bar model to determine the load distribution has been
conducted in order to obtain load distributions including random deviations of the thread pitch.
Those load distributions are analysed to assess how the magnitude of random deviations of the
thread pitch affects the specific dynamic capacity of the planetary roller screw. The load case,
in which the screw is compressed, is considered. In that case, the load distribution between
the screw and the roller, including random deviations of the thread pitch, can be obtained by
introducing an additional displacement δsri into Eq. (2.8)1. This displacement represents the
value of the random deviation of the thread pitch. As a result, a system of equations Eq. (3.6)1
is obtained, wherein the sum of loads on particular threads is equal to the axial load as given
by Eq. (3.6)2

p

EsF1

(
Q−

i∑

j=1

qSj

)
+ δsri = (CS−R)

−1(qSi − qSi+1) (n equations)

Q =
m∑

j=1

qSj

(3.6)

j = 1, . . . ,m, m – number of threads; i = 1, . . . , n, n – number of intervals of force variation.
One thousand load distributions including random deviations of the thread pitch has been

assumed for the particular case of analysis. The random deviations have been generated using
a random number generator implemented in MATLAB. For each pair of cooperating threads of
the screw and the roller, one thousand random deviations has been generated. Due to the lack
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of information about results of measurements of a large batch of machined PRS parts under
the stated conditions, the probability density function of normal (Gaussian) distribution with a
mean of µ = 0 and standard deviation σ = 2 has been assumed (Fig. 6). The random deviations
in µm generated for the desired parameters of normal distribution are presented in Table 2 and
as a surface graph in Fig. 7.

Fig. 6. Gaussian density distribution of random deviations (µ = 0, σ = 2)

Table 2. Random deviations in µm (µ = 0, σ = 2)

Thread number
1 2 3 4 5 6 7 8 9 10 · · · 20

S
a
m
p
li
n
g
n
u
m
b
er

1 2.611 −0.855 −0.983 −2.884 −1.291 −2.100 −3.837 −0.277 2.282 0.328 2.221 2.221
2 1.968 −1.159 1.315 −1.920 −0.578 0.937 −0.262 0.864 1.866 −1.414 · · · 1.427
3 −2.503 1.852 2.872 0.695 2.001 0.566 −1.537 4.506 −1.041 4.593 · · · −1.292
4 −0.360 0.011 −3.070 −0.206 −1.176 2.682 4.780 −0.919 −1.179 0.855 · · · 1.753
5 −1.487 −1.269 3.506 1.321 3.115 0.761 0.154 0.181 2.763 3.224 · · · 0.171
6 0.466 1.717 2.566 2.314 −2.723 2.871 0.751 5.216 −0.609 −1.302 · · · −0.121
7 4.203 −0.962 0.187 −1.839 3.800 1.599 0.791 −2.074 0.391 −1.907 · · · −0.790
8 −1.753 2.979 3.160 −1.941 0.356 3.257 −0.225 0.506 2.318 −2.077 · · · −2.759
9 3.898 −1.259 0.490 0.912 −4.333 0.258 −3.658 −0.533 0.066 1.107 · · · −1.033
10 −0.931 −1.188 −2.041 −0.242 1.414 −4.170 4.183 2.635 −1.910 0.974 · · · −1.021
...

...
...

...
...

...
...

...
...

...
...

. . .
...

1000 2.706 −0.844 0.652 −2.440 −2.416 0.206 −2.889 −2.219 −0.382 0.445 · · · 3.456

In order to assess the impact of magnitude of the random deviations of the thread pitch on
the decrease of the specific dynamic capacity of PRS, the decreasing coefficient f , defined by Eq.
(3.7), has been accepted. This coefficient refers to the average axial displacement of all threads
in the case without random deviations of the thread pitch. Therefore, the impact of the load
level is included as

f =
κdevu0
δmax

(3.7)

where δmax is the maximum value of random deviations, u0 – average axial displacement of all
threads in the case without random deviations of the thread pitch, κdev – factor determining the
relation between the maximum random deviation δmax and the average axial displacement u0,
wherein κdev = {10, 20, 40}%.
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Fig. 7. Surface plot of 20 000 random deviations of the thread pitch

For the considered geometry of PRS, the average axial displacement of all threads in the
case without random deviations of the thread pitch is u0 = 19.973µm. The maximum drawn de-
viation, obtained among 20 000 values, is δmax = 8.184. Accordingly, the decreasing coefficients,
listed in Table 3, have been accepted.

Table 3. Decreasing coefficients and maximum random deviations

κdev f δmax [µm]

10% 0.244 1.997

20% 0.488 3.977

40% 0.976 7.990

Tables of random deviations for three considered values of κdev have been obtained by mul-
tiplying the values of random deviations in Table 2 by the consecutive f coefficients. Table 4,
referring to the case of κdev = 10%, presents examplary results. In the same case, one thousand
load distributions between the screw and the roller including random deviations of thread pitch
are presented in a surface plot in Fig. 8.

Using Eq. (3.5)3, the decrease of the specific dynamic capacity related to particular threads
and to all cooperating threads of the screw and the roller have been determined. The results of
calculations are presented in Figs. 9a and 9b.

4. Conclusions

The decrease of the specific dynamic capacity related to particular threads is the greatest in the
end parts of the roller. The largest decrease occurs on the first engaged threads, which are in
fact the most loaded ones. Concerning the cooperation of all engaged threads, it has been shown
that the decrease of the specific dynamic capacity increases with an increase in the random
deviations of the thread pitch. In the case in which the maximum deviation of the thread pitch
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Table 4. Random deviations in µm (µ = 0, σ = 2); κdev = 10%, f = 0.244

Thread number
1 2 3 4 5 6 7 8 9 10 · · · 20

S
a
m
p
li
n
g
n
u
m
b
er

1 0.637 −0.209 −0.240 −0.704 −0.315 −0.512 −0.936 −0.068 0.557 0.080 0.542 0.542
2 0.480 −0.283 0.321 −0.469 −0.141 0.229 −0.064 0.211 0.455 −0.345 · · · 0.348
3 −0.611 0.452 0.701 0.170 0.488 0.138 −0.375 1.099 −0.254 1.121 · · · −0.315
4 −0.088 0.003 −0.749 −0.050 −0.287 0.655 1.166 −0.224 −0.288 0.209 · · · 0.428
5 −0.363 −0.310 0.855 0.322 0.760 0.186 0.038 0.044 0.674 0.787 · · · 0.042
6 0.114 0.419 0.626 0.565 −0.664 0.700 0.183 1.273 −0.149 −0.318 · · · −0.030
7 1.025 −0.235 0.046 −0.449 0.927 0.390 0.193 −0.506 0.095 −0.465 · · · −0.193
8 −0.428 0.727 0.771 −0.474 0.087 0.795 −0.055 0.124 0.566 −0.507 · · · −0.673
9 0.951 −0.307 0.119 0.223 −1.057 0.063 −0.893 −0.130 0.016 0.270 · · · −0.252
10 −0.227 −0.290 −0.498 −0.059 0.345 −1.017 1.021 0.643 −0.466 0.238 · · · −0.249
...

...
...

...
...

...
...

...
...

...
...

. . .
...

1000 0.660 −0.206 0.159 −0.595 −0.589 0.050 −0.705 −0.541 −0.093 0.109 · · · 0.843

Fig. 8. Surface plot of one thousand load distributions between the screw and the roller including
random deviations of the thread pitch (f = 0.244, κdev = 10%)

Fig. 9. Decrease of the specific dynamic capacity for: (a) particular screw-roller threads pair,
(b) all cooperating threads
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does not exceed 20% of the average axial displacement of all the threads, the maximum decrease
in the specific dynamic capacity of PRS is small and equals 3.3%. On the other hand, in the
case where the maximum deviation of the thread pitch is 40% of the average axial displacement
of all the threads, the decrease of the specific dynamic capacity is up to 11.1%. Based on the
analysis, it can be concluded that the maximum deviation of the thread pitch, which does not
significantly affect the reduction of the specific dynamic capacity of the planetary roller screw
under the nominal load, should not exceed 20% of the average axial displacement of all the
threads.
Similar results can be expected for different dimensions of the planetary roller screw. This is

due to taking into account the relation between the random deviations of the thread pitch and
the average displacement of all the threads for the accepted load level.
While considering the essence of cooperation of the PRS elements, we deal with a multipoint

support. Therefore, the specific dynamic capacity does not depend on the capacity of the most
loaded pair of threads. Even if the carrying capacity of this pair is exhausted, the other threads
take over the load. The specific dynamic capacity of a significant number of thread pairs has to
be exhausted, to exhaust the carrying capacity of the planetary rollers screw.
Accordingly, the decrease of the specific dynamic capacity of all the cooperating threads,

presented in Fig. 9b, is the conclusive parameter.
A similar procedure of assessing the impact of random deviations of the thread pitch on the

specific dynamic capacity can be also carried out in the case of non-Gaussian distributions of
random deviations.
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In this paper, stability and instability of Functionally Graded Piezoelectric (FGP) beams
is investigated based on the Timoshenko beam theory. The material properties of the beam
are considered to change gradually through thickness of the beam by a simple power law. By
using the principle of minimum total potential energy, governing equations of the beam are
derived. Stability behavior of the beam is predicted by solving the governing equations of the
FGP beam. The results show that the homogeneity of boundary conditions plays a critical
role in the stability of the FGP beam. While non-homogeneous boundary conditions lead
to stable behavior of the FGP beam; homogeneous boundary conditions cause instability in
the beam. By solving the eigenvalue equation of the FGP beam, the buckling load of the
beam is obtained for the beams that have unstable behavior. Finally, the effects of various
parameters on the buckling load of the unstable beam, such as power law index, temperature,
applied voltage and aspect ratio are investigated, and the results are compared with the
Euler-Bernoulli beam theory.

Keywords: FGP beam, stability, instability, buckling load, Timoshenko beam theory, non-
-homogeneous and homogeneous boundary conditions

1. Introduction

Piezoelectric materials have been commonly used in various types of structures. Recently, a new
kind of materials called the FGP materials, have been developed to improve the reliability and
effectiveness of piezoelectric structures by extending the concept of well-known Functionally
Graded Materials (FGM) to piezoelectric materials. The emergence of FGP materials has de-
monstrated that they have the potential to reduce stress concentration and provide improved
residual stress distribution, enhanced thermal properties, and higher fracture toughness. Beam-
-liked FGP structures are commonly used as sensors and actuators in a variety of mechanical,
civil, and structural applications at various scales (Qin, 2013; Yang, 2005). Li et al. (2006) stu-
died thermal post-buckling of Functionally Graded (FG) beams based on Timoshenko beam
theory. They extracted nonlinear governing equations of the beam under non-uniform thermal
and mechanical loads. Then, they evaluated thermal post-buckling of fixed-fixed beams by using
a shooting method. Ying et al. (2008) studied bending and free vibration of an FG beam, which
was located on the Winkler-Pasternak elastic substrate, using an analytical method. They in-
vestigated the effect of various parameters such as the power law index and aspect ratio on
the response of the FG beam. Pradhan and Murmu (2009) explored vibration of the FG beam
located on the Winkler elastic substrate by using a modified DQ (differential quadrature) me-
thod. Kiani and Eslami (2010) accomplished an analytical research into thermal buckling of FG
beams, assuming that material properties changed according to the power law. They utilized
the Euler-Bernoulli beam theory with consideration of nonlinear terms of strain in the formula-
tion. In that paper, the critical temperature was obtained for three types of uniform, linear and
nonlinear thermal loadings through the thickness direction of the beam. Doroushi et al. (2011)
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reported the dynamic response of FGPM beams based on the third-order shear deformation
theory of a simple higher-order theory by using the finite element method. Fallah and Aghdam
(2011) used the Euler-Bernoulli beam theory to study free vibration and post-buckling of the
FG beams which were supported by a nonlinear elastic substrate. Furthermore, they assumed
the von Kármán nonlinear strains in the formulation and solved the obtained governing equ-
ations of the beam by He’s variational method. Wattanasakulpong et al. (2011) studied buckling
and vibration of FG beams based on the third order shear deformation beam theory by using
the power law model to define material properties through the thickness direction. They solved
the eigenvalue problem by the Ritz method. Davoodinik and Rahimi (2011) investigated large
deformation of tapered FG beams using a semi-analytical method. Li and Batra (2013) studied
the buckling load of functionally graded Timoshenko and Euler-Bernoulli beams. They used
the equilibrium method to derive governing equations of the FG beam and solved the obtained
equations for different boundary conditions except a clamped-simply supported (C-S) beam. For
C-S beams, they used a transcendental equation to find the critical buckling load. Zhang (2013)
analyzed nonlinear bending of FGM beams based on the physical neutral surface and higher
order shear deformation theory. He considered material properties to be temperature-dependent
and variable in the thickness direction. Esfahani et al. (2013) studied non-linear thermal stability
of temperature dependent FGM beams supported on non-linear hardening elastic foundations.
They utilized a modified DQ method to solve the governing equations. They also explored some
kinds of boundary conditions and thermal loading in analysis of the stability of FGM beams.
Fu et al. (2012) investigated buckling, free vibration and dynamic stability of FGP beams in
thermal environment by using nonlinear analysis. To perform thermal-electrical buckling solu-
tions, they used the Euler-Bernoulli beam theory and Galerkin method. Komijani et al. (2013a)
studied non-linear thermo-electrical stability of FGP beams based on the Timoshenko beam the-
ory. They utilized the finite element method to analyze nonlinear behavior of beams in different
boundary conditions. In an other work, Komijani et al. (2013b) investigated nonlinear stability
and vibration of pre and post-buckled FGPM microstructures.

In this paper, thermal, mechanical and electrical loads are considered. A modified coupled
stress theory and the von Kármán strains are utilized to obtain governing equations of the beam.
Nasirzadeh et al. (2014) studied stability of FGP beams under thermal, electrical and mechanical
loadings, and showed that thermal loading had a greater effect on the buckling point of the FGP
beam in comparison with the electrical loading.

In this paper, stability and instability of FGP beams are investigated under thermal and
electrical loadings. Material properties are considered to change gradually according to the power
law. The governing equations are derived based on the Timoshenko beam theory. The FGP beam
is under electrical, thermal and mechanical loadings. The temperature field is assumed to change
uniformly and linearly in the thickness direction of the beam. The governing equation of the
FGP beam is derived using the minimum potential theory and then the governing equation
is solved by using an analytical method. Stability of the beam is investigated in the presence
of thermal and electrical fields. The influence of effective parameters on the buckling load of
the FGP beam such as: power law index, temperature field, applied voltage and aspect ratio is
investigated.

2. Theoretical formulation

2.1. Governing equations

Figure 1 shows the proposed FGP beam of length L and a rectangular cross section with
thickness h and width b that is subjected to an axial compression load P . The coordinate axes
are shown in Fig. 1.
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Fig. 1. FGP beam of length L and rectangular cross section

The smooth and continuous distribution of material properties along thickness of the FGP
beam, composed of two piezoelectric materials, follows a simple power law as (Komijani et al.,
2013a)

P (z) = PL + PUL
(1
2
+
z

h

)k
(2.1)

in which PUL = PU − PL, where PL and PU are the material properties of lower and upper
surfaces of the beam, respectively.

By applying a constant voltage to the FGP beam, an electric field is produced which can be
defined as (Kiani and Eslami, 2010)

Ez = −
V0
h

(2.2)

In this paper, the governing equation is derived based on the Timoshenko beam theory. The
displacements of an arbitrary point along the z- and x-axes are denoted by w̃(x, z) and ũ(x, z),
respectively. These displacements are formulated clearly as (Komijani et al., 2013b)

ũ(x, z) = u(x)− zφ(x) w̃(x, z) = w(x) (2.3)

where u(x) and w(x) are displacements components in the mid-plane of the beam in the z and
x direction, and φ is the rotation of plane of cross section.

From equations (2.3), the von Kármán type strains can be calculated as

εx = u,x +
1

2
(w,x)

2 − zφ,x γxz = φ+ w,x (2.4)

The constitutive equations of the FGP beam are derived considering the thermal and electrical
fields as follows (Komijani et al., 2013a)

σx = Q11(z)(εx − α(z)∆θ)− e31(z)Ez τxz = Q55(z)γxz

Dz = e31(z)εx + k33(z)Ez + p3∆θ Dx = e15(z)γxz
(2.5)

in which σx, τxz, εx, γxz, Di and Ez are the axial stress, shear stress, axial strain, shear strain,
electrical displacement and electrical field, respectively. Moreover, Qij , αij , eij , kij , p3 and∆θ are
the elastic stiffness coefficient, thermal expansion coefficient, piezoelectric coefficient, dielectric
coefficient, pyroelectric coefficient and temperature rise, respectively. In the current paper, the
governing equations of the FGP beam subjected to mechanical, electrical and thermal loads are
derived using the principle of minimum potential energy. Based on this principle, the equilibrium
equations are derived when the following equation is satisfied (Komijani et al., 2013a)

δΠ = δH + δWext = 0 (2.6)
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in which H is the electrical enthalpy and Wext is the virtual work of external forces imposed on
the beam. The variation of electrical enthalpy for the FGP beam can be derived as (Kiani and
Eslami, 2010)

δH =

∫∫∫

V

[σxδεx +Ksτxzδyxz −DzδEz] dV (2.7)

where Ks is the shear correction coefficient and is equal here to 5/6 (Bathe, 1996). It should be
noted that since the electrical field is not varied, Ez is constant, so δEz is equals to zero. The
virtual work done by external forces can be calculated as (Ballas, 2007)

δWext = −
L∫

0

qδw dx− Pδu−Mδw,x −Rδw (2.8)

The parameters, R, P , M are the axial resultant reaction force, supports external resultant
reactions and external moment resultant reactions applied at the ends of the beam, respectively.
Also, q is the transversally distributed applied load. Based on Timoshenko beam theory, the
stress resultant forces of the beam are derived using equations (2.7) and (2.8) as

Nx = A11u,x −B11w,xx −NTx −N ex
Mx = B11u,x −D11w,xx −MTx −Mex
Qx = KsA55(φ+ w,x)

(2.9)

where NTx and M
T
x are the corresponding thermal force and moment. Furthermore, D11, B11,

A11 are tension stiffness, tension bending and bending coefficients, which are defined as

(A11, B11,D11) =

h/2∫

−h/2

Q11(z)(1, z, z
2) dz A55 =

h/2∫

−h/2

Q55(z) dz (2.10)

Also, the thermal force and resultant moment can be calculated as

(NTx ,M
T
x ) =

h/2∫

−h/2

Q11(z)α(z)∆θ(1, z) dz (2.11)

Finally, the electrical force resultants can be written as

(N ex,M
e
x) =

h/2∫

−h/2

e31(z)Ez(1, z) dz (2.12)

Substituting equations (2.7) and (2.8) into (2.6) and integrating with respect to z, and substi-
tuting of equation (2.9) and (2.10), the equilibrium equations for the beam have been derived
as

Nx,x = 0 Qx,x +Nxw,xx = 0 Mx,x −Qx = 0 (2.13)

Substituting equation (2.9) into equation (2.13) and doing some simplifications, an ordinary
differential equation with respect to displacement will be obtained. The final governing equation
of the FGP beam based on Timoshenko assumptions is

w,xxxx + µ
2w,xx = 0 (2.14)
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where

µ2 =
A11Nx

(B211 −A11D11)
(
1 + Nx

KsA55

) (2.15)

Equation (2.14) is a forth order ordinary differential equation which describes deflection of the
beam.

2.2. Boundary conditions

The corresponding boundary conditions are considered as

Nx = P or u = 0

w,xxx + µ
2w,x =

Rµ2

Nx
or w = 0

Mx =
1

A11
[(A11D11 −B211)φ,x +B11P ]−MTx −Mex = 0 or φ = 0

(2.16)

Using equations (2.9) and (2.16) yields

P = P −NTx −N ex M =M −MTx −Mex R = R−RTx −Rex (2.17)

in which the parameters P,R,M are the external axial force, reaction force from supports and
external moment applied at the ends of the beam, respectively. Also, the parameters P , R, M
are the axial resultant reaction force, resultant reactions from external supports and external
resultant moment at the ends of the beam, respectively. The other parameters are the thermal
and electrical resultant forces defined in Eqs. (2.11) and (2.12). The formulas for each type of
boundary conditions are listed in Table 1.

Table 1. The boundary conditions for the FGP beam

Boundary conditions x = 0 or l

Clamped w = φ = 0

Simply supported w = (A11D11 −B211)φ,x +B11P −A11(MTx +Mex) = 0
Roller w,xxx + µ

2w,x = φ = 0

3. Solution

The exact solution to differential equation (2.14) based on the parameter µ, which depends on
thickness and the resultant axial force of the beam, can be written as

w(x) = C1 sin(µx) + C2 cos(µx) + C3x+ C4 (3.1)

where constants C1-C4 are calculated by using the boundary condition of the FGP beam. In
order to deal with the constants, based on the Timoshenko beam theory and the number of the
coefficient, we need to evaluate the deflection and slope of the beam in each boundary. Thus,
the slope function can be presented using the deflection of the beam as

φ(x) =
(
1 +

Nx
KsA55

)
[−C1µ cos(µx) + C2µ sin(µx)]− C3 (3.2)

In this paper, stability of five types of boundary conditions is studied. The results show that
instability occurs in two cases of boundary conditions (clamped-clamped (C-C) and clamped-
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-roller (C-R)) while three others (simply supported-simply supported (S-S), simply supported-
-clamped (S-C), simply supported-roller (S-R)) are stable. For an example, the C-C condition
is considered as a sample of instability in the beam. These results are the same for two different
Euler-Bernoulli and Timoshenko beam theories and the obtained results can be validated by the
data reported by Nasirzadeh et al. (2014). In Table 2, the effect of the boundary condition on
stability of the FGP beam is abstracted.

Table 2. The effect of the boundary condition on stability of the FGP beam

Boundary conditions C-C C-R S-S S-C S-R

Stability behavior unstable unstable stable stable stable

To satisfy the boundary condition, the algebraic equation constants Ci are obtained using
equation (2.18)




0 1 0 1
−µS 0 −1 0
sin(µL) cos(µL) L 1

−µS cos(µL) µS sin(µL) −1 0







C1
C2
C3
C4


 =




0
0
0
0


 (3.3)

where

S = 1 +
Nx

KsA55
(3.4)

System of equations (2.20) has infinitely many non-trivial solutions if its coefficient matrix is
singular. The non-trivial solution is obtained by equaling the determinant of the coefficient
matrix to zero. By solving the obtained characteristic equation, it can be possible to determine
the buckling load of the FGP beam for the C-C boundary condition. The characteristic equation
of the coefficient matrix can be written as

Sµ(LSµ sin(µL) + 2 cos(µL)− 2) = 0 (3.5)

By solving equation (2.22), the buckling load of the FGP beam can be obtained as

(P )cr = (P −NTx −N ex)cr =
4n2π2

L2 (B
2
11 −A11D11)

A11 − 4n2π2L2
B211−A11D11
KsA55

n = 1, 2, . . . (3.6)

Based on equation (2.23), the buckling load of the beam subjected to mechanical, thermal and
electrical loads will be obtained. For the second example, the case of S-S boundary condition
is considered as a sample of stable behavior of the structure. Like in the previous example, by
applying the boundary conditions, the algebraic equations of the beam will be derived as




0 1 0 1
0 Sµ2 0 0

sin(µL) cos(µL) L 1
Sµ2 sin(µL) Sµ2 cos(µL) 0 0







C1
C2
C3
C4


 =




0
1
0
1



A11(M

T
x +M

e
x)−B11P

A11D11 −B211
(3.7)

The above equation has not any non-trivial solution and hence the structure shows stable be-
havior. By solving equation (2.24), the deflection of the beam is obtained as

w(x) =
F

Sµ2

(1− cos(µL)
sin(µL)

sin(µx) + cos(µx)− 1
)

(3.8)
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in which

F =
A11(M

T
x +M

e
x)−B11P

A11D11 −B211
(3.9)

It should be noted that the nonhomogeneous distribution of the material through thickness
of the beam can lead to inhomogeneous boundary conditions, and so, the beam shows stable
behavior.

3.1. Temperature field

In this paper, two kinds of thermal fields acting on the beam are investigated. In the first case,
the beam is subjected to a uniform temperature field with the temperature rise of ∆θ = θ− θ0,
in which θ0 is the initial temperature and θ is the final temperature imposed on the beam. In
the second case, the beam is subjected to a linear temperature field through thickness of the
beam. Using the assumption of a thin beam and solving the obtained heat transfer equation,
the temperature distribution in the beam is derived as (Bodaghi et al., 2014)

θ = θL + θUL
(1
2
+
z

h

)
θUL = θU − θL ∆θ = θ − θ0 (3.10)

where θL and θU are temperatures of the lower and upper surfaces of the FGP beam, respectively.

4. Results and discussions

Consider a beam composed of a functionally graded material of PZT-4 and PZT-5 in the upper
and lower surfaces, respectively. The properties of materials are listed in Table 3. In this Section,
the buckling load of the FGP beam subjected to mechanical, thermal and electrical fields is
studied. In the following Section, the results for Euler-Bernoulli and Timoshenko beams have
been calculated and compared to each other. Moreover, the effect of uniform and linear thermal
fields on the buckling load of the Timoshenko beam has been investigated. Finally, the critical
values of the buckling load for the FGP beam with the clamped-clamped boundary conditions
in thermal and electrical environment for different power law indexes and various aspect ratios
will be studied.

Table 3. Thermal-electrical and mechanical properties of PZT-4 and PZT-5H (Komijani et al.
2013a)

Property PZT-5H PZT-4

Q11 [GPa] 60.6 81.3

Q55 [GPa] 23.0 25.6

e13 [C/m
2] −16.604 −10.0

e15 [C/m
2] 44.9046 40.3248

k11 [(C
2/m2N)·10−8] 1.5027 0.6712

k33[(C
2/m2N)·10−8] 2.554 1.0275

α [1/K] 10E-6 2E-6

p3 · 10−5 0.548 2.5

At first, we compare our exact results with other data reported in the literature. Table 4
shows the buckling load of the piezoelectric beam for two different aspect ratios. The second
solution is based on the finite element method. We used the two node Hermit elements and
Euler-Bernoulli beam theory to model the beam. The results obtained by the FE method are
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Table 4. Comparison of the buckling load (N/m) of the clamped-clamped piezoelectric beam
versus aspect ratio

L/h Exact value (our paper) FEM results

25 3.1899E+06 3.1899E+06

50 7.9746E+05 7.9747E+05

compared with the exact solution which is obtained in this paper. As it is seen, the results for
two distinct methods are in good agreement with each other.

Figure 2a shows the buckling load of the FGP beam versus the power low index k for different
aspect ratios (L/h) for Euler-Bernoulli and Timoshenko beams. It is seen that by increasing the
power law index k, the value of the buckling load increases. Also this figure shows that the load
decreases with the increasing aspect ratio L/h. On the other hand, the differences between the
buckling load obtained by using Euler-Bernoulli and Timoshenko beam theories are decreased
when the ratio of L/h is increased. It is seen that the value of the resultant axial buckling load
predicted by the Euler-Bernoulli theory is higher than that by the Timoshenko beam theory.
The reason can be explained by considering the effect of shear stresses in the Timoshenko beam
theory. In Fig. 2b, variation of the buckling load versus aspect ratio of the beam for various
power low indexes is depicted. As it is seen, by decreasing the aspect ratio, the buckling load
increases.

Fig. 2. (a) The effect of the power law index on the buckling load for various aspect ratios for
Euler-Bernoulli and Timoshenko theories. (b) The effect of aspect ratios on the critical buckling load

versus the power load index for Euler-Bernoulli and Timoshenko beam theories

In Figs. 3a and 3b, the effects of uniform and linear thermal fields on the buckling load of the
beam are depicted. In the studied cases, the FGP beam exposed to a constant applied voltage
(V0 = 500V) and the aspect ratio of the beam is (L/h = 50). The results show that the rate of
change of the buckling load for power law indexes between zero to four is high, and for power
indexes which are more than four is decreased and changes no more. Also it is seen that for a
constant power law index, by increasing temperature in the beam, the buckling force decreases.
The produced elongation caused by the temperature changes can be regarded as a reason for
this phenomenon. It should be noted that, because of the acceptable conformity between the
results of two theories, the mentioned points are same for the two beam theories.

Figures 4a and 4b show changes of the buckling load with respect to uniform temperature
rise through thickness for different power law indexes of two theories. Because of the decreasing
equivalent thermal expansion coefficient of the FGP beam by increasing of the power law index,
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Fig. 3. (a) The effect of a constant thermal field on the buckling load with respect to the power index k
for two theories. (b) The effect of a linear thermal field along thickness on the buckling load versus the

power index k for two theories

Fig. 4. (a) The effect of a constant thermal field on the buckling load for two theories for various power
law indexes. (b) The effect of a linear thermal field on the buckling load for two theories for various

power law indexes (V0 = 500 v, L/h = 50)

the buckling load of the beam is decreased. Moreover, it should be noted that the intersection
point of lines with various power indexes depends on the aspect ratio and thermal expansion
coefficient of composed materials, and by changing of these parameters, this point is moved or
eliminated.

In Fig. 5a, a comparison of the effects of the uniform and linear temperature rise through
thickness of the Timoshenko beam on the buckling load is depicted. It can be seen that by
increasing the temperature the critical buckling load is decreased. This phenomenon can be
explained due to thermal stresses in the beam. The effect of the power law index on the critical
buckling load for the uniform and linear temperature rise along the thickness of the beam for
two theories are shown in Fig. 5b.

Figures 6, 7 and 8 show the effect of the power law index and applied voltage for the uniform
and linear temperature rise on the critical buckling load of the beam. It can be inferred that
in both conditions, by increasing the power law index, the critical buckling load is increased.
Moreover, for a specified power law index, by decreasing the applied voltage, the value of critical
buckling load increases; however it should be noted that the effect of voltage is negligible on
the critical buckling load. Figure 6 shows the effect of uniform and linear temperature fields for
different voltages on the critical buckling load. The most significant point is that the rate of
buckling load variation by changing the applied voltage is almost negligible. It can be explained
by the small value of the piezoelectric coefficient of the FGP beam.
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Fig. 5. (a) The effect of uniform and linear temperature fields on the buckling loads versus the power
index for the Timoshenko beam. (b) The effect of uniform and linear thermal fields on the buckling load

for various power indexes (V0 = 500V, L/h = 50)

Fig. 6. The effect of voltage and power index on the critical buckling load for a uniform temperature rise

Fig. 7. The effect of voltage and power index on the critical buckling load for a linear temperature rise

Figure 9 shows the deflection of the FGPM beam with the S-S boundary condition versus
the applied axial force. The beam is under a uniform thermal (∆θ = 100) and electrical loading
(V0 = 200V). This figure shows that by increasing the applied force, the deflection do not change,
but in points closer to the bifurcation point of the beam the deflection sharply increases.
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Fig. 8. The comparison of the critical buckling load for uniform and linear temperature field versus
the applied voltage

Fig. 9. Deflection of the SS beam under thermal (∆θ = 100◦C) and voltage load (V0 = 200V)

5. Conclusions

In this paper, the stability and instability of FGP beams is investigated based on the Timoshenko
beam theory. Considering different boundary conditions of the FGP beam the instability is shown
for two cases of boundary conditions: clamped-clamped (C-C) and clamped-roller (C-R). The
three others: simply supported-simply supported (S-S), simply supported-clamped (S-C), simply
supported-roller (S-R) show stable behavior. For both boundary conditions which are unstable
(C-C and C-R), the results show that the buckling load increases with ithe ncreasing power law
index. Also, by increasing the temperature, the value of the buckling load decreases. In addition,
a uniform temperature rise has greater effect on the buckling load than a linear temperature
rise. Moreover, the temperature field is more effective than the electric field in the buckling load
of the beam, and the electrical loading has not a significant effect on the buckling load of the
FGP beam.
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Divergence and flutter instabilities of viscoelastic rectangular plates under triangularly distri-
buted tangential follower loads are studied. Two sets of boundary conditions are considered,
namely, simply supported plates and plates with a combination of clamped and simply sup-
ported edges. The constitutive relations for the viscoelastic plates are of Kelvin-Voigt type
with the effect of viscoelasticity on stability studied numerically. The method of solution is
differential quadrature which is employed to discretize the equation of motion and the boun-
dary conditions leading to a generalized eigenvalue problem. After verifying the method of
solution, numerical results are given for the real and imaginary parts of the eigenfrequencies
to investigate flutter and divergence characteristics and dynamic stability of the plates with
respect to various problem parameters.
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1. Introduction

Dynamic stability of elastic structures subject to nonconservative loads is of practical importance
in such fields as aerospace, mechanical and civil engineering. As a result, the subject has been
studied extensively to quantify the behaviour of beams, plates and shells under follower forces.
These forces can be concentrated, uniformly distributed or triangularly distributed depending
on the specific application. They act in the tangential direction and are not derivable from a
potential due to their nonconservative nature as presented in works by Kumar and Srivasta
(1986), Przybylski (1999), Gajewski (2000), Krillov (2013).
Early work on the nonconservative instability under uniformly distributed follower loads

mostly involved one dimensional elastic structures, namely, columns (Sugiyama and Kawagoe,
1975; Leipholz, 1975; Chen and Ku, 1991). Stability of columns under triangularly distributed
loads was studied by Leipholz and Bhalla (1977), Sugiyama and Mladenov (1983) and Ryu et
al. (2000). More recent studies on nonconservative loading include columns subject to uniformly
distributed follower loads by Kim (2010), Kim et al. (2008) and Kazemi-Lari et al. (2013) and
to triangularly distributed follower loads by Kim (2011). The follower force can also be realized
by means of properly shaped loading heads which can affect the displacements of the loaded
end as studied by Tomski and Szmidla (2004) and Tomski and Uzny (2013b). The installation
of Tomski’s head can lead to a loading force which is tangent to the end of the column and can
be conservative (Tomski and Uzny, 2008, 2013a). The force in this case is directed to a constant
point which becomes a pole for the loading. Introduction of Tomski’s head can lead to new
characteristic curves such as pseudo flutter and allows one to control the dynamic behavior of
the system. Studies on nonconservative stability of two-dimensional structures mostly involved
rectangular plates under follower loads (Culkowski and Reismann, 1977; Farshad, 1978; Adali,
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1982) and under uniformly distributed tangential loads (Leipholz, 1978; Leipholz and Pfendt,
1982, 1983; Wang and Ji, 1992).

Recent research on the stability of elastic plates under nonconservative loads includes works
by Zuo and Shreyer (1996), Kim and Park (1998), Kim and Kim (2000), and Jayaraman and
Struthers (2005). Dynamic stability of functionally graded plates under uniformly distributed
axial loads was studied by Ruan et al. (2012) and shells by Torki et al. (2014a,b). These studies
neglected the effect of viscoelasticity on the stability of the columns and plates.

Dynamic stability of one-dimensional viscoelastic structures was the subject of the works
by Marzani and Potapov (1999), Langthjem and Sugiyama (2000), Darabseh and Genin (2004),
Zhuo and Fen (2005), Ilyasov and Ilyasova (2006) and Elfelsoufi and Azrar (2006). Recently,
the dynamic stability of viscoelastic plates has been studied for a number of cases (Ilyasov and
Aköz, 2000; Wang et al., 2007, 2009, 2013; Zhou and Wang, 2014; Robinson and Adali, 2016).
Vibrations of a simply supported plate with nonlinear strain-displacement relations and subject
to a uniformly distributed tangential force were studied by Robinson (2013). Dynamic stability
of viscoelastic shells was studied by Ilyasov (2010).

Although the dynamic stability under triangularly distributed tangential forces have been
studied in the case of columns (see Leipholz and Bhalla, 1977; Sugiyama and Mladenov, 1983;
Ryu et al., 2000; Kim, 2011), dynamic stability of plates and, in particular, viscoelastic plates
under this type of loading does not seem to be studied so far.

The present work extends the results of Robinson and Adali (2016) who studied nonconse-
rvative stability of viscoelastic plates with free edges and under uniformly distributed follower
loads, to the case of plates with simply supported and simply supported-clamped plates and
subject to triangularly distributed follower loads. Comparisons are given for the uniformly and
triangularly distributed follower loads. The stability problem is solved for the simply supported
plates and for plates with a combination of simple and clamped supports by the differential
quadrature method. Divergence and flutter loads are determined and the effect of viscoelasticity
and the boundary conditions on dynamic stability is investigated. The method of solution is
verified against the known results in the literature.

2. Viscoelastic plate subject to triangularly distributed load

We consider a rectangular plate of uniform thickness h having dimensions a × b in the x and
y directions, respectively (see Fig. 1). It is subject to a non-uniform tangential follower force
qt = q0a(1− x/a).

Fig. 1. Viscoelastic plate subjected to a triangular follower load

The material of the plate is viscoelastic which is expressed by the Kelvin-Voigt constitutive
relations given by



Nonconservative stability of viscoelastic plates subject to... 1017

sij = 2Geij + 2ηėij σii = 3Kεii (2.1)

where sij and eij are deviatoric tensors of stress and strain, respectively, and σii and εii are
spherical tensors of stress and strain with η denoting the viscoelastic coefficient. The bulk mo-
dulus K and shear modulus G can be expressed in terms of Young’s modulus E and Poisson’s
ratio ν as K = E/3(1 − 2ν) and G = E/(1 + 2ν). The equation of vibration of the viscoelastic
plate subject to a triangular follower load is first obtained in the Laplace domain (see Wang et
al., 2007; Zhou and Wang, 2014). By the inverse Laplace transformation, the governing equation
can be expressed in the time domain as

h3

12

(
A3 +A4

∂

∂t
+A5

∂2

∂t2

)
∇4w +

(
A1 +A2

∂

∂t

)(q0(a− x)2
2

∂2w

∂x2
+ ρh

∂2w

∂t2

)
= 0 (2.2)

where ρ is density of the plate and

A1 = 3K + 4G A1 = 3K + 4G A2 = 4η

A3 = 4G(3K +G) A4 = η(8G+ 12K) A5 = 4η
2

(2.3)

and

∇4w = ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
(2.4)

After introducing dimensionless coefficients

X =
x

a
Y =

y

b
w =

w

h
λ =

a

b
(2.5)

and

q =
6q0a

4(1− ν2)
Eh3

τ =
th

a2

√
E

12ρ(1 − ν2) H =
ηh

a2

√
1

12ρ(1 − ν2)E (2.6)

the non-dimensional equation of motion is obtained as

(
1 + g1

∂

∂τ
+ g2

∂2

∂τ2

)
∇4w +

(
1 + g3

∂

∂τ

)(
q(1−X)2 ∂

2w

∂X2
+
∂2w

∂τ2

)
= 0 (2.7)

where

g2 =
4(1 − 2ν)(1 + ν)2

3
H2 g3 =

4(1− 2ν)(1 + ν)
3(1− ν) H

∇4w = ∂4w

∂X4
+ 2λ2

∂4w

∂X2∂Y 2
+ λ4

∂4w

∂Y 4

(2.8)

In equations (2.8),H is the dimensionless delay time of the material and τ is the dimensionless
time defined in Eq. (2.6). Let

w(X,Y, τ) =W (X,Y )ejωτ (2.9)

where j =
√
−1 and ω the dimensionless vibration frequency. Substitution of equation (2.9) into

equation (2.7) yields the differential equation

(1 + g1jω + g2j
2ω2)∇4W + (1 + g3jω)

(
q(1−X)2 ∂

2W

∂X2
+ j2ω2

)
= 0 (2.10)

in terms of the space variables X and Y . The boundary conditions considered in the present
work are the simply supported plates (SSSS) and plates with two opposite edges clamped and
two others simply supported (CSCS).
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SSSS boundary conditions are given by

w(X,Y, τ) =





∂2w

∂X2

∣∣∣∣∣
X=0,1

= 0 for 0 ¬ Y ¬ 1

∂2w

∂Y 2

∣∣∣∣∣
Y=0,1

= 0 for 0 ¬ X ¬ 1
(2.11)

CSCS boundary conditions are given by

w(X,Y, τ) =






∂w

∂X

∣∣∣∣∣
X=0,1

= 0 for 0 ¬ Y ¬ 1

∂2w

∂Y 2

∣∣∣∣∣
Y=0,1

= 0 for 0 ¬ X ¬ 1
(2.12)

3. Differential quadrature (DQ) method

The DQ method involves approximating the partial derivatives of the function W (X,Y ) at
a sample point (Xi, Yj) by the weighted sum of the function Wij (see Bert and Malik, 1996;
Krowiak, 2008). Let the number of sample points denoted by N in the X direction andM in the
Y direction. The r-th order partial derivative with respect to X, s-th order partial derivative
with respect to Y and the (r+ s)-th order mixed partial derivative of W (X,Y ) with respect to
both X and Y are discretely expressed at the point (Xi, Yj) as

∂rW (Xi, Yj)

∂Xr
=
N∑

k=1

A
(r)
ik Wkj

∂sW (Xi, Yj)

∂Y s
=
M∑

k=1

B
(s)
jl Wil

∂r+sW (Xi, Yj)

∂Xr∂Y s
=
N∑

k=1

A
(r)
ik

M∑

l=1

B
(s)
jl Wkl

(3.1)

where i = 1, 2, . . . , N , k = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M and l = 1, 2, . . . ,M − 1.
For r = s = 1, the coefficients A

(r)
ik and B

(s)
jl are defined as

A
(1)
ik =






N∏
µ=1,µ6=i

Xi −Xµ
(Xi −Xk)

N∏
µ−1,µ6=k

(Xk −Xµ)
for i, k = 1, 2, . . . , N (i 6= k)

N∑
µ−1,µ6=k

1

Xi −Xµ
for i = 1, 2, . . . , N (i = k)

B
(1)
jl =






M∏
µ=1,µ6=j

Yj − Yµ
(Yj − Yl)

M∏
µ−1,µ6=l

(Yl − Yµ)
for j, l = 1, 2, . . . ,M (j 6= l)

M∑
µ=1,µ6=j

1

Yj − Yµ
for j = 1, 2, . . . ,M (j = l)

(3.2)
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For r = 2, 3, . . . , N − 1 and s = 2, 3, . . . ,M − 1

A
(r)
ik =





r
(
A
(r−1)
ii A

(1)
ik −

A
(r−1)
ik

Xi −Xk
)

for i, k = 1, 2, . . . , N (i 6= k)

−
N∑

µ=1,µ6=i
A
(r)
iµ for i = 1, 2, . . . , N (i = k)

B
(s)
jl =






s
(
B
(s−1)
jj B

(1)
jl −

B
(s−1)
jl

Yj − Yl
)

for j, l = 1, 2, . . . ,M (j 6= l)

−
M∑

µ=1,µ6=j
B
(s)
jµ for j = 1, 2, . . . ,M (j = l)

(3.3)

The distribution of the grid points are taken as non-uniform, and for the simply supported plate,
the grid points are specified as

X1 = 0 XN = 1 Xi =
1

2

[
1− cos

( 2i− 3
2N − 4π

)]
for i = 2, 3, . . . , N − 1

Y1 = 0 YM = 1 Yj =
1

2

[
1− cos

( 2j − 3
2N − 4π

)]
for j = 2, 3, . . . ,M − 1

(3.4)

For the plate with two opposite edges simply supported and other two edges clamped, the δ
method combined with the weighted coefficient method is adopted. Thus, the grid points for the
CSCS plate are given by

X1 = 0 X2 = δ XN−1 = 1− δ XN = 1

Xi =
1

2

[
1− cos

( i− 2
N − 3π

)]
for i = 3, 4, . . . , N − 2

Y1 = 0 YM = 1 Yj =
1

2

[
1− cos

( 2j − 3
2N − 4π

)]
for j = 2, 3, . . . ,M − 1

(3.5)

where δ ≪ 1. Using equation (3.1), the discretized form of differential equation (2.10) can be
expressed as

c1j
3Wijω

3 + (c2Sij +Wij)j
2ω2 +

(
c3Sij

+ c1q(1−X)2
N∑

k=1

A
(2)
ik Wkj

)
jω + q(1−X)2

N∑

k=1

A
(2)
ik Wkj = 0

(3.6)

where

Sij =
N∑

k=1

A
(4)
ik Wkj + 2λ

2
M∑

l=1

B
(2)
jl

N∑

k=1

A
(2)
ik Wkl + λ

4
M∑

l=1

B
(4)
jl Wil

c1 =
4(1 − 2ν)(1 + ν)
3(1− ν) H c2 =

4(1 − 2ν)(1 + ν)2
3

H2 c3 =
4(1− 2ν)(1 + ν)

3
H

The discretized form of boundary conditions (2.11) are given by

W1j =WNj =Wi1 =WiM = 0 for i = 1, 2, . . . , N ∧ j = 1, 2, . . . ,M

N∑

k=1

A
(2)
ik Wkj = 0 for i = 1, N ∧ j = 1, 2, . . . ,M

M∑

l=1

B
(2)
jl Wil = 0 for i = 1, 2, . . . , N ∧ j = 1,M

(3.7)
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The corresponding equations for boundary conditions (2.12) are

W1j =WNj =Wi1 =WiM = 0 for i = 1, 2, . . . , N ∧ j = 1, 2, . . . ,M

N∑

k=1

A
(1)
ik Wkj = 0 for i = 1, 2, . . . , N − 1 ∧ j = 2, 3, . . . ,M − 2

M∑

l=1

B
(2)
jl Wil = 0 for i = 1, 2, . . . , N ∧ j = 1,M

(3.8)

4. Numerical results and discussion

The results for the viscoelastic plate subject to a triangularly distributed tangential force are
given in comparison to the results for a viscoelastic plate subject to a uniformly distributed
tangential force which was studied in Wang et al. (2007) and Zhou and Wang (2014). The results
for the SSSS and CSCS boundary conditions are given in Table 1 for H = 10−5 (nondimensional
viscoelasticity coefficient). Table 1 shows that the flutter load, denoted by qf , is higher in the
case of the load having triangular distribution as expected. In Table 1, qd1 and qd2 denote the
divergence loads of the 1st and 2nd modes, respectively.

Table 1. Comparison of flutter loads q of viscoelastic plates with H = 10−5 for various aspect
ratios

Aspect
ratio λ

Boundary
conditions

Uniformly Triangularly
distributed load, distributed
Wang et al. (2007) load

1.0
SSSS

qd1 = 67.5 qd1 = 95.1
qd2 = 132.1 qd2 = 225.1

CSCS
qd1 = 143.5
qf = 168.0 qf = 226.0

SSSS
qd1 = 136.8 qd1 = 174.0

1.5 qd2 = 224.7 qd2 = 329.0
CSCS qf = 202.8 qf = 270.0

SSSS
qd1 = 224.8 qd1 = 273.04

2.0 qd2 = 340.5 qd2 = 453.2
CSCS qf = 251.5 qf = 333.0

Figures 2-4 show the real and the imaginary parts of the first three frequencies plotted against
the load q for uniformly and triangularly distributed tangential loads for the SSSS plates with
H = 10−5 and λ = 1, λ = 1.5 and λ = 2, respectively. The corresponding results for the
imaginary part of the frequencies for H = 10−3 are given in Figs. 5 and 6. It is noted that the
results given in Figs. 2-6 for the uniformly distributed tangential load are the same as the ones
given in Wang et al. (2007). As such, they provide the verification of the method of solution
outlined in Section 3.

Comparisons of the loads with uniform and triangular distributions indicate that the results
are qualitatively similar, but the magnitudes of the follower load causing divergence or flutter
instability differ considerably. Comparisons between Figs. 2a, 3a, 4a (H = 10−5) and Figs. 5a,
5b and 6 (H = 10−3) indicate that the imaginary parts of the frequencies remain positive for
H = 10−3 up to the flutter load. The corresponding results for the CSCS plates with H = 10−5

are given in Figs. 7-9 with λ = 1, λ = 1.5 and λ = 2, respectively. The results for the uniformly
distributed tangential loads are also shown in the figures which verify the results of Wang et al.
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Fig. 2. First three frequencies of SSSS plate vs. follower force for λ = 1, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 3. First three frequencies of SSSS plate vs. follower force for λ = 1.5, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 4. First three frequencies of SSSS plate vs. follower force for λ = 2, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

(2007). In this case, it is observed that the real parts of the vibration modes behave differently
as compared to the SSSS plates shown in Figs. 2-4. For the case λ = 1 (Fig. 7a), the real parts of
the first and the third modes join to form a single mode. For λ = 1.5 and λ = 2, the first and the
second modes join as shown in Figs. 8a and 9a, respectively. Thus, in the case of CSCS boundary
conditions, there exists a threshold value q above which the first mode can join the second or
third mode to form a single mode, and this value depends on the aspect ratio. Moreover, it is
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Fig. 5. Imaginary parts of frequencies of SSSS plate vs. follower force for (a) λ = 1 and (b) λ = 1.5,
H = 10−3; (1) uniformly distributed load, (2) triangularly distributed load

Fig. 6. Imaginary part of frequency of SSSS plate vs. follower force for λ = 2, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 7. First three frequencies of CSCS plate vs. follower force for λ = 1, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

observed that for the aspect ratios of λ = 1.5 and λ = 2, the plate does not show divergence
instability and loses stability by flutter.

For the CSCS boundary conditions with H = 10−3, the results are given in Figs. 10-12.
For this value of H = 10−3, the real parts of the frequencies do not form a single mode and
the imaginary parts remain positive until the threshold values are exceeded and the flutter
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Fig. 8. First three frequencies of CSCS plate vs. follower force for λ = 1.5, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 9. First three frequencies of CSCS plate vs. follower force for λ = 2, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 10. First three frequencies of CSCS plate vs. follower force for λ = 1, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

instability occurs as shown in Figs. 10b, 11b and 12b. The imaginary parts of the frequencies
exhibit negative values for q  qf leading to an exponential growth of the deflection.
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Fig. 11. First three frequencies of CSCS plate vs. follower force for λ = 1.5, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 12. First three frequencies of CSCS plate vs. follower force for λ = 2, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

5. Conclusions

The differential quadrature method is employed to study the dynamic stability of rectangular
viscoelastic plates subject to triangularly distributed tangential follower loads. The Kelvin-Voigt
viscoelastic model is taken as the constitutive equation of the plate. Two boundary conditions
are investigated, namely, simple supports and a combination of simple and fixed supports. The
solution is verified against the previous results obtained for SSSS and CSCS viscoelastic plates
subject to uniformly distributed tangential loads by Wang et al. (2007).

Numerical results are given to study the effects of the aspect ratio and degree of viscoelasticity
on the real and imaginary parts of the frequencies. The effect of uniformly and triangularly
distributed follower loads on dynamic stability is compared numerically. It is observed that
in the case of CSCS plates, the flutter instability occurs before the divergence instability for
higher aspect ratios. In the case of SSSS plates, the degree of viscoelasticity does not affect
the divergence load, but this effect is more pronounced for CSCS plates. At higher levels of
viscoelasticity (higher values of H), the imaginary parts of the complex frequencies become
positive rather than zero for low values of the follower load. The results obtained for the present
case can be extended to different follower load cases and, in particular, to the cases where the
direction of the load is controlled by a head (Tomski and Uzny, 2013b).
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For some time, work has been underway aimed at significant simplification of the modelling
of hydraulic resistance occurring in the water hammer while maintaining an acceptable error.
This type of resistance is modelled using a convolution integral, among others, from local
acceleration of a liquid and a certain weighting function. The recently completed work shows
that during efficient calculations of the convolution integral, the effective weighting function
used does not have to be characterised by large convergence with a classical function (accor-
ding to Zielke during laminar flow and to Vardy-Brown during turbulent flow). However, it
must be a sum of at least two or three exponential expressions so that the final results of the
simulation could be considered as satisfactory. In this work, it has been decided to present
certain analytical formulas using which it will be possible to determine the coefficients of
simplified effective weighting functions in a simple direct way.

Keywords: unsteady flow, water hammer, convolution integral, frequency-dependent friction

1. Introduction

Unsteady flows occur in hydraulic systems, water supply systems, heating systems, thermal-
-hydraulic systems (cooling cores of nuclear power plants), etc., during start-up, braking or
failure. Proper modelling of flows of liquids under pressure in such systems remains a significant
challenge. Among the key issues widely discussed in new publications on the subject, special
emphasis is placed on the correct modelling: of the time-varying hydraulic resistance (Vardy and
Brown, 2003; Zarzycki et al., 2011; Reddy et al., 2012), cavitation (Zarzycki and Urbanowicz,
2006; Adamkowski and Lewandowski, 2009, 2012; Bergant et al., 2006; Karadžić et al., 2014;
Soares et al., 2015), the interaction between the liquid and walls of the conduit (Keramat et al.,
2012; Henclik, 2015; Zanganeh et al., 2015), the viscoelastic phenomenon that occurs during the
flow in a piping made of engineering polymers (Weinerowska-Bords, 2015; Soares et al., 2012;
Keramat et al., 2013; Pezzinga et al., 2014; Urbanowicz et al., 2016). Taking into account all
of the above phenomena while simulating unsteady flows has seemed impossible until recently.
But now, thanks to the work carried out by Keramat and Tijsseling (2012) presented at the
international conference on the analysis and damping of pressure surges associated with the
phenomenon of water hammer (BHR Pressure Surges, Lisbon), we know that it is possible. In
this general model, as well as in many others having a simplified design, the method of modelling
of the time-varying hydraulic resistance has a very large impact on pressure runs.

During acceleration, deceleration or as a result of rapid suppression of the fluid flow resulting
from quick valve closing (the so called water hammer effect occurs then), the friction of the fluid
against pipe walls, as well as the internal friction between its elements, has a significant impact
on transient flow parameters. It was already noted by Roiti, Helmholtz, Stearn and Gromeka in
the first studies concerning unsteady fluid flow in pipes about 150 years ago. A rapid development
of numerical methods in the 1950th and the 1960th, particularly development of the method
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of characteristics being commonly used to date, induced further studies, the main objective of
which was to properly describe the friction occurring during the flow in a mathematical manner.
At present, the models enabling the pipe wall shear stress to be simulated can be divided

into two groups. The first group is simple models in which the stress is directly proportional to
a momentary local and convective acceleration of the fluid. The model developed by a group of
researchers under the leadership of Daily (1956), in which the stress depended only on momentary
local acceleration of the fluid and a certain constant coefficient, is considered a prototype. The
above model was developed with time by other researchers as Carstens and Roller, Safwat and
Polder and Shuy and Apelt. A significant adjustment was introduced by Brunone et al. (1991),
additionally making the stress conditional on momentary convective acceleration. Vı́tkovský
et al. (2000) introduced a sign next to the convective derivative, while Laurerio and Ramos
(2003) made a final adjustment of that model consisting in the splitting of the single constant
coefficient k into two new coefficients kt and kx, which are to be found next to adequate velocity
derivatives

τw(t) =
λqρv|v|
8
+
ρD

8

(
kt
∂v

∂t
+ kxc

|v|
v

∣∣∣
∂v

∂x

∣∣∣
)

(1.1)

where: λq is the quasi-steady friction coefficient, ρ – liquid density, kt and kx – empirical coef-
ficients, D – pipe inner diameter, v – velocity, t – time, c – pressure wave speed, x – distance
along the pipe.
Ramos then numerically proved the impact of particular expressions of this solution on the

phase shifts and the speed of pressure wave damping, whereas Reddy et al. (2012), based on
known experimental results, presented a method consisting in the empirical selection of constants
when calculating the coefficients kt and kx that are to be found in final solution (1.1). The models
of the above group are limited due to the need for empirical determination of the coefficients kt
and kx. There are no papers that would show details of their numerical implementation; besides,
they are characterized by a limited qualitative compatibility of pressure course being modelled
(Adamkowski and Lewandowski, 2006), which is their major disadvantage.
The second group of models consists of theoretical models being based on the so called

convolution integral. The author of their prototype was Zielke (1968) who postulated

τw(t) =
4µ

R
v +
2µ

R

t∫

0

w(t− u)∂v
∂t
(u) du (1.2)

where: µ is the dynamic viscosity coefficient, R – pipe inner radius, w(t) – weighting function.
The convolutional integral, being a product of the weight function w(t) and the momentary

value of fluid acceleration, is the inverse Laplace transform from the expression describing the
impedance of a hydraulic line. In laminar flows, this impedance is being calculated from a simple
analytical formula introduced by Brown, whereas in the turbulent ones it has a very complex
analytical and empirical form (empirical because an empirical distribution of the coefficient of
turbulent viscosity in the pipe cross-section is needed to resolve it), the derivation of which was
reached at the same time by Zarzycki (1997, 2000) and Vardy and Brown (1996, 2003, 2004).
The first numerical resolution of this integral being suitable for implementation in the me-

thod of characteristics was already shown in the work by Zielke (1968). Unfortunately, it was not
suitable for effective calculations, therefore a few years later Trikha (1975) presented another
numerical procedure based on a three term weighting function being constructed from expo-
nential terms. Unfortunately, also Trikha made too many simplifications, thus – with time –
other authors presented their revised versions of that procedure (Kagawa et al., 1983; Schohl,
1993). Recently, Vardy and Brown (2010) noticed and corrected a significant error in the ori-
ginal procedure according to Zielke, consisting in approximation instead of integration of the
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weight function in the dimensionless time interval from 0 to ∆t̂, but they did not present a re-
vised effective calculation procedure. Such a procedure was, however, presented by Urbanowicz
(2015).

It is also worth emphasising that Zarzycki (1997, 2000) as well as Vardy and Brown (1996,
2003, 2004) proved that solution in form of equation (1.2) may be also used for the modelling
of turbulent unsteady flows, provided that an adequate weight function was going to be used.

Because all effective solutions are based on the weighting functions being a finite sum of
exponential terms, the authors of effective numerical solutions frequently showed new forms of
those functions in their papers referring to the modelling of laminar flow (Trikha 1975, Kagawa
et al., 1983; Schohl, 1993; Vı́tkovský et al., 2004) or the turbulent one (Vı́tkovský et al., 2004;
Zarzycki et al., 2011). Up to this day, the most accurate functions represented with an extended
range of use were presented by Urbanowicz and Zarzycki (2012). They are very useful in all
cases that require a complete weighting function, for example in the modeling of one-directional
accelerated or decelerated flows. The coefficients describing the effective weighting functions in
turbulent flow are closely dependent on the Reynolds number and the internal roughness of the
pipe walls. For correct determination, the classical scaling procedure developed by Vı́tkovský et
al. (2004) can be used, or the universal procedure (Urbanowicz et al., 2012). The advantage of
them is providing the shape of the effective weighting function compatible with the shape of the
classical laminar weighting function presented by Zielke (1968) for the critical Reynolds number.

In this paper, analytical formulas that enable coefficients describing simplified effective we-
ighting functions composed of two or three terms to be determined are presented. The method is
responsible for offloading computer memory and accelerating the iterative computational process
without losing accuracy. The examplary results of simulation tests presented confirm high com-
patibility of the simulated courses (with the use of the weighting function with limited ranges
and the same being characterized by a simple structure) with the experimental ones.

2. New idea

Recently completed studies have shown that unsteady flows can be modelled accurately using
simplified effective weighting functions consisting of only two k=2 or three k=3 exponential
expressions (Urbanowicz, 2015; Urbanowicz and Zarzycki, 2015)

w(t) =
k∑

i=1

mie
−nit̂ (2.1)

wheremi and ni are coefficients of effective weighting function, t̂ is the dimensionless time. These
expressions are combined with the new improved method for calculating shear stress. Functions
used in the studies are characterised by a limited yet essential range of application (Fig. 1).

The lower end of this range in the general case is set equal to the dimensionless time step ∆t̂,
and the upper end to the multiplicity there of 103∆t̂. The aforementioned time step in numerical
calculations is calculated individually for all pressure conduits that retain their shape stability
using the formula

∆t̂ =
L

f

ν

cR2
(2.2)

where: L is conduit length, ν – kinematic viscosity of liquid, f – number of analysed cross-sections.

Calculation of the coefficientsmi and ni describing the previously analysed simplified effective
weighting functions required the use of a numerical method developed in 2012 (Urbanowicz,
2012). Elimination in this work of the numerical procedure mentioned above at the stage of
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Fig. 1. Significant range of weighting functions

determining the weighting function coefficients reduces time needed for numerical computation,
facilitating the modelling of unsteady flows to perform a simple verification of the effectiveness
of the method presented in the work of Urbanowicz and Zarzycki (2015) and enabling simple
implementation of this method in the existing commercial software by introducing a variable
hydraulic resistance coefficient

λ(t+∆t) = λq,(t+∆t) (2.3)

+
16ν

R|v(t+∆t)|v(t+∆t)

j∑

i=1

[yi(t)Ai + ηBi(v(t+∆t) − v(t)) + (1− η)Ci(v(t) − v(t−∆t))]︸ ︷︷ ︸
yi(t+∆t)︸ ︷︷ ︸

λu,(t+∆t)

In the equation above, constants Ai, Bi and Ci depend only on coefficients mi and ni describing
the effective weighting function and the dimensionless time step

Ai = e
−ni∆t̂ Bi =

mi

ni∆t̂
(1−Ai) Ci = AiBi (2.4)

3. Analytical approximate solution

Difficulties in widespread use of the simplified methodology presented in the work of Urbano-
wicz and Zarzycki (2015), arising from the need to use the numerical procedure (Urbanowicz,
2012), may discourage practical use of the solutions discussed. Therefore, to further simplify
the modelling of unsteady resistance, analytical solutions will be presented that can help one to
accurately calculate coefficients mi and ni of simplified effective weighting functions as a func-
tion of the dimensionless time step ∆t̂. The studies carried out previously (Urbanowicz, 2015;
Urbanowicz and Zarzycki, 2015) indicate that the relative percentage error of effective weighting
functions should not exceed 30% for the two-expression functions or 10% for three-expression
functions and that the optimal range of applicability of these functions should be from ∆t̂ to
103∆t̂. As can be seen in equation (2.2), the dimensionless time step ∆t̂ which is the starting
point for the applicability of effective weighting functions assumes different values depending on
the properties of flowing liquid, the conduit and the numerical method. Based on the analysis
of practical and theoretical examples, the possible range of its variability can be specified using
the domain of ∆t̂ ∈ [10−10; 10−1].
To determine the analytical function describing variation of the values of coefficients of

two-expression effective weighting functions, it is necessary to first identify the set of values of
these coefficients. For this purpose, the method discussed in 2012 was used (Urbanowicz, 2012).
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When searching for an analytical solution for the effective two-expression functions, 93 sets of
coefficients were determined (m1,m2, n1, n2) for the range from 10

−10 every 100.1 to 10−0.8. It
is worth noting that for ∆t̂ = 10−0.8, the values of these coefficients coincided with the values
known from the classical weighting function for laminar flow (i.e. weighting according to Zielke
(1968)), i.e.m1 = 1,m2 = 1, n1 = 26.3744, n2 = 70.8493. In the case of effective three-expression
functions, 89 sets of coefficients were determined (m1,m2,m3, n1, n2, n3) for the range from 10

−10

every 100.1 to 10−1.2. The difference in the number of these sets resulted from the fact that in
this case, already for ∆t̂ = 10−1.2, the values of these coefficients coincided with the values
known from the classical weighting function for laminar flow, i.e. m1 = 1, m2 = 1, m3 = 1,
n1 = 26.3744, n2 = 70.8493, n3 = 135.0198. Knowing all the above values, the next step was
to adopt appropriate forms of analytic functions, which would accurately describe variability
of these coefficients as a function of the dimensionless time step. Analysis of the variability of
individual coefficients and the tests performed with other forms revealed that in the case of
two-expression functions, their coefficients can be described using the formula

mi, ni =
3∑

i=1

Ai∆t̂
Bi + C (3.1)

in the range of their linearity on a log-log graph (Fig. 2a) (interval for ∆t̂ from 10−10 to 10−4,
exceptionally for n1 to 10

−5).

And the formula

mi, ni =
4∑

i=1

Die
−Ei∆t̂ + F (3.2)

for the range of their non-linearity on a log-log graph (Fig. 2b) (interval for ∆t̂ from 10−4

to ∞, exceptionally for n1 from 10−5 to ∞). On the graphs presented below (Figs. 2 and 3), the
abbreviation “sol.” means that these are the coefficients calculated using the presented analytical
formulas.

Fig. 2. Compatibility of the analytical solution – two-expression functions

To find definitive values of the coefficient of the functions adopted above, i.e. A1, . . . , A3,
B1, . . . , B3 and C, and D1, . . . ,D4, E1, . . . , E4 and F , the Curve Fitting Toolbox module imple-
mented in MATLAB was used. The values of the estimated final coefficients are summarised in
Table 1 and 2.

Analysis of the variability of individual coefficients m1, . . . ,m3 and n1, . . . , n3 representing
three-expression functions showed that the forms of analytical functions, which were assumed
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Fig. 3. Compatibility of the analytical solution – three-expression functions

Table 1. Coefficients of the analytical solution of effective two-expression functions for the range
of small dimensionless time steps (Eq. (3.1))

m1 m2 n1 n2
Coeff. Interval Interval Interval Interval

[10−10; 10−4] [10−10; 10−4] [10−10; 10−5] [10−10; 10−4]

A1 0.03234 0.1963 0.001476 0.09021

A2 48.35 2.88 0.1203 0.382

A3 9.717 −0.2661 526.7 223.1

B1 −0.5 −0.5 −1 −1
B2 0.5437 3.575 −0.5 −0.4592
B3 3.85 5.276 0.5567 0.2615

C −1.318 −0.2351 6.091 0

Table 2. Coefficients of the analytical solution of effective two-expression functions for the range
of large dimensionless time steps (Eq. (3.2))

m1 m2 n1 n2
Coeff. Interval Interval Interval Interval

(10−4;∞) (10−4;∞) (10−5;∞) (10−4;∞)
D1 0.1480 2.214 9.317 56.56

D2 0.3227 4.155 87 136.5

D3 0.8039 7.929 188.1 396.7

D4 2.458 20.485 477.43 1903.3

E1 188.8 62.02 4459 79.71

E2 1316 386.6 29320 489.6

E3 5728 2191 104300 2880

E4 19270 12570 290500 15760

F 1 1 26.3744 70.8493

in the case discussed above, would also work. Thus, in range of its linearity on a log-log graph
(Fig. 3a), the function sought has the form

mi, ni =
4∑

i=1

Ai∆t̂
Bi (3.3)

whereas for the range of non-linearity (Fig. 3b), we can describe it using the form exactly
the same as in equation (3.2). In the case of the aforementioned analytical solution describing
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coefficients of the effective three-expression weighting functions, much greater volatility of the
dimensionless time was noted at which the functions describing individual coefficients correctly
passed from the linear form (in log-log scale) to the non-linear form. Specific times of transition
from one form to another are shown in Tables 3 and 4.

Table 3. Coefficients of the analytical solution of effective three-expression functions for the
range of small dimensionless time steps (Eq. (3.3))

m1 m2 m3 n1 n2 n3
Coeff. Interval Interval Interval Interval Interval Interval

[10−10; 10−4] [10−10; 10−4] [10−10; 10−4] [10−10; 10−5] [10−10; 10−4.4] [10−10; 10−4.2]

A1 0.02239 0.06549 0.2336 0.0009749 0.02208 0.3037

A2 −1.123 −0.1334 11.52 0.09783 0.1233 0.1641

A3 34.85 −2.54 −11.62 6.215 11.55 5.039

A4 2.114e+06 2559 7.868 887.8 2025 1.011e+04

B1 −0.5 −0.5 −0.5 −1 −1 −1
B2 0 0 0 −0.5 −0.5 −0.5
B3 0.5138 0.2948 0.0002657 0.001247 0.001441 −0.07303
B4 1.789 2.894 3.297 0.5838 0.6193 0.6172

Table 4. Coefficients of the analytical solution of effective three-expression functions for the
range of large dimensionless time steps (Eq. (3.2))

m1 m2 m3 n1 n2 n3
Coeff. Interval Interval Interval Interval Interval Interval

(10−4;∞) (10−4;∞) (10−4;∞) (10−5;∞) (10−4.4;∞) (10−4.2;∞)
D1 0.02449 0.8285 3.272 1.16 26.05 216

D2 0.06897 1.547 6.819 25.91 71.93 729.2

D3 0.2359 2.776 13.42 96.44 263.8 2522

D4 1.8429 5.9004 22.9793 251.6091 1427 12006.2

E1 246 190.8 83.86 2939 314.5 140.2

E2 995.2 907.7 645.4 1.792e+04 2054 969.4

E3 4787 4112 3779 6.098e+04 1.09e+04 5460

E4 1.696e+04 1.608e+04 1.895e+04 2e+05 4.32e+04 2.803e+04

F 1 1 1 26.3744 70.8493 135.0198

The maximum values of relative percentage errors, which are represented by the effective
weighting functions determined using the above analytical formulas, calculated with reference
to the classical function according to Zielke (1968) are illustrated in the chart below (Fig. 4). The
graph shows that the maximum error for the dimensionless time step of∆t̂ ≈ 10−4 systematically
decreases until reaching zero. Achieving the zero value is equivalent to overlaping of coefficients
calculated using the analytical method with coefficients from the classical laminar weighting
function according to Zielke.

With the use of the analytical formulas presented in this Section, it is possible only to
determine coefficients that describe effective laminar functions. In a situation where there is
turbulent flow, these coefficients have to be rescaled in accordance with the procedure described
in (Vı́tkovský et al., 2004; Urbanowicz et al., 2012) for, as we know, the form of a classical
turbulent weighting function according to Vardy and Brown (2007) is highly dependent on the
Reynolds number.
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Fig. 4. Maximum relative percentage errors of weighting functions designated analytically

4. Example calculation results

To examine the impact of this new effective weighting function procedure presented in the
previous Section, comparative studies for pure water hammer have been made. Basic continuity
(4.1)1 and momentum (4.1)2 equations describing unsteady flow in a horizontal pipe are

∂p

∂t
+ ρc2

∂v

∂x
= 0

∂p

∂x
+ ρ

∂v

∂t
+
2

R
τw = 0 (4.1)

where: p is pressure, v – mean velocity in pipe cross-section.
To derive the above equations, the following assumptions are made: flow in the pipe is

assumed as one-dimensional and the velocity distribution uniform over the pipe cross-section; the
pipe walls and the fluid are assumed as linearly elastic (stress proportional to strain). Equations
(4.1) have been solved using the well-known method of characteristics.
In this paper, the results of comparisons for two significant simulated and experimentally

obtained pressure runs are presented. The experimental data have been obtained in a copper
pipeline at the IMP in Gdańsk by Adamkowski and Lewandowski (2006) and previously publi-
shed. All the details of the experimental test rig and the numerical procedures input data are
presented in Table 5.

Table 5. Test rig details and input data for simulations

L = 98.11m, ρ = 997.65 kg/m3, D = 0.016m,
ν = 9.493 · 10−7m2/s, f = 32, e = 0.001m, c = 1300m/s
v0 [m/s] Re0 [–] pr [Pa] Type of flow

0.066 1112 1.265 · 106 laminar

0.94 15843 1.264 · 106 turbulent

In the numerical analyses being made, the dimensionless time step amounted to

∆t̂ = ∆t
ν

R2
= 3.5 · 10−5

where: ∆t = ∆x/c = 0.0024 s and ∆x = L/f = 3.066m.
For the above dimensionless step, coefficients of optimum simplified effective weighting func-

tions have been determined with the use of the procedure presented in this paper, see Table 6.
The coefficients for turbulent tests required the re-scaling. The details referring to the scaling

procedure were discussed in the papers by Vı́tkovský et al. (2004) and Urbanowicz et al. (2012).
Owing to the fact that the pipe walls are assumed to be rough (k = 0.0000015 [m]), the coefficients



Analytical expressions for effective weighting functions... 1037

Table 6. Calculated weighting function coefficients

L = 98.11m, ρ = 997.65 kg/m3, D = 0.016m, ν = 9.493 · 10−7m2/s,
f = 32, e = 0.001m, c = 1300m/s

m1 m2 m3 n1 n2 n3 type of flow – no terms

4.333 32.954 – 70.45 2636 – laminar – 2 terms

2.864 10.816 39.43 52.92 666.9 8738 laminar – 3 terms

4.364 33.195 – 503.59 3069 – turbulent – 2 terms

2.885 10.895 39.72 486.05 1100 9171 turbulent – 3 terms

mi and ni are scaled; the coefficients of exact weighting function according to Vardy and Brown
(2007) are used for scaling. The coefficients of effective weighting function with extended range
of applicability (26 terms), which with high accuracy corresponds to the classical weighting
function according to Zielke (numerical calculations in this paper were also made using this
function), were previously discussed in the paper by Urbanowicz and Zarzycki (2012). The
results of numerical tests obtained are illustrated in Figs. 5 and 6.

Fig. 5. Results for laminar pipe flow (Re = 1112)

The main conclusions from the comparisons presented above are as follows:

a) Simplified modelling with a new weighting function constructed with only two exponen-
tial terms is responsible for a gentle phase shift in the course being modelled. They are
particularly visible in the final phase of flow deceleration (Figs. 5b and 6b). However, for
the needs of engineering practice, the obtained results can be considered sufficient.

b) Application of a new three term weighting function, the applicability range of which strictly
depends on the hydraulic system analysed as well as on the numerical density of grid on the
pipe length, allowed obtaining numerical results qualitatively compatible with the exact
results of numerical tests (obtained using the exact extended 26 term weighting function
and the full convolution based on the classical weighting function).
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Fig. 6. Results for turbulent pipe flow (Re = 15843)

c) Phase shifts between the experimental results and the numerical ones shown in Figs. 5b, 5d
and 6b, 6d can be explained by a gentle variation in the speed of pressure wave propagation
during recording of experimental courses. This variation of results may result from the
impact of non-dissolved gases (air) found in the experimental system.

The simulation tests performed clearly show the impact of unsteady friction on the courses
obtained as a result of examining the water hammer effect. The applied and very simplified
weighting functions present themselves perfectly against the results obtained using only the
quasi-steady model of friction. Thus, it is possible to safely recommend the presented procedure
for engineers who are involved in protection of hydraulic systems against negative effects of the
water hammer.

5. Summary

The analytical solutions presented in the paper allow one to quickly determine simplified forms
of effective weighting functions composed of two or three exponential expressions. These corre-
lations could be used in a simple manner by applying the instantaneous resistance coefficient
(Eq. (2.3)) in commercial and custom computer programs used for the modelling of unsteady
flows of liquids in conduits under pressure. The biggest problem associated with implementing
the presented solution is the need to introduce into the program many constants estimated in
this paper, which describe individual solutions. Another issue which the future user of the pre-
sented formulas should pay attention to, is the right choice of the method of the characteristics
grid. With the range of application of effective weighting functions simplified in this manner,
the number of computing sections should not be higher than f=50, because for this value, the
instantaneous hydraulic resistance calculated is a function of velocity changes occurring in the
last five periods of the water hammer.
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9. Karadžić U., Bulatović V., Bergant A., 2014, Valve-induced water hammer and column
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In this study, the hybrid approach of the Quadrature Element Method (QEM) has been
employed to generate solutions for point supported isotropic plates. The Hybrid QEM tech-
nique consists of a collocation method with the Galerkin finite element technique to combine
the high accurate and rapid converging of Differential Quadrature Method (DQM) for effi-
cient solution of differential equations. To present the validity of the solutions, the results
have been compared with other known solutions for point supported rectangular plates. In
addition, different solutions are carried out for different type boundary conditions, different
locations and number of point supports. Results for the first vibration modes of plates are
also tested using a commercial finite element code, and it is shown that they are in good
agreement with literature.

Keywords: Quadrature Element Method, point support, plates, free vibration

1. Introduction

In the applications of modern structures, i.e. carousers, building floors, bridge decks, solar panels,
aircraft and ship industries, bolted, riveted or spot-welded plate bodies are used. Designers have
to know how these components change the dynamic characteristic of the structures. These types
of engineering problems are known as point supported plate problems and they are frequently
encountered in practice. Both analytical and numerical methods have been developed for the
analysis of these problems. Although there are no exact solutions for these problems, various
numerical approaches have been utilized. For example, Cox and Boxer (1960) used a finite
difference method, Damle and Feeser (1972) used the finite element method, Fan and Cheung
(1984) used the spline finite strip method, Huang and Thambiratnam (2001a) used the finite
strip method, Guiterrez and Laura (1995) used dthe ifferential quadrature method, Zhao et al.
(2002) used the discrete singular convolution method to solve the mentioned plate vibration
problems. Because of its high accuracy, the Rayleight-Ritz method has been the most frequently
used analytical method to appeal for vibration analysis of plates, as Narita and Hodgkinson
(2005) did. Also Gorman (1991) and Bapat and Suryanarayan (1989) utilized the superposition
method and the flexibility function approach as analytical techniques, respectively.
Several functions are used for the analysis of free vibration of point supported rectangular

plates. These include vibrating beam functions (Kerstens, 1979), B-spline functions (Mizusawa
and Kajita, 1987)] and orthogonal polynomial functions (Kim and Dickinson, 1987). On the
other hand, Liew and Lam (1994) applied a set of orthogonal plate functions generated by using
the Gram-Schmidt orthogonality relationship to elastic point supported rectangular plates. Lee
and Lee (1997) used a new type of the admissible function. Kitipornchai et al. (1994) and Liew
et al. (1994) applied the Lagrange multiplier method and the constrain function method to
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point supported Mindlin plates. Cheung and Zhou (1999, 2000) used the static beam function
to composite plates and used the finite layer method to layered rectangular plates with point
supports. Saadatpoure et al. (2000) studied vibration of plates having a general shape with
internal point and line supports using the Galerkin method. Huang and Thambiratnam (2001b)
applied a procedure incorporating the finite strip method together with spring systems for
treating plates on elastic intermediate supports. Zhou (2002) used a set of static tapered beam
functions which were the solutions of a tapered beam under a Taylor series of static loads
developed as admissible functions for vibration analysis of point-supported rectangular plates
with variable thickness in one or two directions. Again, Zhao et al. (2002) studied the problem
of plate vibration under complex and irregular internal support conditions using the discrete
singular convolution method. Kocatürk et al. (2004) used Lagrange equations to examine the
steady state response to a sinusoidally varying force applied at the centre of a viscoelastically
point-supported orthotropic elastic plate of rectangular shape with considered locations of added
masses.

The Differential Quadrature Method (DQM) was proposed by Bellman and Casti (1971) in
the early 1970’s as an efficient numerical method to solve non-linear partial differential equ-
ations and applied to many areas of engineering problems. Especially, the Generalized Differen-
tial Quadrature Method (GDQM) has been used by various researches for efficient treatment of
structural analysis problems. Analyses yielded good to excellent results for only a few discrete
points due to the use of high order global basis functions in the computational domain. Howe-
ver, especially for real-world problems, DQM still lacks flexibility. Recently, Chen et al. (2000)
extended the DQM to analysis of various structures and then it called the Quadrature Element
Method (QEM). 49 degree of freedom (DOF) quadrature plate element was developed by Striz
et al. (1994) to alleviate the lack of versatility and limitations of the existing high order series
type approximation method. Different versions of the Differential Quadrature Method have been
used for various applications. Hybrid approach was further developed by Han and Liew (1996)
to solve the one-dimensional bending problem of the axisymmetric shear deformable circular
plate, and by Liu and Liew (1998, 1999a,b) and Liu (2000) to solve two-dimensional bending
and vibration problems of thick rectangular plates and polar plates having discontinuities. Wang
and Gu (1997a,b) made an attempt to solve static problems of truss and beams and static and
free vibration problems of thin plates. DQM was used by Liu and Liew (1999b) for the study
of a two dimensional polar Reissner-Mindlin plate in the polar coordinate system by integrating
the domain decomposition method (DDM). The Differential Quadrature Finite Difference Me-
thod (DQFDM) was proposed and applied by Chen (2004) for analysis of 2-D heat conduction
in orthotropic media. Franciosi and Tomasiello (2004) applied a modified quadrature element
method to perform static analysis of structures.

In this paper, the Quadrature Element Method is proposed and applied to analyze free
vibration of point supported rectangular plates. Plates having different boundary conditions
and various point topologies are studied. The results are compared with the studies using other
approximating methods known in literature. First, interior and/or exterior point supported
free plates and then, interior point supported plates having various boundary conditions are
presented. Solutions are tested with the results of ABAQUS, a finite element program which has
a wide spread use in the analysis of engineering problems.

2. Formulation of the quadrature plate element

The Hybrid Quadrature Element technique consists of a collocation method in conjunction with
the Galerkin finite element technique to combines the high accuracy and rapid converging of
DQM for efficient solution of differential equations with the generality of the finite element
formulation (Chen et al., 2000).
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The quadrature plate element is closely related to the serendipity Lagragian element, but it
has internal points and basis functions of high order (Chen et al., 2000). Numerical procedures
are extensively used in the element formulation to circumvent the problems caused by the use of
high order basis functions. C0 and C1 inter-element compabilities are met exactly for the mid-
-surface, while the other C2 or even C3 compabilities are closely approximated at each boundary
by the use of moderately high order basis functions. The 25 node rectangular element is given
in Fig. 1. This plate element has also 49 degrees of freedom. These degrees of freedom, which
belong to the plate element, are given in Table 1 (Chen et al., 2000; Quan and Chang, 1989).

Fig. 1. Nodes of the Quadrature plate element

Table 1. Degrees of freedom for 25 node quadrature plate elements

Nodal number DOF

1-5
w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x∂y9-13

2-3-4
w,

∂w

∂y10-11-12

6-7-8
w,

∂w

∂x14-15-16

17-18-19
20-21-22 w
23-24-25

The displacements of 25 nodes and 49 degrees of the freedom quadrature plate element are
expressed in terms of polynomial type basis functions, i.e.

w(x, y) =
∑

i=1,5,9,13

[
Ni1wi +Ni2

(∂w
∂x

)

i
+Ni3

(∂w
∂y

)

i
+Ni4

( ∂2w
∂x∂y

)

i

]

+
∑

i=2,3,4,10,11,12

[
Ni1wi +Ni2

(∂w
∂y

)

i

]
+

∑

i=6,7,8,14,15,16

[
Ni1wi +Ni2

(∂w
∂x

)

i

]

+
∑

i=17,18,19,20,
21,22,23,24,25

[
Ni1wi

]
= Nw

(2.1)
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where Nij is the shape function which can be determined from the specified collocation points,
and wi, (∂w/∂x)i, (∂w/∂y)i, (∂

2w/∂x∂y)i are local DOFs associated with the node i.

The governing equation of the isotropic thin plate in small deflection free vibration is given
by

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=
ρhω2

D
w (2.2)

and Kirchhoff’s plate theory, in which the bending strain of the element is given for an isotropic
and homogeneous plate as

ε =





εx
εy
γxy




= −z





∂2w

∂x2
∂2w

∂y2

2
∂2w

∂x∂y





(2.3)

If Eq. (2.1) and Eq. (2.3) are combined, the strain-displacement relationship is stated by

ε = −z





∂2w

∂x2
∂2w

∂y2

2
∂2w

∂x∂y





Nw = −zQw for Q =





∂2w

∂x2
∂2w

∂y2

2
∂2w

∂x∂y





N (2.4)

The stiffness matrix can be calculated for the area A

K =

∫

A

QTDQ dA (2.5)

where D is the rigidity matrix which can be calculated using constant thickness h, Poisson’s
ratio ν and the modulus of elasticity E

D =
Eh2

12(1 − ν2)



1 ν 0
ν 1 0
0 0 (1− ν)/2


 (2.6)

The consistent mass matrix can be calculated as

M =

∫

A

NT(ρh)N dA (2.7)

and the governing equation for plate free vibration can be written in the matrix form

(Ks − λ2Ms)w = 0 (2.8)

where λ is the frequency parameter, and the subscribed s represents the whole discretized system.
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3. Numerical application and discussions

Frequency parameters of free vibrations are described as λ = ωL2
√
ρh/D, where ω, L, ρ, h,

D represent circular frequency, length of the plate, density, thickness and rigidity, respectively.
In order to obtain more accurate results, QEM solutions have been carried out by using 2×2
and 4×4 differential quadrate plate elements joined side by side along the x and y directions.
When a larger number of plate elements are used more accurate results can be obtained, but the
solution can be obtained with a larger linear system of equations. If there are simply supported
boundary conditions on all edges of the plate considered then the quadrate plate element has
only 25 DOFs. In other words, a set of 25×25 linear equations system has to be solved for one
plate element. The size of the linear equations system is set to 400×400 for the same procedure
needed be to solve with the same boundary conditions and the 4×4 plate element.
First, the number of plate elements that can be used for results having acceptable accuracy

must be decided. Therefore, frequency parameters for three boundary conditions and four plate
elements are obtained with QEM. Table 2 presents the frequency parameters λ of isotropic
rectangular plates. It is interesting that acceptable accuracy results are obtained by QEM for
all boundary conditions in the case of only one plate element.

Table 2. The first frequency parameters λ of isotropic square plates for some boundary condi-
tions (λ = ωL2

√
ρh/D)

Exact Number of use DQ plate elements
(Leissa, 1973) 1×1 2×2 3×3 4×4

S-S-S-S 19.73921
19.73921 19.73921 19.73921 19.73921
(7.0 · 10−4)∗ (2.2 · 10−5)∗ (4.3 · 10−7)∗ (1.6 · 10−8)∗

S-F-S-F 9.63138 9.63139 9.63138 9.63138 9.63138

S-C-S-S 23.64632 23.64700 23.64632 23.64632 23.64632
∗ Relative error in parenthesis has been evaluated using the analytical Leissa value (2π2) [%]

Fig. 2. Relative error determined by ABAQUS for different boundary conditions

Besides, the same boundary conditions given in Table 2 are solved using ABAQUS commer-
cial finite codes. It is obvious that if more elements are used in computation, the error will be
reduced. However, the required number of elements must be determined for acceptable accu-
racy. The variation of the relative error with selected degrees of freedom is given in Fig. 2 for
different boundary conditions. Relative errors have been evaluated using the analytical results
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of Leissa (1973). This % error value of the relative difference is defined as (Analytical Leissa
value-ABAQUS result)×100/(Analytical Leissa value). Naturally, the result changes when diffe-
rent boundary conditions are used. As in many literature sources the 4 node thin shell elements
(S4R) are employed, the uniform mesh size and different element numbers on each side of the
plate such as 10, 20, 50, 100, 200 and 400 scales are used to achieve convergent FEM solutions
(Rui et al., 2015, 2016). In this study, the results have been given for all values from 100 SR4
shell elements on each side of the plate. For these elements, there are approximately 49,800
DOFs. As shown in Fig. 2, the biggest % relative error for SFSF boundary conditions to the
selected number of elements is 0.01%.

In order to simplify the visualisation of types of supports which are used in tables and
figures, symbols in Table 3 are to be used. The number of elements used in ABAQUS should be
determined to obtain an acceptable solution for simply supported rectangular plates with point
supports at the centre, as this type of problems is found in numerous literature items. Simply
supported rectangular plates with a point support at centre are shown in Fig. 3. The results of
QEM (2×2 and 4×4) are presented in Table 4 with other solutions for which different methods
are applied. For the first five frequency parameters λ, all results are also in good agreement.
Especially, the results of the finite strip element method used by Huang and Thambiratnam
(2001) are strongly in agreement with QEM. If it is assumed that the first mode is 49.483 as
it was taken from results of Huang’s solution (Huang and Thambiratnam, 2001), Fig. 4 shows
the change in the results from ABAQUS solution as a function of the number of elements on
each side of the plate. It can be seen that the relative error according to Huang’s results is
approximately 0.03% for 100 elements on each side of the plate.

Table 3. Simplified support type symbols

Symbol Support types

Null Free

Fixed

Simply

Point

Fig. 3. Simply supported square plates with a point-support at center

As shown in Fig. 5, five boundary conditions and point support at the corner of the plate
are considered. In Table 5, the results of Kim and Dickinson (1987) – orthogonal polynomial,
Cheung and Zhou (2000) – static beam function, and Mizusawa and Kajita (1987) – finite spline,
are presented. CFCF, CFSF, SFSF, CFFF, SFFF boundary conditions are considered and first
five frequency parameters are presented. The natural frequencies are determined using both
QEM and ABAQUS, and the obtained results are in good agreement with the analytical results
reported in the literature.
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Table 4. Frequency parameters λ of simply supported square plates with a point support at
the center (λ = ωL2

√
ρh/D)

Method λ1 λ2 λ3 λ4 λ5

Venkateswara et al. (1973) – – 52.62 – –

Lee and Lee (1977) – – 53.088 – –

Leissa (1969) 49.3 – – – –

Saadatpour et al. (2000)] 49.348 – – – –

Fan and Cheung (1984) 49.35 49.35 52.78 78.96 98.71

Kim and Dickinson (1987)] 49.348 49.348 53.170 78.959 98.696

Huang and Thambiratnam (2001b) 49.348 49.351 52.667 78.959 98.711

Present (ABAQUS) 49.362 49.362 52.643 78.975 98.784

Present (QEM, 2×2) 49.348 49.348 52.851 78.957 98.711

Present (QEM, 4×4) 49.348 49.348 52.677 78.957 98.696

Fig. 4. First frequency parameters for simply supported square plate with a point support at center
(ABAQUS solutions)

Fig. 5. Square plates with point supports at one corner for various boundary conditions

For several cases, the results for plates with point supports are compared with other values
given in the literature. As shown in Fig. 6, plates with different numbers of point supports at the
interior and/or boundary are considered. All results obtained from ABAQUS and QEM solutions
are presented in Table 6. Kato and Honma (1998), Kim and Dickinson (1987) used Rayleight-Ritz
Method, Fan and Cheung (1984), Mizusawa and Kajita (1987) used Spline Finite Strip Element
Method, Narita and Hodgkinson (2005) used Layerwise optimization method, Venkateswara et
al. (1973) used Finite Element Method. Kocatürk et al. (2004) used the Lagrange Equation
Method. The first five frequency parameters for eight different point supports situation are
given in Table 6. It can be seen from Table 6, a very good agreement between QEM and those of
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Table 5. Frequency parameters λ of square plates with point supports at one corner for various
boundary conditions (λ = ωL2

√
ρh/D)

Fig. Method λ1 λ2 λ3 λ4 λ5

5a

Cheung and Zhou (1999) 15.272 24.100 39.495 54.703 63.511
Mizusawa and Kajita (1987) 15.12 23.70 39.37 53.53 62.54
Kim and Dickinson (1987) 15.172 23.923 39.392 54.157 62.850
Present (ABAQUS) 15.166 23.905 39.394 54.105 62.742
Present (QEM, 2×2) 15.169 23.915 39.389 54.112 62.718
Present (QEM, 4×4) 15.166 23.906 39.388 54.094 62.708

5b

Cheung and Zhou (1999) 12.021 21.348 35.140 47.916 58.903
Mizusawa and Kajita (1987) 11.94 21.06 35.01 47.24 57.92
Kim and Dickinson (1987) 11.940 21.175 35.015 47.398 58.144
Present (ABAQUS) 11.939 21.167 35.018 47.399 58.096
Present (QEM, 2×2) 11.939 21.172 35.014 47.393 58.076
Present (QEM, 4×4) 11.939 21.167 35.014 47.388 58.069

5c

Cheung and Zhou (1999) 9.6801 17.496 30.713 44.178 51.873
Mizusawa and Kajita (1987) 9.608 17.32 30.60 43.65 51.04
Kim and Dickinson (1987) 9.6079 17.316 30.596 43.652 51.041
Present (ABAQUS) 9.6079 17.317 30.598 43.663 51.058
Present (QEM, 2×2) 9.6079 17.316 30.596 43.652 51.036
Present (QEM, 4×4) 9.6079 17.316 30.596 43.652 51.035

Cheung and Zhou (1999) 5.3351 16.054 22.000 29.536 43.894
Mizusawa and Kajita (1987) 5.312 15.86 21.71 29.29 43.39

5d Present (ABAQUS) 5.3261 15.912 21.813 29.403 43.499
Present (QEM, 2×2) 5.3277 15.915 21.817 29.407 43.497
Present (QEM, 4×4) 5.3268 15.912 21.812 29.403 43.494

Cheung and Zhou (1999) 3.3395 12.033 17.419 25.886 38.982
Mizusawa and Kajita (1987) 3.336 11.93 17.29 25.68 38.56

5e Present (ABAQUS) 3.3357 11.927 17.293 25.681 38.561
Present (QEM, 2×2) 3.3361 11.927 17.293 25.680 38.555
Present (QEM, 4×4) 3.3361 11.927 17.293 25.679 38.555

Kato and Honma (1998), Kim and Dickinson (1987), Mizusawa and Kajita (1987), Narita and
Hodgkinson (2005), Venkateswara et al. (1973), Kocatürk et al. (2004) are encountered.

Fig. 6. Square plates with point supports
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Table 6. Comparison of frequency parameters λ of square plates with point supports
(λ = ωL2

√
ρh/D)

Fig. Method λ1 λ2 λ3 λ4 λ5

6a

Kato and Honma (1998) 13.51 18.03 19.05 19.05 27.26
Kim and Dickinson (1987) 13.47 18.03 18.93 18.93 27.05
Fan and Cheung (1984) 13.47 17.85 18.79 18.79 26.92
Narita and Hodgkinson (2005) 13.47 18.14 19.02 19.02 –
Present (ABAQUS) 13.468 17.835 18.780 18.780 26.910
Present (QEM) 13.468 17.841 18.786 18.786 26.913

Narita and Hodgkinson (2005) 19.60 23.40 33.17 33.17 –
6b Present (ABAQUS) 19.598 23.380 32.580 32.580 34.985

Present (QEM) 19.596 23.378 32.597 32.597 35.013

Narita and Hodgkinson (2005) 3.299 9.894 15.77 19.60 –
6c Present (ABAQUS) 3.298 9.893 15.769 19.598 26.618

Present (QEM) 3.298 9.893 15.770 19.596 26.616

Narita and Hodgkinson (2005) 9.512 14.78 21.34 29.09 –
6d Present (ABAQUS) 9.486 14.659 21.309 28.841 33.586

Present (QEM) 9.487 14.662 21.307 28.847 33.604

Kato and Honma (1998) 18.03 35.62 35.62 38.68 61.06
Kim and Dickinson (1987) 18.03 35.17 35.17 38.43 60.58

6e Fan and Cheung (1984) 17.85 34.89 34.89 38.43 60.12
Present (ABAQUS) 17.837 34.884 34.884 38.440 60.101
Present (QEM) 17.843 34.882 34.882 38.432 60.086

Narita and Hodgkinson (2005) 13.47 17.09 18.65 18.65 –
6f Present (ABAQUS) 13.468 17.029 18.275 18.275 39.185

Present (QEM) 13.468 17.030 18.284 18.284 39.215

Narita and Hodgkinson (2005) 6.641 6.736 19.60 19.75 –
6g Present (ABAQUS) 6.638 6.700 19.489 19.598 24.639

Present (QEM) 6.639 6.701 19.495 19.596 24.639

Narita and Hodgkinson (2005) 7.112 15.77 15.77 16.90 –
Cheung and Zhou (1999) 7.136 15.800 15.805 19.710 38.710
Mizusawa and Kajita (1987) 7.111 15.77 15.77 19.60 38.43

6h Kocatürk et al. (2004) 7.1109 – – 19.596 –
Venkateswara et al. (1973) 7.1109 – – 19.596 –
Present (ABAQUS) 7.1112 15.769 15.769 19.598 38.440
Present (QEM) 7.1109 15.770 15.770 19.596 38.432

Various point support topologies and four different types of boundary conditions are consi-
dered as shown in Table 7. The minimum distances are L/4 since four quadrature plate elements
are used for solutions. Seven different situations are considered and the first five frequency para-
meters are calculated. SSSS, CCCC, SCSC and FCFS type of boundary conditions are selected.
Besides, the results of point supported free plates are given in Table 8. The first five frequency
parameters are presented for point supports on the interior and/or boundary of plates. The
differences between the results of QEM and ABAQUS solutions are approximately 0.1%
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Table 7. Frequency parameters λ of square plates with point supports for four boundary con-
ditions (λ = ωL2

√
ρh/D)

Support
Mod

S-S-S-S C-C-C-C C-S-C-S F-C-F-S
Position QEM ABAQUS QEM ABAQUS QEM ABAQUS QEM ABAQUS

λ1 167.78 168.08 187.97 188.10 170.35 170.64 48.538 48.515
λ2 167.78 168.08 187.97 188.10 184.95 184.97 50.128 50.086
λ3 182.71 182.74 207.96 207.92 185.99 186.13 82.215 82.172
λ4 182.71 182.74 215.98 215.71 205.14 205.04 82.772 82.712
λ5 197.39 197.65 242.16 242.60 206.70 206.96 133.17 133.19

λ1 49.348 49.362 73.394 73.437 60.807 60.829 26.227 26.222
λ2 62.106 62.071 86.985 86.931 73.233 73.194 33.799 33.787
λ3 91.269 91.232 105.57 105.55 100.02 99.999 61.801 61.796
λ4 98.696 98.784 131.58 131.76 115.97 116.083 66.573 66.574
λ5 128.30 128.38 151.28 151.16 141.12 140.983 77.381 77.385

λ1 78.957 78.975 108.22 108.27 94.586 94.625 42.012 41.987
λ2 91.269 91.228 121.28 121.25 104.68 104.66 42.899 42.859
λ3 91.269 91.228 121.28 121.24 110.16 110.10 58.187 58.196
λ4 101.69 101.61 139.20 139.12 120.37 120.30 61.114 61.109
λ5 167.78 168.08 204.49 204.88 170.35 170.64 99.245 99.301

λ1 67.760 67.759 74.089 74.075 71.703 71.701 38.804 38.798
λ2 91.269 91.232 105.57 105.55 104.68 104.66 48.538 48.515
λ3 131.52 131.51 162.74 162.81 162.17 162.25 77.124 77.123
λ4 167.78 168.08 187.97 188.10 170.33 170.64 80.303 80.260
λ5 167.78 168.08 207.05 207.49 193.81 193.78 82.215 82.172

λ1 52.677 52.644 55.185 55.150 53.966 53.931 38.203 38.193
λ2 91.269 91.232 105.57 105.55 92.350 92.298 41.679 41.647
λ3 91.269 91.232 105.57 105.55 104.68 104.66 52.440 52.410
λ4 98.696 98.784 131.58 131.76 110.61 110.70 77.139 77.137
λ5 146.83 146.80 180.45 180.55 168.11 168.16 79.983 79.957

λ1 91.269 91.232 105.57 105.55 92.350 92.298 39.993 39.972
λ2 91.269 91.232 105.57 105.55 103.43 103.33 41.679 41.647
λ3 98.696 98.784 116.08 115.81 104.68 104.66 75.963 75.960
λ4 104.81 104.58 131.58 131.76 120.48 120.44 79.983 79.957
λ5 167.78 168.07 207.05 207.49 170.35 170.64 96.537 96.564

4. Conclusions

The Quadrature Element Method is applied to analyze free vibration of point supported rectan-
gular plates having different boundary conditions and various point topologies. The results are
compared to other approximation methods. A very good agreement is observed with the data
published in literature. A 25-node plate element is easier to process with commercial software.
It is possible to apply the Quadrature Element Method to plates having more complex shapes
and to obtain a better accuracy by means of joining plate elements side by side along the x
and y directions.
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Table 8. Frequency parameters of free square plates with point supports (λ = ωL2
√
ρh/D)

Support
Mod QEM ABAQUS

Support
Mod QEM ABAQUS

position position

λ1 145.65 145.75 λ1 19.543 19.588
λ2 145.65 145.75 λ2 48.235 48.233
λ3 146.74 146.84 λ3 48.235 48.233
λ4 149.25 149.21 λ4 74.958 74.921
λ5 158.85 158.81 λ5 94.207 94.234

λ1 32.646 32.627 λ1 34.882 34.884
λ2 32.646 32.627 λ2 34.882 34.884
λ3 33.114 33.083 λ3 38.432 38.440
λ4 35.013 34.985 λ4 41.089 41.066
λ5 39.215 39.185 λ5 68.499 68.484

λ1 31.518 31.476 λ1 38.432 38.412
λ2 32.646 32.627 λ2 39.215 39.185
λ3 32.646 32.627 λ3 39.870 39.839
λ4 35.013 34.985 λ4 39.870 39.839
λ5 39.215 39.185 λ5 41.093 41.042

λ1 13.468 13.412 λ1 13.468 13.468
λ2 20.987 20.982 λ2 13.856 13.855
λ3 20.987 20.982 λ3 20.987 20.984
λ4 26.646 26.636 λ4 34.801 34.804
λ5 69.265 69.286 λ5 39.941 39.936

λ1 16.111 16.110 λ1 17.929 17.926
λ2 22.635 22.631 λ2 41.882 41.867
λ3 46.224 46.238 λ3 41.882 41.867
λ4 49.757 49.762 λ4 60.130 60.127
λ5 74.639 74.661 λ5 74.958 74.921

λ1 19.596 19.598 λ1 36.964 36.952
λ2 34.907 34.901 λ2 38.432 38.440
λ3 34.907 34.901 λ3 39.215 39.185
λ4 44.148 44.152 λ4 39.870 39.839
λ5 55.391 55.340 λ5 39.870 39.839
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Ultimate state boundedness for underactuated spacecraft subject to large non-matched di-
sturbances is attained. First, non-smooth time-invariant state feedback control laws that
make the origin asymptotically stable are obtained. Then, the controller is extended to
make the closed-loop system globally uniformly ultimately bounded under the following
conditions: 1) the disturbances acting on the directly actuated states are known and 2) the
disturbance acting on the unactuated state is bounded and its profile need not be known.
Finally, numerical simulations are presented to verify the analytical results. A large step di-
sturbance is considered, and it is shown that the proposed controller makes the closed-loop
system globally uniformly ultimately bounded. The proposed method is rather general and
can be extended to other systems.
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1. Introduction

A mechanical system is underactuated when the number of independent control inputs is less
than the number of degrees of freedom to be controlled. Considering the stabilization of such
systems, an extensive amount of studies has been published in the literature. Choukchou-Braham
et al. (2013), Olfati-Saber (2001), Aneke (2003), Spong (1998), Fantoni and Lozano (2002) and
Liu and Yu (2013) are just a few examples.

The linearized model of a majority of underactuated systems, especially in the absence of
gravitational terms, is not controllable near equilibrium points (Choukchou-Braham et al., 2013).
This leads to the well-known fact that most underactuated systems do not satisfy Brockett’s
necessary condition for smooth feedback stabilization (Choukchou-Braham et al., 2013). In order
to deal with this problem, non-smooth feedbacks have been proposed to stabilize underactuated
mechanical systems (Reyhanoglu et al., 2000).

In addition to the smoothness of feedback control laws, underactuation leads to another
important challenge: attenuation of disturbances. The severity of this problem increases when
the disturbances are non-matched, i.e. span{P} /∈ span{B}, where P and B are the disturbance
and control matrices, respectively (Astolfi and Rapaport, 1998).

Reducing the effects of disturbances on the stabilization of underactuated spacecraft has
been considered by several papers. Astolfi and Rapaport (1998) considered robust stabilization
of the angular velocity of a rigid body subject to external disturbances using L2-gain analysis.
Several propositions were proved, and the robust stabilization problem was solved in a region
having a hole. Floquet et al. (2000) used higher order sliding mode control (variable structure
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control) to make the origin asymptotically stable for underactuated spacecraft within a finite
time. However, it was assumed that no disturbance was exerted on the unactuated axis, i.e.
they satisfied matching conditions. Karami and Sassani (2000) used the backstepping technique
to asymptotically stabilize the angular velocity and attitude of underactuated spacecraft. The
considered step disturbance had a very low magnitude. Zhang et al. (2008) considered the spin
stabilization problem of underactuated spacecraft subject to sinusoidal disturbances. All of the
disturbances were considered to be sinusoidal. Wang et al. (2003) considered stabilization of
the angular velocity and attitude of underactuated spacecraft under sinusoidal disturbance.
Although three exogenous disturbances were considered to be exerted on the spacecraft, the
controller design was based on matched type disturbances.
In this paper, a new method is proposed to find non-smooth time-invariant state feedback

control laws for underactuated spacecraft. Then, the controller is extended to make the closed-
loop system globally uniformly ultimately bounded (GUUB). The proposed method is based on
a combination of feedback linearization and Lyapunov stability theory. To avoid singularity of
control inputs near the equilibrium points, a thin boundary layer is defined. It is assumed that
outside the boundary layer, the extended controller is applied to the system. However, inside
the boundary layer, the terms leading to singularity are canceled.
The present paper has two contributions: First, the proposed method is rather general and

can be extended to other systems and second, the large step disturbance is considered to verify
the controller performance. Most of the previous works have considered sinusoidal disturbances,
which are not as severe as the step disturbance for the underactuated spacecraft.
The rest of this paper consists of the following sections: Section 2 provides non-smooth

time-invariant state feedback control of underactuated spacecraft. In Section 3, the controller is
extended to make the closed-loop system GUUB subject to non-matched disturbances. Finally,
Section 4 presents numerical simulations and discussions to verify the analytical results.

2. Time-invariant non-smooth state feedback control of underactuated spacecraft

In the principal coordinate system, the rigid spacecraft angular velocity equations are described
by the following expressions (Sidi, 2000)

ṗ = α1qr + u1 + dp dp =
Tdp
Jx

q̇ = α2pr + u2 + dq dq =
Tdq
Jy

ṙ = α3pq + u3 + dr dr =
Tdr
Jz

(2.1)

where [p, q, r] are angular velocities of the spacecraft, [u1, u2, u3] are normalized control inputs
and [Tdp, Tdq, Tdr] are external disturbances. α1, α2 and α3 are fractions of moments of inertia
and are assumed to be constant. Their values are obtained from the following set of equations

α1 =
Jy − Jz
Jx

α2 =
Jz − Jx
Jy

α3 =
Jx − Jy
Jz

(2.2)

where [Jx, Jy, Jz ] are principal moments of inertia of the rigid body along the principal body
axis. The relation between control moments and inputs are given by the following equations

u1 =
Mx
Jx

u2 =
My
Jy

u3 =
Mz
Jz

(2.3)

[Mx,My,Mz] are three control moments acting on the spacecraft, and are assumed to be pro-
duced by thrusters.
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Without loss of generality, it is assumed that the third state (r) is unactuated (u3 = 0). On
the other hand, it is assumed that αi 6= 0 ∀i = 1, 2, 3.
For now, the disturbances are not considered in the controller design. Therefore, Eqs. (2.1)

will be simplified to Eqs. (2.4)

ṗ = α1qr + u1 q̇ = α2pr + u2 ṙ = α3pq (2.4)

In order to obtain a virtual control input for r, q is bisected into two parts

q = aq1 + bq2 a, b ∈ R (2.5)

a and b are constant real numbers that are presented to show that any linear combination of q1
and q2 will lead to the same results. This fact will be confirmed shortly.
Inserting q into the second and third rows of Eqs. (2.4) leads to

ṗ = α1qr + u1 aq̇1 = α2pr + u2 − bq̇2 ṙ = α3p(aq1 + bq2) (2.6)

The following definition is introduced

q̇2 = w (2.7)

w is a scalar variable that is used to stabilize the unactuated state (r). The goal is now to
determine q2 that forces r to approach the origin. This q2 is denoted as q2,des.
In order for r to be exponentially stabilized, the following relation must hold

ṙ = −krr (2.8)

Considering the last row of Eqs. (2.6) and (2.8), the following equation is obtained

−krr = α3p(aq1 + bq2,des) (2.9)

Solving for q2,des results in

q2,des =
1

b
φ− a

b
q1 (2.10)

where φ = −krr/(α3p).
It can be easily shown that

lim
t→∞

q = lim
t→∞

φ (2.11)

Therefore, it is possible to tune the controller parameters to make sure that the steady-state
value of q becomes zero.
Now, the following linear combination of q2 and q2,des is introduced to transform Eqs. (2.6)

into a virtually fully actuated form

z = cq2 + dq2,des c, d ∈ R (2.12)

c and d are constant real numbers, and their values have direct influence on the stability and per-
formance of the closed-loop system. The validity and importance of this statement will become
clear at the end of this Section. As stated previously, q2,des is the virtual control input.

Note 1: If c = −d and z = 0, q2 will be equal to q2,des, which is the ideal case. This is equivalent
to saying that the stabilization of z is equivalent to the stabilization of r. According to
this point, the equation for ṙ will be replaced by ż.
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Differentiating Eq. (2.12) with respect to time together with Eq. (2.7) results in

ż = cq̇2 + dq̇2,des = cw + dq̇2,des (2.13)

Replacing the third equation of Eqs. (2.6) with Eq. (2.13) leads to

ṗ = α1qr + u1 q̇1 =
1

a
(α2pr + u2 − bq̇2) ż = cw + dq̇2,des (2.14)

The time derivative of q2,des can be obtained by partial differentiation of Eq. (2.10)

q̇2,des =
1

b

∂φ

∂p
ṗ− a

b
q̇1 (2.15)

It is assumed that (∂φ/∂r)/ṙ ≈ 0 in comparison to the other terms. The reason for this assump-
tion is to rewrite ż in terms of the original variables.

Using Eqs. (2.5), (2.7), (2.15) and performing some mathematical operations, along with the
third row of Eqs. (2.4), ż will be simplified to

ż = (c+ d)w +
d

b

∂φ

∂p
ṗ− d

b
q̇ (2.16)

Therefore, the entire set of Eqs. (2.14) in a virtually fully actuated form will be given as

ṗ = α1qr + u1 q̇1 =
1

a
(α2pr + u2 − bw) ż = (c+ d)w +

d

b

∂φ

∂p
ṗ− d

b
q̇ (2.17)

According to the third row, in order for z to be stabilizable, c should not be equal to −d.
However, this is in contradiction with the previously made conclusion (Note 1). In order to
alleviate this problem, it will be assumed that c ≈ −d.
Using feedback linearization and expecting exponential convergence from z i.e. ż = −kzz,

w is obtained as follows

w =
1

c+ d

(
−kzz −

d

b

∂φ

∂p
ṗ+

d

b
q̇
)

(2.18)

Inserting w in the second equation of Eqs. (2.17), u2 is obtained as follows

u2 = aq̇1 − α2pr +
b

c+ d

(
−kzz −

d

b

kpkr(−r)
α3p

− d

b
kqq
)

(2.19)

Using Eq. (2.12) and considering the fact that limt→∞ q2,des = 0, the above equation is simplified
to

u2 = aq̇1 − α2pr +
b

c+ d

(
−kzcq2 −

d

b

kpkr(−r)
α3p

− d

b
kqq
)

(2.20)

The reason for assuming limt→∞ q2,des = 0 can be inferred from Eq. (2.10). φ is a function that
can converge to zero through tuning the controller parameters (kp < kr or equivalently, the
convergence rate of p less than the convergence rate of r). On the other hand, according to the
dynamics imposed on q1 (q̇1 = −kq1q1), this variable will also converge to zero. Considering
these facts, u2 is

u2 = −akq1q1 − α2pr −
b

c+ d
kzcq2 −

d

c+ d

kpkr(−r)
α3p

− d

c+ d
kqq (2.21)
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Assuming kq1 = [c/(c + d)]kz = [c/(c + d)]kq and according to Eq. (2.5), the final equation for
u1 and u2 is

u1 = −kpp− α1qr u2 = −kqq − α2pr +
d

c+ d

kpkrr

α3p
(2.22)

Since the procedure used to obtain this controller is based on linear state bisection (Eq. (2.5)),
this controller is called LSB.
In accordance with Eq. (2.22), u2 consists of two parts

u21 = −kqq − α2pr u22 =
d

c+ d

kpkrr

α3p
(2.23)

u21 and u22 are used to stabilize q and r, respectively. The form of u2 is consistent with the one
proposed by Reyhanoglu (1996).
According to Eqs. (2.23), u2 does not depend on a and b. According to Eq. (2.1), the com-

ponents of dp and dq can be easily counteracted by the direct control input vectors, u1 and u2.
Therefore, the component of disturbances on the unactuated state (dr) plays the key role in the
controller design.
Non-smooth time-invariant state feedback control laws (Eq. (2.22)) make the origin asymp-

totically stable for the disturbance-free system (Eqs. (2.4)). In the next Section, this controller
is extended to provide GUUB, in the presence of non-matched disturbances.

3. Underactuated spacecraft angular velocity ultimate boundedness in presence
of non-matched disturbances

Definition 1 (Astolfi and Rapaport (1998)): The disturbances are non-matched when
span{P} /∈ span{B}, where P and B are the disturbance and control matrices, respecti-
vely.

Assumption 1: dp and dq can be unbounded, but should be known.

Assumption 2: dr should be bounded, and its maximum value should be known.

In order to extend the controller and to ensure that the states are GUUB, the following
procedure is proposed:

1) Since u2 has been selected to stabilize r, u1 is used to provide GUUB.

2) A candidate Lyapunov function (CLF) is proposed.

3) The derivative of this CLF along the trajectories of the closed-loop system is evaluated.

4) u1 is used to ensure GUUB of the states for the perturbed closed-loop system.

Consider Eqs. (2.4) with disturbances

ṗ = u1 + α1qr + dp q̇ = u2 + α2pr + dq ṙ = α3pq + dr (3.1)

It has been shown in Section 2 that u1 and u2 (Eq. (2.22)) make the origin asymptotically
stable for Eqs. (3.1) without the presence of disturbances.
After eliminating dp and dq using direct control inputs, the closed-loop system will be

ṗ = u′1 q̇ = −kqq +
d

c+ d

kpkrr

α3p
ṙ = α3pq + dr (3.2)

Now, the goal is to find u′1 that makes the closed-loop system GUUB.



1060 R. Moradi et al.

In order to solve this problem, the following CLF is proposed

V =
1

2

[
p q r

]


kp 0 0
0 kq 0
0 0 kr






p
q
r


 =
1

2
(kpp

2 + kqq
2 + krr

2) (3.3)

The derivative of V along the trajectories (Eqs. (3.2)) is given by

V̇ =
∂V

∂x
ẋ = kppu

′
1 − k2qq2 +

d

c+ d

kpkqkr
α3

rq

p
+ α3krpqr + krrdr

¬ kppu′1 − k2qq2 +
d

c+ d

kpkqkr
α3

rq

p
+ α3krpqr + krrMd

(3.4)

where Md is the maximum absolute value of dr. If u
′
1 is selected as

u′1 =
1

kpp

(
− d

c+ d

kpkqkr
α3

rq

p
− α3krpqr − k2pp2 − k2rr2

)
p 6= 0 (3.5)

V̇ will result in the following equation

V̇ ¬ −k2pp2 − k2qq2 − k2rr2 + krrMd = −w2(x) + krrMd (3.6)

Since

−w2(x) ¬ −min(k2p, k2q , k2r )‖x‖22 (3.7)

and at the same time r ¬ ‖x‖2, V̇ will satisfy the following inequality

V̇ ¬ −min(k2p, k2q , k2r )‖x‖22 + krMd‖x‖2 (3.8)

Therefore, if the following inequality holds

Md ¬
min(k2p, k

2
q , k
2
r )

2kr
‖x‖2 (3.9)

equivalently

‖x‖2 
2kr

min(k2p, k
2
q , k
2
r )
Md (3.10)

V̇ will satisfy the following relation

V̇ ¬ −1
2
min(k2p, k

2
q , k
2
r )‖x‖22 = −w1(x) (3.11)

where w1(x) is a positive definite function. Equations (3.3) and (3.11) confirm that the conditions
of theorem 4.18 (Khalil, 2001) are satisfied. This means that the states of Eqs. (3.2) become
GUUB for the state-feedback control law given by Eq. (3.5).
An important parameter is introduced: thp0 or the thicknesses of the boundary layer. This

parameter is selected such that the control inputs never reach the singular point and. at the
same time, the states reach the vicinity of equilibrium points with good quality.

Note 2: In order to make the control input (Eq. (3.5)) smoother, especially near the equilibrium
point, the terms that contain p in their denominator are neglected. As will be shown in
the simulation Section, this simplification leads to more implementable control inputs and
still provides GUUB of the states.
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Depending on the magnitude of p and the value chosen for thp0, two different cases occur
during simulations:
— for |p| > thp0

u1 =
−α3krqr

kp
− kpp− α1qr − dp

u2 = −kqq +
d

c+ d

kpkr
α3

r

p
− α2pr − dq

(3.12)

— for |p| ¬ thp0

u1 =
−α3krqr

kp
− kpp− α1qr − dp

u2 = −kqq − α2pr − dq
(3.13)

The above controllers are extended forms of LSB. Therefore, they will be called ELSB. In
order to verify the analytical results, several simulations are carried out, and the results are
presented in the next Section.

4. Simulations

The system and controller parameters are presented in Table 1. c and d are selected as 1
and −0.94 to −0.90, respectively.

Table 1. System and controller parameters

Initial conditions Boundary layer Controller Moments of inertia
[deg/s] thickness [deg/s] coefficients [kgm2]

p0 = 8 kp = 0.05 Jx = 449.5

q0 = −6 thp0 = 0.1 kq = 0.1 Jy = 264.6

r0 = 7 kr = 0.1 Jz = 312.5

Three scenarios are considered for simulation. These scenarios are presented in Table 2.

Table 2. Simulation scenarios

Scenario Controller Disturbance

First scenario LSB step

Second scenario ELSB step

Third scenario LSB sinusoidal

A comparison of the first and second scenarios analyzes the capabilities of the LSB and ELSB
in dealing with a large step disturbance. A comparison of the first and third scenarios shows
severity of the step disturbance compared to the sinusoidal disturbance.

First scenario

The component of disturbances exerted on the unactuated axis is considered as the following
step function

dr =
1

Jz
(4.1)

Therefore, the external disturbance (Tdr) exerted on the unactuated axis is 1Nm.
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As stated in Assumption 1, the disturbances exerted on the actuated states are not important
as long as they are known. Therefore, they are not considered here.

The LSB response is illustrated in Figs. 1 and 2.

As illustrated in Fig. 1, LSB is not able to provide GUUB for the states. The reason can
be explained by Eq. (2.22). The controller tries to make the origin an asymptotically stable
equilibrium for the closed-loop system. However, due to the presence of a large step disturbance
on the unactuated axis, r increases in an unacceptable way. This important example shows the
adverse effects of not considering large non-matched disturbances in the controller design. Due to
the non-smooth nature of the control inputs, a jump in the control moment is observed (Fig. 2).

Note 3: In order to reduce the adverse effects of sudden changes in the control moments and to
make them more implementable, thickness of the boundary layer should increase, at the
expense of less response quality.

Second scenario

In order to provide GUUB, the ELSB is used. The response and control moments of this
controller are illustrated in Figs. 3 and 4:

According to Fig. 3, the ELSB makes the closed-loop system GUUB. As stated in Note 2,
the simplifications have led to implementable control moments. At the same time, the states are
bounded.

Third scenario

It is assumed that the following sinusoidal disturbance is exerted on the unactuated axis

dr =
1

Jz
sin
(2π
50
t
)

(4.2)

In comparison to Eq. (4.1), the amplitudes of the disturbances are the same.

The results of the simulation are shown in Figs. 5 and 6.

A comparison of Fig. 1 and Fig. 5 shows that the closed-loop system is bounded for the
sinusoidal disturbance. However, for the step disturbance, the response of the unactuated axis
becomes unbounded.

Finally, it can be concluded that the LSB makes the origin asymptotically stable for the
disturbance-free closed-loop system. Therefore, in the absence of non-matched disturbances, the
origin is asymptotically stable. However, this controller will not provide satisfactory performance
when large non-matched disturbances are considered. On the other hand, the ELSB attenuates
the effects of non-matched disturbances and makes the closed-loop system GUUB.

5. Conclusion

A mechanical system is underactuated when the number of independent control inputs is less
than the number of degrees of freedom to be controlled. The presence of uncontrollable modes
in their linearized models prevents them from being smooth state feedback stabilizable. The
problems increase when disturbances, especially of the non-matched type, enter into the pro-
blem. In this paper, non-smooth time-invariant state feedback control laws have been obtained
that made the origin asymptotically stable for underactuated spacecraft. Then, these control
laws have been extended to make the closed-loop system GUUB. Simulation results have been
presented to verify the analytical solutions.
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Fig. 1. Response of the LSB (first scenario)

Fig. 2. Control moments
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Fig. 3. Response of the ELSB (second scenario)

Fig. 4. Control moments



Ultimate state boundedness of underactuated spacecraft... 1065

Fig. 5. Response of the LSB (third scenario)

Fig. 6. Control moments
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This article deals with the study of a thermoelastic nanobeam in a modified couple stress
theory subjected to ramp-type heating. The mathematical model is prepared for the nanobe-
am in thermoelastic three-phase-lag. The Laplace transform and the eigenvalue approach are
used to find the displacement component, lateral deflection, temperature change and axial
stress of the thermoelastic beam. The general algorithm of the inverse Laplace transform is
developed to compute results numerically. The comparison of three-phase-lag, dual-phase-
lag and GN-III (1993) models are represented, and their illustration is depicted graphically.
This study finds the applications in engineering, medical science, sensors, etc.

Keywords: modified couple stress thermoelastic, eigenvalue approach, nanobeam

1. Introduction

Cosserat and Cosserat (1909) developed a mathematical model for a couple stress theory in
which kinematical quantities are the displacement and material microrotation. Yang et al. (2002)
proposed a modified couple stress theory in which the couple stress tensor was symmetric and
required only one material length parameter to capture the size effect which was caused by
micro-structure. Various authors studied different problems in a modified couple stress theory
(2008, 2011-2015).
Tzou (1995a,b, 1997) proposed a dual-phase-lag model by modifying the classical fourier law

by an approximation with two different time translations: a phase-lag of the heat flux τq and a
phase-lag of the temperature gradient τθ. Tzou (1995b) supported that model by experimental
results. A review of five theories of thermoelasticity was given by Hetnarski and Ignaczak (1999).
Roychoudhuri (2007) developed a three-phase-lag model for a thermoelastic material. In that
model, the Fourier law of heat conduction was modified by introducing three different phase-lags
for the heat flux vector, temperature gradient and thermal displacement component gradient.
Quintanilla and Racke (2008) investigated stability of the three-phase-lag heat conduction equ-
ation and the relations among three material parameters. Kumar et al. (2012) studied wave
propagation in an anisotropic viscoelastic medium with the three-phase-lag model of thermoela-
sticity. Sur and Kanoria (2014) examined vibration of a gold nanobeam induced by a ramp-type
laser pulse under the three-phase-lag model.
The significance of using the eigenvalue approach is to reduce the problem on the vector-

-matrix differential equation to algebraic eigenvalue problems. Thus the solutions for the field
variables are obtained by determining eigenvalues and the corresponding eigenvectors. In this
approach, the physical quantities are directly involved in the formulation of the problem and,
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as such, the boundary and initial conditions can be applied directly. The problem of micropolar
thermoelasticity without energy dissipation by employing the eigenvalue approach was studied
by Kumar et al. (2007). Zang and Fu (2012) constructed a new beam model for a viscoelastic
micro-beam based on a modified couple stress theory.
Abouelregal and Zenkour (2014) investigated the problem of an axially moving microbeam

subjected to a sinusoidal pulse heating and an external transverse excitation with one relaxation
time using the Laplace transform. Zenkour and Abouelregal (2015) investigated the problem of
a thermoviscoelastic orthotropic continuum with a cylindrical hole and variable thermal conduc-
tivity under three-phase-lag model and solved the physical quantities by the Laplace transform
technique. The effects of hall current and rotation in a modified couple stress theory subjected
to the ramp type loading in the context of theory of generalized thermoelastic diffusion was pre-
sented by Kumar and Devi (2015). Thermoelastic interaction in a thermally conducting cubic
crystal subjected to the ramp-type heating was investigated by Abbas et al. (2015). Reddy et
al. (2016) discussed the problem of functionally graded circular plates with the modified couple
stress theory by using the finite element method. On the basis of global local theory, a model
for the composite laminated Reddy plate of a new modified couple-stress theory was developed
by Chen and Wang (2016). Zenkour and Abouelregal (2016) discussed vibration of functionally
graded microbeams by using the Green-Naghdi thermoelasticity theory (1993) and the Laplace
transform.
The present investigation deals with a thermoelastic nanobeam in the modified couple stress

theory induced by the ramp-type heating in the three-phase-lag model. The non-dimensional
equations are written in form of the Laplace transform which is solved by the eigenvalue ap-
proach. The expressions of the displacement component, lateral deflection, temperature change
and axial stress are computed numerically and then represented graphically. Particular cases of
interest are deduced from the present investigation.

2. Basic equations

Following Yang et al. (2002) and Roychoudhuri (2007), the constitutive relations, equations of
motion and the equation of heat conduction in the modified couple stress generalized thermo-
elasticity with three-phase-lag model in the absence of body forces are:
— constitutive relations

tij = λekkδij + 2µeij −
1

2
ekijmlk,l − β1Tδij mij = 2αχij

χij =
1

2
(ωi,j + ωj,i) ωi =

1

2
eipquq,p

(2.1)

— equations of motion

(
λ+ µ+

α

4
∆
)
∇(∇ · u) +

(
µ− α

4
∆
)
∇2u− β1∇T = ρü (2.2)

— equation of heat conduction with three-phase-lag

[
K∗
(
1+τν

∂

∂t

)
+K

∂

∂t

(
1+τT

∂

∂t

)]
∆T =

(
1+τq

∂

∂t
+
τ2q
2

∂2

∂t2

)(
ρce

∂2T

∂t2
+T0β1

∂2

∂t2
(∇·u)

)
(2.3)

where tij are components of the stress tensor, λ and µ are Lame’s constants, δij is Kronecker’s
delta, eij = (ui,j+uj,i)/2 are components of the strain tensor, eijk is the alternate tensor,mij are
components of the couple-stress, β1 = (3λ + 2µ)αt. Here αt are coefficients of linear thermal
expansion and diffusion, respectively, T is temperature change, χij is symmetric curvature,
ωij = (uj,i − ui,j)/2 are components of rotation, ωi is the rotational vector, α is the couple
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stress parameter and u = [u1, u2, u3] is the displacement component, ρ is density, ∆ is the
Laplacian operator, ∇ is del operator. K is the coefficient of thermal conductivity, K∗ is the
material characteristic constant of the theory, ce is the specific heat at a constant strain, T0 is
the reference temperature assumed to be such that T/T0 ≪ 1. τT , τq and τν are the phase lags of
the temperature gradient, of the heat flux and of the thermal displacement component gradient,
respectively, such that τν < τT < τq.

3. Formulation of the problem

Consider a homogeneous, isotropic, rectangular modified couple stress thermoelastic beam ha-
ving dimensions of length (0 ¬ x ¬ L), width (−d/2 ¬ y ¬ d/2) and thickness (−h/2 ¬ z ¬ h/2)
(Fig. 1). Let us take the x-axis along length of the beam, the y-axis along width and z-axis along
thickness, representing the axis of material symmetry. Therefore, any plane cross-section initially
perpendicular to the axis of the beam remains plane and perpendicular to the neutral surfa-
ce during bending. According to the Euler-Bernoulli theory for a small deflection in a simple
bending problem, the displacement components are given by

u(x, y, z, t) = −z ∂w
∂x

v(x, y, z, t) = 0 w(x, y, z, t) = w(x, t) (3.1)

where w(x, t) is lateral deflection of the beam and t is time. The one-dimension stress compo-
nent tx, with the aid of equations (2.1)1 and (3.1), yields

(3.2)tx = −(λ+ 2µ)z
∂2w

∂x2
− β1T (3.2)

Fig. 1. Schematic figure of the beam

The flexural moment of the cross-section of the beam is given by

M =Mσ +Mm = d
( h/2∫

−h/2

txz dz +

h/2∫

−h/2

mxy dz
)

(3.3)

where Mσ and Mm are components of the bending moment due to the classic stress and couple
stress tensors, respectively.
Making use of the value of tx and mxy from (3.2) and (2.1)2 in (3.3), with the aid of (3.1),

yield

M = −
[
(λ+ 2µ)

dh3

12
+ αA

]∂2w
∂x2
− β1d

h/2∫

−h/2

Tz dz (3.4)

Following Rao (2007), the equation of transverse motion of the beam is given by

∂2M

∂x2
− ρA∂

2w

∂t2
= 0 (3.5)

where A = dh is the cross-sectional area of the beam.
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For a very thin beam, assuming that the temperature increment varies in terms of the sin(pz)
function along thickness of the beam, where p = π/h as

T (x, z, t) = T1(x, t) sin(pz) (3.6)

Substituting the value of M from (3.4) into equation (3.5), with the aid of equation (3.6), yields

[
(λ+ 2µ)

dh3

12
+ αA

]∂4w
∂x4
+ β1d

∂2T1
∂x2

h/2∫

−h/2

z sin(pz) dz + ρA
∂2w

∂t2
= 0 (3.7)

Multiplying heat conduction equation (2.3), after using equation (3.1), by z and integrating
them with respect to the interval (−h/2, h/2), and with the use of equation (3.6), we obtain

[
K∗
(
1 + τν

∂

∂t

)
+K

∂

∂t

(
1 + τT )

∂

∂t

)](∂2T1
∂x2
− p2T1

)

=
(
1 + τq

∂

∂t
+
τ2q
2

∂2

∂t2

)(
ρce

∂2T1
∂t2
− β1T0p

2h3

24

∂4w

∂x2∂t2

) (3.8)

To facilitate solution, the following dimensionless quantities are introduced

x′ =
x

L
(z′, u′, w′) =

(z, u,w)

h
(τ ′ν , τ

′
T , τ
′
q, t
′) =
(τν , τT , τq, t)ν

L

T ′1 =
β1T1
E

(M ′,M ′T ) =
(M,MT )

dEh2
t′x =

tx
E

ν2 =
E

ρ
K∗ =

ce(λ+ 2µ)

4

(3.9)

Making use of equation (3.9) in (3.7) and (3.8), after surpassing the primes, we obtain

∂4w

∂x4
+ a1

∂2T1
∂x2
+ a2

∂2w

∂t2
= 0

[
a3
(
1 + τν

∂

∂t

)
+
∂

∂t

(
1 + τT

∂

∂t

)](∂2T1
∂x2
− a4T1

)

=
(
1 + τq

∂

∂t
+
τ2q
2

∂2

∂t2

)(
a5
∂2T1
∂t2
− a6

∂2w

∂x2∂t2

)
= 0

(3.10)

where

a1 =
2dEL

p2
[
(λ+ 2µ)dh

3

12 + αA
] a2 =

ρAν2L2

(λ+ 2µ)dh
3

12 + αA
a3 =

K∗L

Kν

a4 =
p2

L2
a5 =

ρceνL

K
a6 =

β21T0νp
2h3

24KE

4. Problem solution

The Laplace transform is defined as

L{f(t)} =
∞∫

0

e−stf(t) dt = f(s) (4.1)

where s is the Laplace transform parameter.
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Applying the Laplace transform defined by equation (4.1) to equations (3.10) and (3.11),
gives

d4w

dx4
+ a1

d2T 1
dx2
+ a2s

2w = 0
d2T 1
dx2
− a4T 1 = a7s2T 1 − a8s2

d2w

dx2
(4.2)

where

τ q = 1 + τqs+
τ2q
2
s2 τν = 1 + τνs τT = 1 + τT s

a7 =
a5τ q

a3τν + sτT
a8 =

a6τ q
a3τν + sτT

The set of equations (4.2) can be written as

d2v

dx2
= −a9w + a10v − a11T 1

d2T 1
dx2
= −a12v + a13T 1 (4.3)

where

d2w

dx2
= v a9 = a2s

2 a10 = a1a8s
2

a11 = a1(a4 + a7s
2) a12 = a8s

2 a13 = a4 + a7s
2

The system of equations (4.4) can be written in a matrix form as

DV(x, s) = AV(x, s) (4.4)

where

V =

[
U
DU

]
U =



w
v
T 1


 A =

[
O I
A1 O

]
A1 =



0 1 0
−a9 a10 −a11
0 −a12 a13


 (4.5)

and D = d/dz, I is the identity matrix of the order 3, O is a null matrix of the order 3.
We take the solution to equation (4.4) as

V(x, s) = Xr(x, s)e
λz (4.6)

such that

A(x, s)V(x, s) = λV(x, s) (4.7)

which leads to the eigenvalue approach. The characteristic equation of the matrix A can be
written as

λ6 −G1λ4 +G2λ2 −G3 = 0 (4.8)

where

G1 = a10 + a13 G2 = a9 + a10a13 − a11a12 G3 = a9a13

The characteristic roots of equation (4.6) are also the eigenvalues of the matrix A. The eigenvec-
tors X(x, s) corresponding to the eigenvalue λr can be determined by solving the homogeneous
equations

(A− λI)X(x, s) = 0 (4.9)
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The set of eigenvectors Xr(x, s) may be obtained as

Xr(x, s) =

[
Xr1(x, s)
Xr2(x, s)

]
Xr1(x, s) =



br
cr
dr


 Xr2(x, s) = λrXr1(x, s)

for λ = λr, r = 1, 2, 3 and

Xj(x, s) =

[
Xj1(x, s)
Xj2(x, s)

]
Xj1(x, s) =



br
cr
dr


 Xj2(x, s) = λjXj1(x, s)

for j = r + 4, λ = −λr, r = 1, 2, 3 and

br = −a11 cr = −a11λ2r dr = λ
4
r − a10λ2r + a9

The solution to equation (4.6) reduces to

V =
3∑

r=1

BrXr(x, s)e
−λrx +

3∑

r=1

Br+3Xr+3(x, s)e
λrx (4.10)

where Bi (i = 1, . . . , 6) are arbitrary constants.
Thus, the field quantities can be written as

(w, v, T 1)(x, s) =
3∑

r=1

(br, cr, dr)Bre
−λrx +

3∑

j=1

(bj+3, cj+3, dj+3)Bj+3e
λjx (4.11)

5. Initial and boundary conditions

Both initial and boundary conditions should be considered to solve the problem. The initial
conditions of the problem are taken in the form as

w(x, t)
∣∣∣
t=0
=
∂w(x, t)

∂t

∣∣∣∣∣
t=0

= 0 T1(x, t)
∣∣∣
t=0
=
∂T1(x, t)

∂t

∣∣∣∣∣
t=0

= 0 (5.1)

Let us consider a nanobeam with both ends are simply supported

w(0, t) = 0
∂2w(0, t)

∂x2
= 0 w(L, t) = 0

∂2w(L, t)

∂x2
= 0 (5.2)

We consider the side of the nanobeam x = 0 being thermally loaded by ramp-type heating
incidents into the surface of the nanobeam

T1(0, t) = g0





0 t ¬ 0
t/t0 0 < t ¬ t0
1 t > t0

(5.3)

where t0 is a non-negative constant called the ramp type parameter and g0 is a constant.
We also assume that the other side of the nanobeam x = L is thermally insulated, and there

is no variation of temperature on it, which this means that the following relation will be satisfied

dT1(L, t)

dx
= 0 (5.4)
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Applying the Laplace transform defined by equation (4.1) to boundary conditions (5.2)-(5.4),
we obtain

w(0, s) = 0
d2w(0, s)

dx2
= 0 T 1(0, s) = g0

(
1−e−st0
t0s2

)

w(1, s) = 0
d2w(1, s)

dx2
= 0

dT 1(1, s)

dx
= 0

(5.5)

The values of displacement u and axial stress tx are then obtained

u(x, s) = z

(
3∑

i=1

λibiBie
−λix −

3∑

i=1

λibi+3Bi+3e
λix

)

tx(x, s) = −
[
3∑

i=1

(λ+ 2µ
E

zλ2i bi + di sin(pz)
)
Bie
−λix

+
3∑

i=1

(λ+ 2µ
E

zλ2i bi+3 + di+3 sin(pz)
)
Bi+3e

λix

]

(5.6)

Making use of the value of w and T 1 from (4.11) in boundary conditions (5.5), with the aid of
equations (5.6), after some calculations, we find the expressions of the displacement component,
lateral deflection, temperature change and axial stress of the beam as

(u,w)(x, s) =
3∑

i=1

(zλi, 1)biBie
−λix +

3∑

i=1

(−λi, 1)bi+3Bi+3eλix

(T 1, tx)(x, s) =
3∑

i=1

(di,Mi)Bie
−λix +

3∑

i=1

(di+3,Mi+3)Bi+3e
λix

(5.7)

where

Bi =
∆i
∆

i = 1, . . . , 6

and

3∑

i=1

Mi = −
(λ+ 2µ

E
zλ2i bi + di sin(pz)

) 3∑

i=1

Mi+3 = −
(λ+ 2µ

E
zλ2i bi+3 + di+3 sin(pz)

)

∆ =




b1 b2 b3 b4 b5 b6
b1e
−λ1 b2e

−λ2 b3e
−λ3 b4e

λ2 b5e
λ2 b6e

λ2

b1λ
2
1 b2λ

2
2 b3λ

2
3 b4λ

2
1 b5λ

2
2 b6λ

2
3

b1λ
2
1e
−λ1 b2λ

2
2e
−λ2 b3λ

2
3e
−λ3 b4λ

2
1e
−λ1 b5λ

2
2e
−λ2 b6λ

2
3e
−λ3

d1 d2 d3 d4 d5 d6
−d1λ1e−λ1 −d2λ2e−λ2 −d3λ3e−λ3 −d4λ1eλ1 d5λ2e

λ2 d6λ3e
λ3




where ∆i (i = 1, . . . , 6) are obtained by replacing the i-th column with [0, 0, 0, 0, g0((1 −
e−st0)/(t0s

2)), 0]T in ∆i.

6. Particular cases

(i) Dual-phase-lag model

If K∗ = τν = 0, in equations (5.7), we obtain the corresponding results for modified couple
stress thermoelastic materials with the dual-phase-lag model of thermoelasticity.
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(ii) GN-III model

In the absence of τν = τT = τq = τ2q = 0 in equations (5.7), we obtain the corresponding
results for modified couple stress thermoelastic materials with energy dissipation in the
context of GN-III theory of thermoelasticity.

(iii) If we take α = 0 in equations (5.7), we obtain the corresponding results for thermoelastic
materials with the three-phase-lag model of thermoelasticity. Our results in a special case
are similar to those obtained by Sur and Kanoria (2014).

7. Inversion of the Laplace transform

We have obtained solutions for the displacement component, lateral deflection, temperature
change and axial stress in the Laplace transform domain (x, s). We shall now briefly outline
the numerical inversion method used to find the solution in the physical domain. Let f(s) be
the Laplace transform of a function f(t). To obtain the solution of the problem in the physical
domain, we invert the Laplace transform by using the method described by Kumar (2016).

8. Numerical results and discussion

We have chosen gold (Au) as the material for numerical computations. The physical data for
gold are given by Sur and Kanoria (2014): λ = 198GPa, µ = 27GPa, αt = 14.2 · 10−6K−1,
ρ = 1930 kg/m3, T0 = 0.293 · 103K, ν = 0.44, K = 200W/(mK), ce = 130 J/(kgK),
α = 2.5 kgm/s2, t = 1.5 s, τν = 0.02 s, τT = 0.03 s, τq = 0.04 s, g0 = 1, t0 = 0.2, L = 1,
d = 1, h = 10.

Numerical computations have been carried out with the help of MATLAB software. By
using this software, the displacement component, lateral deflection, temperature change, thermal
stress, bending moment and axial stress with respect to distance are computed numerically and
shown graphically in Figs. 2-7. In Figs. 2-4, the small dash line (- - - ) corresponds to the three-
-phase-lag model (TPL), small dash line with the centre symbol (- - ∗ - -) corresponds to the
dual-phase-lag model (DPL) and a small dash line with the centre symbol (- - ◦ - -) corresponds
to the GN-III model respectively. Similarly, Figs. 5-7, the small dash line (- - -) corresponds to
t0 = 0.2, small dash line with the centre symbol (- - ∗ - -) corresponds to t0 = 0.4, the small
dash line with the centre symbol (- - ◦ - -) corresponds to t0 = 0.6.
Figure 2a shows the variation of the displacement component with respect to length of

the beam for different models. The behavior and variation are similar for all the cases but
with differences in their magnitudes. However, the values of the GN-III model are greater than
compared to DPL and TPL models. Figure 2b depicts the variation of lateral deflection with
respect to length of the beam for the three-phase-lag, dual-phase-lag and GN-III models. It is
observed that the lateral deflection decreases for smaller values of length and oscillates for higher
values of length for all TPL, DPL and GN-III models.

Figure 3a presents the variation of axial stress with respect to length of the beam for TPL,
DPL, GN-III models. As seen in the figure, the axial stress decreases smoothly in the whole
region for all cases. Also, it is noticed that the axial stress has a large value for the three-
-phase-lag (TPL) and dual-phase-lag (DPL) thermoelastic beams as compared to that for the
GN-III thermoelastic beam. Figure 3b shows the variation of temperature change with respect
to length of the beam for different thermoelastic (TPL, DPL, GN-III) models. It is observed
from the figure that the behavior and variation are oscillatory in nature with fluctuating values
in all the cases.
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Fig. 2. (a) Displacement component u and (b) lateral deflection w with respect to distance x for
different phase lag theories of thermoelasticity

Fig. 3. (a) Axial stress Tx and (b) temperature change T with respect to distance x for different phase
lag theories of thermoelasticity

Fig. 4. Bending moment M with respect to distance x for different phase lag theories of thermoelasticity

Figure 4 shows the variation of bending moment with respect to length of the beam for
different thermoelastic models. It is clearly seen in the figure that the value of bending moment
decreases with a decrease in the value of length for all the cases of phase lag theories of ther-
moelasticity. Also, the value of bending moment is higher in the range 0 ¬ x ¬ 0.25 for t0 = 0.2
and smaller for t0 = 0.4, 0.6 in the remaining range.
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Figure 5a shows the variation of lateral deflection with respect to length of the beam for
different values of the ramp type parameter. Initially, the lateral deflection decreases with a
difference in the ramp type parameter up to x ¬ 0.3 and then remains stable in the range
0.3 < x ¬ 0.8. Figure 5b presents the variation of temperature change with respect to length
of the beam for different values of the ramp type parameter. The behavior and variation are
oscillatory in nature for all the cases of the ramp type parameter.

Fig. 5. (a) Lateral deflection w and (b) temperature change T with respect to length x for different
values of the ramp type parameter

Figure 6a shows the variation of axial stress with respect to length of the beam for different
values of the ramp type parameter. The value of axial stress decreases monotonically with an
increase in length. Also, the value of axial stress for t0 = 0.2 is greater than that the ramp type
parameter t0 = 0.4, 0.6.
Figure 6b depicts the variation of displacement component with respect to length of the

beam for different values of the ramp type parameter. The displacement component increases
with an increase in length.

Fig. 6. (a) Axial stress Tx and (b) displacement component u with respect to distance x for different
values of the ramp type parameter

Figure 7a represents the variation of bending moment with respect to length of the beam
for different values of the ramp type parameter. The bending moment smoothly decreases with
a decrease in the value of length. The value of the bending moment is greater for t0 = 0.2 up to
the value of x = 0.25 in comparison with that for t0 = 0.4, 0.6, but shows opposite behavior in
the remaining range. Figure 7b depicts the variation of thermal stress with respect to length of
the beam for different values of the ramp type parameter. The oscillatory behavior is shown for
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all the cases of ramp type parameters. It is clear from the figure that the value of thermal stress
for t0 = 0.6 is less in the range 0 ¬ x ¬ 0.5 but reversed behavior is shown for t0 = 0.2, 0.4 in
the considered region.

Fig. 7. (a) Bending moment M and (b) thermal stress tz with respect to distance x for different values
of the ramp type parameter

9. Conclusions

In the present study, the effects of three-phase-lag, dual-phase-lag and GN-III on the displa-
cement component, lateral deflection, axial stress, bending moment and temperature change
are derived numerically and presented graphically. The effect of the ramp type parameter is
shown graphically for lateral deflection, bending moment, displacement component, axial stress,
thermal stress and temperature change. The Euler Bernoulli beam assumption and the Laplace
transform technique are used to write the basic governing equations in form of vector-matrix
differential equations which are then calculated by the eigenvalue approach. A numerical tech-
nique has been adopted to determine solutions in the physical domain. It is observed from the
obtained figures that the displacement component increases with a increase in length for all the
three-phase-lag, dual-phase-lag and GN-III models but opposite behavior is observed for the
axial stress. It is also noticed that the values of displacement component and axial stress for
the three-phase-lag thermoelastic model is greater in comparison with the dual-phase-lag and
GN-III models. The lateral deflection and temperature change are oscillatory in nature but differ
in their magnitude values for all the cases. The method used in the present study is applicable to
a wide range of mathematical problems in the field of thermodynamics, thermoelasticity and co-
uple stress theory. This study also find various applications to applied mathematics, mechanical
engineering, geophysical and industrial sectors.
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The dynamic vibration absorber is a kind of mechanical device with inertia, stiffness, and
damping. Once connected to a given structure or machine, it is capable of absorbing vibratory
energy. As a result, the primary system can be protected from excessively high vibration
levels. In this paper, we deal with classical Den Hartog’s model to clarify the known results
and improve the mathematical component of this approach. We suggest the optimal choice
of absorber parameters, which is slightly different and more general analytical approach.
The comparison of two methods of optimization is carried out, and the corresponding error
of calculus is estimated.

Keywords: dynamic vibration absorber, Den Hartog’s model, frequency-amplitude curve,
optimization

1. Introduction

The problem of elimination or reduction of undesired vibration in various technical systems
has long history and great achievements. The concept of vibration control is widely accepted
nowadays and has been applied in many different areas, such as civil, mechanical, and aero-
nautical engineering. Passive vibration control is the most widespread, and effective methods
are available. The typical simplest and most reliable device is the dynamic vibration absorber
(DVA) or tuned-mass damper (TMD). A simple DVA consists of a mass and a spring. When the
primary system is excited by a harmonic force, its vibration can be suppressed by attaching a
DVA. The main purpose of adding the secondary oscillator is to move the resonant frequency of
the mechanical system away from the operating frequency of the vibratory force. So, the system
becomes a 2-DOF (degree of freedom) mechanical system, but with coincidence of the exciting
frequency with one of the two natural frequencies it will be again at resonance. To eliminate
this effect, a damper is added to the DVA (Fig. 1).

The idea of vibration control was originally proposed by Frahm (1911), and many various
DVA configurations were designed during the past century (Ormondroyd and Den Hartog, 1928;
Brock, 1946; Mead, 2000; Hunt, 1979; Korenev and Reznikov, 1993; Viet et al., 2011; Marano et
al., 2007). Good surveys on the subject were presented in (Johnson, 1995; Sun et al., 1995). With
reference to the DVA optimal design, the first criterion was offered by Ormondroyd and Den
Hartog (1928). This criterion concerned the minimization of the system response with respect
to the stationary harmonic excitation with the most “dangerous” frequency value which results
in the largest increase of the amplitude.
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Fig. 1. Damped DVA connected to a primary system

2. Formulation of the problem

The equations of motion of the mechanical system under consideration are

mpẍp + ca(ẋp − ẋa) + kpxp + ka(xp − xa) = F0eiωt
maẍa + ca(ẋa − ẋp) + ka(xa − xp) = 0

(2.1)

In this formulation, we use the notions according to (Johnson, 1995), F (t) = F0e
iωt is a harmonic

excitation force acting on the primary system.

The amplitudes of steady state harmonic responses are

Xp = F0
ka −maω2 + iωca

(kp −mpω2)(ka −maω2)−makaω2 + iωca(kp −mpω2 −maω2)

Xa = −F0
ka + iωca

(kp −mpω2)(ka −maω2)−makaω2 + iωca(kp −mpω2 −maω2)

(2.2)

In terms of dimensionless parameters, we can rewrite

|Xp|
(Xp)st

=

√
(2ζg)2 + (g2 − η2)2

(2ζg)2(g2 − 1 + µg2) + [µη2g2 + (g2 − 1)(g2 − η2)] (2.3)

where µ = ma/mp is the mass ratio; ωa =
√
ka/ma – undamped natural frequency of the

DVA considered separately; ωp =
√
kp/mp – undamped natural frequency of the primary sys-

tem considered separately; η = ωa/ωp – tuning factor; g = ω/ωp – forcing frequency ratio;
ζ = ca/(2maωp) – damping ratio; (Xp)st = F0/kp – static displacement of the primary mass.

Many methods of optimization have been developed to opportunely design this vibration
control technique. In the classical textbook on mechanical vibrations, Den Hartog (1940) pointed
out a remarkable feature: for any fixed values of η and µ, curves (2.3) intersect in two points P
and Q (named “invariant points“), as shown in Fig. 2, independently of the value of ζ. These
points are situated close enough to the peaks of the frequency-amplitude curve. Den Hartog
suggested to choose the parameter η to equalize ordinates of P and Q. Secondly, ζ was taken to
satisfy the condition of “almost horizontal” tangents in the invariant points. Thus the values

ηopt =
1

1 + µ
ζopt =

√
3µ

8(1 + µ)3
(2.4)

were obtained.
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Fig. 2. Invariant points for η = 0.9, µ = 0.1. Solid line ζ = 0.027, long dash line ζ = 0.16, dot-dash line
ζ = 0.5

3. Mathematical analysis of the problem

The approach of Den Hartog has undoubted advantages: simplicity, which is essential for applied
researchers, and rather high accuracy, as was shown in numerical simulations. At the same time,
it is possible to note two drawbacks of this approach. The first one is the absence of analytical
assessment of the difference between the maximum response value proposed and the true value.
The second is that the scheme of determining the optimal values is based on the existence of
invariant points, which is an exception rather than the rule. For example, this approach does not
fit in the case when the main body is damped itself (Warbrton and Ayorinde, 1980), or for sky-
-hooked (Griffin et al., 2002; Liu and Liu, 2005) DVA. So, in such cases, one have to rely upon
numerical methods for optimization. It should be added that from the theoretical viewpoint,
the question on the existence of the exact solution of the problem in an algebraic form is not
closed.

Considering the above-mentioned, our aims are: 1) to provide a more general approach which
does not rely on exclusive properties of (2.3) (invariant points existence); 2) to evaluate the error
of formulas (2.4).

At the beginning, let us consider a function

f(µ, δ, h, γ) =
hγ + (γ − δ)2

hγ(γ + µγ − 1)2 + [µδγ − (γ − 1)(γ − δ)]2 (3.1)

which we believe is more suitable for the analysis. Here

δ = η2 h = 4ζ2 γ = g2 f =
( |Xp|
(Xp)st

)2
(3.2)

Obviously, the optimization of function (2.3) is the same as function (3.1). The optimal
values from (2.4) in the new notions are

δ =
1

(1 + µ)2
h =

3µ

2(1 + µ)3
(3.3)

The typical shapes of the surface f(γ, µ) with fixed values δ, h are presented in Fig. 3.



1084 V. Puzyrov, J. Awrejcewicz

Fig. 3. Typical character of surface (3.1): (a) δ = 1− 2.5µ, h = 0.5, (b) according to Eqs. (3.3)

It is remarkable that for any given set of (δ, h, µ), zeros of the derivative df/dγ lead to the
following equation

γ5 − γ4[4δ − 2h+ µ(δ − h)− 1
2
hµ2] + γ3[6δ2 + 4δ − 4hδ + h2 − 2h+ 2µ(2δ2 − 3hδ + h2)

− hµ2(2δ − h)]− γ2[4δ3 − 2hδ2 + 6δ2 − 4hδ + h2 + µ(5δ3 − 4hδ2 + δ2 − 3hδ + h2)]
+ γδ2[δ2 + 4δ − 2h+ 2µ(δ2 + δ − h) + µ2δ2]− δ4(1 + µ) = 0

(3.4)

This equation of the 5-th order cannot be solved in an explicit form and, therefore, there is
no way to make a conclusion on the maximum value of f . Because of this, we require an indirect
method to achieve our goal.1

Let f0 = 1/κ be some fixed number. Then the equation f = f0 is equivalent to the following
polynomial equation

u(γ) = γ4 + (h+ hµ2 + 2hµ− 2− 2δ − 2µδ)γ3 + (µ2δ2 + 4δ − 2h+ 2µδ − 2hµ+ 1
+ δ2 − κ+ 2µδ2)γ2 + (h− 2δ2 − 2µδ2 + 2δκ − 2δ − hκ)γ + δ2 − δ2κ = 0

(3.5)

In the case when curve (3.1) has two peaks, for some values of κ the line

f =
1

κ
(3.6)

intersects this curve four times, and equation (3.5) has four real positive roots. Otherwise, when
line (3.6) is above curve (3.1), equation (3.5) has no positive roots. On the assumption that
both peaks have the same height, we conclude that this is a borderline between two cases. In
other words, the discriminant of the polynomial u(γ) is equal to zero, and (3.5) has two pairs of
multiple roots. Thereby, there exist such expressions M(µ, δ, h), N(µ, δ, h) that

u(γ) = (γ2 +Mγ +N)2 M2 − 4N > 0 (3.7)

Then, we conclude from (3.7) that

(−2δ + 2µh+ µ2h− 2µδ − 2M − 2 + h)γ3

+ (1 + 2µδ2 + 2µδ − 2h− κ+ 4δ + δ2 − 2δN − 2µh+ µ2δ2 −M2)γ2

+ (−2δ2 − hκ+ 2δκ − 2δMN − 2δ + h− 2µδ2)γ + δ2(1− κ)−N2 = 0
1An approach based on investigation of equation (3.4) with Taylor expansions representation was

presented in (Pozdniakovich and Puzyrov, 2009). It allowed one to achieve some progress, comparatively
with (3.3), but again, no explicit form and error estimation were gained.
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Now we have a system of four equations with five variables κ, δ, h,M ,N , and can consistently
find

κ = 1−
(N
δ

)2
h =
2[(1 + µ)δ +M + 1]

(1 + µ)2

M = −δ
2(1 + µ)3 + µδN2(1 + µ)−N2

N [δ(1 + µ)2 −N ]

(3.8)

The last equation is

(δ −N)[δ9(1 + µ)6 + δ8N(1 + µ)6 − 4δ7N(1 + µ)4 − 4δ6N2(1 + µ)4

+ 2δ5N2(1 + µ)2(3 + µ) + 2δ4N3(1 + µ)2(3 + µ)− 4δ3N3(1 + µ)
− 2δ2N4(2 + 2µ+ µ2) + δN4 +N5] = 0

(3.9)

Condition (3.9) gives an equation of the 9-th order on δ (and 5-th order on N), but with the
substitution

δ =
δ1

(1 + µ)2
N =

N1δ
2
1

(1 + µ)2
(3.10)

it may be rewritten as

N21 δ
2
1 [N

4
1 (1 + µ)

2 − 2N31 (2 + 2µ+ µ2) + 2N21 (3 + µ)− 4N1 + 1] + 2N41µ2δ1
− [N41 (1 + µ)2 − 4N31 (1 + µ) + 2N21 (3 + µ)− 4N1 + 1] = 0

The last one being factorized as

(N1δ1 − 1)
{
δ1[N

4
1 (1 + µ)

2 − 2N31 (2 + 2µ+ µ2) + 2N21 (3 + µ)− 4N1 + 1]
+ [N41 (1 + µ)

2 − 4N31 (1 + µ) + 2N21 (3 + µ)− 4N1 + 1
}
= 0

finally leads to

(1−N1δ1)
{
−N1δ1[µ

√
N31 2(
√
2−

√
N1)− (1−N1)2][µ

√
N31 2(
√
2 +

√
N1) + (1−N1)2]

+ [µN21 + (1−N1)2]2
}
= 0

(3.11)

Evidently,

µ
√
N31 (
√
2 +

√
N1) + (1−N1)2 > 0 [µN21 + (1−N1)2]2 > 0

and, due to the condition κ > 0, the expression in the first square brackets must be positive to
fulfill (3.11). With this, we have the following restrictions on N1

N1δ1 < 1 µ
√
N31 (
√
2−

√
N1) > (1−N1)2 (3.12)

So, we have

δ1(N1) =
2µ2N21

2µ2N31 − [µN21 + (1−N1)2]2
− 1
N1

(3.13)

and now we can find the maximum of κ, i.e. the minimum of ϕ(N1) = N/δ = N1δ1(N1)

dϕ

dN1
= 2µ2N21

(1 + µ)2N41 − 2(3 + µ)N21 + 8N1 − 3
{2µ2N31 − [µN21 + (1−N1)2]2}2
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The numerator has two real and two complex roots

√
4 + 3µ− 1
1 + µ

−
√
4 + 3µ+ 1

1 + µ

1 + i
√
µ

1 + µ

1− i√µ
1 + µ

Only the first of them is positive and for any given value of µ provides the absolute minimum
of the function ϕ(N1).
Substituting N1 = (

√
4 + 3µ− 1)/(1 + µ) in (3.13), after simplifications we get

δ⋆1 =
8

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

64 + 80µ+ 27µ2
(3.14)

The last expression is obviously positive, so the second inequality in (3.12) holds. Now we
verify the first one. It leads to

N =
64

3

64 + 112µ+ 61µ2 + 9µ3 + (64 + 136µ + 103µ2 + 27µ3)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)
< δ (3.15)

Eliminating the square root, one may see that

729µ6 + 5778µ5 + 19279µ4 + 32758µ3 + 27809µ2 + 9344µ > 0

So, for any µ > 0 we have N < δ, and (3.12) are fulfilled. Finally, we have

δ⋆ =
8

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)

h⋆ =
2

3

64 + 248µ + 255µ2 + 81µ3 − 2(16 + 20µ+ 9µ2)√4 + 3µ
(64 + 80µ+ 27µ2)(1 + µ)3

(3.16)

and respectively

η⋆ = 2

√
2

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)

ζ⋆ =

√
64 + 248µ+ 255µ2 + 81µ3 − 2(16 + 20µ+ 9µ2)√4 + 3µ

6(64 + 80µ+ 27µ2)(1 + µ)3

(3.17)

which determine the optimal values of stiffness and damping for DVA. For µ = 0.1, the curve f(γ)
in the vicinity of peaks is presented in Figs. 4a and 4b for both cases – according to (3.3) and
(3.16).

Fig. 4. Frequency-amplitude curve in the neighbourhood of peaks. Long dash line – according to (3.3),
solid line – according to (3.16)
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Also, substituting δ and N into (3.8)2, we get

M = −414µ
2 + 1104µ + 768 + (54µ2 + 168µ+ 192)

√
4 + 3µ

9(1 + µ)(64 + 80µ+ 27µ2)
(3.18)

The rigorous mathematical proof of the fact that any pair of δ, h which differs from (3.16)
is worse (gives larger maximum of f) is too cumbersome to be given here. But, at least, this
verification versus pair (3.3) is rather simple. Indeed, substituting (3.3) and (3.16) one after the
other in (3.4), we determine the extremal values of γ for each case separately with the help of
Taylor expansions by

√
µ

γ
upon(3.3)
1 = 1−

√
2

2

√
µ− 7
8
µ− 139

√
2

256
(
√
µ)3 +

1797

2058
µ2 + . . .

γ
upon(3.3)
2 = 1 +

√
2

2

√
µ− 7
8
µ+
139
√
2

256
(
√
µ)3 +

1797

2058
µ2 + . . .

γ
upon(3.16)
1 = 1−

√
2

2

√
µ− 7
8
µ− 37

√
2

64
(
√
µ)3 +

107

128
µ2 + . . .

γ
upon(3.16)
1 = 1 +

√
2

2

√
µ− 7
8
µ+
37
√
2

64
(
√
µ)3 +

107

128
µ2 + . . .

And then, we may estimate the gain of using the values by (3.16)

max fupon(3.3) −max fupon(3.16) = f(γupon(3.3)2 )− f(γupon(3.16)2 )

=
5
√
2

256

√
µ+
101

8192
µ+
9859
√
2

131072
µ2 + . . .

(3.19)

Numerically, such verification is even easier – we may just combine (3.1) with condition (3.4)
for both cases separately and plot the curve

ψ(µ) = max fupon(3.3) −max fupon(3.16)

This curve is presented in Fig. 5, the dash line corresponds to γ
upon(3.3)
1 , so the distance between

the two branches is the height difference between the two peaks for case (3.3).

Fig. 5. Difference in fmax values for two cases
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As the last step, let us write down the analytical expression for |Xp|/(Xp)st. Substituting δ⋆,
h⋆ according to (3.16) and γ2 = (−M +

√
M2 − 4N)/2 in f , we have

( |Xp|
(Xp)st

)2
= f⋆ =

A+BR

C +DR

where

A = 2(A0 +A1r) B = 3(1 + µ)σ(B0 +B1r) C = 2(C0 + C1r)

D = 3(1 + µ)σ(D0 +D1r) R =
√
M2 − 4N r =

√
4 + 3µ

σ = 64 + 80µ+ 27µ2

Here, the polynomial coefficients are given by formulas

A0 = 8192 + 57856µ + 145536µ
2 + 181000µ3 + 122048µ4 + 43764µ5 + 7083µ6 + 243µ7

A1 = −4096− 8960µ − 1152µ2 + 13252µ3 + 15443µ4 + 7149µ5 + 1242µ6

B0 = 64 + 376µ + 564µ
2 + 331µ3 + 69µ4 B1 = −32 + 4µ+ 63µ2 + 46µ3 + 9µ4

C0 = µ
2(1437696 + 5792256µ + 9830592µ2 + 8976744µ3 + 4645404µ4 + 1291545µ5

+ 150903µ6)

C1 = µ
2(387072 + 1278720µ + 1804896µ2 + 1411020µ3 + 652725µ4 + 170586µ5 + 19683µ6)

D0 = µ
2(155713536 + 906854400µ + 2321104896µ2 + 3410021376µ3 + 3146726016µ4

+ 1871659224µ5 + 705324672µ6 + 157181148µ7 + 17380089µ8 + 531441µ9)

D1 = µ
2(35389440 + 177389568µ + 397799424µ2 + 529362432µ3 + 463738176µ4

+ 275945292µ5 + 108628209µ6 + 25572591µ7 + 2716254µ8)

Eliminating the root R from the denominator, we have

(AC −BDR2) + (BC −AD)R

in the numerator, and multiplier beforeR must be zero, because of f(γ
upon(3.16)
2 ) = f(γ

upon(3.16)
1 ),

i.e. f⋆ is an even function of R (direct calculation confirms this fact). To simplify the fraction
obtained, we also need to eliminate the “small‘” root r from the denominator. The final expres-
sion

|Xp|
(Xp)st

=

√
(8 + 9µ)2(16 + 9µ)− 128

√
(4 + 3µ)3

27µ2(32 + 27µ)
(3.20)

is a quite remarkable recognition because reduction of the fraction is possible only at the final
stage, and the denominator before this reduction is the polynomial of the 48-th(!) order in µ.

4. Conclusion

We have discussed the problem of selection of optimal parameters of a DVA according to the
classical Den Hartog model (Den Hartog, 1940). We have shown that the solution may be given in
an accurate algebraic form which updates somewhat the known result. The analytical approach
presented here may be more applicable for solving problems connected with the use of passive
damping devices. We have also compared the results of two approaches and determined the error
estimation which has been illustrated by the corresponding frequency-amplitude curves.
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The results of fully resolved simulations and large eddy simulations of bluff-body flows
obtained by means of the Lattice Boltzmann Method (LBM) are reported. A selection of
Reynolds numbers has been investigated in unsteady laminar and transient flow regimes.
Computed drag coefficients of a cube have been compared with the available data for va-
lidation purposes. Then, a more detailed analysis of the flow past a sphere is presented,
including also the determination of vortex shedding frequency and the resulting Strouhal
numbers. Advantages and drawbacks of the chosen geometry implementation technique, so
called “staircase geometry”, are discussed. For the quest of maximum computational effi-
ciency, all simulations have been carried out with the use of in-house code executed on GPU.

Keywords: bluff-body flow, Lattice Boltzmann Method, Large Eddy Simulation, GPU com-
puting

1. Introduction

Computational Fluid Dynamics (CFD) is of higher and higher importance in science and engi-
neering as it allows one to predict flow phenomena in investigated systems without carrying out
experiments that tend to be increasingly costly and time consuming. The most popular CFD
approach is the Finite Volume Method (FVM), see Versteeg and Malalasekera (2007), especially
when the computational domain geometry is complex. The FVM is very well validated and has
become an industrial standard in a wide range of applications. On the other hand, recent rapid
developments in computer technology including Graphics Processing Units (GPU) and availabi-
lity of high-level programming tools have made massive parallel computing relatively easy and
inexpensive nowadays. This is an incentive to revisit the formulation of numerical schemes and
algorithms.

The Lattice Boltzmann Method (LBM) is an alternative approach in CFD. Thanks to its
explicit and local character (Succi, 2001), LBM is straightforward to parallelize, e.g., on the
GPUs (Schoenherr et al., 2011). The important feature of the method is that it also allows
easy handling of complex geometries. Satisfactory results obtained by means of LBM have been
reported for various compressible and incompressible, turbulent, single- and multiphase flows
(Arcidiacono et al., 2007; Chang et al., 2013; Prasianakis and Karlin, 2008; Pourmirzaagha et
al., 2015). In a comprehensive paper by Hoelzer and Sommerfeld (2009), directly relevant for
the present work, LBM was applied to the prediction of forces and moments acting on finite-size
particles. Also, reactive flow phenomena including combustion, heat transfer and flows through
porous media can be successfully simulated with the Lattice Boltzmann approach (Chiavazzo et
al., 2010; Arcidiacono et al., 2008; Prasianakis and Karlin, 2007; Grucelski and Pozorski, 2015).
Thus, it is worth to investigate different LBM approaches and implementation techniques to
make it more and more accurate without sacrificing computational efficiency.
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In this paper, we present LBM simulations of a flow around a sphere in both laminar and
turbulent regimes. The investigated case is well validated experimentally (Achenbach, 1972, 1974;
Sakamoto and Haniu, 1990), so it is often treated as a benchmark for computational approaches
(Jones and Clarke, 2008). The main aim of this work is to investigate LBM capability to predict
macroscopic flow quantities (i.e. the drag coefficient and Strouhal number) for the “staircase
geometry” scheme applied on a uniform lattice. This approach is the simplest possible way of
spatial discretisation of the body geometry in LBM and allows one to efficiently parallelize the
implementation of boundary conditions and evaluation of hydrodynamic forces. To the best of the
authors’ knowledge, the use of simplified geometry in the turbulent flow regime is a novel aspect
of this work. Researchers investigated also more sophisticated methods, i.e. interpolation of the
body boundary (Mei et al., 2002). Stiebler et al. (2011) presented an LBM simulation of the flow
around a sphere with the use of local discretisation refinement. In the present work, simulations
have been carried out for a selection of Reynolds numbers varying from 30 up to 104. Large
eddy simulation (LES) has been implemented according to the sub-grid scale (SGS) turbulence
model of Smagorinsky (1963) that already had given good results in simulation of the turbulent
Taylor-Green vortex (Kajzer et al., 2014).

2. Lattice Boltzmann Method and implementation details

2.1. Fundamentals of the method

The LBM is based on the kinetic theory of gases. The discretised Boltzmann equation is so-
lved (instead of the Navier-Stokes equations) for discrete velocity distribution functions fα(x, t),
in further sections also called populations. The spatial discretisation is done on a regular cubic
grid; moreover, only a finite number of directions and magnitudes (indexed by α) are allowed
in the microscopic velocity field. In this paper, we present results obtained with a code imple-
menting the D3Q15 lattice scheme, i.e., D = 3 dimensions and Q = 15 allowed directions. Also
popular, due to its better accuracy and only slightly higher computational cost, is the D3Q19
model. All formulations and proofs of statements recalled in this Section can be found in the
book of Succi (2001).

The discretised Boltzmann equation with the Bhatnagar-Gross-Krook closure for the collision
operator takes the following form

fα(x+∆teα, t+∆t)− fα(x, t) = τ−1
(
f eqα (x, t) − fα(x, t)

)
(2.1)

where α is the index of the velocity direction (α = 0, 1, . . . , Q − 1), τ is the nondimensional
relaxation time and eα is the lattice velocity in the direction α. The equilibrium distributions
f eqα (x, t), or more precisely f

eq
α (ρ(x, t),u(x, t)), corresponding to the density ρ and macroscopic

velocity u at the lattice node x at the time t, are calculated as follows

f eqα (ρ,u) = wαρ
(
1 +
3

c2
eα · u+

9

2c4
(eα · u)2 −

3

2c2
u · u

)
(2.2)

where ρ =
∑Q−1
α=0 fα is the fluid density, u = ρ−1

∑Q−1
α=0 fαeα is the macroscopic fluid velocity,

wα is a weighting coefficient (depending on the lattice type DnQm), c = ∆x/∆t is the lattice
speed.

The discretised Boltzmann equation is solved in two steps, called respectively the collision
step and the propagation step

f̃α(x, t) = fα(x, t) + τ
−1(f eqα (x, t− fα(x, t))

fα(x+∆teα, t+∆t) = f̃α(x, t)
(2.3)
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The explicit and local character of LBM is visible in the above equations: the collision step
involves values of the flow fields (through f eq) and populations at a single node only, and the
propagation step consists in copying the post-collision populations to proper neighbouring nodes.
In our implementation, ∆x = ∆t = 1 which results in c = 1. The pressure field is obtained from
the following equation of state: p = ρc2s, where the speed of sound is cs = c/

√
3. It can be shown

that u and p satisfy the Navier-Stokes equations with the kinematic viscosity ν = (τ −1/2)c2s∆t
with an error O(Ma2).

2.2. Boundary conditions

As the discretised Boltzmann equation solves for the discrete velocity distribution functions,
proper boundary conditions on these distributions have to be enforced to retrieve the physical
behaviour of the fluid in the macroscopic sense (i.e., velocity and pressure). All types of boundary
conditions used in presented simulations are widely described by Succi (2001). The easiest way
to implement the immersed body geometry is to project it on regular lattice nodes. The lattice
nodes are then marked with respective flags, “fluid” and “solid”, say. That is why this variant is
called “staircase geometry” (mesh-fitted surface of the body). Such an approach enables explicit
use of the so-called bounce-back (BB) boundary condition. The populations outcoming from the
solid nodes to the fluid nodes are replaced by populations moving in the opposite direction. This
scheme makes the code efficient as it does not require any interpolation steps. Unfortunately, it
is of the first order of accuracy in the described case (i.e. when the solid wall coincides with the
lattice nodes). The inflow boundary condition corresponds to the constant velocity vector normal
to the inflow plane, and the density (thus the pressure) is resultant. It is achieved by enforcing
the populations to be in the equilibrium state fα(xin, t) = f eqα (xin, t) with xin being the inlet
nodes, corresponding to the inflow velocity and the resulting density. The outflow boundary
condition forces the density (and pressure) to be constant and the velocity gradient to vanish. It
is realized by setting the populations in equilibrium related to the reference density ρ0 and the
velocity values in nodes preceding to the outflow plane in the normal direction −en,out, pointing
towards the domain interior: fα(xout, t) = f eqα (xout − ∆ten,out, t), where xout are the outflow
nodes. On the domain side boundaries, the symmetry plane boundary condition is imposed
(this is achieved by mirror reflection of proper populations), and the density is resultant. Some
other approaches to inflow and outflow conditions can be found in (Grucelski and Pozorski,
2013).

2.3. Force evaluation

Hydrodynamic forces acting on the sphere are calculated by means of the momentum exchan-
ge method. We decided to use this method although it is proposed for cases with boundary nodes
lying exactly halfway beetwen the lattice nodes. Mei et al. (2002) raised some questions about
the required body discretisation resolution as a function of the Reynolds number when using
this method. It utilises only the advection and collision distribution functions (fα and f̃α) wi-
thout the necessity of computing the pressure and shear stress. The total force F acting on the
immersed body is calculated as follows

F =
∑

xsf

∑

α

(
f−α(xsf ) + f̃α(xsf )

)
eα (2.4)

where xsf denotes the fluid nodes that have at least one solid neighbour, and the subscript −α
is defined by e−α = −eα.
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2.4. Large Eddy Simulation in LBM

LES is a method of turbulence modelling that resolves spatially filtered flow fields (Aubard
et al., 2013; Sagaut and Grohens, 1999). The method can be implemented as a local increase of
the kinematic viscosity ν

νeff = ν + νsgs (2.5)

where νeff is the effective local viscosity and νsgs denotes the turbulent (or sub-grid scale, SGS)
viscosity which in the model of Smagorinsky (1963) is computed as

νsgs = (CS∆)
2|S| (2.6)

where ∆ is the filter size, |S| = √2SijSij and Sij = 12
(
∂ui
∂xj
+
∂uj
∂xi

)
is the strain rate tensor, CS is

a constant, most often equal to 0.17.

We present now the application of the Smagorinsky SGS model to LBM (Chang et al., 2013;
Stiebler et al., 2011). In the lattice Boltzmann method, the kinematic viscosity of the fluid ν is
uniquely linked with the relaxation time τ . The effective relaxation time is determined as

τeff = 3(ν + νsgs)
∆t

(∆x)2
+
1

2
(2.7)

It can be shown that

νsgs = (CS∆)
2|S| = 1

6

(√

τ2 +
18(CS∆)2|P |

ρ
− τ

)
(2.8)

where |P | = √2PijPij with Pij =
∑
α eαieαj(fα − f eqα ) being the stress tensor. Combining Eqs.

(2.7) and (2.8), we obtain

τeff =
τ

2

(
1 +

√

1 +
18(CS∆)2P

ρτ2

)
(2.9)

In our implementation of LES in the LBM, we set ∆ = ∆x.

3. Flow cases and results

3.1. Validation case: flow past a cube

In order to validate the computer implementation, we made a simulation of the flow around
a cube, as the solid boundary is exactly modelled within the “staircase geometry” approach. All
computations have been carried out with the use of an in-house LBM code written in NVIDIA
CUDA-C language and executed on NVIDIA GeForce series GPU. The code does not involve
external libraries or user-defined data structures – only CUDA built-in types are used. The
spatial resolution was set to 644 × 244 × 244 nodes in the x, y and z directions respectively,
resulting in about 38 million of nodes which exploited all available GPU memory (6GB). The
cube centre was placed at x = 160 l.u. (lattice units) and the cube edge was 32 l.u. Setting the
inflow speed to 0.0289 l.u. resulted in Ma < 0.1 (while the lattice sound speed cs ≈ 0.57) in the
whole domain so the flow could be treated as incompressible. The computations were carried
out at Reynolds numbers Re = 50, 100, 200, 300 (fully resolved simulations) and 104 (LES),
where Re = UinD/ν = 3UlN/(τ −0.5) with D being the cube edge size (characteristic length) in
physical units, where Uin is the inlet speed in physical units, Ul is the inlet speed in lattice units,
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Fig. 1. A snapshot of the vorticity y-component in the flow past a cube at Re = 104 (cross-section
normal to the y-axis in the symmetry plane, t+ = 95)

N is the number of lattice nodes per cube characteristic length. The obtained y component of
vorticity field at Re = 104 at non-dimensional time t+ = 95 (statistically steady state), where
t+ = tUl/N with t being the time in l.u., is shown in Fig. 1.

In Fig. 2, the results of the computed drag coefficient CD are shown. It is calculated as
CD = 2Fx/ρU

2
l S, where Fx is the force acting on the cube in the x-direction, see Eq. (2.4),

ρ is the density, Ul is the inflow speed in l.u. and S is the cross-section area of the cube in l.u.
At Re = 50, 100, 200 and 300, the computed drag is in very good agreement with the data
reported by Saha (2004) obtained by means of the MAC (Marker And Cell) method. His results
were summarised in the form of correlation CD = (24/Re)(1 + 0.232 · Re0.628). For Reynolds
numbers above 300 in the transient flow regime, some scattered data on the drag coefficient are
available, but no precise values or correlations are given (Hoelzer and Sommerfeld, 2009). In the
turbulent regime, at Re = 104, the drag coefficient is slightly overestimated in comparison to
the Re-independent value CD = 1.05 ± 0.05 given by Holmes et al. (2004). The reason of this
discrepancy is discussed in the next Section.

Fig. 2. Drag coefficient of cube; •: present LBM results; ——: approximation of numerical results given
by Saha (2004) for laminar flow; ×: CD = 1.05± 0.05, valid for the turbulent regime

3.2. Flow past a sphere

After the validation tests presented above, simulations of the flow past a body of simplest
curvilinear geometry – a sphere – have been carried out. The sphere diameter was set to 32 lattice
units which resulted in domain blockage about 1.3% (defined as the ratio of cross-stream areas
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of the sphere and the domain). All other parameters were set to the same values as in the
simulations of the flow past a cube. Computations without turbulence modelling at Re = 30,
50, 100, 300 and 500 were performed. In Table 1, the computed drag coefficients are compared
with the experimental correlation reported by Clift et al. (1978). The computed drag coefficients
are in good agreement with the experimental results up to Re = 300 (see Fig. 3). At Re = 500,
the error is more significant, which suggests that the simulation is underresolved. Therefore,
at higher Reynolds numbers (103, 3 · 103 and 104), the LES model (described in Sec. 2.4) was
used. In Fig. 4, the map of the ratio of the turbulent-to-molecular viscosity νsgs/ν is shown at
Re = 103. It is clearly visible that the resolution used in these simulations is barely sufficient
since the maximum values of the SGS viscosity are comparable to the molecular viscosity. At
Re = 104, the values of νsgs can locally be even one order of magnitude higher than ν in the
vicinity of the sphere surface, which means that the boundary layer is not adequately resolved.
Arguably, this explains the overestimation of the drag coefficient. Moreover, since we are close
to the stability limit of computations, some artefacts are visible in the upstream region in Fig. 4
due to the weakly compressible nature of LBM. Computations at higher Reynolds numbers
(above 104, not shown in Fig. 3) reveal that the drag coefficient remains almost constant. This
effect is expected since capturing these slight differences, in particular a correct prediction of
the drag crisis at Re ∼ 2 · 104, would require very fine meshes (Rodriguez et al., 2013).

Table 1. Computed and experimental drag coefficients CD of the sphere. At Re = 10
3 and

above, the LES approach has been applied

Re exp. data LBM (rel. error in %)

30 2.12 2.08 (1.9%)

50 1.57 1.55 (1.3%)

100 1.09 1.08 (1.0%)

300 0.65 0.67 (3.1%)

500 0.55 0.59 (7.3%)

103 (LES) 0.47 0.55 (17%)

3 · 103 (LES) 0.40 0.53 (33%)

104 (LES) 0.41 0.54 (32%)

The frequency spectra of velocity in the wake area have also been calculated in order to
obtain the Strouhal number defined as

St =
f0D

Uin
(3.1)

where f0 denotes the frequency of vortex shedding, D is the sphere diameter and Uin is the
inflow velocity. The frequency spectra of the cross-stream velocity components were obtained
by means of FFT. The velocity probes were placed at x = xc + xpx0 + ypy0 + zpz0, where
xc denotes the position of the sphere centre, x0, y0, z0 are axes unit vectors, and xp = 3.0D,
yp = 0.3D and zp = 0.5D. The spectra were computed at Re = 10

3 and Re = 104. Figure 5 shows
the computed spectra of the y-component of velocity, F [uy], as a function of the dimensionless
frequency f∗ = fD/Uin.
The obtained results match quite well the experimental data at Re = 103. Sakamoto and Ha-

niu (1990) reported St = 0.18-0.20 with ∼ 4% measurement errors, while the present LBM result
is St = 0.19. At Re = 104, the spectrum has significant amplitudes also at higher frequencies,
which is an expected result as the wake becomes more turbulent than at Re = 103. Moreover, it
is hard to distinguish a clearly dominating frequency in the neighbourhood of f∗ = 0.2 (obtained
in experiments), although the highest value is achieved at f∗ = 0.17. This result should however
be taken with care since the simulation is underresolved.
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Fig. 3. Drag coefficient of the sphere. •: present LBM computations; ——–: approximation of
experimental results according to Clift et al. (1978)

Fig. 4. The grayscale map of νsgs/ν at Re = 10
3 at non-dimensional time t+ = 95

Fig. 5. The spectrum of the y-component of velocity obtained in LBM simulations expressed in terms of
the dimensionless frequency f∗ at Re = 103 (left) and Re = 104 (right)

4. Conclusions and perspectives

The methods presented in this paper allow one to accurately predict the flow past simple bluff
bodies in terms of the drag force and the Strouhal number in the range of low and moderate
Reynolds numbers. In the transitional and turbulent regimes, we have added the LES closure
for non-resolved flow scales. In the case of a turbulent flow, it would be however necessary to
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introduce a local lattice refinement to solve the boundary layer and wake with sufficient accuracy.
Further validation of the presented methods should involve study of more complex phenomena in
bluff-body flows, e.g. wake dynamics and structures which were investigated in an experimental
way by Klotz et al. (2014) and Szaltys et al. (2011).
The presented implementation of boundary conditions, force evaluation and turbulence model

do not deprive LBM from its explicit local character, so the problem size (the number of lattice
nodes N , say) does not have a big impact on the total simulation time as the computational
complexity remains of O(N). These features of LBM make it incomparably faster than other
methods, even up to two orders of magnitude faster than FVM executed on a single multicore
CPU of comparable cost with a similar programming effort (Kajzer et al., 2014). Introduction
of the block-wise refinement will not require modification of the presented approaches. However,
it will make the implementation slightly more complicated in comparison to the homogenous
lattice.
Summarising, the Lattice Boltzmann Method seems to be a promising tool for external flow

computations in a wide range of Reynolds numbers.
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The ubiquitiformal fracture energy is proposed in the paper and its explicit expression is
obtained. Moreover, the numerical results for concrete are found to be in good agreement
with those for the critical strain energy release rate. The discrepancy between the numerical
results of the traditional fracture energy and the critical strain energy release rate can be
explained reasonably, which implies that the ubiquitiformal fracture energy should be taken
as an available fracture parameter of materials. Finally, it is numerically found for some
concrete that there is not size effect for the ubiquitiformal fracture energy.

Keywords: fractal, ubiquitiform, fracture energy, size effect

1. Introduction

As is well known, pioneered by the work of Mandelbrot et al. (1984), the fractality of fracture
surfaces in various kinds of materials such as concrete (Saouma et al., 1990; Saouma and Barton,
1994), steel (Mandelbrot et al., 1984; Underwood, 1986), ceramic (Mecholsky, 1989) and rock
(Krohn and Thompson, 1986; Radlinski et al., 1999) has been verified experimentally, which
has gradually lead to the establishment of the emergent fractal fracture mechanics over the past
three decades. Naturally, it is a reasonable desire that some important physical concepts or
parameters in the classical fracture mechanics can be extended directly into the fractal one but,
unfortunately, this is not the case sometimes. For example, fracture energy or, more scholarly,
the strain energy release rate, is one of the significant properties characterizing the fracture
property of materials in the classical fracture mechanics and defined as the energy required
to create a unit new crack surface (in integral dimension of D = 2). However, it seems that
there exists an intrinsical difficulty for extending such a traditional concept in the classical
fracture mechanics into the fractal fracture mechanics, because of singularity of the integral
dimensional measure or the immeasurability of the corresponding fractal such as the so-called
fractal fracture energy. That is to say, the integral dimensional measures or, intuitively, the area
of all the fractal fracture surfaces tend in general to infinity, which makes all the traditional
fracture energy vanishing. In fact, over the past decades, to overcome such a difficulty and
well describe fractal characteristics of a fractal crack as a direct extension of the concept of
traditional fracture energy, some new density kinds of fractal fracture energy parameters defined
on a unit fractal measure were proposed, such as the specific energy-absorbing capacity of unit
fractal measure (Borodich, 1992, 1997, 1999), fractal fracture energy (Bažant, 1995, 1997a,b) as
well as the renormalized fractal fracture energy (Carpinteri, 1994; Carpinteri and Ferro, 1994;
Carpinteri et al., 2002), which have been used widely in practical applications. However, as was
pointed out recently by Ou et al. (2014), such a concept of the fractal fracture energy seems
now to be a little questionable, because these fractal fracture energies are both difficult to be
determined in practice and lack unambiguous physical meanings (Bažant and Yavari, 2005).
More importantly, such defined fractal fracture parameters are not appropriate to be taken as a
measure of strength or toughness of materials. On account of that the comparison between the
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measures of two objects in different dimensions is radically meaningless, while the traditional
fracture energy is indeed an important characteristic parameter of materials. For example, one
can say that the material with a higher fracture energy has higher a load bearing capacity.
Addison (2000) tried to deal with such an issue for fractal cracks by using the concept of so-
called pre-fractal fracture surfaces. With the aid of a new-defined hypervolume, Addison (2000)
obtained the ratio of the area of the pre-fractal fracture surface to the original smooth cross-
sectional area of the specimens. Taking the ratio as a modified factor, the pre-fractal fracture
energy was obtained but, certainly, the fractal fracture energy was still divergent and hence
could not be determined. Moreover, it was also found by Addison (2000) that the values of the
pre-fractal fracture energy were remarkably coincident with the critical strain energy release rate
determined by the fracture toughness relation, in which the fracture toughness and the elastic
modulus were determined experimentally (Swartz and Kan, 1992). Although, as concluded by
Addison (2000), the pre-fractal fracture energy can be a true material constant, it should be
noticed that the formulation of the pre-fractal fracture energy under the concept of fractals
is a little miscellaneous and the hypervolume of a fractal object seems to have no physical
significance, and then becomes unnecessary.

As above mentioned, there are some intrinsical difficulties in the practical engineering ap-
plications of fractals, especially when the measure of the considered object must be taken into
account. As was pointed out further by Ou et al. (2014), the fractal approximation of a physical
object in nature is unreasonable because of divergence of the integral dimensional measure of the
fractal. Moreover, to cover the shortage in fractal applications, a new concept of a ubiquitiform
was proposed by Ou et al. (2014). It is believed that a real physical or geometrical object in na-
ture should be ubiquitiformal rather than fractal. According to Ou et al. (2014), a ubiquitiform
can be defined as a finite order self-similar (or self-affine) physical configuration constructed
usually by a finite iterative procedure and, moreover, under the concept of the ubiquitiform, the
singularity of the integral dimensional measure or the immeasurability of the fractal disappears.

In this paper, therefore, the fracture energy and its size effects are re-analyzed based on the
concept of the ubiquitiform. A ubiquitiformal fracture energy is proposed and its explicit expres-
sion is obtained. Subsequently, the calculated numerical results of the ubiquitiformal fracture
energy for concrete are compared with those for the critical strain energy release rate calcula-
ted by using the well-known fracture toughness relation. Furthermore, a similar size effect of
the fracture energy to that derived by fractal theory is also obtained. This article is divided
into four sections. After this brief introduction, the ubiquitiformal fracture energy and the size
effect of the fracture energy are presented in Section 2. In Section 3, numerical results for the
ubiquitiformal fracture energy are presented together with a brief discussion and, finally, some
conclusions are drawn out in Section 4.

2. Ubiquitiformal fracture energy of concrete

In the classical fracture mechanics, the fracture energy G is defined as the released energy W
divided by the opened fracture area A, namely

G =
W

A
(2.1)

Thus, for a specimen with a smooth square cross-section of side length l, A = l2, the traditional
fracture energy is

G =
W

l2
(2.2)
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On the other hand, when taking the same cross-section as a ubiquitiformal surface, the ubiqu-
itiformal area Auf is

Auf = l
Dδ2−Dmin (2.3)

where D is the complexity of the ubiquitiform and, according to Ou et al. (2014), the value
of D for the ubiquitiform is equal to the fractal dimension of its associated fractal. δmin is the
lower bound to scale invariance for the ubiquitiform, which is believed to be related to the
microstructure of the object under consideration.
Substituting Eq. (2.3) into Eq. (2.1), the ubiquitiformal fracture energy Guf of a material

can be defined as

Guf =
W

lD
δ2−Dmin (2.4)

Moreover, the relationship between the ubiquitiformal fracture energy and the traditional one
can be obtained directly from Eqs. (2.4) and (2.2), as

Guf
G
=
( l

δmin

)2−D
(2.5)

It is seen from Eq. (2.5) that, unlike the fractal fracture energy (Borodich, 1992, 1997, 1999;
Bažant, 1995, 1997a,b; Carpinteri, 1994; Carpinteri and Ferro, 1994; Carpinteri et al., 2002),
the ubiquitiformal fracture energy Guf can be obtained directly from physical and geometrical
properties of the object under consideration, and then such a ubiquitiformal fracture energy can
be taken as a reasonable material parameter, as was proposed by Addison (2000). However, on
the one hand, Addison (2000) reached this conclusion via the concept of a pre-fractal, which
implied that the fracture surface was of fractal, i.e. the fracture surface had fractional dimension.
On the contrary, the concept of the ubiquitiform emphasis the integral dimension feature of a
real object in nature, that is, all the real fracture surfaces are of integral dimension 2. On the
other hand, the pre-fractal fracture energy has to be determined via an ambiguous parameter,
namely, the hypervolume V ∗, which is unnecessary in the determination of the ubiquitiformal
fracture energy.
Furthermore, it is believed that there is a size effect for the traditional fracture energy G,

which can be easily obtained from Eq. (2.5). Considering two specimens in different sizes l1
and l2, respectively, there are

Guf
G1
=
( l1
δmin

)2−D Guf
G2
=
( l2
δmin

)2−D
(2.6)

where G1 and G2 are the corresponding traditional fracture energies for the two specimens,
respectively. And then the size effect can be presented simply as

G1
G2
=
( l1
l2

)D−2
(2.7)

In fact, Carpinteri and Ferro (1994), Carpinteri and Chiaia (1995) also obtained such a relation-
ship from fractal theory based on the concept of renormalized fracture energy. However, similarly
to the concept of the hypervolume used by Addison (2000), the renormalization fracture energy
has also no clear physical meaning, and it is difficult to be determined in practice.

3. Numerical results and discussions

In Eq. (2.5), both the traditional fracture energy G and the complexity D can be determined
experimentally. For concrete material, the lower bound to scale invariance δmin can be empirically
related to the tensile strength ft (Li, 2014) as
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δmin = 221.28f
−3.24
t (3.1)

where the units of δmin and ft are µm and MPa, respectively.
To investigate numerically the properties of the ubiquitiform fracture energy, concrete mate-

rials presented in Swartz and Kan (1992) as well as by Saouma et al. (1990, 1991) and Saouma
and Barton (1994) are used. The corresponding material properties as well as the calculated va-
lues of δmin from Eq.(3.1) are listed in Tables 1 and 2, respectively. For convenience, according
to Addison (2000), the complexities used for the concrete materials presented by Swartz and
Kan (1992) are all taken to be D = 2.1. In the tables, E is the elastic modulus and KIC is the
fracture toughness.

Table 1. Experimental data (Swartz and Kan, 1992) and the corresponding lower bound to
scale invariance

Specimen
l E KIC G ft δmin
[cm] [GPa] [MPa

√
m] [N/m] [MPa] [µm]

NC-.64 12.7 31.0 1.015 99.0 5.1 1.1

HC-.64 12.7 35.0 1.327 144.4 6.0 0.7

NP-.64 12.7 32.7 1.078 99.9 5.4 1.0

NP-.30 12.7 37.2 1.392 127.4 8.0 0.3

HC-.30 12.7 38.2 1.676 166.8 8.0 0.3

NC-.30 12.7 41.6 1.439 119.0 8.4 0.2

Table 2. Experimental data (Saouma et al., 1990, 1991; Saouma and Barton, 1994) and the
corresponding lower bound to scale invariance

Specimen
l E D KIC G ft δmin
[cm] [GPa] [–] [MPa

√
m] [N/m] [MPa] [µm]

S32A 40.64 16.9 2.1 0.89 224.6 2.67 9.2

S32B 40.64 16.9 2.098 1.0 205.3 2.67 9.2

S32C 40.64 16.9 2.117 1.1 238.6 2.67 9.2

S52A 67.74 16.9 2.073 1.16 205.3 2.67 9.2

SS32A 40.64 23.2 2.08 1.4 303.5 3.96 2.6

SS32B 40.64 23.2 2.085 1.25 249.1 3.96 2.6

S33A 40.64 16.5 2.097 0.99 212.3 2.41 12.8

S33B 40.64 16.5 2.109 0.88 221.1 2.41 12.8

S33C 40.64 16.5 2.103 1.28 245.6 2.41 12.8

S53A 67.74 16.5 2.082 0.98 236.8 2.41 12.8

The numerical results of the ubiquitiformal fracture energy calculated by using Eq. (2.5) for
the two materials are presented in Figs. 1a and 1b, respectively. For the sake of comparison
and discussions, the numerical results of both the traditional fracture energy G and the critical
strain energy release rate Gc calculated from the fracture toughness relation Gc = K2IC/E are
also presented in Figs. 1a and 1b.
It can be seen from both Figs. 1a and 1b that the numerical result of the ubiquitiformal

fracture energy Guf is in good agreement with that of the critical strain energy release rate Gc
calculated from the fracture toughness relation and, as usuall, far from that of the fracture
energy G. As is well known, the discrepancy between the calculated results of the critical strain
energy release rate Gc from the fracture toughness KIC and the experimental data of G has
been perplexing researchers for a long time. It was conjectured that, in general, the assump-
tion of linear elasticity is not a so good approximation to describe physical properties of real
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Fig. 1. Ubiquitiformal fracture energy Guf for concrete: (a) Swartz and Kan (1992),
(b) Saouma et al. (1990, 1991), Saouma and Barton (1994)

materials, because the relation for fracture toughness is derived from rationalistic deduction
on the assumption of linear elasticity. It seems now that the above mentioned discrepancy can
be reasonably explained based on the ubiquitiformal fracture energy as follows. In fact, in the
proper sense, the fracture energy G is obtained by the ratio of the work done by the external
traction to the area of the fracture surface, which hence represents the average energy release
rate for creating the fracture surface and characterizes a global fracture property of the material
under consideration. On the other hand, however, the critical strain energy release rate Gc is the
critical crack-tip energy release rate, which describes the local fracture property of materials.
Thus, it can be realized that the discrepancy between the values of the fracture energy G and
the critical strain energy release rate Gc should result from two uncertainties coming from the
two physical variables G and Gc, respectively. One is the accuracy of the calculation results of
the area of the fracture surface for the fracture energy G, and the other one is the availability of
the assumption of linear elasticity for deduction of the critical strain energy release rate Gc as
inferred in the past. Obviously, based on large volumes of the experimental variations as above
mentioned, the real fracture surface should be ubiquitiformal rather than smooth. Therefore,
it must be questionable to calculate the area of the fracture surface under the smooth surface
assumption, and instead of which, the concept of the ubiquitiform surface must be taken into
account. Considering further the agreement of the calculated numerical results of the ubiqu-
itiformal fracture energy Guf and that of the critical strain energy release rate Gc, it can be
believed that the above mentioned discrepancy is indeed resulted from the incorrect calculation
of the area of the fracture surface on the smooth surface assumption and that the ubiquitiformal
fracture energy Guf is superior to the traditional fracture energy G. Moreover, it should be po-
inted out here that the fact that the numerical result of the ubiquitiformal fracture energy Guf
is in good agreement with that of the critical strain energy release rate Gc calculated from the
fracture toughness relation also implies that the opened area of the fracture surface is more
important than the well-known crack-tip stress singularity in the description of the fracture
process in materials. This can be demonstrated further as follows. On the one hand, Gc comes
from the rigorous theoretical analysis of the crack-tip stress singularity on the assumption of
linear elasticity. On the other hand, a ubiquitiformal crack will include a number of smaller
cracks distributed in different lengths and directions, which obviously may result in much more
complexity in the crack-tip stress singularity. However, although it does not take the complica-
ted crack-tip stress singularity into account, the numerical results of the ubiquitiformal fracture
energy calculated directly via the area of the ubiquitiformal fracture surface can still be in good
agreement with that of the critical strain energy release rate, which just verifies the importance
of the area.
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Nay more, unlike the fracture energy G, for some concrete materials, the ubiquitiformal
fracture energy Guf seems to have not the size effect, which is shown in Table 3 by taking the
concrete presented by Carpinteri and Ferro (1994) as an example. The material properties as well
as the calculated values of both δmin and Guf are listed in Table 3, where Gm and Gufm are the
mean values of the fracture energy G and the ubiquitiformal fracture energy Guf , respectively;
Er(G) and Er(Guf ) are the relative errors of G and Guf , respectively. It can be seen that the
relative errors of the ubiquitiformal fracture energy Er(Guf ) are all within the range of 10% for
varying sizes of the specimens, while that of the traditional fracture energy Er(G) can reach up
to 30%.

Table 3. Experimental data (Carpinteri and Ferro, 1994) and the corresponding ubiquitiformal
fracture energy

l ft δmin D G Gm Er(G) Guf Gufm Er(Guf )
[cm] [MPa] [µm] [–] [N/m] [N/m] [%] [N/m] [N/m] [%]

5 4.25 2.04 2.38 83 109 −31 1.78 1.97 −10
10 3.78 2.98 2.38 102 109 −7 1.94 1.97 −2
20 3.64 3.37 2.38 142 109 23 2.18 1.97 10

In addition, it can be seen from Eq. (2.5) that the lower bound to scale invariance δmin can
introduce some errors to the calculation of the area of the ubiquitiformal fracture surface Auf
and then affect the calculation results of the ubiquitiformal fracture energy Guf . In the following,
it will be numerically demonstrated that such an influence can be neglected. Denote the true
value and the actual value of the lower bound to scale invariance by δmin and δ

′
min, respectively,

the corresponding areas of the ubiquitiformal fracture surface by Auf and A
′
uf , and the relative

error of δmin and of the ubiquitiformal area Auf by Er(δmin) and Er(Auf ), respectively, one can
obtain the relation between the two relative errors from Eq. (2.3), as

Er(δmin) =
δ′min − δmin

δmin
=
δ′min
δmin
− 1

Er(Auf ) =
A′uf −Auf

Auf
=
(δ′min
δmin

)2−D
− 1 = [Er(δmin) + 1]2−D − 1

(3.2)

Thus, from Eqs. (3.2), the relative error Er(Auf ) only depends on the relative error Er(δmin)
and the complexity D. For example, for D = 2.1, taking a larger value of the relative error of
the lower bound to scale invariance Er(δmin) = 50%, it can be calculated from Eqs. (3.2) that
Er(Auf ) = −3.97%, which is obviously an acceptable error in most engineering applications.

4. Conclusion

Based on the new concept of ubiquitiform, namely, all the real physical or geometrical objects
in nature are ubiquitiformal, the fracture energy, one of the important mechanical properties in
the fracture mechanics, is re-examined in this study. Instead of the traditional fracture energy G
for the smooth crack configuration, the concept of the ubiquitiformal fracture energy Guf is
proposed. Because of the integral dimension characteristic of a ubiquitiform crack or the cor-
responding ubiquitiform fracture surface, an explicit expression for the ubiquitiformal fracture
energy can be obtained, which is intrinsically different from the case for a fractal crack because
of the singularity of the integral dimension of fractals. Moreover, it is found that the calcula-
ted numerical results of the ubiquitiformal fracture energy are in good agreement with those
for the critical strain energy release rate Gc calculated from the fracture toughness relation,
Gc = K2IC/E. Consequently, the perplexity over a long period of time about the discrepancy
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between the experimental data of the traditional fracture energy G and the calculated results of
the critical strain energy release rate Gc by using the fracture toughness relation can be reaso-
nably explained. That is, the fracture surfaces generated in a real material cannot be thought
of as a smooth configuration but, instead, it must be a ubiquitiformal one, and then, instead of
the traditional fracture energy, the ubiquitiformal fracture energy must be adopted in practical
engineering applications. In addition, it should be pointed out that the agreement between the
numerical results of Guf and Gc also implies that the created area of the fracture surface will
play a more important role than the crack-tip stress singularity to characterize the fracture pro-
cess in materials. Finally, unlike the traditional fracture energy, for some concrete materials, it
is verified numerically that there is not size effect for the ubiquitiformal fracture energy, which,
certainly, should be further theoretically studied in future.
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Çetkin A., Orak S.—Free vibration analysis of point supported rectangular plates using quadrature
element method 1041

Moradi R., Alikhani A., Jegarkandi M.F. — Ultimate state boundedness of underactuated
spacecraft subject to an unmatched disturbance 1055

Kumar R., Devi S. — Eigenvalue approach to nanobeam in modified couple stress thermoelastic
with three-phase-lag model induced by ramp type heating 1067

Puzyrov V., Awrejcewicz J.—On the optimum absorber parameters: revising the classical results 1081

Kajzer A., Pozorski J. — Application of the Lattice Boltzmann Method to the flow past a sphere 1091

Ou Z.-C., Yang M., Li G.-Y., Duan Z.-P., Huang F.-L. — Ubiquitiformal fracture energy 1101


	JTAM-3-2017-str-749-1110-popr
	2017-3-Spis

