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Two algorithms which allow one to take an uneven road surface into account in the vehicle
dynamics analysis are presented in the article. Their essence is to determine the position of
the contact point of the tire model with the uneven road surface. According to the concept
of the authors, the names of the algorithms are to refer to the essence of the matter of
the procedures assumed. The first of them – named Plane – can be used while considering
the continuous model of the surface obtained by use of “the bicubic interpolation” taken
from computer graphics, and the second one – named 4Points – in the case of the discrete
model of this surface, developed especially for needs of the methods presented. In the work,
it is assumed that only continuous changes of the road profile, without its possible abrupt
changes, e.g. in form of a transversely placed threshold of sharp edges, can be considered.
Therefore, the mapping of the road surface, obtained in the case of including its both models,
is smooth. The developed algorithms are used to analyze dynamics of a technical rescue
vehicle which can drive in terrain conditions.

Keywords: dynamical analysis, uneven road surface, contact point

1. Introduction

While analyzing vehicle dynamics, forces and reaction torques acting on models of their tires
from the road surface must be considered appropriately. In real conditions, tire contact with
an uneven surface takes place within the definite area. When the tire is modeled, the contact
surface is usually limited to a point (Hirschberg et al., 2002, 2007; Rill, 2013). The authors of
this work followed also that procedure, assuming that the modeled tire – considered in form of
a deformable rim – contacts with the mapping surface of the road surface in a definite point.
The proposed method is based on the use of homogenous transformation matrices taken from

robotics with dimensions 4× 4, which enable one to make transformations between the assumed
coordinate systems (Craig, 1989).
If the position of any point A in the given coordinate system {j}, expressed by position

vector {j}rA of dimensions 3 × 1 is known, then the position of this point in the coordinate
system {i} can be determined by the position vector {i}rA of dimensions 3 × 1 (Fig. 1) using
only one arithmetic operation, namely multiplication

{i}r∗A =
{i}
{j} T

{j}r∗A (1.1)

where: {i}r∗A are position vectors of dimensions 4×1, named vectors of homogenous coordinates,
determining the position of pointA in the system {i} and {j}, respectively; {i}{j}T – transformation
matrix of dimensions 4 × 4 from the coordinate system {j} to the system {i}; {i}{j}R – rotation
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matrix of dimensions 3× 3 from the coordinate system {j} to the system {i} (elements of this
matrix are dot products of the versors)

{i}r∗A =

[
{i}rA
1

]
{j}r∗A =

[
{j}rA
1

]

{i}
{j}T =

[
{i}
{j}R

{i}rj
0 0 0 1

]
{i}
{j}R =



X̂j · X̂i Ŷj · X̂i Ẑj · X̂i

X̂j · Ŷi Ŷj · Ŷi Ẑj · Ŷi
X̂j · Ẑi Ŷj · Ẑi Ẑj · Ẑi




Fig. 1. Determination of the A point position in the coordinate system {i} and {j}

2. Modeling of an uneven road surface

In order to map the real profile of an uneven road surface, the authors assumed its two models
– continuous and discrete. In the case of each of them, the mapping surface of the road surface
is smooth. Therefore, the abrupt changes of its profile, e.g. in form of a transversely placed
threshold with sharp edges, cannot be taken into account. In the continuous model, the mapping
surface is obtained by the use of “the bicubic interpolation” (Keys, 1981). In the discrete model,
developed especially for the needs of the method presented, the uneven road surface is modeled
in form of the mapping surface made of triangles or rectangles. The detailed description of both
models assumed is presented in (Tengler, 2012; Tengler and Harlecki, 2015).
Each of the road surface model can be characterized by an equation of the assumed mapping

surface in the form of

z = z(x, y) (2.1)

In further considerations, it is assumed that in any point P of this surface of coordinates
xP , yP , zP determined in any immovable coordinate system {0} assumed, being a reference sys-
tem (Fig. 2a), the normal versor ê to this surface is known.
According to the suggestions presented in work by Hirsching et al. (2007), in the case of the

continuous model of the road surface in the neighborhood of point P (Fig. 2b), it is assumed
that there are four auxiliary points of the coordinates determined in the reference system {0} as

P (x
+)(xP +∆, yP , z(xP +∆, yP )) P (x

−)(xP −∆, yP , z(xP −∆, yP ))
P (y

+)(xP , yP +∆, z(xP , yP +∆)) P (y
−)(xP , yP −∆, z(xP , yP −∆))

(2.2)

Then, the normal versor can be determined according to the following formula

ê =
r(x) × r(y)
|r(x) × r(y)| (2.3)
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Fig. 2. Normal versor ê to the mapping surface in point P (xP , yP , zP )

where: r(x) is the vector with the origin in point P (x
−) and the end in point P (x

+), r(y) – vector
with the origin in point P (y

−) and the end in point P (y
+), ∆ [m] – short distance (in the work

it was assumed ∆ = 0.01m).
In the case of the discrete model of the road surface based on the triangles or rectangles

implemented, the normal vesor ê can be determined on the basis of the known basic geometrical
relationships.

3. Algorithms of iterative determination of the contact point position

As it is known, in any point of the mapping surface, a plane tangent to it can be placed. In
this method, as it was done by Hirschberg et al. (2002, 2007), Rill (2013), Unrau and Zamov
(1997), it is assumed that the tire is modeled in form of a deformable rim obtained as a result of
longitudinal cut of this tire in its symmetry plane. This rim in the deformable part adheres to
the mapping surface – even so for the needs of the model it is assumed that its contact with this
surface takes place in the definite point (it is the contact point C). In a non-deformable form,
this rim is a circle with the symmetry center O, overlapping with the symmetry center of the
non-deformed tire. In the contact point C, there is also planeΠ – tangent to the mapping surface
(Fig. 3). On the basis of the suggestions by Unrau and Zamov (1997), in addition to the reference
system {0} mentioned already, two local coordinate systems – {w} and {r} are assumed. The
movable system {w} is connected with the rim. Its origin is placed in the O symmetry center of
the non-deformed rim, the versor Ŷw overlaps with its axis of rotation (and therefore, also with
the axis of rotation of the modeled tire), and the versor X̂w remains parallel to the plane Π
during the whole time of vehicle motion. The origin of the immovable system {r} overlaps with
the contact point C, its versor Ẑw is normal to plane Π – and also to the mapping surface
(angle γ between it and versor Ẑw is an inclination angle of the tire), whereas the versor X̂r

lying in this plane remains pararlel to the versor X̂w of the {w} system during the vehicle
motion. While modeling the interaction of the road surface on the tire, it is assumed that in
the contact point C the following forces and reaction torques are applied: Fx – longitudinal
reaction force, Fy – lateral reaction force, Fz – the reaction force normal to the mapping surface
(plane Π), Mx – the overturning torque, My – rolling resistance torque, Mz – aligning torque.
Their directions are consistent with the directions of versors of the {r} system. Values of these
forces and torques are calculated by the use of formulas offered by the so called Pacejka tire
model (Pacejka et al., 1989; Pacejka and Bakker, 1993; Pacejka, 2005) taken into account in
the method proposed. In this work, a version of the Magic Formula – Pacejka 89 tire model is
used due to a lower number of coefficients needed to identify the tire than in other versions of
the Pacejka tire model. A precise way of determining the values of forces and reaction moments
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acting on the tire with the information on the assumed coefficients characterizing the tire model
was presented in the doctoral dissertation by Rill (2013).

Fig. 3. Location of the local systems {w} and {r}

While performing analysis of the vehicle dynamics, it is assumed that the position of the
{w} system origin is known at any time of its motion (as known, identical with the O symmetry
center of the non-deformed rim) and orientation of its versor Ŷw in the {0} reference system. The
authors of the article also made the same assumption in (Hirschberg et al., 2002). Additionally,
the position of the contact point C being the beginning of the {r} system and orientation of
versors in the {0} reference system must be known. Iterative determination of this position and
orientation is a subject of the algorithms presented in this work. When a distance of origins
of the systems {w} and {r} is known, values of forces and reaction torques acting on the tire
from the road surface can be determined by the use of the Pacejka tire model. Knowledge
about orientation of versors of the {r} system in the {0} reference system will allow one to find
directions of action of these forces and torques – this information is needed to make analysis of
the dynamics of the vehicle in question while using the Pacejka tire model mentioned or other
tire models, relying on the similar assumptions regarding the way of applying forces and torques.
Two algorithms intended for determination of the position of the contact point C and orien-

tation of the vectors of the {r} coordinate system are proposed. In accordance with intention of
the authors, the names of the algorithms are to refer to the essence of the procedure assumed in
each case. The Plane algorithm is designed for the continuous model of the road surface, whereas
the 4Points algorithm for the discrete model of this surface.

3.1. Algorithm Plane

Determination of the position of the contact point C by the algorithm Plane refers to per-
forming a definite number of iterations. Execution of the first of them is presented in Fig. 4.
In the neighborhood of the O symmetry center of the non-deformed rim (Fig. 4a) the point

of origin PS of coordinates xS, yS , zS defined in the {0} reference system is selected. In this work,
it has been assumed that it is point O. Then, coordinates of the C0 point, being an orthogonal
projection to the mapping surface, are determined in this system

C0 = (xC0 , yC0 , zC0) = (xO, yO, z(xO, yO)) (3.1)
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Fig. 4. Algorithm Plane – the first approximation of the position of the contact point C

The next step is to determine the plane Π0 tangent to the mapping surface in the point C0.
A point-normal equation of this plane can be presented in the following form

e(0)x x+ e(0)y y + e(0)z z + δ(0) = 0 (3.2)

where: e(0)x , e
(0)
y , e

(0)
z are components of the ê(0) versor normal to the mapping surface in the C0

point determined in the {0} reference system, and

δ(0) = −
(
e(0)x xC0 + e

(0)
y yC0 + e

(0)
z zC0

)

The point C ′1(xC′1 , yC′1 , zC′1) in which the straight line l
(0) going through the O points pierces the

plane Π0 perpendicularly is determined next. Its coordinates in the {0} reference system can be
determined by the position vector (Fig. 4b) as

rC′1 = rO − d0ê
(0) (3.3)

where: d0 = |e(0)x xO + e
(0)
y yO + e

(0)
z zO + δ(0)| is the distance between points O and C ′1.

As a result, these coordinates can be presented as

C ′1(xC′1 , yC′1 , zC′1) = C
′
1(xO − e(0)x d0, yO − e(0)y d0, zO − e(0)z d0) (3.4)

Then, the coordinates of point C1, being the first approximation of the contact point C, are
determined

C1(xC1 , yC1 , zC1) = C1(xC′1 , yC′1 , z(xC′1 , yC′1)) (3.5)

To determine the n-th approximation of the position of the contact point C, the algorithm can
be generalized to i = 1, . . . , n iterations writing formulas (3.4) and (3.5) as

C ′i(xC′i , yC′i , zC′i ) = C
′
1(xO − e(i−1)x di−1, yO − e(i−1)y di−1, zO − e(i−1)z di−1)

Ci(xCi , yCi , zCi) = Ci(xC′i , yC′i , z(xC′i , yC′i))
(3.6)

The n-th value is determined by the criterion
√
(xCn−1 − xC′n)2 + (yCn−1 − yC′n)2 + (zCn−1 − zC′n)2 ¬ ε (3.7)

where ε is the assumed acceptable absolute error of calculations.
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The versor X̂(n)r of the {r} system in the reference system {0} can be determined by the
formula (Fig. 3)

X̂(n)r =
Ŷw × ê(n)
|Ŷw × ê(n)|

(3.8)

and then other versors as

Ŷ (n)r = X̂r × ê(n) Ẑ(n)r = ê
(n) (3.9)

3.2. Algorithm 4Points

As it has been found out, algorithm Plane is used in the case of the continuous model of the
road surface. However, in the case of the discrete model when some fragments of the surface are
flat, determination of the position of the contact point C by its use may not be accurate enough.
Such a situation is presented in Fig. 5.

Fig. 5. Algorithm Plane – the determined positions of the contact point C: (a) at the beginning of
running of the modeled tire over unevenness, (b) after covering a distance ∆x

While considering the position of the modeled tire presented in Fig. 5a, it can be noticed
that the contact point C is orthogonal projection of the symmetry center O of the non-deformed
rim on a flat fragment of the road surface. It can be stated that condition (3.7), determining
completion of calculations, is met after the first iteration because already then the following
holds

√
(xCn−1 − xC′n)2 + (yCn−1 − yC′n)2 + (zCn−1 − zC′n)2 = 0 < ε

Here, an undesirable effect is too late reaction of the rim to the changeable surface profile.
Since algorithm Plane does not allow one to take the rim contact with the road fragment of
the curvilinear profile (marked in the figure) into account early enough, so the direction of the
normal reaction force Fz (acting on the rim in accordance with the Ẑw versor direction) turns
out to be incorrect. It can be stated that this direction “does not keep up with the new situation
on the road”. The normal reaction force changes its direction after the modeled tire has covered
the ∆x distance (Fig. 5b) – so too late – and this change is rather rapid. Therefore, it has been
required to develop an algorithm which would enable one to determine an appropriate position
of the contact point C ensuring that the shape changes of the mapping surface are considered
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early enough, what would provide a more accurate direction of the Fz normal reaction force,
because closer to the real one.

At the beginning of realization of the new algorithm named 4Points in the planes X̂wẐw
and ŶwẐw of the {w} system, there are four auxiliary points O(x

+), O(x
−), O(y

+), O(y
−) assumed,

respectively (Fig. 6).

Fig. 6. Algorithm 4Points – positions of the auxiliary points

The coordinates of them in the {w} system can be determined by the position vectors of the
homogenous coordinates

wr∗
O(x+)

=

[
wr

O(x+)

1

]
wr

O(x+)
=



∆x
0
−∆z




wr∗
O(x

−) =

[
wr

O(x
−)

1

]
wr

O(x
−) =



−∆x
0
−∆z




wr∗
O(y+)

=

[
wr

O(y+)

1

]
wr

O(y+)
=



0
∆y
−∆z




wr∗
O(y

−) =

[
wr

O(y
−)

1

]
wr

O(y
−) =



0
−∆y
−∆z




(3.10)

where ∆x, ∆y, ∆z [m] – distances resulting from tire size (in the work the following values were
assumed: ∆x = 0.17, ∆y = 0.07, ∆z = 0.1).

Then, the vectors of the homogenous coordinates determining the position of the auxiliary
points in the {0} reference system can be determined as
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r∗
O(x+)

= Tw wr∗
O(x+)

r∗
O(x+)

=

[
r
O(x+)

1

]
r
O(x+)

=



x
O(x+)

y
O(x

+)

z
O(x+)




r∗
O(x

−) = Tw
wr∗

O(x
−) r∗

O(x
−) =

[
r
O(x

+)

1

]
r
O(x

−) =



x
O(x

−)

y
O(x−)

z
O(x

−)




r∗
O(y+)

= Tw wr∗
O(y+)

r∗
O(y+)

=

[
r
O(y+)

1

]
r
O(x+)

=



x
O(y+)

y
O(y

+)

z
O(y+)




r∗
O(y

−) = Tw
wr∗

O(y
−) r∗

O(y
−) =

[
r
O(y

−)

1

]
r
O(y

−) =



x
O(y

−)

y
O(y−)

z
O(y

−)




(3.11)

where Tw is the known transformation matrix from the system {w} to the reference system {0}.
In the further procedure, the auxiliary points O(x

+), O(x
−), O(y

+), O(y
−) are projected onto

the mapping surface (Fig. 7a), and next the homogenous vectors determining the coordinates of
their projections O′(x+), O′(x−), O′(y+), O′(y

−) in the {0} reference system are determined as

r∗O′(x+) =

[
r
O′(x

+)

1

]
r
O(x

+) =



x
O′(x

+)

y
O′(x+)

z
O′(x

+)


 =




x
O(x

+)

y
O(x+)

z(x
O(x

+) , yO(x+))




r∗O′(x−) =

[
r
O′(x−)

1

]
r
O(x−)

=



x
O′(x−)

y
O′(x

−)

z
O′(x−)


 =




x
O(x−)

y
O(x

−)

z(x
O(x−)

, y
O(x−)
)




r∗O′(y+) =

[
r
O′(y

+)

1

]
r
O(y

+) =



x
O′(y

+)

y
O′(y+)

z
O′(y

+)


 =




x
O(y

+)

y
O(y+)

z(x
O(y

+) , yO(y+))




r∗O′(y−) =

[
r
O′(y−)

1

]
r
O(y−)

=



x
O′(y−)

y
O′(y

−)

z
O′(y−)


 =




x
O(y−)

y
O(y

−)

z(x
O(y−)

, y
O(y−)
)




(3.12)

On the basis of formula (2.3), the versor normal to the plane Π, including the projections of the
auxiliary points, can be determined as

ê =
r
(x)
O′ × r

(y)
O′

|r(x)O′ × r
(y)
O′ |

(3.13)

where: r(x)O′ = rO′(x+) − rO′(x−) is the vector of origin in point O′(x+) and the end in point O′(x−),
r
(y)
O′ = rO′(y+) − rO′(y−) is the vector of origin in point O′(y+) and end in point O′(y−).
On the basis of the determined normal versor ê and one of any selected auxiliary points

O′(x+), O′(x−), O′(y+), O′(y
−), the plane Π mentioned is sought for, the point-normal equation

of which has form

exx+ eyy + ezz + δ = 0 (3.14)

where: ex, ey, ez are the components of the versor ê normal to the plane Π determined in the
{0} reference system, δ = −(exxO′(x+) + eyyO′(x+) + ezzO′(x+)) if the selected point is O′(x+).
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Fig. 7. Algorithm 4Points – determination of the orthogonal projections of the auxiliary points on the
mapping surface

The sought contact point C is determined as a point in which the straight line l going through
the point O pierces the plane Π perpendicularly (Fig. 7b). Its coordinates in the {0} reference
system are determined as the components of the position vector

rC = rO − d0ê (3.15)

where d0 = |exxO + eyyO + ezzO + δ| is the distance between points O and C.
As a result, the coordinates of the contact point C can be determined as

C(xC , yC , zC) = C(xO − exd0, yO − eyd0, zO − ezd0) (3.16)

Using this algorithm for the case illustrated in Fig. 5a, the position of the contact point C
can be determined as presented in Fig. 8. The corrected direction of the reaction force Fz is
presented in this figure.

Fig. 8. Algorithm 4Points – determination of the position of the contact point C and the corrected
direction of the normal reaction force Fz

The versor directions of the {r} system are determined in a similar way as in the case of
algorithm Plane, that is according to relationships (3.8) and (3.9).

4. Computer simulations

A technical rescue vehicle which can drive in terrain conditions has been used in analysis.
Its physical model in form of a multibody system of an open structure built by the use of
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joint coordinates defining the relative position of the modeled components and a mathematical
model corresponding to it developed on the basis of Lagrange equations formalism by the use
of homogenous transformation matrices (Grzegożek et al., 2003), was presented in the doctoral
dissertation (Tengler, 2012). Program Blender (www.blender.org) has been used to model the
uneven road surface and to develop a model of the vehicle used in computer animations. The
models obtained in such a way have been imported to the author’s own program to perform
computer animations. The import procedure was described in details in (Tengler and Harlecki,
2015).
In each considered case the modeled vehicle moves in the direction consistent with the ver-

sor X̂ of the {0} reference system. The vehicle initial speed is 5 km/h, and simulation duration
time 6 s.

Example I

The assumed continuous model of the road surface in form of a grid of control points is
presented in Fig. 9. The boundary values of the coordinates of those points in the {0} reference
system are following: xmin = −2, xmax = 49, ymin = −8, ymax = 8, zmin = −0.8, zmax = 1.2.

Fig. 9. The control point grid in the case of the continuous model of the road surface

Some examples of the calculation results which concern determination of the vertical course
of the gravity center displacement of the vehicle model (towards the versor Ẑ of the {0} references
system) – taking algorithm Plane into account – are presented in Fig. 10

Fig. 10. The course of the vertical displacement of the vehicle gravity center in the case of considering
the continuous model of the road surface

This diagram is compared with the vertical course of this center determined by algorithm
4Points. The results obtained are almost identical. Therefore, it may be concluded that in the
case of a smooth unevenness, the selection of the algorithm has a slight influence on the computer
simulation results.
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Example II

The assumed discrete model of the road surface in form of the grid of the control points is
presented in Fig. 11. It consists of two flat fragments adjacent to a bump. Since there are no
inclination of the surface in the direction consistent with versor Ŷ of the {0} reference system, its
model was made by use of rectangles placed as shown in the figure. The assumed boundary values
of the grid points coordinates are following: xmin = −2, xmax = 11.5, ymin = −2, ymax = 2,
zmin = 0, zmax = 0.2.

Fig. 11. The discrete model of the road surface made by the use of rectangles

Within the computer animation performed, passing of the vehicle over the unevenness has
been simulated (Fig. 12).

Fig. 12. Some screen shots made during computer animation: (a) unevenness presented in example I,
(b) unevenness presented in example II

Some examples of the calculations results which concern determination of the vertical di-
splacement course of the gravity center of the vehicle model considering algorithm 4Points are
presented in Fig. 13a.
Two phases of motion can be differentiated here when the first front wheels and then rear

wheels of the vehicle drive over the bump. By analyzing the results in Fig. 13a, it can be noticed
that when algorithm 4Points is used, the displacement of the gravity center of the vehicle while
its going up to the bump takes place earlier than in the case of using algorithm Plane, see
the dashed line visible before the solid line (Fig. 13b). An analogous situation can be observed
during going down from the bump. In this case algorithm 4Points is more “sensitive” to the
unevenness profile change behind the wheels – the dashed line is visible behind the solid line
(Fig. 13c). Therefore, the thesis is confirmed that in the case of overcoming the unevenness
where the road fragments are flat, better results are obtained when by making use of algorithm
4Points.
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Fig. 13. The course of the vertical displacement of the vehicle gravity center when the discrete model of
the road surface made by the use of rectangles is considered

5. Summary

The presented algorithms are of general significance and that is why they can be used in the
case of considering more advanced tire models. In order to sum up this article, it should be
emphasized that the development of the presented algorithms has only been a part of the task
undertaken by the authors. These algorithms with tire models are included into an advanced
mathematical model of the selected terrain vehicle, developed with a view to performing analysis
of its dynamics. This model with the prepared models of the road surface and the developed
computer programs constitute a prototype of a technical rescue vehicle. According to the authors,
the observations made during computer simulations of its motion can aid the process of designing
of this type of vehicles in the future. In addition to the statements presented, the authors
would like to point out – in the case of the proposed method – a variety of possibilities of the
Blender program, especially while developing road surface models and also vehicle models used
in computer animations.
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High pressure apparatus is widely used in industries, the design of them depends on stress
distributions in their walls. Most of high pressure apparatuses are made in form of cylinders.
To raise load-bearing capacity and extend operation life for high pressure apparatus, the
autofrettage technology is often used. To design autofrettaged high pressure apparatus, it
is necessary to study characteristics of stresses in the wall of thick-wall cylinders, including
residual stresses and total stresses, etc. In this study, through investigating the characteristics
of stresses of cylinders subjected to internal pressure according to the maximum distortion
strain energy theory, a set of simplified equations for residual stresses and total stresses
are obtained, the safe and optimum load-bearing conditions for autofrettaged cylinders are
found out, which are the basis for design of autofrettaged high pressure apparatus.

Keywords: thick-wall cylinder, autofrettage, total stress, residual stress, load-bearing capa-
city

Nomenclature

ri, rj , ro – inside radius, radius of elastic-plastic juncture, outside radius, respectively
k – ratio of outside to inside radius, k = ro/ri
kj – depth of plastic zone or plastic depth, kj = rj/ri
kj∗ – optimum kj
kc – critical radius ratio, kc = 2.2184574899167 . . .
x – relative location, x = r/ri
p, py – internal and entire yield pressure
pa – autofrettage pressure
pe – maximum elastic load-bearing capability of unautofrettaged cylinder or initial

yield pressure;
σy – yield strength
σe – equivalent stress

Superscripts
p, t, ′ – quantity related with internal pressure, total and residual stress, respectively.

Subscripts
z, r, θ – axial, radial and circumferential direction, respectively.
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1. Introduction

Cylinders are widely used in manufacturing high and ultra-pressure vessels, high-pressure pumps,
battleship and tank cannon barrels as well as fuel injection systems for diesel engines, etc. The
autofrettage technique is an effective method to raise load-bearing capacity and extend operation
life of cylinders. Usually, in the most commonly employed autofrettage process, a cylinder is
pressurized to a quite high internal hydraulic pressure, as a result, the portion of the cylinder
from inner radius to some intermediate radius becomes plastic while the remaining portion
remains elastic. After releasing the pressure, the residual stresses are set up in the wall of the
cylinder.
Studies on autofrettage about specific engineering problems have been done widely. Finite

element simulations and experiments, the interaction between manufacturing processes with re-
spect to residual stresses and deformations was studied by Brünnet and Bähre (2014). Farrahi et
al. (2012) investigated the residual stress distribution at the wall of a thick-walled tube affected
by the re-autofrettage process. The effects of thermal autofrettage on the residual stresses in a
titanium-copper brazed joint were studied by Hamilton et al. (2015). Lin et al. (2009) built the
autofrettage damage mechanics model from an ultra-high pressure vessel autofrettage damage
mechanism. By using continuum damage mechanics approach, Lvov and Kostromitskaya (2014)
analyzed the autofrettage process and derived general set of government equations of elastic-
plastic bodies by using the effective stress concept. A finite element model of the swaging process
was developed in ANSYS and systematically refined to investigate the mechanism of deforma-
tion and subsequent development of residual stresses by Gibson et al. (2014). Noraziah et al.
(2011a,b) set an analytical autofrettae procedure to predict the required autofrettage pressure
for various levels of allowable pressure and to achieve maximum fatigue life. By using Huang’s
model for modeling reverse yielding due to Bauschinger effect, Bhatnagar (2013) presented an
original concept of an autofrettage compounded tube which was modeled for the autofrettage
process. By using the Kendall model, which was adopted by ASME Code, Shim et al. (2010) pre-
dicted the accurate residual stress of SNCM 8 high strength steel. Zheng and Xuan (2010, 2011)
analyzed the optimum autofrettage pressure of a thick wall cylinder under thermo-mechanical
loadings and investigated theoretically and validated by the finite element method (FEM) the
closed form solution of the limit thermal load of autofrettage and the optimum autofrettage
pressure under plane strain and open-ended conditions. Zhu (2008) investigated the optimum
plastic depth and load-bearing capacity of an autofrettaged cylinder in terms of the point of
view of avoiding compressive yield after removing autofrettage pressure and raising load-bearing
capacity as far as possible simultaneously. Zhu and Zhu (2013) studied autofrettage of cylinders
by limiting circumferential residual stress and according to Mises Yield criterion. Zhu and Li
(2014) presented equations of optimum overstrain (ελ) and depth of the plastic zone (kjλ) for a
certain load-bearing capacity and radius ratio (k).
This paper is intended to investigate the varying tendency and distribution laws of stresses

in autofrettaged cylinders so as to provide the theoretic basis for the design of high pressure
apparatus. Engineering conditions are in endless variety. This paper is based on ideal conditions
including (1) the material of a cylinder is perfectly elastic-plastic and the Bauschinger effect is
neglected, the compressive yield limit is equal to the tensile one; (2) strain hardening is ignored;
(3) there is not any defect in the material.

2. General residual stresses

After removing autofrettage pressure, residual stresses remain in the wall of a cylinder. Yu
(1980) put forward the residual stresses at a general radius location which has been re-arranged
as follows:
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— in the plastic zone
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Accordiong to the Mises criterion, the equivalent residual stress is
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— in the elastic zone
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(2.3)

The equivalent residual stress at a general radius location based on the Mises criterion is

σ′e
σy
=

√
3
2

(σ′θ
σy
− σ′r
σy

)
=
k2(k2j − 1− ln k2j )
(k2 − 1)x2 (2.4)

Since σ′e = σ′θ − σ′r based on the maximum shear stress theory (Tresca criterion) and
σ′e = (

√
3/2)(σ′θ − σ′r) based on the Mises criterion, while the components of the residual stress

based on Mises criterion are 2/
√
3 times those based on Tresca criterion, the equivalent residual

stresses based on both criterions must be the same.
At the inner surface, x = 1. For Eq. (2.2), letting x = 1 and σ′e = −σy obtains an equation

for kj∗ , the maximum and optimum plastic depth (kj) for a certain k to avoid compressive yield
after removing pa

k2 ln k2j∗ − k2 − k2j∗ + 2 = 0 kj∗ 
√
e (2.5)

where
√
e ¬ kj∗ ¬ kc and k  kc. When k ¬ kc, |σ′e/σy| < 1, irrespective of kj, Eq. (2.5) is just

the equation proposed by Zhu (2008) in another method.

3. Residual stresses and total stresses when p = pa

The total stresses σt include the residual stresses plus the stresses caused by p, or σt = σ′ + σp.
To produce plastic depth kj, the pressure subjected to a cylinder is the autofrettage pressu-

re pa

p

σy
=
2√
3
ln kj +

k2 − k2j√
3k2

=
pa
σy

(3.1)
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Letting k =∞ in Eq. (3.1), one obtains

p∞
σy
=
2√
3
ln kj +

1√
3

(3.2)

Inappropriate kj causes compressive yield or reduces load-bearing capacity. To avoid com-
pressive yield, the plastic depth kj for a certain k must be smaller than or equal to the magnitude
calculated by Eq. (2.5). Then, to raise load-bearing capacity fully, combining Eqs. (2.5) and (3.1),
one obtains

p

σy
=
2(k2 − 1)√
3k2

=
2pe
σy

(3.3)

Equation (3.3) is the optimum load-bearing capacity of an autofrettaged cylinder, it is just
two times the initial yield load. The limit of Eq. (3.3) with k → ∞ is p/σy = 2/

√
3, which can

be obtained by letting kj =
√
e in Eq. (3.2) as well.

The stresses caused by p at a general radius location are
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The equivalent stress of Eq. (3.4) based on the Mises criterion is
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When p = pa, Eq. (3.5) becomes
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1
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The equivalent total stress σte is
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3
2
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Then, generally, in the plastic zone
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in the elastic zone
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At the elastic-plastic juncture (x = kj), Eqs (3.8) and (3.9) both become

σte
σy
=
k2(k2j − 1− ln k2j )
(k2 − 1)k2j

+

√
3k2p
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(3.10)

When p = pa, the first one of Eq. (3.4) becomes
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=
k2 ln k2j + k

2 − k2j√
3k2(k2 − 1)

(3.11)
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Using Eqs. (3.11) and (3.4), the general residual stress, Eqs. (2.1)-(2.4), can be rewritten as
follows:
— in the plastic zone
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— in the elastic zone
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Therefore, when p = pa, irrespective of kj , the total stresses are:
— in the plastic zone
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— in the elastic zone
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The components of total stresses based on the Mises criterion are 2/
√
3 times those based

on the Tresca criterion, but the equivalent total stresses based on both theories in the plastic
and elastic zone are the same, respectively. The reason is that the equivalent total stress based
on the Tresca criterion is 2/

√
3 times that based on the Mises criterion since σz = (σr + σθ)/2

for cylinders.

4. Residual stresses and total stresses when kj = kj∗ and p = pa

If kj is determined by Eq. (2.5), or kj = kj∗ , Eqs. (3.8) and (3.9) become respectively

σte
σy
= 1− 2

x2
+

√
3k2

k2 − 1
p/σy
x2

σte
σy
=
k2j − 2
x2
+

√
3k2

k2 − 1
p/σy
x2

(4.1)

From Eq. (4.1)1, it is seen that:
(1) provided p/σy > −2(k2 − 1)(x2 − 1)/

√
3k2 (negative), σte > −σy, this is definitely feasible

for p > 0 in engineering;
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(2) as long as p/σy > (k2 − 1)(2− x2)/
√
3k2, σte > 0, while (k

2 − 1)(2− x2)/
√
3k2 < pe/σy, so

when p > pe, σte > 0;

(3) so long as p < 2pe, σte < σy. Thus, when pe < p < 2pe, 0 < σte < σy.

From Eq. (4.1)2, it is known that:

(1) provided p/σy > −(k2 − 1)(k2j − 2)/
√
3k2 (negative), σte > 0, this is certain for p > 0 in

engineering, so the equivalent residual stress in the elastic zone is always tensile;

(2) so long as p/σy < (k2 − 1)(x2 − k2j + 2)/
√
3k2, σte < σy, so when p < 2pe, σte < σy.

At the inside surface, x = 1, then, from Eq. (4.1)1

σte
σy
=

√
3k2

k2 − 1
p

σy
− 1 (4.2)

Unless p < 0, σte can not be lower than −σy. Unless p > 2pe, σte can not be higher than σy. So,
when 0 < p < 2pe, −1 < σte/σy < 1. Especially, when p = 2pe, σ

t
e ≡ σy in the whole plastic zone.

At the elastic-plastic juncture, x = kj , from (4.1)1 or (4.1)2

σte
σy
=
k2j − 2
k2j
+

√
3k2

k2 − 1
p/σy
k2j

(4.3)

Clearly, σte > 0 in the elastic zone. If p < 2pe, σte can not be higher than σy. So, when
0 < p < 2pe, 0 < σte/σy < 1. Especially, when p = 2pe, σ

t
e = σy at the elastic-plastic junc-

ture and σte/σy = k
2
j /x
2 at a general radius location in the elastic zone.

When kj = kj∗, by the aid of Eq. (2.5), Eqs (2.1)-(2.4) can be simplified as follows:
— in the plastic zone
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— in the elastic zone
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The equations of residual stresses are greatly simplified, and cylinders are safe after remo-
ving pa.
When k = ∞, kj =

√
e, from Eq. (4.5)4, the equivalent residual stress at a general radius

location in the elastic zone is

σ′e
σy
=
e− 2
x2

σ′e
σy
= 1− 2

e
→ 0 when x =

√
e→∞ (4.6)

When kj = kj∗ , the distributions of equivalent residual stresses in the plastic and elastic zones
– which are the same as those based on Tresca criterion – are illustrated in Fig. 1. In Fig. 1:

(1) Curve BAA: k = kj = kc, x varies from 1 to kj in the plastic zone (from point B to A),
and from 2.2184574899167 . . . (kj) to 2.2184574899167 . . . (k) (from point A to A) in the
elastic zone (no elastic zone).
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(2) Curve BCD: k = 2.25, kj = 2.046308 . . ., x varies from 1 to 2.046308 . . . in the plastic
zone (from point B to C), and from 2.046308 . . . to 2.25 (from point C to D) in the elastic
zone.

(3) Curve BEF : k = 3, kj = 1.748442 . . ., x varies from 1 to 1.748442 . . . in the plastic zone
(from point B to E), and from 1.748442 . . . to 3 (from point E to F ) in elastic zone.

(4) Curve BMN : k = ∞, kj =
√
e, x varies from 1 to

√
e = 1.648721 . . . in the plastic zone

(from point B to M), and from
√
e to k =∞ (from point M to N) in the elastic zone.

The above results and Fig. 1 are fit for both the Tresca and Mises criterion.

Fig. 1. The distributions of equivalent residual stresses in the whole wall

Figure 1 and Eq. (4.4)4 show that all curves of equivalent residual stresses for any k and kj
in the plastic zone are located on the identical curve AB and pass through the same point
(
√
2, 0), except that a different curve for different k and kj is located in a different section of

the curve AB, i.e. curves BA, BC, BE and BM are all on the curve BA or they coincide with
each other. However, if kj 6= kj∗ or the relation between kj and k does not satisfy Eq. (2.5),
the above argument is untenable, or even |σ′e| > σy. This case is illustrated in Fig. 2, where
the curves BEF and BKL coincide with each other in the plastic zone and both pass through
point (

√
2, 0) because kj = kj∗ , but curves HSI and GQJ neither coincide with each other in

the plastic zone nor pass through the point (
√
2, 0), and they do not coincide with the curves

BEF and BKL in the plastic zone for kj 6= kj∗.
When p = 2pe, Eq. (3.4) and (3.5) become Eq. (4.7) and Eq. (4.8), respectively
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(4.7)

and
σpe
σy
=
2
x2

(4.8)

When kj = kj∗ , p = pa = 2pe, thus, when p = pa = 2pe, Eqs. (3.14) and (3.15) for the total
stresses become:
— in the plastic zone
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(4.9)
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Fig. 2. Comparison between equivalent residual stresses for different k and kj

— in the elastic zone

σtz
σy
=
σ′z
σy
+
σpz
σy
=

k2j√
3k2

σtr
σy
=
σ′r
σy
+
σpr
σy
=

k2j√
3

( 1
k2
− 1
x2

)

σtθ
σy
=
σ′θ
σy
+
σpθ
σy
=

k2j√
3

( 1
k2
+
1
x2

) σte
σy
=
k2j
x2

σte
σy
=

e

x2

(4.10)

where k =∞, x ∈ (√e,∞).
The equations of total stresses are greatly simplified, and cylinders are safe after removing pa

and in operation. Figure 3 shows the distribution of equivalent stress of the total stress when
p = 2pe and kj = kj∗ . In Fig. 3:

(1) Horizontal line baa: k = kj = kc. In the plastic zone, σte/σy is a horizontal line: σ
t
e/σy = 1,

x varies from 1 to kj (from point b to a) and from kj to k (from point a to a) in the plastic
zone (no elastic zone).

(2) Curve bcd: k = 2.25, kj = 2.046308 . . .. In the plastic zone, σte/σy is a horizontal line,
bc: σte/σy = 1, x varies from 1 to kj (from point b to c) and from kj to k (from point c
to d) in the elastic zone.

(3) Curve bef : k = 3, kj = 1.748442 . . .. In the plastic zone, σte/σy is a horizontal line, be:
σte/σy = 1, x varies from 1 to kj (from point b to e) and from kj to k (from point e to f)
in the elastic zone.

(4) Curve bmn: k = ∞, kj =
√
e. In the plastic zone, σte/σy is a horizontal line: σ

t
e/σy = 1,

bm: x varies from 1 to kj (from point b to m) and from kj to k(∞) (from point m to n)
in the elastic zone.

If kj 6= kj∗ or p 6= 2pe, the above traits can not arise. Figure 4 is comparison between the
equivalent total stresses under different internal pressure and kj = kj∗ from which it is known
that only when p = 2pe and kj = kj∗ , the operation state is optimum, otherwise, or p 6= 2pe
and/or kj 6= kj∗ , either σte > σy or load-bearing capacity is lowered or compressive yield occurs.
In Fig. 4, curve 1 is just curve bef in Fig. 3.
Besides, for a certain k, when kj < kj∗ , though residual stresses are lower than those when

kj = kj∗ , the load-bearing capacity is dropped. For example, for k = 3, if kj = kj∗(= 1.748442),
from Eq. (3.3), p/σy = 1.0264 . . .; while if kj = 1.5, from Eq. (3.1), p/σy = 0.901203 . . . < 1.0264.
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Fig. 3. The distribution of equivalent total stress when p = 2pe and kj = kj∗

Fig. 4. Comparison between the equivalent total stresses for different internal pressure and kj = kj∗

5. Conclusions

It is the combination of k2 ln k2j∗ − k2 − k2j∗ + 2 = 0 and p = 2pe that results in optimum results
of an autofrettaged cylinder – the load-bearing capacity is the highest and no compressive yield
occurs after removing pa. Under these two conditions, neither compressive yield occurs nor do
the equivalent total stresses exceed σy, and the equivalent total stress in the whole plastic zone is
even, identically equal to σy, while the equivalent total stress in the elastic zone is lower than σy.

The equations concerned with autofrettage are simplified greatly because of the conditions
k2 ln k2j∗ − k2 − k2j∗ + 2 = 0 and p = 2pe.
When kj = kj∗ , in the plastic zone, the equivalent residual stress σ′e/σy shares the same

curve and pass through the point (
√
2, 0). When x ¬

√
2, σ′e ¬ 0; when x 

√
2, σ′e  0. The

equivalent residual stress at the inside surface σ′ei = −σy; in the whole wall, |σ′e| ¬ σy. So when
kj = kj∗ , cylinders are safe.

When p > 2pe and kj = kj∗, the equivalent total stress is greater than σy and uneven. When
p < 2pe and kj = kj∗ , the equivalent total stress is lower than σy but load-bearing capacity is
reduced, and equivalent total stress is uneven. When p < pe, σte at the inside surface is lower
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than 0, σte can not be lower than −σy in the whole plastic zone, the load-bearing capacity is
reduced greatly and the equivalent total stress is uneven.
As long as an autofrettaged cylinder contains the autofrettage pressure pa, there must be an

inexorable law irrespective of kj and k: σe/σy ≡ 1 in the plastic zone and 0 < σe/σy = k2j/x
2 < 1

in the elastic zone. Nevertheless, too great kj causes compressive yield after removing pa, too
small kj reduces the load-bearing capacity of a cylinder. The optimum plastic depth is kj = kj∗ ,
and when kj = kj∗ , p = pa = 2pe.
On the basis of the results in this study, when an autofrettaged cylinder is subjected to the

load p = 2pe = (2/
√
3)[(k2 − 1)/k2]σy, its optimum design thickness is

t = ri(k − 1) = ri
(√

2σy
σy −
√
3p
− 1

)

its optimum plastic depth kj∗ is calculated by

2σy
σy −
√
3p
ln k2j∗ −

2σy
σy −
√
3p
− k2j∗ + 2 = 0
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In the presented paper, an original solution to the system maintaining vibrations of a wire
transducer, which has been based upon the phenomenon of self-oscillation, is described.
The vibrations generated in this manner do not fade in time, are resistant to disturbances
and allow measurement of the signal rapidly changing in time. The dynamic equations and
numerical simulations of motion of the wire interconnected with the van der Pol oscillator
are presented. Based on the conceptual model, a laboratory stand has been built, which
served to verify properties of the presented solution and possibilities of useful applications.

Keywords: self-oscillation, wire transducer

1. Introduction

The measurement technique using wire transducers has been known since 1931, when French
engineer André Coyne became the first scientist to patent a sensor working on the principle of
vibrating wires (Bordes, 2011). In the 1930s, wire sensors became very popular in the technical
health monitoring of water dams. The first measurement system was applied to the dam across
the Truyere River in Bomme, France (Bordes, 2011). This method was also applied to control
technical health of bridges (Bar et al., 2012; Gastineau et al., 2009; Wenzel, 2009), tunnels,
large-scale halls, and is currently also being applied in stadiums and transport infrastructure.
Wire measurement is currently an important branch of surveying, being applied in the me-

asurement of displacement of elements, deformation, changes in characteristics, changes in the
leaning angle of buildings, subsidence of supports, ground support for construction elements,
and determinaion of force in earth anchors, etc. (Benmokrane et al., 1995; Hayes and Simmonds,
2002; Neild et al., 2005; Sharma et al., 1999).
Wire sensors have a range of benefits. The output signal from a transducer has a frequency

character which makes it resistant to external disturbances and the influence of cables transfer-
ring data between the transducer and the recording device. This makes it possible to install the
transducer in a significant distance away from the location of data acquisition point (Simonetti,
2012). Its simple and solid construction ensures high resistance to mechanical damage and in-
sensitivity to atmospheric conditions. It is also possible to use wireless communication between
the transducer and the measuring system (Park et al., 2013).
The most important feature of wire sensors is their high metrological stability, which –

according to the research conducted by Norwegian Geotechnical Institute – can last for 27 years
(DiBiagio, 2003). The features of wire transducers mean that they are still often applied in SHM
systems of constructions.
One example of the use of wire measurement techniques on a large scale is the monitoring

system of A1 motorway embankment in Poland. This covers an area of approximately 100
thousands m2. Around 15 thousands wire transducers are used there.
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During the last 80 years, the construction and working principle of wire sensors have not
changed. They consist of steel wires excited into transverse vibration with the help of an electro-
magnet (Simonetti, 2012). A change in the force of the wire influences its transverse vibration
frequency – and that is the basis for finding the relative extension of the wire, and then defining
the deformation of the object to which the sensor has been mounted. The electro-magnet also
performs function of a vibration detector.
Wire transducers are designed in principle for measurement of slow-changing or static loads.

This limitation results from its working principle, in which successive vibration excitement of
the wire is only possible after the previous vibration has subsided. Excessively early excitation
may cause mutual interference between vibrations and lead to disturbances and impracticality of
the metrological signal. As a result, the maximum excitation frequency of the wire for a typical
solution is defined at the level of 1Hz. As can be seen, the method has limited application in the
case of constant measurement with the aim of registering the course of fast-changing changes,
e.g. in high objects affected by the wind (Qing et al., 2008), such as chimneys, masts and towers,
or machine supports, for example, foundations under turbo-generators, railway and road bridges
in the event of para-seismic and seismic disturbance.
In the literature, it is possible to find solutions that allow measurement of quasi-constant fast-

changing deformation. In this case, the most important element of the method is the maintenance
of natural non-decreasing vibrations of wires by cyclical, in accordance with the phase of wire
vibration, excitation with electro-magnetic impulses. This method does not, however, guarantee
the continuity of measurement. Some of signals are lost due to the presence of transition states
caused by the exciting impulses. There is a high probability that, as a result of violent changes
in the measured deformation, the impulse phase will not correlate with the wire vibration phase,
which most frequently leads to formation of undesired transition states, and even to suppression
of wire vibration.

2. Maintenance of non-decreasing natural vibration of wires

One way to excite and maintain non-decreasing natural vibration of wires, according to the
authors, is to introduce self-oscillation in wires. Vibrations of this type are well-known in me-
chanical engineering (Den Hartog, 1956). They appear in non-conservative systems and are
capable of independently replenishing lost energy. Their amplitude and frequency are defined
by physical parameters of the system. Due to this, they are different from damped vibrations
in that they do not fade out in time, and that the frequency of vibrations in the steady state is
not dependent on the frequency of external forces.
An example of an equation that describes self-oscillation comes from van der Pol (Atay, 1998)

d2y

dt2
− ε(1 − y2)dy

dt
+ y = 0 (2.1)

This contains a non-linear component −ε(1− y2)(dy/dt) responsible for the maintenance of
vibrations, which will further be named in this work as the van der Pol component. An example
of the solution to (2.1) is presented in Fig. 1. It can be seen that for various initial conditions,
the trajectory of the solution winds on a fixed limit cycle. By modifying equation (2.1) to form
(2.2), it is possible to provide it with a physical interpretation. This then describes motion of
mass m located on a viscoelastic suspension under the force in accordance with the formula of
the van der Pol component, see Fig. 2.

m
d2y

dt2
+ b

dy

dt
+ ky = ε(a2 − y2)dy

dt
(2.2)



The application of self-oscillation in wire gauges 31

Fig. 1. Phase portrait of Eq. (2.1) for two various initial conditions. Trajectory 1 has a direction field
from the external side of the limit cycle contour, while trajectory 2 comes from the internal side

Fig. 2. Model of the mechanical structure representing equation (2.2)

If the absolute value of the coordinate y falls below the value of the parameter a, the van
der Pol component supplies energy to the system, otherwise it dissipates it. One characteristic
feature that the authors of the work have noticed is the lack of turbulent transition states
appearing in the event of violent changes in the elasticity coefficient k, see Figs. 3a and 3b.
Of course, the coordinate y changes its course because it sets a new cycle with a different
frequency, however, this process takes place without any significant disturbance to motion. The
new vibration frequency of the mass m is set almost immediately.

Fig. 3. (a) Course of the coordinate y for stepwise changes of the coefficient k (changes of the coefficient
took place at 0.8 s and 1.2 s), (b) trajectory with three limit cycles

This feature of the system has become a basic principle of the application of self-oscillation in
wire sensors. In this case, the van der Pol component ensures the maintenance of non-decreasing
transverse vibration of the wire, and violent changes in its load (in the longitudinal direction) do
not cause any disturbance in its transverse motion. The new vibration frequency is set almost
immediately and is ready to be read by a signal processing system.
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3. Mathematical model of a wire

Let us analyse a wire simultaneously performing transverse vibration and longitudinal motion,
see Fig. 4. Designating by A the field of the wire transverse cross-section, ρ – material density,
and dx – the elementary section of the wire, we can write

dm = ρAdx (3.1)

Fig. 4. Model of a wire subjected to longitudinal load

Treating the elementary mass dm as a material point in planar motion, we can, based on
Newton’s second law, formulate a dynamic equation of its motion. Designating the location of
the mass dm with the coordinates x and y, we obtain the equation for transverse motion

dm
∂2y

∂t2
= (T + dT ) sin(α+ dα)− T sinα− by

∂y

∂t
dx+ q(x, t)dx (3.2)

in which T designates the force in the wire, by - coefficient of viscous friction calculated as a
unit of distance and q – linear density of the external transverse force. Assuming a small value
of the angle α, equation (3.2) can be simplified to

dm
∂2y

∂t2
= Tdα+ αdT − by

∂y

∂t
dx+ q(x, t)dx (3.3)

Expressing α by ∂y(x, t)/∂x and using dependency (3.1), we can write the equation of the wire
transverse motion in form

ρA
∂2y(x, t)
∂t2

− T (x, t)∂
2y(x, t)
∂x2

+ by
∂y(x, t)
∂t

=
∂y(x, t)
∂x

∂T (x, t)
∂x

+ q(x, t) (3.4)

In the last equation, the force T is not constant. Its temporary value can be determined based
on the equation of motion of the longitudinal mass dm, where u designates the displacement of
the elementary section of the wire along its axis

dm
∂2u

∂t2
= −T cosα+ (T + dT ) cos(α+ dα) − bx

∂u

∂t
dx (3.5)

By using a small-angle approximation as well as assuming uniformity of the material, we obtain
the equation of wire longitudinal motion

∂2u(x, t)
∂t2

+
bx
Aρ

∂u(x, t)
∂t

− E

ρ

∂2u(x, t)
∂x2

= 0 (3.6)

where E is Young’s modulus, bx – coefficient of viscous friction calculated as a unit of distance.
Based on Hook’s law, we can express the force in the wire by its local deformation, that is

T = Aσ = AEε = AE
∂u

∂x
(3.7)
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or

∂T

∂x
= EA

∂2u

∂x2
(3.8)

By placing dependency (3.8) into equation (3.4), we obtain

ρA
∂2y(x, t)
∂t2

+ by
∂y(x, t)
∂t

−AE∂u(x, t)
∂x

∂2y(x, t)
∂x2

= EA
∂y(x, t)
∂x

∂2u(x, t)
∂x2

+ q(x, t) (3.9)

The set of equations (3.6) and (3.9) represent the basis for a mathematical description of wire
motion, whose points perform transverse and longitudinal movement coupled with each other.
The method for fixing the wire is defined by the boundary conditions. In the considered

cases, the wire is mounted unilaterally. The second end is conducted linearly and is affected by
the external force Tk. On this basis, it is possible to write the following conditions

y(0, t) = 0 y(l, t) = 0 (3.10)

and

u(0, t) = 0
∂u(l, t)
∂x

=
1
EA

Tk (3.11)

4. Adaptation of van der Pol’s equation to maintain non-decreasing natural
vibrations of a wire

Transferring the idea of applying self-oscillation to wire gauges is presented in Fig. 5. Untied
between two points, it is propelled to move transversely using the Lorentz force created as a
result of the interference of current i flowing through the wire as well as the magnetic field
created by fixed magnets. The intensity of current i is shaped by the electric system working
in a feedback loop, in which the input signal is the voltage induced in the magneto-electric
transducer. In order to adapt the input voltage to an electronic system, it is first amplified,
and then undergoes integration in time so that the wire displacement signal is obtained from
the amplitude transducer. After transformation of the signal by the multiplier-summing systems
realizing the van der Pol component, it is amplified to a value that allows creation of a force
ensuring vibrations at a level which enable their recording.

5. Results of computer simulations

Based on the equations from the previous Section, computer simulations of motion of the wire
subjected to a stepwise load have been performed. In order to solve the differential equation
of motion, the finite difference method with the “time step” variant has been applied. After
replacing the partial derivatives in equations (3.6) and (3.9) with the following finite differences

∂y

∂x
=
y(i+ 1, j) − y(i, j)

∆x

∂2y

∂x2
=
y(i+ 1, j) − 2y(i, j) + y(i− 1, j)

(∆x)2

∂y

∂t
=
y(i, j + 1)− y(i, j)

∆t

∂2y

∂t2
=
y(i, j + 1)− 2y(i, j) + y(i, j − 1)

(∆t)2

(5.1)

and

∂u

∂x
=
u(i+ 1, j) − u(i, j)

∆x

∂2u

∂x2
=
u(i+ 1, j) − 2u(i, j) + u(i− 1, j)

(∆x)2

∂u

∂t
=
u(i, j + 1)− u(i, j)

∆t

∂2u

∂t2
=
u(i, j + 1)− 2u(i, j) + u(i, j − 1)

(∆t)2

(5.2)
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Fig. 5. Sketch of the control system of the wire gauge based on the van der Pol equation. 1 – fixed
magnet, 2 – magneto-electric transducer, 3 – wire, 4 – voltage amplifier, 5 – integrating system,

6,8 – multiplying system, 7 – summing system, 9 – current amplifier

we obtain relationships for the transverse displacement y(i, j+1) and longitudinal displacement
u(i, j + 1) at points of the wire with reference to the displacement from the previous time
moment, that is, y(i, j), u(i, j)

y(i, j + 1) =
{
q(i, j)
ρA
− 1
(∆t)2

[y(i, j − 1)− 2y(i, j)]

+
u(i+ 1, j) − u(i, j)

(∆x)3
E

ρ
[y(i+ 1, j) − 2y(i, j) + y(i− 1, j)] + by

ρA

1
∆ty(i, j)

}

·
[
1
(∆t)2

+
by

ρA(∆t)

]−1

u(i, j + 1) =
{
− 1
(∆t)2

[u(i, j − i)− 2u(i, j)] + E

ρ

1
(∆x)2

[u(i+ 1, j) − 2u(i, j) + u(i− 1, j)]

+
bx

ρA(∆t)
u(i, j)

}[
1
(∆t)2

+
bx

ρA(∆t)

]−1

(5.3)

where

q(i, j) = ε[a2 − y(i, j)2]y(i, j + 1)− y(i, j)
∆t

(5.4)

describes the action of the van der Pol component.
For simulation purposes, the following parameters have been adopted:

l = 0.15m – length of the wire,
D = 0.0002m – diameter of the wire,
ρ = 7800 kg/m3 – density of the wire,
Tk = 14.115N – tension at the end of the wire,
τ = 24.5E-05 kg/m – linear density of the wire,
E = 220GPa – Young’s modulus,
a = 0.0001m – parameter of the van der Pol component.

Figure 6a presents the longitudinal displacement u of the point lying in the middle of the
wire, when the changes in the load took place at the moments t1 = 0.009 s with the value
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Tk = 14.12N at Tk = 7.06N as well as t2 = 0.0175 s with the value Tk = 7.06N at Tk = 28.23N.
Figure 6b presents the respective changes of transverse vibration of the same point starting from
the initial state representing the equilibrium position until the development of set vibrations.
The vibration amplitude, in accordance with theoretical knowledge, obtains a value twice as
high as the value of the parameter a, in other words, 0.2mm. The vibration frequency of the
first form in this section equals 800Hz, and in the next two time sections it equals 562Hz and
1135Hz, respectively.

Fig. 6. (a) Course of the longitudinal displacement u at the point lying in the middle of the wire
(x = l/2); (b) course of the transverse displacement of the point lying in the middle of the wire (x = l/2)

The frequency values differ from the values obtained based on the below given theoretical
formula (5.5) for free wires by about 8Hz (1%), which is reflected in the scientific literature

f0 =
1
2l

√
Tk
τ

(5.5)

where f0 is the natural vibration frequency of the wire.
As in the case of a discrete system, transfer between new work states takes place without

causing turbulent transition states in the transverse direction, and the new frequencies are set
almost immediately. There is a noticeable lack of any significant influence of the transition states
appearing along the wire.

6. Modification of the van der Pol component

The regulator shaping the van der Pol force component requires the use of a displacement
signal of the vibrating mass. From the magneto-electric transducer registering wire motion, we
obtain, however, a signal proportional to velocity of the mass motion. Although transforming
the velocity signal to a displacement signal is theoretically easy, in practice we encounter the
problem of constant value, trend and filtering process leading to phase shift. There is, however,
a simpler solution proposed by J. Michalczyk1. Namely, instead of using the displacement signal
in the van der Pol component, it is possible to use a vibration velocity signal provided directly
by the magneto-electric transducer. Equation (2.2) then takes form of the following equation

m
d2y

dt2
+ b

dy

dt
+ ky = ε

[
a2 −

(dy
dt

)2]dy
dt

(6.1)

1Faculty seminar. Faculty of Mechanics and Vibroacoustics AGH.
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The solution to equation (6.1) for a = 0.04 is presented in Figs. 7a and 7b in form of time
and phase portraits, respectively. As can be seen, the equation shows all the features of the
equation describing self-oscillation, including the existence of a limit cycle on which trajectories
of the phase solution have a direction field from the inside or the outside. And just as in the
case of the initial equation, stepwise changes in the coefficient of elasticity k do not lead to
undesired transition states in the solution of the equation. This fact becomes a basis for removal
of integrating system “5” from the scheme presented in Fig. 5.

Fig. 7. Courses of the solution to equation (6.1) for three stepwise variables of rthe parameter k:
(a) time form, (b) phase portrait

7. Construction of the test stand

Based on the scheme in Fig. 5, a physical model of the system has been constructed. It consists
of a mechanical part, including the wire system together with transducers, as well as an electrical
part which performs the task of maintaining self-excited wire vibrations.
The electrical part is presented in Fig. 8. The signal from the magneto-electric transducer

after initial amplification in the U1 voltage amplifier (Fig. 8b) is conducted to the pins of two
integrated systems, U2 and U3 (Fig. 8a). These are AD633JN/A summing-multiplying systems,
using which the feedback loop signal is obtained. System U2 formulates the signal a2−(dy/dt)2 in
which the value of the parameter a is set with the help of potentiometer Pt1. In turn, system U3
formulates the signal of the sum of the output signals of system U2 (end 7) and the signal of
vibration velocity dy/dt – input 3 of U3 system. Such an obtained signal is then amplified with
an current amplifier. In the photograph presented in Fig. 9, the elements of the mechanical part
of the system are shown. A uniform guitar string fastened between two pegs (Fig. 9a) is used as
a wire. The pegs are mounted through the bars to a steel base, which simultaneously performs
function of the deformed element. In the central part of the wire, two flat neodymium magnets
(Fig. 9c), separated from each other with isolation pads, are mounted. The pads have the task
of setting the suitable depth of the air passage, which should ensure free vibration of the wire
and guarantee interaction between the magnets and the wire at a level sufficient to develop
vibration at the measurement amplitude. A guitar magneto-electric transducer is located in the
neighbourhood of the magnets at a distance ensuring the lack of significant interference of the
magnetic field (Fig. 9b).
Such a workstation enables research to be carried out into wire vibration formed as a result

of changes in its tension and interference of the Lorentz forces formulated in the non-linear van
der Pol component designated for generation of self-oscillation.
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Fig. 8. (a) U2, U3: AD633JN/A multiplying systems, (b) input amplifier U1

Fig. 9. Photographs of the wire transducer: (a) wire mounted to the deformed base,
(b) magneto-electric transducer, (c) neodymium fixed magnets

8. Results of laboratory tests

Measurements have been carried out with a two-channel Hewlett Packard HP3560A recorder.
This device allows recording of short signals, tens of milliseconds long, at a sampling frequency
equalling 2.5 kHz. Therefore, in the measurements presented below, only set states have been
captured (transient states on the base of observation did not develop noticeably). Figure 10a
presents trajectories recorded at two points of the system, that is, the output of U1 input ampli-
fier (course designated as P1) as well as the output of U2 multiplier system (course designated
as P2). Figure 10b presents the course recorded at P1 as well as the course of voltage in the out-
put resistor U P3 of the current amplifier system. Both figures present vibration for an initially
tensioned wire, which in the second case slightly changes the parameter a.

The courses presented in Fig. 11a refer to the case in which the wire is significantly tensioned.
As in the previous cases, it presents courses of the output from the input amplifier and the
multiplying system. The vibration frequency of the wire increased from 800Hz to 2200Hz.
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Fig. 10. Wire under initial load: (a) course of voltage signals at points P1 and P2 of the system
presented in Fig. 8, (b) voltage in the output of U1 amplifier (P1) and in output resistor of the current

amplifier (U P3)

The final figure, Fig. 11b, presents the course after removing the load and after significantly
reducing the value of the parameter a.

Fig. 11. (a) Wire under load: (a) voltage course in the output of U1 amplifier (P1) and in output
resistor of the current amplifier (U P3), (b) wire after removal of the load. Courses of voltage signals at

points P1 and P2

While comparing the figures, it is possible to state that the task of maintaining non-decreasing
self-oscillation in the wire, regardless of the wire tension, has been achieved, and the vibration
velocity amplitude can be set by changing the value of one of the regulator parameters. Based
on the observations of the wire behaviour under violent changes of the load, the formation of
transition states which would lead to motion of the wire with chaotic vibrations and the loss of
measurement ability, has not been observed.

9. Summary

The aim of the presented research is to show the possibility of using self-oscillation to maintain
non-decreasing natural vibrations in a wire resistant to violent changes in the tension.
On the basis of the presented results, it can be stated that this idea has been confirmed in

simulation tests and then in real conditions on the laboratory stand. Self-oscillation does not
show a clear tendency to develop turbulent transition states during violent changes in the load.
In fact, the opposite case has been observed, the transition from one load state to the second
one took place very smoothly, without the loss of any period.
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The presented solution may be used to construct wire sensors with special purposes, resistant
to impact or fast-changing loads. The construction of the system significantly differs from the
one universally used in measurement techniques with single-coil wire sensors, in which the coil
itself performs function of both input sensor tracing motion of the wire and vibration exciter.
This solution is more expensive and energy-consuming. However, as opposed to conventional
solutions, it does not bring the risk of losing synchronization between the system stimulating
and recording the vibrations.
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The subject of analytical investigations is a metal seven-layer beam, a plate band with a
lengthwise trapezoidal corrugated main core and two crosswise trapezoidal corrugated cores
of faces. The hypothesis of deformation of normal to the middle surface of the beam after
bending is formulated. Equations of equilibrium are derived based on the theorem of mini-
mum total potential energy. The equations are analytically solved. Three point bending and
buckling for axially compression of the simply supported beam are theoretically studied. The
deflection and the critical axial force are determined for different values of the trapezoidal
corrugation pitch of the main core. Moreover, an adequate model of the sandwich beam with
steel foam core is formulated. The deflection and the critical axial force are determined for
this sandwich beam. The results studied of the seven layer beam and the adequate sandwich
beam are compared and presented in tables and figures.

Keywords: layered plate-band, trapezoidal corrugated cores, deflection, critical load

1. Introduction

The primary scientific description referring to the analysis and design of sandwich structures is
the monograph by Allen (1969). A review of problems related to modelling and calculations of
sandwich structures was presented by Noor et al. (1996), Vinson (2001) and Carrera and Bri-
schetto (2009). A developed and analytical model of corrugated composite cores was described
by Kazemahvazi and Zenkert (2009). The quasi-isotropic bending response of sandwich plates
with bi-directionally corrugated cores was presented by Seong et al. (2010). The mathematical
modelling of a rectangular sandwich plate under in plane compression is described by Magnucka-
Blandzi (2011). The theoretical study of transverse shear modulus of elasticity for thin-walled
corrugated cores of sandwich beams was presented by Magnucka-Blandzi and Magnucki (2014)
and Lewinski et al. (2015). The problem of an equivalent plate model for corrugated-core san-
dwich panels was presented by Cheon and Kim (2015).

The subject of the paper is the metal seven-layer beam – a plate band. The beam is composed
of a lengthwise trapezoidal corrugated main core, two inner flat sheets, two crosswise trapezoidal
corrugated cores of the faces and two outer flat sheets.



42 E. Magnucka-Blandzi, M. Rodak

2. Theoretical model of the seven-layer beam with the lengthwise corrugated
main core

The seven-layer simply supported beam of length L, width b, thicknesses of the main core tc1,
facing cores tc2 and flat sheets ts is shown in Fig. 1.

Fig. 1. Scheme of the seven-layer beam with the lengthwise corrugated main core

The directions of corrugations of the main core and the face cores are orthogonal. Trapezoidal
corrugations of the main core and facing cores are shown in Fig. 2. The index i = 1 refers to
the main core, while the index i = 2 refers to the face cores. Total depth of the cores is tci and
length of one pitch of the corrugation is b0i.

Fig. 2. Scheme of trapezoidal corrugations of the main core (i = 1) or face cores (i = 2)

Taking into account the layered structures of the beam, the hypothesis of the broken line
(Fig. 3) is assumed. The plane cross-section before bending does not remain plane and normal
after bending. The hypothesis for multi-layer structures was described in details by Carrera
(2003), Magnucka-Blandzi (2012) and Magnucki et al. (2016).
The displacements with consideration of this hypothesis are as follows:

— the upper sandwich facing for −(0.5 + 2x1 + x2) ¬ ζ ¬ −0.5

u(x, y, z) = −tc1
[
ζ
dw

dx
+ ψ(x)

]
(2.1)

— the main corrugated core for −0.5 ¬ ζ ¬ 0.5

u(x, z) = −tc1ζ
[dw
dx
− 2ψ(x)

]
(2.2)
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Fig. 3. Scheme of the hypothesis of the seven-layer beam

— the lower sandwich facing for 0.5 ¬ ζ ¬ 0.5 + 2x1 + x2

u(x, y, z) = −tc1
[
ζ
dw

dx
− ψ(x)

]
(2.3)

where x1 = ts/tc1, x2 = tc2/tc1 are dimensionless parameters, ζ = z/tc1 – dimensionless coordi-
nate, ψ(x) = u1(x)/tc1 – dimensionless functions of displacements, u1(x) – displacement in the
x direction and w(x) – deflection (Fig. 3).
Thus, linear relations for the strains are as follows:

— the main corrugated core

εx = −tc1ζ
(d2w
dx2
− 2dψ

dx

)
γxz = 2ψ(x) (2.4)

— the upper/lower sandwich facings

εx = −tc1
(
ζ
d2w

dx2
± dψ

dx

)
γxz = 0 (2.5)

The sign “+” refers to the upper facing (u), and the sign “−” refers to the lower facing (l).
Strains (2.4) and (2.5) and Hook’s law make a basis for the formulation of elastic strain

energy of the seven-layer beam.

3. The equations of equilibrium of the seven-layer beam

The elastic strain energy of the beam is a sum of the energy of particular layers

U (beam)ε = U (c−1)ε + U (s−i)ε + U (c−2)ε + U (s−o)ε (3.1)
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The addends are as follows:
➢ energy of the main corrugated core

U (c−1)ε =
1
2
Esbtc1

L∫

0

1
2∫

− 1
2

[Ẽ(c−1)x ε2x + G̃
(c−1)
xz γ2xz] dζ dx (3.2)

where Es is Young’s modulus, dimensionless longitudinal elastic modulus of the main corrugated
core is calculated based on the monograph of Ventsel and Krauthammer (2001)

Ẽ(c−1)x =
xb1

2(xf1xb1 + s̃a1)
x301 (3.3)

dimensionless shear elastic modulus of the main trapezoidal corrugated core based on the paper
of Lewinski et al. (2015)

G̃(c−1)xz =
1− x01

4(1 − ν2)xb1fu

(x01
s̃a1

)3
(3.4)

and dimensionless parameters

x01 =
t01
tc1

xf1 =
bf1
b01

xb1 =
b01
tc1

s̃a1 =

√

(1− x01)2 + x2b1
(1
2
− xf1

)2 (3.5)

Substituting expressions (2.4) for strains into expression (3.2) and after integration, the elastic
energy of the main corrugated core is obtained in the following form

U (c−1)ε = Esbt3c1

L∫

0

{ 1
24
Ẽ(c−1)x

[(d2w
dx2

)2
− 4d

2w

dx2
dψ

dx
+ 4

(dψ
dx

)2]
+ 2G̃(c−1)xz

(ψ(x)
tc1

)2}
dx (3.6)

➢ energy of the inner sheets

U (s−i)ε =
1
2
Esbtc1

L∫

0





− 1
2∫

−

(
1
2
+x1

)
ε2x,up dζ +

1
2
+x1∫

1
2

ε2x,low dζ





dx (3.7)

Substitution of expressions (2.5) for the strains with regard to the upper/lower facings and after
integration provides

U (s−i)ε = Esbt3c1

L∫

0

[ 1
12
x1(3 + 6x1 + 4x21)

(d2w
dx2

)2
− x1(1 + x1)

d2w

dx2
dψ

dx
+ x1

(dψ
dx

)2]
dx (3.8)

➢ energy of the corrugated cores of the facings

U (c−2)ε =
1
2
Es

b

b02

L∫

0

[ ∫

A
(c−2)
TR

ε2x,up dA
(c−2)
TR +

∫

A
(c−2)
TR

ε2x,low dA
(c−2)
TR

]
(3.9)
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where the area of the trapezoid

A
(c−2)
TR = 2t2c2x02(xf2xb2 + s̃a2) (3.10)

and dimensionless parameters

x02 =
t02
tc2

xf2 =
bf2
b02

xb2 =
b02
tc2

s̃a2 =

√

(1− x02)2 + x2b2
(1
2
− xf2

)2 (3.11)

Substituting expressions (2.5) for strains into expression (3.9) and after integration, the elastic
energy of the corrugated cores of facings is obtained in the following form

U (c−2)ε = Esbt3c1
x2x02
xb2

L∫

0

[
C(c−2)ww

(d2w
dx2

)2
−C(c−2)wψ

d2w

dx2
dψ

dx
+ C(c−2)ψψ

(dψ
dx

)2]
dx (3.12)

where dimensionless parameters are as follows

C(c−2)ww =
1
2

[1
3
x22(1− x02)2(3xf2xb2 + s̃a2) + (1 + 2x1 + x2)2(xf2xb2 + s̃a2)

]

C
(c−2)
wψ = 2(1 + 2x1 + x2)(xf2xb2 + s̃a2) C

(c−2)
ψψ = 2(xf2xb2 + s̃a2)

➢ energy of the outer sheets

U (s−o)ε =
1
2
Esbtc1

L∫

0





−

(
1
2
+x1+x2

)

∫

−

(
1
2
+2x1+x2

)
ε2x,up dζ +

1
2
+2x1+x2∫

1
2
+x1+x2

ε2x,low dζ





dx (3.13)

Substitution of expressions (2.5) for the strains with regard to the upper/lower facings and after
integration gives

U (s−o)ε = Esbt3c1

L∫

0

[
C(s−o)ww

(d2w
dx2

)2
− x1(1 + 3x1 + 2x2)

d2w

dx2
dψ

dx
+ x1

(dψ
dx

)2]
dx (3.14)

where the dimensionless parameter C(s−o)ww = (1/12)x1[28x21 + 3(1 + 2x2)(1 + 6x1 + 2x2)].
Therefore, the elastic strain energy of the inner and outer sheets is as follows

U (s)ε = U
(s−i)
ε + U (s−o)ε = Esbt3c1

L∫

0

[
C(s)ww

(d2w
dx2

)2
− C(s)wψ

d2w

dx2
dψ

dx
+ 2x1

(dψ
dx

)2]
dx (3.15)

where dimensionless parameters

C(s)ww =
1
6
x1[16x21 + 6x1(2 + 3x2) + 3(1 + 2x2 + 2x

2
2)] C

(s)
wψ = 2x1(1 + 2x1 + x2)

Thus, the elastic strain energy of the seven-layer beam (6) is in the following form

U (beam)ε = Esbt3c1

L∫

0

[1
2
Cww

(d2w
dx2

)2
− Cwψ

d2w

dx2
dψ

dx
+
1
2
Cψψ

(dψ
dx

)2

+ 2G̃(c−1)xz

(ψ(x)
tc1

)2]
dx

(3.16)
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where dimensionless parameters

Cww =
1
12
Ẽ(c−1)x + 2

x2x02
xb2

C(c−2)ww + 2C(s)ww Cwψ =
1
6
Ẽ(c−1)x +

x2x02
xb2

C
(c−2)
wψ + C(s)wψ

Cwψ =
1
3
Ẽ(c−1)x + 2

x2x02
xb2

C
(c−2)
wψ + 2C(s)wψ

The work of the load

W =
L∫

0

[
qw(x) +

1
2
F0
(dw
dx

)2]
dx (3.17)

where q is the intensity of the transverse load, F0 – axial compressive force of the beam.
The system of the equations of equilibrium – two ordinary differential equations derived

based on the theorem of minimum potential energy δ(U (beam)ε −W ) = 0, is in the following form

Cww
d4w

dx4
− Cwψ

d3ψ

dx3
=
1

Ebt3c1

(
q − F0

d2w

dx2

)

Cwψ
d3w

dx3
− Cψψ

d2ψ

dx2
+ 4G̃(c−1)xz

ψ(x)
t2c1
= 0

(3.18)

The bending moment of the seven-layer beam

Mb(x) =
∫

A

zσx dA = −Esbt3c1
(
Cww

d2w

dx2
− Cwψ

dψ

dx

)
(3.19)

Integration is analogical as in the case of the elastic strain energy, from which the following
equation is obtained

Cww
d2w

dx2
− Cwψ

dψ

dx
= −Mb(x)

Esbt
3
c1

(3.20)

Equations (3.18)1 and (3.20) are equivalent, therefore, bending and buckling analysis of the
seven-layer beam is based on the system of two differential equations (3.18)2 and (3.20).

4. Deflection of the seven-layer beam under three-point bending

Three-point bending of the seven-layer beam of length L is shown in Fig. 4.

Fig. 4. Scheme of the three-point bending of the beam

The system of two differential equations (3.18)2 and (3.20) is reduced to one differential
equation in the following form

d2ψ

dx2
−
( k
tc1

)2
ψ(x) = −Cq

Q(x)
Esbt3c1

(4.1)
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where Q(x) = dMb/dx is the shear force, k, Cq – dimensionless parameters

k = 2

√√√√ CwwG̃
(c−1)
xz

CwwCψψ − C2wψ
Cq =

Cwψ
CwwCψψ − C2wψ

The general solution to equation (4.1) is in the form

ψ(x) = C1 sinh
(
k
x

tc1

)
+C2 cosh

(
k
x

tc1

)
+ ψp(x) (4.2)

where C1, C2 are integration constants, ψp(x) – particular solution.
The shear force in the half beam (Fig. 4) is Q(x) = F1/2, for 0 ¬ x ¬ L/2, then the particular

solution

ψp =
Cwψ

8CwwG̃
(c−1)
xz

F1
Esbtc1

(4.3)

Taking into account the boundary conditions for the half beam (dψ/dx)|x=0 = 0 and ψ(L/2) = 0,
the integration constants C1 = 0 and C2 = − cosh−1[kL/(2tc1)]ψ0 are determined, hence, the
function of displacement (4.3) is in the following form

ψ(x) =

(
1−
cosh kxtc1
cosh kL

2tc1

)
ψp (4.4)

Substituting this function, and the bending moment Mb(x) = F1x/2, for 0 ¬ x ¬ L/2 to
equation (3.20), one obtains

w(x) = C4 + C3x+
Cwψ
Cww

(
x− tc1

k

sinh kxtc1
cosh kL

2tc1

)
ψp −

F1
12CwwEsbt3c1

x3 (4.5)

Taking into account the boundary conditions for the half beam w(0) = 0 and (dw/dx)|x=L/2 = 0,
the integration constants C3 = F1L2/(16CwwEsbt3c1) and C4 = 0 are determined. The maximum
deflection – the deflection for the middle of the beam is

w(7−lay)max = w
(L
2

)
=
[
1 + 3

(
1− 2tc1

kL
tanh

kL

2tc1

) C2wψ

CwwG̃
(c−1)
xz

( tc1
L

)2] F1
48CwwEsb

( L
tc1

)3
(4.6)

5. Critical load of the seven-layer beam subjected to axial compression

The axial compression of the simply supported seven-layer beam is shown in Fig. 5.

Fig. 5. Scheme of the simply supported seven-layer beam with the axial force F0

The system of two differential equations (3.18)2 and (3.20) is reduced to one differential
equation in the following form

(CwwCψψ − C2wψ)
d4w

dx4
− 4
t2c1
G̃(c−1)xz Cww

d2w

dx2
=

[
4
t2c1
G̃(c−1)xz Mb(x)− Cψψ

d2Mb

dx2

]
1

Esbt3c1
(5.1)

where the bending moment Mb(x) = F0w(x) (Fig. 5).
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Differential equation (5.1) with one unknown function w(x) is approximately solved assuming
this function in the form

w(x) = wa sin
πx

L
(5.2)

where wa is the parameter of the function, L – length of the beam.
Substituting this function into the equation (5.1) the critical force is obtained

F
(7−lay)
0,CR =

(
Cww −

C2wψ
α1

)π2Esbt3c1
L2

(5.3)

where

α1 = Cψψ +
( 2L
πtc1

)2
G̃(c−1)xz

6. Equivalent sandwich beam

Comparative analysis is carried out for the classical sandwich beam (Fig. 6) equivalent to the
seven-layer beam (Fig. 1). This classical sandwich beam consists of two steel faces of thickness
tf = ts and the steel foam core of thickness tc = tc1+2(ts+ tc2). Its sizes and mass are identical
to the seven-layer beam.

Fig. 6. Scheme of the sandwich (three-layer) beam equivalent to the seven-layer beam

The mass of the metal foam core of this sandwich beam (three-layer beam)

m(3−lay)c = [1 + 2(x1 + x2)]tc1bLρc (6.1)

where ρc is the mass density of the metal foam core.
However, mass of the material (steel with mass density ρs) located between the two outer

sheets of the seven-layer beam (Fig. 1) is a sum of the mass of particular layers

m(7−lay)c = m(c−1)c + 2m(s−i)c + 2m(c−2)c (6.2)

where the mass of the main corrugated core

m(c−1)c =
A
(c−1)
TR

b01
bLρs (6.3)

Substituting the expression for the area of the trapezoid A(c−1)TR = 2t2c1x01(xf1xb1 + s̃a1) to the
above expression with consideration of the dimensionless parameters (3.5) one obtains

m(c−1)c = 2x01
(
xf1 +

s̃a1
xb1

)
tc1bLρs (6.4)
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and

m(s−i)c = tsbLρs = x1tc1bLρs m(c−2)c =
A
(c−2)
TR

b02
bLρs (6.5)

wherem(s−i)c is the mass of the inner sheets, m(c−2)c – mass of the corrugated cores of the facings.
Substituting the expression for the area of trapezoid (3.10) with dimensionless parameters

(3.11), one obtains

m(c−2)c = 2x2x02
(
xf2 +

s̃a2
xb2

)
tc1bLρs (6.6)

Thus, mass (6.2) is in the following form

m(7−lay)c = 2
[
x01
(
xf1 +

s̃a1
xb1

)
+ x1 + x2x02

(
xf2 +

s̃a2
xb2

)]
tc1bLρs (6.7)

Then, from the equivalence condition m(3−lay)c = m
(7−lay)
c (Eqs. (6.1) and (6.7)) of these two

beams, the proportion of mass densities of the metal foam core to steel is obtained

ρ̃c =
ρc
ρs
=
[
x01
(
xf1 +

s̃a1
xb1

)
+ x1 + x2x02

(
xf2 +

s̃a2
xb2

)] 2
1 + 2(x1 + x2)

(6.8)

Taking into account the experimental results related to the mechanical properties of metal foams
presented in details by Ashby et al. (2000), Smith et al. (2012) and Szyniszewski et al. (2014),
the relationship for Young’s moduli and mass densities of the metal foams and the reference
material (steel) is as follows

Ẽc =
Ec
Es
=
3
4

(ρc
ρs

)2
(6.9)

where Ec and Es are Young’s moduli of the metal foam and the steel.

7. Bending and buckling of the equivalent sandwich beam

The hypothesis of deformation of the plane cross-section after bending of the sandwich (three-
-layer) beam is assumed as the broken line (Fig. 7). The detailed description of this hypo-
thesis and derivation of the equations of equilibrium for the sandwich beam was presented by
Magnucka-Blandzi (2012).
The displacements with consideration of this hypothesis are as follows:

— the upper/lower facing for −(0.5 + x0) ¬ ζ ¬ −0.5 and 0.5 ¬ ζ ¬ 0.5 + x0

u(x, z) = −tc
[
ζ
dw

dx
± ψ0(x)

]
(7.1)

— the metal foam core for −0.5 ¬ ζ ¬ 0.5

u(x, z) = −tcζ
[dw
dx
− 2ψ0(x)

]
(7.2)

where x0 = tf/tc is the dimensionless parameter, ζ = z/tc – dimensionless coordinate,
ψ0(x) = uf (x)/tc – dimensionless functions of displacements, uf (x) – displacement in the x di-
rection and w(x) – deflection (Fig. 7).
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Fig. 7. Scheme of the hypothesis of the sandwich (three-layer) beam

Continuation of the procedure similar to the one applied to the seven-layer beam gives a
system of two differential equations of equilibrium for the classical sandwich beam presented by
Magnucka (2012) in the following form

Bww
d2w

dx2
−Bwψ

dψ0
dx
= −Mb(x)

Esbt3c
Bwψ

d3w

dx3
−Bψψ

d2ψ0
dx2
+ 4G̃c

ψ0(x)
t2c
= 0 (7.3)

where dimensionless parameters

Bww = 2C2f +
1
12
Ẽc Bwψ = C1f +

1
6
Ẽc Bψψ = 2x0 +

1
3
Ẽc

C1f = (1 + x0)x0 C2f =
1
12
(3 + 6x0 + 4x20)x0

and moduli

Ẽc =
Ec
Es

G̃c =
Ẽc

2(1 + νc)

This system of equations is analogical to the one of the seven-layer beam, (3.20) and (3.18)2.
Then, the maximum deflection and the critical force of the sandwich equivalent beam are as

follows

w(3−lay)max = w
(L
2

)
=
[
1 + 3

(
1− 2tc

k0L
tanh

k0L

2tc

) B2wψ

BwwG̃c

( tc
L

)2] F1
48BwwEsb

(L
tc

)3
(7.4)

and

F
(3−lay)
0,CR =

(
Bww −

B2wψ
α0

)π2Esbt3c
L2

(7.5)
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where

α0 = Bψψ +
( 2L
πtc

)2
G̃c

8. Illustrative detailed analysis for selected beams

A detailed analysis for an examplary steel seven-layer beam and the equivalent sandwich beam is
carried out for the following test data: L = 1620mm, b = 240mm, ts = 0.8mm, tc1 = 32.0mm,
t01 = 0.8mm, bf1 = 10.0mm, b01 = [32.4, 36.0, 40.5, 45.0] mm, tc2 = 16.0mm, t02 = 0.8mm,
bf2 = 8.0mm, b02 = 40.0mm and material-steel constants Es = 2 · 105MPa, ν = 0.3,
ρs = 7850 kgm−3. Moreover, tf = ts = 0.8mm and tc = tc1 + 2(ts + tc2) = 65.6mm.
The values of maximum deflections (4.6) and critical forces (5.3) of the seven-layer beam

are specified in Table 1. The values of maximum deflections (7.4) and critical forces (7.5) of the
sandwich (three-layer) beam are specified in Table 2.

Table 1. Maximum deflections and critical forces of the seven-layer beam

b01 [mm]
32.4 36.0 40.5 45.0

w
(7−lay)
max [mm] 3.49 3.18 2.98 2.88

F
(7−lay)
0,CR [kN] 490.1 535.8 568.5 587.3

Table 2. Maximum deflections and critical forces of the sandwich beam

b01 [mm]
32.4 36.0 40.5 45.0

ρ̃c Eq. (6.8) 0.0892374 0.0863605 0.0835631 0.0814007
Ẽc Eq. (6.9) 0.005972 0.005594 0.005237 0.004970

w
(3−lay)
max [mm] 5.13 5.16 5.21 5.24

F
(3−lay)
0,CR [kN] 328.1 325.6 323.2 321.3

Moreover, the values of maximum deflections and critical forces of the seven-layer beam and
the equivalent sandwich beam are presented in Figs. 8 and 9.

Fig. 8. Maximum deflections of the two beams
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Fig. 9. Critical forces of the two beams

9. Conclusions

The analytical modelling of the seven-layer beam with a lengthwise trapezoidal corrugated main
core and two crosswise trapezoidal corrugated cores of faces leads to the conclusions:

• hypotheses of the flat cross-sections deformations of these two beams as the broken line
are analogous,

• equations of equilibrium of these two beams are similar,
• proportion of the maximum deflections of these two beams for the studied family of the
beams is w(3−lay)max /w

(7−lay)
max = 1.47-1.82,

• proportion of the critical force of these two beams for the studied family of the beams is
F
(7−lay)
0,CR /F

(3−lay)
0,CR = 1.49-1.83,

• stiffness of the seven-layer beam is decidedly greater than that of the equivalent classical
sandwich (three-layer) beam.
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Analysis-suitable T-splines are used for the modeling and analyzing of cracks in bimaterial
interfaces within the framework of an extended isogeometric analysis (XIGA). The crack tip
enrichment functions of bimaterial interface cracks are implemented to reproduce singular
fields, and the signed distance functions are used to treat the crack face and the interface
in the models. A compatible local refinement algorithm is applied to refine location of the
crack and the interface, which helps one to avoid produce excessive propagation of control
points. The mixed mode stress intensity factors (SIFs) which are evaluated by the interaction
integral (M-integral) are used as analysis parameters. Numerical simulations are performed
to analyze the problem and to examine the efficiency of the proposed method. The obtained
results are compared with other available results.

Keywords: extended isogeometric analysis, T-splines, bimaterial interface cracks, enrichment
functions, local refinement

1. Introduction

As its name indicates, a composite material is made up of two or more different constituents; it
has properties that cannot be obtained together by one of the individual constituents, such as
high specific strength and stiffness, good durability and good corrosion resistance. Due to their
properties, composites have been developed and used in various industrial and engineering ap-
plications, like those in aerospace, aircraft, automotive industries, etc. However, these materials
are not immune to manufacture defects especially from those which are created as interfacial
cracks. This problem greatly influences the behavior of structures and can cause brutal fracture.
The mechanical behavior of composite materials needs more understanding, especially in

the presence of strong and weak discontinuities. Many analytical studies were performed based
upon the work of Williams (1959) for understanding the problem of bimaterial interface cracks,
such as (Erdogan 1963; Rice and Sih, 1965; Sun and Jih, 1987; Hutchinson et al., 1987; Ri-
ce, 1988; Evans et al., 1990). However, the complexity of analytical solutions even for simple
cases requires the modelling of mechanical behavior of this problem using effective numerical
methods. Several investigations have been developed in this domain, via the boundary element
method (BEM) (Lee and Choi, 1988; Yuuki and Xu, 1994; Miyazaki et al., 1993), finite element
method (FEM) (Ikeda et al., 2006), element free Galerkin method (EFGM) (Pant et al., 2011),
extended finite element method (XFEM) (Nagashima et al., 2003; Liu et al., 2004; Belytschko
and Gracie, 2007) and other methods (Zhou et al., 2013, 2014; An et al., 2013). Recently, a
large field was opened by Hughes et al. (2005) offering the possibility of introducing computer
aided design (CAD) tools in the analysis methods using the isoparametric concept. The ba-
sic idea of this novel alternative method, called isogeometric analysis (IGA), is to exploit the
technologies of computational geometry as shape bases to describe the geometry exactly, also
for the approximation of unknown fields. Following this discovery, several researches in various
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fields have been conducted by this method, including: fluid-structure interaction (Bazilevs et al.,
2006), composite materials (Peković et al., 2015), elastic-plastic analysis (Kalali et al., 2016),
electromagnetic problems (Buffa et al., 2010), turbulent flow (Bazilevs and Akkerman, 2010),
contact problems (Temizer et al., 2011), aero-dynamics (Hsu et al., 2011), heat transfer (Anders
et al., 2012) and fluid mechanics (Evan and Hudhes, 2013). For more details about IGA, a recent
review has been published, see Nguyen et al. (2015). In fracture mechanics problems, IGA has
been also applied in different studies (Verhoosel et al., 2011; Borden et al., 2012; Nguyen and
Nguen-Xuan, 2013; Nguyen et al., 2014; Peng et al., 2014), however Benson et al. (2010) and
De Luycker et al. (2011) proposed extended isogeometric analysis (XIGA) for modelling cracks.
In this method the general principle of the XFEM is used in IGA by including the asymptotic
and signed distance enrichment functions. Therefore, this method has the advantages of both
XFEM and IGA, which are summarized by the ability to represent complex geometries inde-
pendently of any discontinuities and without explicit meshing to obtain solutions with higher
orders. Some applications in fracture mechanics have been checked by the XIGA, such as in the
cases of homogeneous materials (Ghorashi et al., 2012; Bhardwaj and Singh, 2015), functionally
graded material (Bhardwaj et al., 2015a,c) and bimaterial interfaces (Bhardwaj et al., 2015b;
Jia et al., 2015), where the non-uniform rational B-splines (NURBS) are used. Also, orthotropic
media have been studied using T-spline based XIGA (Ghorashi et al., 2015).
There are many CAD basis functions that can be used in IGA, where the Non Uniform

Rational B-splines (NURBS) are widely used due to their properties, like continuity, smoothness,
variation diminishing, convex hull and possibility of using knot insertion and degree elevation
refinements. They have the ability to describe exactly all conic sections but they have difficulties
in certain complex geometries which cannot be avoided even by using multiple patches, where
NURBS generate a complicated mesh which leads to produce superfluous control points. In order
to handle these disadvantages, Sederberg et al. (2003) proposed a T-spline as a generalized tool
of NURBS, in which the index space (T-mesh) locally refined using T-junctions (Sederberg et
al., 2004). Therefore, the major advantages of this technique are the local refinement and the
ability to represent complex geometries with a minimal number of control points compared with
those used in NURBS.
According to their ability in engineering design, T-splines have been used by analysis to

serve as basis functions for IGA in many advanced searches. However T-spline bases are not
always valid to be used in analysis for different geometric configurations, because the linear
independence and partition unity properties are not always ensured. Li et al. (2012) introduced
analysis-suitable T-splines, where for any choice of knot vectors the blending functions are
linearly independent. Like NURBS bases, analysis-suitable T-spline bases have the properties of
the analysis basis functions. Moreover, they provide an efficient algorithm which allows making
highly localized refinement (Scott et al., 2012).
In this paper, the interface crack in the case of 2D composites is analyzed using T-spline based

XIGA; the accuracy of this approach is first tested in isotropic materials. The analysis-suitable
T-spline and its refinement algorithm are highlighted.

2. Analysis-suitable T-splines

An analysis-suitable T-spline is founded when the T-mesh (T-mesh is a mesh of rectangular
elements that is defined by the lines corresponding to knot values of the parametric vectors)
provides a restricted topology that has no intersecting T-junction extensions. The T-junction
extension is defined in each T-junction vertex by an interval which includes two distances. The
first distance is between the T-junction and the two next adjoining edges or vertices in the
direction of missing edge, while the second distance is between the T-junction and one edge
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or vertex in the other direction, as shown in Fig. 1b. The T-mesh that shows all T-junction
extensions can be called extended T-mesh. An empty extended T-mesh means there are no
intersections between T-junction extensions (see Fig. 1c), which means the T-mesh is analysis-
-suitable.

Fig. 1. An example depicts: (a) T-mesh, (b) extended T-mesh and (c) empty extended T-mesh

In order to make local refinement of analysis-suitable T-spline spaces, Scott et al. (2012)
introduced an algorithm consisting of the following steps:

• create the refined T-mesh T2 from the original analysis-suitable T-mesh Ts1,
• form the extended T-mesh of T2.
• if the extended T-mesh of T2 has intersecting T-junction extensions, one edge must be
inserted into T2 in such a way that reduces the number of the intersections,

• repeat step 3 until the extended T-mesh has no intersecting T-junction extensions,
• compute the refinement matrix M.

For more details, see (Scott et al., 2012).

3. Extended isogeometric analysis (XIGA)

XIGA (Benson et al., 2010; De Luycker et al., 2011) uses the same methodology of the extended
finite element method (XFEM) for the modelling of discontinuities but with basis functions
derived from geometry like in isogeometric analysis (Hughes et al., 2005). For crack problems,
XIGA provides the possibility of modelling the crack independently of the mesh and within
exactly presented geometry. Uncommonly, in this study, T-splines are adopted in XIGA using
analysis-suitable T-splines to approximate the displacement in any point ζ = (ξ, η) as follows

u(ζ) =
ns∑

i=1

Ri(ζ)ui +
ncf∑

j=1

Rj(ζ)H(ζ)aj +
nct∑

k=1

Rk(ζ)

(
4∑

ℓ=1

Fℓ(ζ)b
ℓ
k

)
+

ni∑

t=1

Rt(ζ)χ(ζ)ct (3.1)

where R is the T-spline basis function extracted from an empty extended T-mesh, H is the
Heaviside function used for the modelling of the crack face, it takes value 1 above the crack
and −1 below the crack, F are the crack-tip enrichment functions, ui, aj, bk and ct are the
displacement vectors corresponding to ns, ncf , nct and nt control points, respectively. The fourth
term is used when there is no coincidence between the interface and the finite element mesh for
the modelling of weak discontinuity. The enrichment function of Moës et al. (2003) χ can be
used

χ(ζ) =
∑
RI(ζ)|φI | −

∣∣∣
∑
RI(ζ)φI

∣∣∣ (3.2)

where φ is the signed distance value of the interface control points.
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The enrichment functions of bimaterial interface cracks were derived by Sukumar et al. (2004)
as

{Fℓ(r, θ)}12ℓ=1 =
{√

r cos(ε log r)e−εθ sin
θ

2
,
√
r cos(ε log r)e−εθ cos

θ

2
,
√
r cos(ε log r)eεθ sin

θ

2
,

√
r cos(ε log r)eεθ cos

θ

2
,
√
r cos(ε log r)eεθ sin

θ

2
sin θ,

√
r cos(ε log r)eεθ cos

θ

2
sin θ,

√
r sin(ε log r)e−εθ sin

θ

2
,
√
r sin(ε log r)e−εθ cos

θ

2
,
√
r sin(ε log r)eεθ sin

θ

2
,

√
r sin(ε log r)eεθ cos

θ

2
,
√
r sin(ε log r)eεθ sin

θ

2
sin θ,

√
r sin(ε log r)eεθ cos

θ

2
sin θ

}

(3.3)

4. Numerical simulations

Here, the analysis-suitable T-spline is used in XIGA to simulate the crack in homogeneous
isotropic and bimaterial interfaces. Two numerical examples are considered for each material
type in plane static problems, where mode I and mode II SIFs are evaluated and compared with
other numerical and analytical results. First, the isotropic material is considered in a rectangular
plate with an edge crack in order to study the convergence and the domain independence in the
computations of SIF, also an isotropic square plate with a center crack is analyzed for different
crack angles to verify the accuracy of the proposed approach. Then, numerical applications
in the form of parametric studies are considered for edge and center interface cracks in finite
rectangular plates.
In all geometric models (NURBS and T-splines) the cubic order is used in both parametric

directions, where the weights are taken as unity. In the edge crack problems, the geometry is
refined locally once, while for the center crack problems the geometry is refined locally twice.
Four types of finite elements are distinguished in these examples according to their positions with
respect to the crack, the standard element contains 3×3 Gauss points. The element having tip
enriched control points contains 7×7 Gauss points and the sub-triangle technique (Ghorashi et
al., 2011) is used for the tip-element by 13 Gauss points in each triangle, however the split element
contains 6×6 Gauss points for the horizontal crack problems and the sub-triangle technique is
used by 13 Gauss points in each triangle for the inclined crack problems. The SIFs are evaluated
using interaction integral (Yau and Wang, 1984), wherein the crack tip element is not considered
in the calculation.

4.1. Homogeneous isotropic material

In this case, we simulate a finite rectangular plate containing an edge crack (Fig. 2a) and a
square plate containing an inclined central crack (Fig. 2b), subjected to unit uniaxial tension in
plane stress state. The convergence of the proposed approach is studied for the edge crack pro-
blem with normalized M-integral radius equal to 1 using five different control net configurations
(200, 296, 362, 754 and 1800 control points), all shown in Fig. 3. The errors of the normalized
SIF values obtained from the proposed approach which are shown in Table. 1 are computed
using the following equation

KI =
KI

σ
√
πa
= TI

( a
L

)
(4.1)

where TI(a/L) is the analytical formula which corresponds to mode I, it can be computed as
(Tada et al., 2000)

TI = 1.122 − 0.231
a

L
+ 10.55

( a
L

)2
− 21.71

( a
L

)3
+ 30.382

( a
L

)4
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Fig. 2. Geometries and loading of the homogeneous isotropic examples (a) rectangular plate with an
edge crack and (b) square plate with a center inclined crack

Fig. 3. Different mesh configurations used in the convergence study: (a) 200 points, (b) 296 points,
(c) 362 points, (d) 788 points and (e) 1800 points

Table 1. Convergence of the SIF for various control nets

Control points KI Error [%]

200 2.1275 1.0257
296 2.1189 0.6173
362 2.1121 0.2944
754 2.1098 0.1852
1800 2.1131 0.3419

The first and the last meshes in Fig. 3 represent a special case of T-splines which is NURBS.
According to Table 1, analysis suitable T-splines give us precise results for a different number
of control points (meshes 2, 3 and 4), even for the minimal number of control points compared
to NURBS (mesh 4 compared to mesh 5) and that attributed to the local refinement property.
Table 2 compares the results of the normalized SIF for different radius to study the domain
independence in T-spline meshes. We observe that the SIF values are almost not sensitive to the
radius of the M-integral. The contour plots of the normal stress component σyy and the vertical
displacement uy are illustrated in Fig. 4.
For the square plate, we used a mesh consisting of 788 control points and 689 elements

(Figs. 5a and 5b) to evaluate the normalized mixed mode SIF for a = 0.5 in different inclined
angles. The exact SIFs of this problem can be obtained by the following equations

KI = σ0
√
πa cos2 β KII = σ0

√
πa sin β cos β (4.2)
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Table 2. Domain independence study

Radius
Mesh 2 Mesh 3 Mesh 4

KI Error [%] KI Error [%] KI Error [%]

0.6 2.1131 0.3419 2.1280 1.0494 2.1245 0.8832
0.7 2.1256 0.9355 2.1202 0.6790 2.1142 0.3941
0.8 2.1256 0.9355 2.1209 0.7123 2.1122 0.2992
0.9 2.1218 0.7550 2.1177 0.5603 2.1122 0.2992
1.0 2.1189 0.6173 2.1121 0.2944 2.1098 0.1852
1.1 2.1146 0.4131 2.1118 0.2802 2.1109 0.2374

Fig. 4. Graphical visualization: (a) normal stress and (b) vertical displacement

Fig. 5. The meshes used for the isotropic square plate: (a) T-spline control net (788 points), (b) elements
corresponding to the T-spline control net (689 elements) and (c) NURBS control net (4625 points)

Fig. 6. The crack tip (red squares) and the crack face (blue circles) enriched points of: (a) T-spline
control net and (b) NURBS control net, in the case β = 0

Figure 6a depicts the enriched control points that correspond to the crack face and crack tip
elements. Figure 7 shows a comparison between the normalized SIFs calculated by the propo-
sed approach and those derived from the exact solution and NURBS-based XIGA. A uniform
NURBS mesh is used Fig. 6c, its enriched control points are presented in Fig. 6b. As seen in
both modes, there is a very close agreement between the T-spline results and the other results.
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Fig. 7. Variations of normalized mode I and II SIFs with respect to different crack angles using the
analysis-suitable T-splines, NURBS and exact solution for the square plate problem

Fig. 8. Geometries and loading of the bimaterial interface examples: (a) interface center crack and
(b) interface edge crack

4.2. Bimaterial interface crack

We consider two finite rectangular plates subjected to uniaxial tensions in plane stress con-
ditions, each one constituted of two dissimilar materials and cracked in the interface as shown
in Fig. 8. Different ratios of Young’s modulus (E1/E2 = 2, 3, 4, 10 and 100) with fixed Pois-
son ratios (ν1 = ν2 = 0.3) are taken in the simulation. Similar problems were solved before by
Miyazaki et al. (1993) utilizing the boundary element method (BEM), Nagashima et al. (2003)
utilizing an extended finite element method (XFEM), Matsumto et al. (2000) making use of
the interaction energy release rates and BEM sensitivity and Liu et al. 2004) using XFEM for
direct evaluation of the mixed mode SIF. For the center crack problem (Fig. 8a), we use a mesh
consisting of 3132 control points and 2925 elements as shown in Figs. 9a and 9b. For the edge
crack problem (Fig. 8b), we use a mesh consisting of 1446 control points and 1235 elements as
shown in Figs. 9c and 9d. The enriched control points are defined in Fig. 10. In order to verify
the accuracy of the obtained results, the normalized SIFs are compared with those obtained by
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other methods in Fig. 11 for the center crack problem (2a/L = 0.4) and in Fig. 12 for the edge
crack problem (a/L = 0.3). Figures 13 and 14 illustrate variations of the normalized SIFs in
terms of crack lengths for the center and edge crack problems, respectively. For more details,
check Table 3 and Table 4.

Fig. 9. T-spline meshes used for the bimaterial interface examples: (a) control net for the interface
center crack (793 points), (b) mesh for the interface center crack (688 elements), (c) control net for the

interface edge crack (566 points) and (d) mesh for the interface edge crack (431 elements)

Fig. 10. Crack tip, crack face and interface enriched control points: (a) interface center crack and
(b) interface edge crack

Fig. 11. Variations of normalized mode I and II SIFs with respect to different Young’s modulus ratios
using T-spline based XIGA, BEM and XFEM for the center interface crack (2a/L = 0.4)
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Fig. 12. Variations of normalized mode I and II SIFs with respect to different Young’s modulus ratios
using T-spline based XIGA, BEM and XFEM for the edge interface crack (a/L = 0.3)

Fig. 13. The effect of Young’s modulus ratio on the normalized SIFs for the center interface crack

Fig. 14. The effect of Young’s modulus ratio on the normalized SIF for the edge interface crack
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Table 3. Results of normalized stress intensity factors for the center interface crack

E1/E2 2a/L
Present study Matsumto et al. (2000) Miyazaki et al. (1993)
KI KII KI KII KI KII

0.1 1.006 −0.0731 0.995 −0.072 1.001 −0.072
0.2 1.0245 −0.0713 1.019 −0.07 1.02 −0.071

2 0.3 1.0572 −0.071 1.053 −0.072 1.053 −0.071
0.4 1.1056 −0.0725 1.104 −0.073 1.104 −0.073
0.5 1.1814 −0.0764 1.18 −0.077 1.181 −0.077
0.1 0.9993 −0.1097 0.987 −0.106 0.993 −0.107
0.2 1.0179 −0.1072 1.013 −0.105 1.012 −0.106

3 0.3 1.0504 −0.1068 1.044 −0.105 1.045 −0.106
0.4 1.0981 −0.1089 1.095 −0.108 1.096 −0.109
0.5 1.1726 −0.1145 1.172 −0.115 1.171 −0.115
0.1 0.9934 −0.1314 0.981 −0.128 0.987 −0.129
0.2 1.0121 −0.1284 1.006 −0.126 1.006 −0.127

4 0.3 1.0443 −0.1279 1.037 −0.126 1.031 −0.127
0.4 1.0916 −0.1303 1.088 −0.131 1.089 −0.13
0.5 1.1649 −0.1368 1.163 −0.136 1.163 −0.137
0.1 0.972 −0.1764 0.962 −0.172 0.968 −0.174
0.2 0.9906 −0.1729 0.987 −0.168 0.986 −0.171

10 0.3 1.0224 −0.1708 1.017 −0.171 1.018 −0.17
0.4 1.0712 −0.1745 1.065 −0.172 1.066 −0.173
0.5 1.1418 −0.1838 1.135 −0.181 1.136 −0.182
0.1 0.9488 −0.2086 0.943 −0.207 0.946 −0.206
0.2 0.967 −0.2043 0.964 −0.201 0.964 −0.201

100 0.3 0.9979 −0.201 0.994 −0.198 0.994 −0.2
0.4 1.0435 −0.204 1.039 −0.2 1.039 −0.203
0.5 1.1088 −0.2129 1.104 −0.208 1.104 −0.21

The results of the proposed method are closer to the BEM results than the XFEM results,
as shown in Figs. 11 and 12. Young’s modulus ratio has a slight effect on the SIFs, as shown
in Tables 3 and 4. As it is obvious in the precedent examples, the local refinement property of
analysis-suitable T-splines allows increasing the accuracy of the results and using less DOFs.
Finally, we note that the evaluation of shape functions in XIGA is slower than some methods
such as XFEM.

5. Conclusion

In this study, the analysis-suitable T-spline has been used in XIGA to approximate the solution
in cracked bimaterial interfaces in order to construct geometry and to make local refinement
around the discontinuities. Furthermore, it helps avoiding the emergence of superfluous control
points during the local refinement process. The asymptotic crack-tip enrichment functions and
the interaction integral method corresponding to bimaterial interface cracks have been used
to evaluate the stress intensity factors. The results obtained by the proposed method have
been compared with the results form literature, where a good agreement has been regarded
demonstrating the accuracy of the approach.
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Table 4. Results of normalized stress intensity factors for the edge interface crack

E1
E2

2a
L

Present study Matsumto et al. (2000) Miyazaki et al. (1993) Liu et al. (2004)
KI KKII KI KII KI KII KI KII

0.1 1.1899 −0.1299 1.19 −0.127 1.195 −0.129 – –
0.2 1.3682 −0.1352 1.367 −0.137 1.368 −0.137 1.374 −0.137

2 0.3 1.6619 −0.1576 1.657 −0.156 1.659 −0.158 1.669 −0.159
0.4 2.1198 −0.1975 2.109 −0.195 2.11 −0.198 2.125 −0.198
0.5 2.8423 −0.2678 2.819 −0.268 2.882 −0.267 2.844 −0.267
0.1 1.1974 −0.1988 1.198 −0.195 1.203 −0.197 – –
0.2 1.369 −0.2049 1.368 −0.208 1.368 −0.207 1.375 −0.208

3 0.3 1.6603 −0.2379 1.655 −0.235 1.656 −0.239 1.668 −0.240
0.4 2.116 −0.2977 2.102 −0.298 2.105 −0.298 2.121 −0.299
0.5 2.8351 −0.403 2.812 −0.402 2.814 −0.402 2.839 −0.402
0.1 1.2216 −0.343 1.222 −0.336 1.229 −0.34 – –
0.2 1.3719 −0.3461 1.366 −0.348 1.369 −0.349 1.379 −0.354

10 0.3 1.6547 −0.3976 1.648 −0.394 1.648 −0.399 1.661 −0.403
0.4 2.1023 −0.4945 2.09 −0.491 2.09 −0.494 2.109 −0.5
0.5 2.8103 −0.6649 2.789 −0.661 2.789 −0.663 2.819 −0.668
0.1 1.2422 −0.4286 1.251 −0.424 1.251 −0.424 – –
0.2 1.3744 −0.4252 1.376 −0.429 1.370 −0.428 1.381 −0.434

100 0.3 1.6491 −0.4842 1.647 −0.47 1.642 −0.485 1.657 −0.494
0.4 2.0895 −0.5975 2.083 −0.569 2.078 −0.597 2.101 −0.608
0.5 2.7888 −0.7972 2.772 −0.793 2.77 −0.797 2.804 −0.813
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This paper presents test results for deformation conditions of three-layer, piezoelectric can-
tilever converters subjected to various electrical and mechanical boundary conditions. A
general solution has been developed based on implementation of piezoelectric triple seg-
ments (PTS) to the beam. A working mechanism and conditions for strain of the PTS
segment have been determined. Basing on the general solution, for the cantilever actuator
subjected to an external force (of single and dual PTS segments) and a uniform load (of
single PTS segment), particular solutions have also been developed. Moreover, dimensionless
frequencies of the oscillating motion for the analyzed converters have been determined. In
the next step, the influence of such factors as length, quantity and position of PTS segments,
their relative stiffness and unit weight on values of the obtained frequencies of vibration ha-
ve been defined. The resulting analytical solutions have been compared with the developed
FEM solution.
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1. Introduction

Piezoelectric transducers have been used over the years in many devices. These are exploited
as sensors (Ştefănescu, 2011), actuators (Tzou, 1999), energy harvesters (Liu et al., 2014) or
dynamic eliminators (Przybyłowicz, 1999). Their working principle is based on the conversion of
electric energy to mechanical or other way around (Bush-Vishniac, 1999). The relation between
strain and electric field is defined by constitutive equations ((Curie and Curie, 1880; Berlincourt
et al., 1964).
A significant aspect influencing the functionality and durability of converters is selection of

a proper piezoelectric material. The properties of typical piezoelectric materials are presented
in papers by Kawai (1969), Rajabi et al. (2015).
Another important factor is a static characteristic of the converter. When designing piezoelec-

tric converters for specific application, it is necessary to define and solve adequate simultaneous
equations. These equations bound together geometrical properties, material properties and phy-
sical parameters such as force, deflection and electric field. Solving such simultaneous equations
is very difficult. Materials and geometrical inhomogeneity of the converter global structure and
anisotropy of piezoelectric materials forces the use of some reductions. Smits et al. (1991), by
using energetic methods, formed and solved constitutive equations for a converter made of two
layers of even length (piezoelectric bimorph). In the paper by Wang and Cross (1999) there is
an issue of a three-layer converter extended and solved, whereas in (Xiang and Shi, 2008) – a
multi-layer one. The static characteristics of two-layer converters with different length of layers
are shown in (Park and Moon, 2005; Raeisifard et al., 2014; Mieczkowski, 2016).
Piezoelectric converters as well as other elastic bodies having mass are prone to vibrations.

Therefore, it is necessary to define the nature of their oscillating motion. Many authors have
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dealt with this issue. Chen et al.(1998), Askari Farsangi et al. (2013) studied free vibrations of
piezoelectric laminated plates presented, whereas Clare et al. (1991)analysed a simply supported
beam with piezoelectric patches. Also, analyses of dynamic characteristics of transducers where
forced vibration occurred are shown in papers by Rouzegar and Abad (2015), Bleustein and
Tiersten (1968), Djojodihardjo et al. (2015). Dynamical aspects of converters with the piezo-
electric patches, including control strategy, were considered by Tylikowski (1993), Pietrzakowski
(2000, 2001), Buchacz and Płaczek (2009).

It is a very rare case that in literature one can find results of tests describing the influence of
geometrical and material characteristics, number and location of piezoelectric patches on static
deflection and free vibration.

In such cases, in order to determine electromechanical behaviour of the converter, usually
the FEM-based analyses are carried out, see (Rahmoune and Osmont, 2010; Mieszczak et al.,
2006). However, carrying out this type of analyses is very work-consuming and the solution may
be subjected to high error.

Therefore, the main purpose of the present paper is to develop a simple analytical method for
determining deflection in function of mechanical and electric loads. By design, the piezoelectric
converters have individual components (layers) of different length and the piezoelectric layer can
be divided, which is an extension to the researches shown in papers by Smits et al. (1991), Wang
and Cross (1999), Xiang and Shi (2008), where lengths of the beam element and piezoelectric
layers were equal, see Fig. 1.

Fig. 1. Three-layer piezoelectric converter, 1 – beam, 2 – piezoelectric elements, 3 – piezoelectric triple
segment PTS

The proposed method involves the implementation of modules to a homogeneous beam, fur-
ther referred to as the piezoelectric triple segment (PTS). This allows including a local change in
stiffness and strain caused by the transverse piezoelectric effect within the analytical description
of the beam deflection.

In view of material and geometric discontinuity in the analyzed transducers, natural fre-
quencies of oscillating motion turn out to be different than those in the homogeneous beam.
Therefore, the next aim of the paper is analysis of dynamical behavior of such converters. In
the present work, examination similar to that carried out by Clare et al. (1991) is conducted.
It is extended by analysis of the influence of the number, length and location of piezoelectric
segments and their material properties on the natural frequency values.

In order to verify the correctness of the solutions, it is required to compare the obtained
results with experimental data or results obtained using other methods. Therefore, for converters
with the diversified material and geometric structure, FEM simulations have been made and
compared with the obtained analytical results.
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2. Analytical results

2.1. Basic assumptions

The converters analysed in this work are treated as a homogeneous (one-layer) beam with
locally implemented piezoelectric triple segments PTS (Fig. 1). The PTS is made up of three
components – two piezoelectric and one non-piezoelectric element. The non-piezoelectric layer
thickness is the same as the beam thickness. The beam and the PTS both have the same width.
In order to simplify the mathematical model, the following assumptions are made:

• bending of the element takes place according to Euler’s hypothesis, and radii of curvatures
of the deflected components are identical,

• in the connection plane between components there is no intermediate layer and no sliding
occurs,

• in the piezoelectric layer, the transverse piezoelectric effect 1-3 takes place causing clear
bending.

2.2. General solution to the piezoelectric converter with implemented PTS segment

The task is to consider a section of the piezoelectric converter (Fig. 2) subjected to mechanical
bending moment M(x) and electric moment Me (following the occurrence of the piezoelectric
effect).

Fig. 2. Section of the piezoelectric converter

In the analysed element subjected to bending, it is possible to determine three characteristic
ranges related to a change in load and stiffness. Within the x1 < x < x2 range, there is a
piezoelectric triple segment PTS (generating Me) with flexural stiffness EpJo. The other two
ranges are a homogeneous beam with stiffness EbJb. Since there are several characteristic ranges
on the beam, it is convenient to make use of Heaviside’s function. Thus, including the PTS
presence in the beam, the deflection line can be described using the following dependence

∂2y

∂x2
=
M(x)
EbJb

+Meγ(H[x− x1]−H[x− x2]) (2.1)

where: H[x− xi] – Heaviside’s function, Ep, Eb – Young’s moduli of the piezoelectric and non-
piezoelectric element, Jb, Jo – moments of inertia (described in Section 2.3), γ – factor including
the change in stiffness with applied formal notation of Heaviside’s function

γ =
EbJb[Me +M(x)]− EpJoM(x)

EbJbEpJoMe

As determining the mechanical moment M(x) in general does not pose any problems, deter-
mining the electrical load Me generated by the PTS is very burdensome and requires solving
the two-dimension problem of the PTS bending.
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2.3. Piezoelectric triple segment PTS

The task is to consider the segment PTS (Fig. 3) with constant width b consisting of non-
-piezoelectric (2) and piezoelectric layers (1) and (3).

Fig. 3. Distribution of forces and conditions for strain of the piezoelectric triple segment PTS

The structure is not subjected to any mechanical load. The longitudinal forces Ni and ben-
ding moments Mi occurring in individual layers are a result of the applied voltage v. Basing on
the equilibrium equation of forces. the following can be rritten

N1 +N2 +N3 = 0 (2.2)

The sum of moments in relation to the upper interface must be zero, therefore

M1 +M2 +M3 −
N2tb
2
−N3

(
tb +

tp
2

)
+
N1tp
2
= 0 (2.3)

According to the adopted Euler hypothesis, bending moments can be described as follows

M1 =
Ep
Jp
ρ M2 =

Eb
Jb
ρ M3 =

Ep
Jp
ρ (2.4)

Substituting dependences (2.4) to (2.3) and making simple transformations results in the follo-
wing

1
ρ
=
(N2 + 2N3)tb + (N3 −N1)tp

2EbJb + 4EpJp
(2.5)

Including the relation between the radius of curvature ρ and deflection w(x)

1
ρ
=
∂2w

∂x2
(2.6)

the differential equation for the converter bending can be found as follows

∂2w

∂x2
=
(N2 + 2N3)tb + (N3 −N1)tp

2EbJb + 4EpJp
(2.7)
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The constitutive equations for all converter layers, including the piezoelectric effect in layer 1
and 3 give the following

∂ux1
∂x
=

N1
EpAp

− d31
(−v
tp

) ∂ux2
∂x
=

N2
EbAb

∂ux3
∂x
=

N3
EpAp

+ d31
(−v
tp

)
(2.8)

where Ab = tbb, Ap = tpb are layers cross sectional areas, d31 – piezoelectric constant.
Following the relocation continuity condition (Fig. 3), it is found that

ux1 − ux2 −
∂w

∂x

(tp
2
+
tb
2

)
= 0 ux1 − ux3 −

∂w

∂x

( tp
2
+
tb
2
+ tb

)
= 0 (2.9)

Solving differential equations (2.7) and (2.8) with the following boundary conditions

∂w

∂x
(0) = 0 w(0) = 0

ux1(0) = 0 ux2(0) = 0 ux3(0) = 0
(2.10)

and applying dependence (2.9) and (2.2), the longitudinal force Ni can be determined

N1 =
−bEpvd31(Ebt3b + 2Ept3p)

α
N2 = 0 N3 =

bEpvd31(Ebt3b + 2Ept
3
p)

α
(2.11)

where: α = Ebt3b − 2Eptp(3t2b + 6tbtp + 2t2p).
The differential equation for bending PTS in the Me moment function can be written as

follows

∂2w

∂x2
=
−2Me

EpJo
(2.12)

On the basis of comparing equations (2.7) and (2.12), it is possible to determine the bending
moment Me which results from the piezoelectric effect

Me =
EpJo[−(N2 + 2N3)tb + (N1 −N3)tp]

4EbJb + 8EpJp
(2.13)

where moments of inertia for the individual layers are, respectively

Jb =
bt3b
12

Jp =
bt3p
12

(2.14)

The averaging value of the moment of inertia Jo can be calculated using the method of
transformation of the cross sectional area (Fertis, 1996). Three materials of different stiffness
moduli and the same width b (Fig. 4a) are replaced with one material of the section composed
of three parts of different widths (Fig. 4b).
The sought moment of inertia, calculated in relation to the neutral layer, is

Jo =
bβ

12Ep
(2.15)

where: β = Ebt3b + 2Eptp(3t
2
b + 6tbtp + 4t

2
p).

Substituting formula (2.13) with (2.11), (2.14) and (2.15) results in the electric bending
moment value in function of the applied voltage v

Me = −
bEpvβd31(tb + tp)

2α
(2.16)
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Fig. 4. Original (a) and transformed (b) section in the piezoelectric triple segment PTS

2.4. Particular solutions

This part of the work is concerned with the application of the proposed method based
on implementing PTS segments into the single-layer beam to determine analytical dependences
describing bending of the converters of fixed geometry and known boundary conditions. Solutions
for the converters of different external loads and the PTS number shall be presented.

2.4.1. Cantilever converter subjected to concentrated force F of a single PTS segment

In the converter, as shown in Fig. 5, the left end is fixed and the right end can move freely.
The load results from the external force F and the electric moment Me is generated by the
applied voltage v. Based on the conditions for equilibrium of forces and moments, the reactions
in the mounting are established: Ry = F , Rx = 0, MF = FL.

Fig. 5. Cantilever converter of the single PTS segment

The mechanical moment M(x) takes the following form

M(x) = −MF +Ryx = −FL+ Fx (2.17)

Substituting expressions (2.16) and (2.17) to the general solution described with formula (2.1),
upon double integration gives a dependence describing the function of bending of the analysed
converter

y(x) = A1v +B1F (2.18)

where
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A1 =
−3d31Ep(tb + tp)

α

(
H[x− x1](x− x1)2 −H[x− x2](x− x2)2

)

B1 =
2

bβEbt
3
b

{
(β − Ebt3b)

(
H[x− x1](3L− x− 2x1)(x− x1)2

−H[x− x2](3L− x− 2x2)(x− x2)2
)
− βx2(3L− x)

}

The integration constants are determined on the basis of the following boundary conditions

∂y

∂x
(0) = 0 y(0) = 0 (2.19)

2.4.2. Cantilever converter subjected to concentrated force F of two PTS segments

For the converter shown in Fig. 6 the conditions of mounting and mechanical load are identical
as in the case described in Section 2.4.1. The electrical load is generated by two PTS segments
powered by voltage v1 and v2.

Fig. 6. Cantilever converter of two PTS segments

The differential equation for deflection is as follows

∂2y

∂x2
=
M(x)
EbJb

+Me1γ(H[x− x1]−H[x− x2]) +Me2γ(H[x− x3]−H[x− x4]) (2.20)

In the formula above, the mechanical moment M(x) is described by equation (2.17), while the
electrical moments are

Me = −
bEpviβd31(tb + tp)

2α
i = 1, 2 (2.21)

Solving differential equation (2.20) and assuming boundary conditions (2.19) gives the function
describing bending of the analysed converter

y(x) = A1v1 +A2v2 +B2F (2.22)

where

A2 =
−3d31Ep(tb + tp)

α

(
H[x− x3](x− x3)2 −H[x− x4](x− x4)2

)

B2 =
2

bβEbt
3
b

{
(β − Ebt3b)

(
H[x− x1](3L− x− 2x1)(x− x1)2

−H[x− x2](3L− x− 2x2)(x− x2)2 +H[x− x3](3L− x− 2x3)(x− x3)2

−H[x− x4](3L− x− 2x4)(x− x4)2
)
− βx2(3L− x)

}
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2.4.3. Cantilever converter subjected to uniform external load p of the single PTS segment

In the actuator shown in Fig. 7, the conditions of mounting are identical as those described
in Sections 2.4.1 and 2.4.2. The converter is acted on by a uniform load p. The electrical moment
is generated by a single PTS located at the left end.

Fig. 7. Cantilever converter of a single PTS segment

Based on the conditions for equilibrium of forces and moments, the reactions in the mounting
are determined: Ry = p(L − x2), MF = 0.5p(L − x2)(L + x2). The mechanical moment M(x)
takes the following form

M(x) = Ryx−MF −
p(x− x2)2
2

H[x− x2] (2.23)

Solving differential equation (2.1), assuming mechanical (2.23) and electric (2.16) moments gives
the equation describing deflection of the analysed converter

y(x) = A3v +B3p (2.24)

where

A3 =
−3d31Ep(tb + tp)

α

(
H[x]x2 −H[x− x1](x− x1)2

)

B3 =
1

2bβEbt3b

{
(β − Ebt3b)

·
(
H[x− x1](H[x− x2](x− x2)4 + 2(x− x1)2(L− x2)(3L− 2x+ 3x2)

)

−H[x]
(
H[x− x2](x− x2)4 + 2x2(L− x2)(3L− 2x+ 3x2)

))

+ β
(
H[x− x2](x− x2)4 + 2x2(L− x2)(3L − 2x+ 3x2)

)}

Integration constants are determined on the basis of the following boundary conditions

∂y

∂x
(0) = 0 y(0) = 0 (2.25)

2.5. Dynamical behavior of piezoelectric converters

As mentioned before, piezoelectric transducers similarly to other elastic bodies having mass,
are prone to vibrations. In this respect, it is advised to include its oscillating nature of motion
in the process of designing and exploitation of piezoelectric structures. Generally, vibrations can
be divided into two groups – free and forced. Free vibrations occur when external forces do not
influence the body and the system vibrates due to action of inherent forces. In that case, the
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system is going to vibrate with one or more natural frequencies. In vibrating systems natural
damping occurs caused by forces of the internal friction. Damping is usually slight, thus does
not affect the natural frequencies.
In the case when vibrations are caused by external forces, there appear the so called forced

vibrations, and the system is going to vibrate with the excitation frequency.
The phenomenon of resonance is greatly dangerous for a structure. It occurs when the exci-

tation frequency coincides with one of the natural frequencies which causes perilously high
oscillations that may lead to damaging of the structure. Therefore, it is necessary to determine
the natural frequencies and geometrical and material factors affecting their distribution.
Upon elementary theory of bending beams, equation (1) can be presented in the following

way

∂2

∂x2

(
E(x)J(x)

∂2y

∂x2

)
+ ρ(x)A(x)

∂2y

∂t2
=
∂2M(x)
∂x2

+Me(δ′[x− x1]− δ′[x− x2]) (2.26)

where δ[x − xi], E(x), J(x), ρ(x), A(x) is the derivative of Dirac’s function, Young’s modulus,
moment of inertia, density and cross sectional area of the converter. For free vibration, the
exactly same differential equation can be written in the following way

∂2

∂x2

(
E(x)J(x)

∂2y

∂x2

)
+ ρ(x)A(x)

∂2y

∂t2
= 0 (2.27)

The solution to equation (2.27) using the method of separation of variables can be written in
the following way

y(x, t) =W (x)T (t) (2.28)

whereW (x) is a function of space, and T (t) depends only on time. Substituting (2.28) with (2.27)
and performing simple mathematical modifications, the commonly known differential equation
describing the beam boundary problem is obtained

∂2

∂x2

(
E(x)J(x)

∂2W

∂x2

)
− ρ(x)A(x)ω2 = 0 (2.29)

where ω is the natural frequency of vibration.
Let us consider the piezoelectric transducer shown in Fig. 8.

Fig. 8. Cantilever converter of n PTS segment

There can be n fragments distributed on the transducer whose total length is equal to∑n
i=1 Lmi = L. Each and every fragment consists of three elements – a PTS segment and
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two beam elements. Applying local frames of reference, using the dimensionless coordinates,
differential equation (2.29) is equivalent to

∂4W1,i(ζ1,i)
∂ζ41,i

− ψ4W1,i(ζ1,i) = 0 for ζ1,i ∈ 〈0, κi〉

∂4W2,i(ζ2,i)
∂ζ42,i

− Λ4ψ4W2,i(ζ2,i) = 0 for ζ2,i ∈ 〈0, χi〉

∂4W3,i(ζ3,i)
∂ζ43,i

− ψ4W3,i(ζ3,i) = 0 for ζ3,i ∈ 〈0,
Lmi

L
− κi − χi〉

(2.30)

where

ψ4 = L4ω2
ρbAb
EbJb

Λ4 =
EbJb
ρbAb

ρbAb + 2ρpAp
EpJo

ζ1,i =
x

L
ζ2,i =

x− κiL
L

ζ3,i =
x− κiL− χiL

L

ζ1,i+1 =
x− Lmi

L
i = 1, . . . , n

ω is the natural frequency, ρb, ρp is density of beam and piezoelectric material, respectively.
Solutions to differential equations (2.30) can be obtained as (Mahmoud and Nassar, 2000)

W1,i(ζ1,i) = A1,i sin(ψζ1,i) +B1,i cos(ψζ1,i) + C1,i cosh(ψζ1,i) +D1,i sinh(ψζ1,i)

W2,i(ζ2,i) = A2,i sin(Λψζ2,i) +B2,i cos(Λψζ2,i) + C2,i cosh(Λψζ2,i) +D2,i sinh(Λψζ2,i)

W3,i(ζ3,i) = A3,i sin(ψζ3,i) +B3,i cos(ψζ3,i) + C3,i cosh(ψζ3,i) +D3,i sinh(ψζ3,i)

(2.31)

where Aj,i, Bj,i, Cj,i, Dj,i, j = 1, 2, 3 are constants.
The boundary conditions of mounting of the converter (left end is fix-mounted and the right

one freely move) together with continuity conditions at the intermediate ends lead to a set n×12
linear homogeneous equations.
The continuity conditions adopt the following form

W1,i(ζ1,i)
∣∣∣
ζ1,i=κi

=W2,i(ζ2,i)
∣∣∣
ζ2,i=0

∂W1,i(ζ1,i)
∂ζ1,i

∣∣∣∣∣
ζ1,i=κi

=
∂W2,i(ζ2,i)

∂ζ1,i

∣∣∣∣∣
ζ2,i=0

∂2W1,i(ζ1,i)
∂ζ21,i

∣∣∣∣∣
ζ1,i=κi

= η
∂2W2,i(ζ2,i)

∂ζ22,i

∣∣∣∣∣
ζ2,i=0

∂3W1,i(ζ1,i)
∂ζ31,i

∣∣∣∣∣
ζ1,i=κi

= η
∂3W2,i(ζ2,i)

∂ζ32,i

∣∣∣∣∣
ζ2,i=0

W2,i(ζ2,i)
∣∣∣
ζ2,i=χi

=W3,i(ζ3,i)
∣∣∣
ζ3,i=0

∂W2,i(ζ2,i)
∂ζ2,i

∣∣∣∣∣
ζ2,i=χi

=
∂W3,i(ζ3,i)

∂ζ3,i

∣∣∣∣∣
ζ3,i=0

η
∂2W2,i(ζ2,i)

∂ζ22,i

∣∣∣∣∣
ζ2,i=χi

=
∂2W3,i(ζ3,i)

∂ζ23,i

∣∣∣∣∣
ζ3,i=0

η
∂3W2,i(ζ2,i)

∂ζ32,i

∣∣∣∣∣
ζ2,i=χi

=
∂3W3,i(ζ3,i)

∂ζ33,i

∣∣∣∣∣
ζ3,i=0

(2.32)
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W3,i(ζ3,i)
∣∣∣
ζ3,i=φi

=W1,i+1(ζ1,i+1)
∣∣∣
ζ1,i+1=0

∂W3,i(ζ3,i)
∂ζ3,i

∣∣∣∣∣
ζ3,i=φi

=
∂W1,i+1(ζ1,i+1)

∂ζ1,i+1

∣∣∣∣∣
ζ1,i+1=0

∂2W3,i(ζ3,i)
∂ζ23,i

∣∣∣∣∣
ζ3,i=φi

=
∂2W1,i+1(ζ1,i+1)

∂ζ21,i+1

∣∣∣∣∣
ζ1,i+1=0

∂3W3,i(ζ3,i)
∂ζ33,i

∣∣∣∣∣
ζ3,i=φi

=
∂3W1,i+1(ζ1,i+1)

∂ζ31,i+1

∣∣∣∣∣
ζ1,i+1=0

where

η =
EpJo
EbJb

φi =
Lmi

L
− κi − χi

The boundary conditions can be written as follows:
— fixed

W1,1(ζ1,1) = 0
∣∣∣
ζ1,1=0

∂W1,1(ζ1,1)
∂ζ1,1

= 0

∣∣∣∣∣
ζ1,1=0

(2.33)

— free

EbJb
∂2W3,n(ζ3,n)

∂ζ23,n
= 0

∣∣∣∣∣
ζ3,n=

Lmn
L
−κn−χn

EbJb
∂3W3,n(ζ3,n)

∂ζ33,n
= 0

∣∣∣∣∣
ζ3,n=

Lmn
L
−κn−χn

(2.34)

Using dependences (2.31)-(2.34), as mentioned before, n × 12 linear homogenous equation can
be achieved.
The values of dimensionless frequencies ψ are determined from the characteristic equation

representing the zero determinant of the matrix of boundary conditions M12n×12n

M12n×12n =




M12×12i B12×12 · · · 012×12

C12×12i M12×12i+1 · · · 012×12

...
...

. . . B12×12

012×12 012×12 C12×12n−1 M12×12n




(2.35)

where 012×12 is the zero matrix, M12×12i =
[
M12×41,i M12×42,i M12×42,i

]
, the remaining matrices

are shown in Appendix. For the transducer with one segment, matrix (2.35) simplifies to the
following form

M12×12 =
[
M12×41,1 M12×42,1 M12×42,1

]
(2.36)

An analytical form of the characteristic equation (|M12nx12n| = 0) in special cases where∑n
i=1 χi = 0 (homogenous beam) and

∑n
i=1 χi = 1 (PTS segment all along) is described from

subsequent equations

1 + cosψ coshψ = 0 1 + cos(Λψ) cosh(Λψ) = 0 (2.37)

In other cases, in order to determine ψ, the roots of the characteristic equation can be obtained
using numerical methods. In Figs. 9 and 10, there are dimensionless frequencies ψ presented in
function of length of the piezoelectric layer for different locations and amount of PTS segments.
The results achieved for the transducer with one PTS segment (Lm1 = L) are shown in Fig. 9,
whereas for the transducer with two PTS segments (Lm1 + Lm2 = L, Lm1 = Lm2) are shown
in Fig. 10. Furthermore, three variants of piezoelectric segment locations in the transducer have
been examined. Namely:
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• PTS segment located on the left end (κi = 0),
• transducer with PTS segment located in the middle (κi + 0.5χi = 0.25),
• PTS segment located on the right end (κi + χi = 1).

Moreover, in the transducer with two piezoelectric segments there are identical geometric and
material features adopted for both PTS segments.

Fig. 9. The dimensionless frequencies ψ for the converter eith a single PTS segment, ψ1 – first
frequency, ψ2 – second frequency

Fig. 10. The dimensionless frequencies ψ for the converter with a double PTS segment, ψ1 – first
frequency, ψ2 – second frequency
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Analyzing the obtained results, it can be stated that the highest values of the first dimension-
less frequency, independent from PTS length, is acquired for the piezoelectric segment placed on
the left end (Figs. 9 and 10). Similarly is with the second frequency for the converter with two
segments. For the converter with one segment, the second frequency, depending on PTS length,
takes the highest values for the converter with the segment placed either on the left end, or in
the middle.
The dimensionless frequencies ψ depend on the relative stiffness η and the unit weight

µ = (ρbAb+2ρpAp)/(ρbAb) of the beam and the PTS segment. In Figs. 11a and 11b, the influence
of η and µ on the ψ value. Upon the received results, it can be stated that the dimensionless
frequencies decrease with an increase in the parameters η (Fig. 11a) and µ (Fig. 11b).

Fig. 11. The impact of relative stiffness (a) and relative unit (b) on the dimensionless frequency ψ for
the converter with a single PTS segment, ψ1 – first frequency, ψ2 – second frequency

The circular frequency ω [Hz] of the transducer can be calculated from formula

ω =
ψ2

2π

√
EbJb
ρbAbL4

(2.38)

3. Numerical calculations

To confirm the correctness of the obtained analytical solutions (static deflection of the trans-
ducer and circular frequencies), it is necessary to perform numerical analyses. FEM simulations
have been prepared and compared with the obtained analytical results. Numerical tests aimed
at determining the bending line and circular frequencies of the actuators for arbitrarily assu-
med material constants and geometry. The tested converters, shown in Figs. 5-7, have been
modelled using the FEM with the help of ANSYS (Mieszczak et al., 2006; Documentation for
ANSYS, 2010). Plane components hve been described using a grid of quadrangular, eight-node
finite elements, with increased concentration at critical points such as sharp corners, mounting
points and places at which the mechanical load was applied. For the piezoelectric component,
PLANE223 type elements have been applied, and non-piezoelectric material has been meshed
with PLANE183 elements with steel material properties. In view of the fact that the actuators
are usually made of piezoelectric ceramics, PZ26 has been used as a material of the piezoelectric
component. The size of finite elements was tp/4. The plane issue has been solved for plane strain
conditions.
In the calculations, the following geometrical and material data has been assumed: Young’s

modulus Ep = 7.7 · 1010N/m2, Eb = 2.0 · 1011 N/m2; Poisson’s ratio νp = 0.3, νb = 0.33; density
ρp = 7700 kg/m3, ρb = 7860 kg/m3; piezoelectric strain coefficients d31 = −1.28 · 10−10m/V,
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d33 = 3.28 · 10−10m/V, d15 = 3.27 · 10−10m/V; beam length L = 60mm; layers thickness
tp = 0.5mm, tb = 1mm. The values of applied load are: electrode voltage v = 100V; force
F = 100N; uniform external load p = 100N/m. Coordinates xi, χi (Figs. 5-8), defining the PTS
and external loads application positions are given in Section 4.

4. Results of tests

In this part of the work, the deflection line of converters for which the resulting special solutions
are given in Section 2.4 are graphically presented. The results obtained from the analytical
solutions have been compared with FEM solutions. In the analytical equations, the material
and geometrical data are identical as the data given in Section 3 was applied.
A comparison of analytical solution (2.18) with FEM for the cantilever converter of the single

PTS segment (Fig. 5) is shown in Fig. 12.

Fig. 12. Deflection of the cantilever converter with a single PTS segment for x1 = 1/12L, x2 = 5/12L:
(a) subjected only to electrical voltage, v = 100V, F = 0; (b) subjected only to force, v = 0V,

F = 100N

Figure 13 shows the deflection of the cantilever converter of double PTS segments (Fig. 6),
for which the analytical solution is described by formula (2.22).

Fig. 13. Deflection of the cantilever converter with double PTS segments for x1 = 1/12L, x2 = 5/12L,
x3 = 7/12L, x4 = 11/12L: (a) subjected only to electrical voltage, v1 = 100V, v2 = 150V, F = 0;

(b) subjected only to force, v1 = v2 = 0, F = 100N

Figure 14 shows the strain of the cantilever converter subjected to a uniform external load p
of the single PTS segment (Fig. 7) for which the analytical solution is described by formula
(2.24).
Basing on the obtained results of static deflections of the converters, the qualitative and

quantitative compliance of analytical and numerical solutions can be stated. Generally, the
difference between the analytical and numerical solutions is approx. 1% for the electrical load,
and 2-3% for the mechanical load.
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Fig. 14. Deflection of the cantilever converter subjected to a uniform external load p for x1 = 1/3L,
x2 = 2/3L: (a) subjected only to electrical voltage, v = −100V, p = 0; (b) subjected only to uniform

external load, v = 0V, p = 100N/m

By means of FEM, it has been helpful to determine circular frequencies of the transducers
with one (Fig. 7) and two (Fig. 6) PTS segments. The material and geometric data has been
adopted identically as in the above-described static analysis. The obtained results (Table 1) have
been compared to the analytical solution (formula (2.38) and Figs. 9 and 10).

Table 1. Comparison of the first two frequencies between the analytical and FEM results

Mode
sequence ω∗ [Hz] ω∗∗ [Hz] Error [%] ω∗ [Hz] ω∗∗ [Hz] Error [%]

1 368.5 379.4 2.9 252.1 256.4 1.7
2 1799.8 1837.7 2.1 1575.4 1543.8 2

∗ – analytical solution, ∗∗ – FEM solution

In the dynamical analysis as well as in the static analysis, a satisfactory compatibility of
both obtained solutions has been indicated. The disparity in these results ranges less than 3%.

5. Summary and conclusions

The paper deals with the issue of bending of three-layer piezoelectric actuators subjected to
electric field and mechanical load. A general solution has been developed, based on the im-
plementation of piezoelectric segments PTS to a homogeneous (one-layer) beam. The working
mechanism and conditions for strain of the PTS segment have been determined. Basing on the
general solution, for arbitrarily selected three different types of converters, special solutions ha-
ve been developed (for the cantilever actuator of single and double PTS segments subjected
to external force and the converter with a single PTS acted on by a uniform external load).
Moreover, dynamical analysis of transducers has been performed. Also, a matrix whose deter-
minant enables determination of the characteristic equation for the transducer with any amount
of piezoelectric segments has been formulated. On the basis of characteristic equations, for the
converter with one and two PTS, the natural frequencies and the influence of relative stiffness,
size and placing of a segment on their value have been determined. The obtained analytical
solutions have been compared with the developed FEM solution.
On the basis of the performed analytical and numerical tests, it is found that:
• the developed method involving the implementation of PTS segments into a homogeneous
beam allows obtaining solutions for piezoelectric converters:

– of any either type of the external load,
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– of diverse lengths and heights of piezoelectric and non-piezoelectric layers,

– with any number of piezoelectric components;

• the obtained particular solutions allows determination of the deflection at any point of the
converter;

• the maximum values of the first dimensionless frequency, independently of the length and
number of PTS, are to be obtained for segments with mountings located closer;

• for a transducer with two PTS segments, the distribution of the second frequency is the
same as for the first frequency;

• for a transducer with one piezoelectric segment, the second frequency depending on PTS
length holds the highest value for either the converter with the segment located on the left
end or for the one with the segment located in the middle;

• the dimensionless frequencies decrease with an increase in the relative stiffness and unit
mass of the piezoelectric segment;

• the particular solutions of static behaviour confirm with the results obtained from FEM
(for the electrical load the maximum difference is approx. 1%, and for the mechanical load
– approx. 3%);

• a similar discrepancy between the analytical solution and FEM (less than 3%) has been
obtained while calculating circular frequencies.

Appendix

M12×41,i =




0 1 1 0
ψ 0 0 ψ

sin(ψκi) cos(ψκi) cosh(ψκi) sinh(ψκi)
ψ cos(ψκi) −ψ sin(ψκi) ψ sinh(ψκi) ψ cosh(ψκi)
−ψ2 sin(ψκi) −ψ2 cos(ψκi) ψ2 cosh(ψκi) ψ2 sinh(ψκi)
−ψ3 cos(ψκi) ψ3 sin(ψκi) ψ3 sinh(ψκi) ψ3 cosh(ψκi)

0 0 0 0
...

...
...

...
0 0 0 0




M12×42,i =




0 0 0 0
0 0 0 0
0 −1 −1 0
−Λψ 0 0 −Λψ
0 ηΛ2ψ2 −ηΛ2ψ2 0

ηΛ3ψ3 0 0 −ηΛ3ψ3
− sin(Λψχi) − cos(Λψχi) − cosh(Λψχi) − sinh(Λψχi)
−Λψ cos(Λψχi) Λψ sin(Λψχi) −Λψ sinh(Λψχi) −Λψ cosh(Λψχi)
ηΛ2ψ2 sin(Λψχi) ηΛ2ψ2 cos(Λψχi) −ηΛ2ψ2 cosh(Λψχi) −ηΛ2ψ2 sinh(Λψχi)
ηΛ3ψ3 cos(Λψχi) −ηΛ3ψ3 sin(Λψχi) −ηΛ3ψ3 sinh(Λψχi) −ηΛ3ψ3 cosh(Λψχi)

0 0 0 0
0 0 0 0
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M12×43,i =




0 0 0 0
...

...
...

...
0 1 1 0
ψ 0 0 ψ
0 −ψ2 ψ2 0
−ψ3 0 0 ψ3

−ψ2 sin(ψφi) −ψ2 cos(ψφi) ψ2 cosh(ψφi) ψ2 sinh(ψφi)
−ψ3 cos(ψφi) ψ3 sin(ψφi) ψ3 sinh(ψφi) ψ3 cosh(ψφi)




B12×12=




0 0 0 0 0 · · · · · · 0
...
...

...
...
... · · · · · · ...

0 ψ2 −ψ2 0 0 . . 0
ψ3 0 0 −ψ3 0 . . 0




C12×12i =




0 · · · − sin(ψφi) − cos(ψφi) − cosh(ψφi) − sinh(ψφi)
0 · · · −ψ cos(ψφi) ψ sin(ψφi) −ψ sinh(ψφi) −ψ cosh(ψφi)
...
. . .

...
...

...
...

0 · · · 0 0 0 0
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Free vibration analysis of homogeneous and isotropic thin circular and annular plates with
discrete elements such as elastic ring supports is considered. The general form of quasi-
-Green’s function for thin circular and annular plates is obtained. The nonlinear characteri-
stic equations are defined for thin circular and annular plates with different boundary condi-
tions and different combinations of the core and support radius. The continuity conditions at
the ring supports are omitted based on the properties of Green’s function. The fundamental
frequency of axisymmetric vibration has been calculated using the Newton-Raphson method
and calculation software. The obtained results are compared with selected results presented
in literature. The exact frequencies of vibration presented in a non-dimensional form can
serve as benchmark values for researchers to validate their numerical methods when applied
for uniform thin circular and annular plate problems.

Keywords: quasi-Green’s function, ring supports, movable edges, elastic constraints

1. Introduction

The study of vibration of a thin circular and annular plate is basic in structural mechanics.
Components of circular and annular plates are commonly used in the aerospace industry and
aviation as well as in marine and civil engineering applications. Circular and annular plates are
the most critical structural elements in high speed rotating engineering systems. The natural
frequencies of circular and annular plates have been studied extensively for more than a centu-
ry, because if only the frequency of external load matches the natural frequency of the plate,
destruction may occur. Additionally, the influence of elastic or rigid ring supports on dynamic
behavior of plates have been studied in a lot of works, because it used to stabilize or to increase
the frequency of plates. Knowledge about distribution of ring supports of variable stiffness can
allow one to predict dynamic behavior of structural elements such us circular and annular plates.
The free vibration of circular and annular plates with concentric ring supports have been

studied in a lot of works. Bodine (1967) studied the influence of rigid supports on the funda-
mental frequency of circular plates in which radius of the supports was small. Kunukkasseril
and Swamidas (1974) formulated equations for circular plates with elastic supports, but they
solved the free vibration problem for a free circular plate. Singh and Mirza (1976) studied free
axisymmetric vibration of circular plates elastically supported along two concentric circles. Azi-
mi (1988) studied natural vibration of circular plates with elastic and rigid supports using the
receptance method. Wang and Thevendran (1993) analyzed free vibration of annular plates with
concentric supports using by the Rayleigh-Ritz method. Ding (1994) solved the free vibration
problem for arbitrarily shaped plates with concentric elastic and rigid ring supports. Liu and
Chen (1995) studied axisymmetric vibration of annular and circular plates using simple finite
analysis. In works by Vega et al. (1999) free vibration analysis was presented for a concentrically
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supported annular plate with a free edge using the optimized Rayleigh-Ritz method. Laura et
al. (1999) analyzed transverse vibration of a circular plate with a free edge and concentric ring
supports. Vega et al. (2000) analyzed free vibration of concentrically supported annular plates
with one edge clamped or simply supported. The fundamental frequency of a free thin circular
plate supported on a ring was analyzed by Wang (2001). Influence of the stiffness and location
of elastic ring supports on the fundamental frequency of circular plates were analyzed by Wang
and Wang (2003). Wang (2006, 2014) studied vibration modes of concentrically supported free
circular and annular plates with movable edges. Rao and Rao (2014a) analyzed free vibration of
annular plates with both edges elastically restrained and resting on the Winkler foundation. Ad-
ditionally, Rao and Rao (2014b) analyzed free vibration of a thin circular plate with concentric
ring and elastic edge support.
In the works presented above, the analyzed plates were separated into two regions for one

ring supports. The number of separated regions increases if the number of considered elastic
ring supports increases. In this approach, the solution to boundary value problem is complica-
ted. Additionally, continuity conditions between the support and plate must be used to obtain
characteristic equations. Solution to the boundary value problem is very tedious and more com-
plicated based on continuity conditions, because characteristic matrices have a large dimension.
Application of Green’s function to the solution to the boundary value problem of free vibra-

tion of plates allow one to neglect the continuity condition. In the works of Kukla and Szewczyk
(2004, 2005, 2007) Green’s function approach to frequency analysis is presented for circular
and annular thin plates with elastic supports. The authors calculated nontrivial constants of
general solutions to the differential equation to obtain a full form of Green’s function for free,
simply-supported and clamped plates. The nontrivial constants have a very complicated form,
and calculating them is very tedious for different boundary conditions such as sliding supports
or elastic constraints.
The novelty of the paper is quasi-Green’s function (not full form) approach to obtain cha-

racteristic equations of concentrically supported circular and annular plates with clamped, free,
simply-supported and sliding (movable) edges or elastic constraints. The quasi-Green function is
obtained by the method presented in the previous works (Żur, 2015, 2016a). Nonlinear charac-
teristic equations of plates are obtained without calculating nontrivial constants of the general
solution to the differential equation. The numerical results of investigation are compared with
selected results presented in literature. The exact fundamental frequencies of axisymmetric vi-
bration are presented in a non-dimensional form for different combinations of the core and
support radius as well as selected values of parameters of elastic constraints.

2. Statement of the problem

Consider an isotropic, homogeneous annular (circular) thin plate of constant thickness h in
cylindrical coordinates (r, θ, z) with the z-axis along the longitudinal direction. The geometry
and coordinate system of the considered plate is shown in Fig. 1. The partial differential equation
for free vibration of thin uniform annular (circular) plates has the following form

∇4W (r, t) + ρh

D

∂2W (r, t)
∂t2

= −
χ∑

j=1

KjW (r, t)δ(r − rj) (2.1)

where ρ is mass density, D = Eh3/[12(1 − ν2)] is flexural rigidity, E is Young’s modulus, ν is
Poisson’s ratio, ∇2 = (∂2/∂r2) + (1/r)(∂/∂r) is Laplacian, Kj is a coefficient of normalized
stiffness of the supports, δ is Dirac’s delta function, rj is the position of elastic ring supports,
χ is the number of elastic ring supports andW (r, t) is small deflection compared with thickness h
of the plate.
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Fig. 1. The geometry and coordinate system of the annular plate with radius of the hole R1

The axisymmetric deflection of an annular (circular) plate may be expressed as follows

W (r, t) = w(r)eiωt (2.2)

where w(r) is the radial mode function, ω is the natural frequency, and i2 = −1. Substituting
Eq. (2.2) into Eq. (2.1) and using the dimensionless coordinates ξ = r/R and κj = rj/R, the
governing differential equation of the annular (circular) plate is obtained

L(w)− λ2w = −
χ∑

j=1

Kjw(κj)δ(ξ − κj) (2.3)

where

L(w) ≡ d4w

dξ4
+
2
ξ

d3w

dξ3
− 1
ξ2
d2w

dξ2
+
1
ξ3
dw

dξ
(2.4)

is the differential operator and

λ = ωR2
√
ρh/D (2.5)

is the dimensionless frequency of vibration.
The boundary conditions at the outer edge (ξ = 1) of the annular (circular) plate may be one

of the following: clamped, simply supported, free, sliding supports and elastic supports. These
conditions may be written in terms of the radial mode function w(ξ) in the following form:
— clamped

w(ξ)|ξ=1 = 0
dw

dξ

∣∣∣
ξ=1
= 0 (2.6)

— simply supported

w(ξ)|ξ=1 = 0 M(w)|ξ=1 =
(d2w
dξ2
+
ν

ξ

dw

dξ

)

ξ=1
= 0 (2.7)

— free

M(w)|ξ=1 = 0 V (w)|ξ=1 =
(d3w
dξ3
+
1
ξ

d2w

dξ2
− 1
ξ2
dw

dξ

)

ξ=1
= 0 (2.8)
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— movable edges (sliding)

dw

dξ

∣∣∣
ξ=1
= 0 V (w)|ξ=1 = 0 (2.9)

— elastic supports

Φ(w)|ξ=1 =
[(d2w
dξ2
+ ν

dw

dξ

)
+ φ

dw

dξ

]

ξ=1
= 0

Ψ(w)|ξ=1 =
[(d3w
dξ3
+
d2w

dξ2
− dw

dξ

)
− ψw

]

ξ=1
= 0

(2.10)

M(w) and V (w) are the normalized radial bending moment and the normalized effective shear
force, respectively. φ = KφR/DR and ψ = KψR

3/DR are the parameters of elastic constraints.
Kφ and Kψ are the rotational and translational spring constants, respectively. Similar boundary
conditions may be defined at the inner edge (ξ = R1/R = ξ1), depending on considered annular
plates.

3. Finding quasi-Green’s function

The general solution to the homogeneous differential equation for thin annular (circular) plates

L(w)− λ2w = 0 (3.1)

is a linear combination of the Bessel functions presented in the following form (McLachlan, 1955)

w(ξ) = C1J0(λξ) + C2I0(λξ) + C3Y0(λξ) + C4K0(λξ) (3.2)

where J0(λξ), Y0(λξ) are the Bessel functions of the first and second kind, I0(λξ), K0(λξ) are
the modified Bessel functions of the first and second kind. The quasi-Green function K(ξ, α) is a
particular solution to Eq. (3.1) and may be received from the formula presented in the following
form (Jaroszewicz and Zoryj, 2005; Żur, 2015)

K(ξ, α) =
D(ξ, α)

W (α)p0(α)
(3.3)

where p0(α) = 1 is a coefficient placed in front of the highest order of derivative of differential
equation (3.1), and

D(ξ, α) =

∣∣∣∣∣∣∣∣∣∣∣∣

J0(λα) I0(λα) Y0(λα) K0(λα)
dJ0(λα)
dα

dI0(λα)
dα

dY0(λα)
dα

dK0(λα)
dα

d2J0(λα)
dα2

d2I0(λα)
dα2

d2Y0(λα)
dα2

d2K0(λα)
dα2

J0(λξ) I0(λξ) Y0(λξ) K0(λξ)

∣∣∣∣∣∣∣∣∣∣∣∣

W (α) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J0(λα) I0(λα) Y0(λα) K0(λα)
dJ0(λα)
dα

dI0(λα)
dα

dY0(λα)
dα

dK0(λα)
dα

d2J0(λα)
dα2

d2I0(λα)
dα2

d2Y0(λα)
dα2

d2K0(λα)
dα2

d3J0(λα)
dα3

d3I0(λα)
dα3

d3Y0(λα)
dα3

d3K0(λα)
dα3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.4)
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The elements of the matrix D andW have the following form

dJ0(λα)
dα

= −λJ1(λα)
dI0(λα)
dα

= λI1(λα)

dY0(λα)
dα

= −λY1(λα)
dK0(λα)

dα
= −λK1(λα)

(3.5)

d2J0(λα)
dα2

=
λ2

2
[J0(λα) + J2(λα)]

d2I0(λα)
dα2

=
λ2

2
[I0(λα) + I2(λα)]

d2Y0(λα)
dα2

=
λ2

2
[Y0(λα) + Y2(λα)]

d2K0(λα)
dα2

=
λ2

2
[K0(λα) +K2(λα)]

(3.6)

d3J0(λα)
dα3

=
λ3

4
[3J1(λα) + J3(λα)]

d3I0(λα)
dα3

=
λ3

4
[3I1(λα) + I3(λα)]

d3Y0(λα)
dα3

=
λ3

4
[3Y1(λα)− Y3(λα)]

d3K0(λα)
dα3

= −λ
3

4
[3K1(λα) +K3(λα)]

(3.7)

After calculations, the function D(ξ, α) has the form

D(ξ, α) =
2λ2

πα
[2I0(λξ)K0(λα)− 2I0(λα)K0(λξ) + πJ0(λξ)Y0(λα)− πJ0(λα)Y0(λξ)] (3.8)

Bessel function (3.2) expresses linear independent solutions, thus the Wronskian must satisfy
the condition (Stakgold and Holst, 2011)

W (α) =
8λ4

πα2
6= 0 (3.9)

Condition (3.9) is satisfied for a circular plate (0 < α ¬ 1) and an annular plate (0 < ξ1 ¬ α ¬ 1).
After calculations, the quasi-Green function has the form

K(ξ, α) =
α

4λ2
[2I0(λξ)K0(λα)− 2I0(λα)K0(λξ)− πJ0(λα)Y0(λξ) + πJ0(λξ)Y0(λα)] (3.10)

and satisfies the conditions

K(a, a) =
∂K(ξ, α)

∂ξ

∣∣∣
ξ=a
=
∂2K(ξ, α)

∂ξ2

∣∣∣
ξ=a
= 0

∂3K(ξ, α)
∂ξ3

∣∣∣
ξ=a
= 1 (3.11)

according to properties of the influence functions (Stakgold and Holst, 2011).

4. Solution of the problem for the circular plate

In the previous paper (Żur, 2016b), the possibility of solving the similar boundary value problem
was proposed for non-uniform annular plates without calculations. Based on the paper of Żur
(2016b), the limit limξ→0 Y0(λξ) = ∞, limξ→0K0(λξ) = ∞ of linear independent solutions to
Eq. (2.3) for the circular plate can be presented in the following form

K(ξ, λ,κ,K)a = J0(λξ)−
χ∑

j=1

KjJ0(λκj)G(ξ, κj)

K(ξ, λ,κ,K)b = I0(λξ)−
χ∑

j=1

KjI0(λκj)G(ξ, κj)

(4.1)
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where

G(ξ, κj) = K(ξ, κj)H(ξ − κj)
K(ξ, κj) =

κj
4λ2
[2I0(λξ)K0(λκj)− 2I0(λκj)K0(λξ)− πJ0(λκj)Y0(λξ) + πJ0(λξ)Y0(λκj)]

(4.2)

and

κ = [κ1, . . . , κχ] K = [K1, . . . ,Kχ] (4.3)

and H(ξ − κj) is the Heaviside function.
The characteristic equations ∆ = 0 of the circular plate for different boundary conditions

and different values of the parameters κj and Kj are obtained from well known characteristic
determinants given by:
— clamped

∆(λ,κ,K) ≡

∣∣∣∣∣∣

K(ξ, λ,κ,K)a K(ξ, λ,κ,K)b
∂K(ξ, λ,κ,K)a

∂ξ

∂K(ξ, λ,κ,K)b
∂ξ

∣∣∣∣∣∣
|ξ=1 (4.4)

— simply supported

∆(λ,κ,K) ≡
∣∣∣∣∣
K(ξ, λ,κ,K)a K(ξ, λ,κ,K)b

M [K(ξ, λ,κ,K)a] M [K(ξ, λ,κ,K)b]

∣∣∣∣∣
ξ=1

(4.5)

— free

∆(λ,κ,K) ≡
∣∣∣∣∣
M [K(ξ, λ,κ,K)a] M [K(ξ, λ,κ,K)b]
V [K(ξ, λ,κ,K)a] V [K(ξ, λ,κ,K)b]

∣∣∣∣∣
ξ=1

(4.6)

— sliding

∆(λ,κ,K) ≡

∣∣∣∣∣∣

∂K(ξ, λ,κ,K)a
∂ξ

∂K(ξ, λ,κ,K)b
∂ξ

V [K(ξ, λ,κ,K)a] V [K(ξ, λ,κ,K)b]

∣∣∣∣∣∣
ξ=1

(4.7)

— elastic supports

∆(λ,κ,K, φ, ψ) ≡
∣∣∣∣∣
Φ[K(ξ, λ,κ,K)a] Φ[K(ξ, λ,κ,K)b]
Ψ [K(ξ, λ,κ,K)a] Ψ [K(ξ, λ,κ,K)b]

∣∣∣∣∣
ξ=1

(4.8)

5. Solution of the problem for the annular plate

The linear independent solutions to Eq. (2.3) for the annular plate can be presented in the
following form

Ba ≡ K(ξ, λ,κ,K)a = J0(λξ)−
χ∑

j=1

KjJ0(λκj)G(ξ, κj)

Bb ≡ K(ξ, λ,κ,K)b = I0(λξ)−
χ∑

j=1

KjI0(λκj)G(ξ, κj)

Bc ≡ K(ξ, λ,κ,K)c = Y0(λξ)−
χ∑

j=1

KjY0(λκj)G(ξ, κj)

Bd ≡ K(ξ, λ,κ,K)d = K0(λξ)−
χ∑

j=1

KjK0(λκj)G(ξ, κj)

(5.1)
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The characteristic equations ∆ = 0 of the annular plate for different boundary conditions and
different values of the parameters κj and Kj are obtained from well known characteristic deter-
minants given by:
— free outer edge and clamped inner edge

∆(λ,κ,K) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Ba|ξ=ξ1 Bb|ξ=ξ1 Bc|ξ=ξ1 Bd|ξ=ξ1
∂Ba
∂ξ

∣∣∣
ξ=ξ1

∂Bb
∂ξ

∣∣∣
ξ=ξ1

∂Bc
∂ξ

∣∣∣
ξ=ξ1

∂Bd
∂ξ

∣∣∣
ξ=ξ1

∣∣∣∣∣∣∣∣∣∣∣∣

(5.2)

— free outer edge and simply supported inner edge

∆(λ,κ,K) ≡

∣∣∣∣∣∣∣∣∣∣

(M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Ba|ξ=ξ1 Bb|ξ=ξ1 Bc|ξ=ξ1 Bd|ξ=ξ1

M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1

∣∣∣∣∣∣∣∣∣∣

(5.3)

— free both edges

∆(λ,κ,K) ≡

∣∣∣∣∣∣∣∣∣∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1
V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1

∣∣∣∣∣∣∣∣∣∣

(5.4)

— free outer edge and sliding inner edge

∆(λ,κ,K) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
∂Ba
∂ξ

∣∣∣
ξ=ξ1

∂Bb
∂ξ

∣∣∣
ξ=ξ1

∂Bc
∂ξ

∣∣∣
ξ=ξ1

∂Bd
∂ξ

∣∣∣
ξ=ξ1

V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1

∣∣∣∣∣∣∣∣∣∣∣∣

(5.5)

— free inner edge and clamped outer edge

∆(λ,κ,K) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1
V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1
Ba|ξ=1 Bb|ξ=1 Bc|ξ=1 Bd|ξ=1
∂Ba
∂ξ

∣∣∣
ξ=1

∂Bb
∂ξ

∣∣∣
ξ=1

∂Bc
∂ξ

∣∣∣
ξ=1

∂Bd
∂ξ

∣∣∣
ξ=1

∣∣∣∣∣∣∣∣∣∣∣∣

(5.6)

— elastic constraints at the inner edge and free outer edge

∆(λ,κ,K, φ, ψ) ≡

∣∣∣∣∣∣∣∣∣∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Φ[Ba]|ξ=ξ1 Φ[Bb]|ξ=ξ1 Φ[Bc]|ξ=ξ1 Φ[Bd]|ξ=ξ1
Ψ [Ba]|ξ=ξ1 Ψ [Bb]|ξ=ξ1 Ψ [Bc]|ξ=ξ1 Ψ [Bd]|ξ=ξ1

∣∣∣∣∣∣∣∣∣∣

(5.7)
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6. Results and discussion

The numerical results for fundamental frequencies of elastically supported circular plates are
presented in Tables 1 and 2 with comparison to the results by Azimi (1988), Ding (1994),
Wang and Wang. (2003). The numerical results for fundamental frequencies of free vibration
of free circular plates with rigid ring supports are presented in Table 3 with comparison to the
results by Wang (2014). The numerical results for fundamental frequencies of free vibration of
free elastically supported annular plates with different boundary condition at the inner edge are
presented in Tables 4 and 5 for different combinations of the radius of the core and supports. The
fundamental frequencies of free vibration of circular plates with elastic constraints and interior
ring supports of variable stiffness are presented in Table 6. Additionally, the eigenvalues of
circular plates with elastic constraints depending on radius and stiffness of interior ring supports
are shown in Figs. 2 and 3.

Table 1. The fundamental frequency λ0 of free vibration of circular plates with the elastic ring
support

K1 κ1
Dimensionless
frequency λ0

Boundary conditions

Clamped
Simply

Free Sliding
supported

10

0 GF 3.196 2.221 0.211 0.212
0.1 GF 3.272 2.360 1.115 1.171

0.2

GF 3.326 2.460 1.357 1.383
Wang and Wang (2003) 3.325 2.460 – –

Azimi (1988) 3.326 2.461 – –
Ding (1994) 3.322 – – –

0.3 GF 3.348 2.523 1.497 1.532

0.4

GF 3.338 2.547 1.620 1.656
Wang and Wang (2003) 3.338 2.547 – –

Azimi (1988) 3.338 2.547 – –
Ding (1994) 3.334 – – –

0.5 GF 3.304 2.530 1.736 1.765

0.6

GF 3.262 2.478 1.844 1.856
Wang and Wang (2003) 3.262 2.478 – –

Azimi (1988) 3.262 2.479 – –
Ding (1994) 3.262 – – –

0.7 GF 3.225 2.403 1.928 1.928

0.8

GF 3.204 2.321 1.960 1.980
Wang and Wang (2003) 3.204 2.321 1.961 –

Azimi (1988) 3.199 2.321 – –
Ding (1994) 3.204 – – –

The fundamental frequencies of free vibration of annular plates with the clamped outer edge
and the free inner edge (rigid interior support) are presented in Table 7 with comparison to the
results by Vega (2000). The eigenvalues of free annular plates with elastic constraints at the
inner edge and interior ring supports are presented in Table 8 for different combinations of the
radius of the core and supports.
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Table 2. The fundamental frequency λ0 of free vibration of circular plates with the elastic ring
support

K1 κ1
Dimensionless
frequency λ0

Boundary conditions

Clamped
Simply

Free Sliding
supported

1000

0 GF 3.204 2.223 0.666 0.667
0.1 GF 4.677 3.805 1.946 2.238

0.2

GF 5.175 4.202 2.049 2.418
Wang and Wang (2003) 5.175 4.202 – –

Azimi (1988) 5.187 4.210 – –
Ding (1994) 4.929 – – –

0.3 GF 5.763 4.682 2.187 2.656

0.4

GF 6.110 5.276 2.374 2.979
Wang and Wang (2003) 6.110 5.276 – –

Azimi (1988) 6.129 5.282 – –
Ding (1994) 6.114 – – –

0.5 GF 5.195 5.136 2.619 3.403

0.6

GF 4.503 4.479 2.891 3.803
Wang and Wang (2003) 4.503 4.479 – –

Azimi (1988) 4.512 4.486 – –
Ding (1994) 4.492 – – –

0.7 GF 3.967 3.962 2.992 3.707

0.8

GF 3.539 3.532 2.787 3.438
Wang and Wang (2003) 3.539 3.532 – –

Azimi (1988) 3.547 3.537 – –
Ding (1994) 3.547 – – –

Table 3. The fundamental frequency λ0 of free vibration of free circular plates with the rigid
ring support

K1 κ1
Dimensionless frequency λ0
GF Wang (2014)

∞

0 3.751 3.752
0.1 3.909 3.909
0.2 4.275 4.275
0.3 4.851 4.851
0.4 5.706 5.707
0.5 6.929 6.929
0.6 8.396 8.390
0.7 8.960 8.959
0.8 7.809 7.809
0.9 6.235 6.235
1.0 4.935 4.935
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Table 4. The fundamental frequency λ0 of free vibration of free annular plates with different
boundary conditions at the inner edge and interior elastic support

K1 ξ1 κ1
Dimensionless
frequency

Boundary conditions at the inner edge

Clamped
Simply

Free Sliding
supported

10

0.1 0.2

λ0

2.043 1.826 1.350 1.364
0.1 0.4 2.050 1.886 1.617 1.624
0.1 0.6 2.207 2.091 1.848 1.848
0.1 0.9 2.658 2.537 1.931 1.946
0.3 0.5 2.569 1.918 1.730 1.778
0.3 0.7 2.697 2.209 1.975 1.975
0.3 0.9 3.003 2.587 1.959 2.041
0.5 0.7 3.616 2.235 2.039 2.068
0.5 0.9 3.812 2.736 2.086 2.193
0.7 0.8 6.077 2.634 2.311 2.363
0.7 0.9 6.119 3.008 2.401 2.436
0.8 0.9 9.197 3.275 2.658 2.658

Table 5. The fundamental frequency λ0 of free vibration of free annular plates with different
boundary conditions at the inner edge and interior elastic support

K1 ξ1 κ1
Dimensionless
frequency

Boundary conditions at the inner edge

Clamped
Simply

Free Sliding
supported

1000

0.1 0.2

λ0

2.087 1.925 1.979 2.091
0.1 0.4 2.117 1.105 2.331 2.400
0.1 0.6 9.335 3.843 2.852 2.934
0.1 0.9 4.685 4.215 2.467 2.545
0.3 0.5 2.684 7.401 2.352 2.859
0.3 0.7 12.106 4.769 2.887 3.561
0.3 0.9 6.175 5.214 2.439 2.987
0.5 0.7 13.526 13.323 2.859 4.266
0.5 0.9 9.260 7.249 2.648 4.106
0.7 0.8 5.526 6.437 3.293 6.321
0.7 0.9 8.396 8.054 3.432 7.049
0.8 0.9 9.697 7.774 4.294 8.334
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Fig. 2. The fundamental frequency of the circular plate with elastic constraints (φ = 100, ψ = 10)
depending on the radius and stiffness of interior ring supports

Fig. 3. The fundamental frequency of the circular plate with elastic constraints (φ = 0.1, ψ = 100)
depending on the radius and stiffness of interior ring supports

Table 7. The fundamental frequency λ0 of free vibration of annular plates with the clamped
outer edge and free inner edge and the rigid interior support (K1 →∞)

κ1
ξ1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dimensionless frequency λ0

0.1
GF 5.335 5.946 6.262 5.537 4.782 4.215 3.786 3.453

Vega et al. (2000) 5.335 5.946 6.262 5.537 4.782 4.215 3.786 3.453

0.2
GF 5.890 6.530 5.996 5.051 4.370 3.880 3.512

Vega et al. (2000) 5.890 6.530 5.996 5.051 4.370 3.880 3.512

0.3
GF 6.723 7.100 5.853 4.856 4.194 3.727

Vega et al. (2000) 6.723 7.100 5.853 4.856 4.194 3.727

0.4
GF 7.912 7.527 5.856 4.821 4.154

Vega et al. (2000) 7.912 7.527 5.856 4.821 4.154

0.5
GF 9.612 7.874 5.969 4.894

Vega et al. (2000) 9.612 7.874 5.969 4.894

0.6
GF 11.912 8.256 6.195

Vega et al. (2000) 11.912 8.256 6.196

0.7
GF 14.146 8.785

Vega et al. (2000) 14.147 8.785
0.8 GF 15.991
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Table 6. The fundamental frequency λ0 of free vibration of circular plates with elastic constra-
ints and the interior ring support

K1 κ1
Dimensionless Elastic parameters at the outer edge
frequency φ = 100, ψ = 10 φ = 0.1, ψ = 100

0 2.056 2.203
0.1 2.129 2.337
0.2 2.190 2.434
0.3 2.241 2.497

10 0.4 λ0 2.285 2.524
0.5 2.320 2.513
0.6 2.344 2.469
0.7 2.357 2.400
0.8 2.361 2.321
0 2.056 2.203
0.1 2.441 2.928
0.2 2.610 3.247
0.3 2.770 3.486

100 0.4 λ0 2.960 3.650
0.5 3.188 3.648
0.6 3.387 3.445
0.7 3.318 3.145
0.8 3.142 2.809
0 2.056 3.563
0.1 2.715 3.600
0.2 2.850 3.878
0.3 3.032 4.176

1000 0.4 λ0 3.287 4.490
0.5 3.629 4.700
0.6 3.907 4.321
0.7 3.719 3.786
0.8 3.429 3.263
0 2.714 3.624
0.1 2.769 3.746
0.2 2.888 3.973
0.3 3.068 4.250

∞ 0.4 λ0 3.327 4.536
0.5 3.664 4.700
0.6 3.908 4.410
0.7 3.743 3.892
0.8 3.458 3.354

The Poisson ratio is taken as ν = 0.3 for all considered cases. The numerical results are
obtained by using the Newton-Raphson method and Mathematica v10 software. The obtained
results are in good agreement with the results obtained by other methods presented in literature
and can be used to validate the accuracy of other numerical methods as benchmark values.
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Table 8. The fundamental frequency λ0 of free vibration of free annular plates with elastic
constraints at the inner edge and interior ring support

K1 ξ1 κ1
Dimensionless Elastic parameters at the inner edge
frequency φ = 100, ψ = 10 φ = 0.1, ψ = 100

10

0.1 0.2

λ0

1.146 1.556
0.1 0.4 1.530 1.740
0.1 0.6 1.814 2.001
0.1 0.9 2.031 2.439
0.3 0.5 1.537 1.956
0.3 0.7 1.839 2.238
0.3 0.9 1.974 2.625
0.5 0.7 1.648 2.296
0.5 0.9 1.894 2.788
0.7 0.8 1.510 2.680
0.7 0.9 1.759 3.050
0.8 0.9 1.603 3.237

1000

0.1 0.2

λ0

2.101 1.941
0.1 0.4 2.460 6.152
0.1 0.6 3.091 3.663
0.1 0.9 2.855 4.239
0.3 0.5 2.906 0.852
0.3 0.7 3.739 4.951
0.3 0.9 3.212 6.150
0.5 0.7 4.332 6.707
0.5 0.9 4.267 7.911
0.7 0.8 6.374 7.977
0.7 0.9 7.185 8.053
0.8 0.9 8.319 8.196

∞

0.1 0.2

λ0

3.308 1.296
0.1 0.4 3.687 1.463
0.1 0.6 3.972 2.000
0.1 0.9 3.022 1.351
0.3 0.5 1.175 1.937
0.3 0.7 2.071 2.120
0.3 0.9 3.834 1.271
0.5 0.7 2.995 2.030
0.5 0.9 2.644 1.335
0.7 0.8 1.998 0.999
0.7 0.9 1.683 1.385
0.8 0.9 1.046 1.293

7. Conclusions

In this paper, the quasi-Green function has been employed to solve natural vibration of elastically
supported thin circular and annular plates with different boundary conditions. The advantage of
quasi-Green’s function is the obtaining of characteristic equations without calculating nontrivial
constants in complicated forms. Additionally, the number of supports of circular and annular
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plates does not influence the dimension of characteristic matrices, because the continuity condi-
tions can be neglected. In the presented approach, the solution to the boundary value problem is
much simpler. The quasi-Green function approach can be used to the frequency analysis of plates
and beams with other discrete elements such as an additional mass or a mass on the spring.
The exact frequencies of vibration presented in a non-dimensional form can serve as benchmark
values for researchers to validate their numerical methods applied in similar problems presented
in the paper.
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The aim of this study is to determine the heat transfer coefficient between the heated
surface and the boiling fluid flowing in a minichannel on the basis of experimental data. The
calculation model is based on Beck’s method coupled with the FEM and Trefftz functions.
The Trefftz functions used in the Hermite interpolation are employed to construct the shape
functions in the FEM. The unknown local values of the heat transfer coefficient at the foil-
-fluid contact surface are calculated from Newton’s law. The temperature of the heated foil
and the heat flux on the foil surface are determined by solving a two-dimensional inverse
heat conduction problem. The study is focused on the identification of the heat transfer
coefficients in the subcooled boiling region and the saturated nucleate boiling region. The
results are compared with the data obtained through the one-dimensional method. The
investigations also reveal how the smoothing of measurement data affects calculation results.

Keywords: Beck’s method, FEM, Trefftz functions, heat transfer coefficient, inverse heat
conduction problem, flow boiling

1. Introduction

The main goal of this study is to determine the heat transfer coefficient at the interface between
the heated minichannel wall and the boiling fluid flowing trought the minichannel. To identify
this coefficient we need to know the wall temperature, the temperature gradient and the fluid
temperature. The two-dimensional calculation model proposed for determining these quantities
requires solving an inverse heat conduction problem. Inverse problems are problems in which
the causes of a process are estimated by measuring the process results (Beck et al., 1985).
Solutions to inverse problems are generally badly conditioned, which means that small changes
in the input lead to large changes in the output (Tikhonov and Arsenin, 1977). Because of this
property, inverse problems are much more difficult to solve than direct problems.
One of the classical methods used to solve inverse problems is the sensitivity coefficient

method, also known as Beck’s method or the sequential function specification method (Beck
et al., 1985). This approach involves introducing sensitivity coefficients as a derivative of the
measured quantity with respect to the identified quantity and transforming an inverse problem
into several direct problems. The direct problems can then be solved using the finite difference
method (Beck, 1970; Lin et al., 2008; Shi and Wang, 2009), the boundary element method
(Kurpisz an Nowak, 1992; Le Niliot and Lefevre, 2004), the finite element method (Duda and
Taler, 2009; Tseng et al., 1996), or the Trefftz method (Kruk and Sokała, 1999, 2000; Piasecka
and Maciejewska, 2012). Although the sensitivity coefficient method is generally used to solve
unsteady state problems, it can also be adapted to solve steady state problems (Kruk and Sokała,
1999; Piasecka and Maciejewska, 2012; Tseng et al., 1995).
The approach proposed by Trefftz (1926) seems particularly useful to deal with inverse

problems. It involves approximating the unknown solution of a differential equation by means
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of a linear combination of functions strictly satisfying the differential equation. Such functions
are known as Trefftz functions. Then, it is necessary to adjust the approximation function to
match the boundary conditions and, additionally, the initial conditions in the case of unsteady
state problems. Details of the method based on Trefftz functions can be found in (Ciałkowski
and Grysa, 2009; Grysa and Maciejewska, 2013; Herrera, 2000; Hożejewska et al., 2009; Kompis
et al., 2001; Li et al., 2006; Maciąg, 2011).
The application of Trefftz functions to construct shape functions in the finite element method

and the use of this method to identify the boundary conditions in a steady-state problem are
discussed in (Ciałkowski and Frąckowiak, 2002; Grysa et al., 2012; Piasecka and Maciejewska,
2013). Inverse unsteady state problems solved by means of the FEM with space-time basis
functions are shown in (Ciałkowski, 2002; Maciejewska, 2004).
In this study, Beck’s method combined with the FEM and Trefftz-type basis functions is

used to solve the inverse heat conduction problem. This method allows us to directly determine
the heat flux on the boundary surface; there is no need to differentiate the temperature function.
In numerical calculations, differentiation of a function can lead to errors in results. The use of
Beck’s method connected with the Trefftz method, as proposed by Piasecka and Maciejewska
(2012), was reported to be ineffective in a more complicated distribution of heat flux density on
the boundary. It is assumed that the calculations should be performed by means of the FEM.
The use of the Trefftz functions and the Hermite interpolation to construct the basis functions
give satisfactory results. Details of this approach will be described in the next Sections. The
Hermite interpolation was shown by Kincaid and Cheney (2002).

2. Experimental research

The calculation of the heat transfer coefficient has been performed using the experimental data
obtained from the experimental setup described in detail in (Piasecka, 2014a,c, 2015; Piasecka
and Maciejewska, 2015).
The main element of the experimental setup was a cuboidal minichannel

1mm×40mm×360mm. FC-72 was used as the working fluid flowing up the minichannel
with the velocity u = 0.17m/s. The average mass flux G was 282 kg/(m2s), Reynolds
number Re was 950, inlet liquid subcooling defined as the difference between the saturation
temperature at the minichannel inlet and the fluid temperature at the minichannel inlet
∆Tsub,in was 36K. One of the minichannel walls was a heated foil made of Haynes 230 alloy.
Because of the electrical properties of the material, it was possible to produce a large heat flux
at a relatively small surface area of the foil. On the side in contact with the fluid, the heated foil
had evenly distributed microcavities produced by laser machining (Piasecka, 2014b; Piasecka
and Maciejewska, 2015).
The heated foil was separated from the surroundings with a glass panel. The surface of the

foil in contact with the glass was covered with a thin layer of thermochromic liquid crystals.
During the experiments, the quantities were measured in the steady state. The measurement

data included:

• heat flow parameters:
– local temperature of the heated foil at the surface in contact with the glass panel
determined from the distribution of hues on the liquid crystal layer using the method
described by Piasecka (2013);
– fluid temperature at the minichannel inlet Tf,in and the fluid temperature at the
minichannel outlet Tf,out , measured with K-type thermocouples linked to the data
acquisition station;
– volumetric flow rate QV measured with rotameters;



The application of Beck’s method combined with FEM and Trefftz functions... 105

– pressure at the minichannel inlet pin and pressure at the minichannel outlet pout
measured with pressure transducers linked to the data acquisition station;

• electrical parameters:
– drop in voltage ∆U along the length of the heated foil, measured with a voltmeter;
– electric current supplied to the heated foil I measured with an ammeter;

• flow structures.

The capacity of the heat source (volumetric heat flux) has been determined from the formula

qV =
I∆U

AF δF
=
qw
δF

(2.1)

where I is the current supplied to the heated foil, ∆U – drop in voltage along the length of the
heated foil, AF – surface area of the heated foil in contact with the fluid, δF – thickness of the
heated foil, qw – heat flux.
The numerical calculations have been performed using the measurement data presented in

Fig. 1 and Table 1. The other quantities used in the analysis are: surface area of the heated foil
in contact with the fluid AF = 0.0234m2, thickness of the heated foil δF = 0.00016 m, thickness
of the glass panel δG = 0.006m, length of the glass panel L = 0.35m, thermal conductivity
coefficient of the foil λF = 8.3W/(mK) and thermal conductivity coefficient of the glass panel
λG = 0.71W/(mK).

Fig. 1. Raw temperature data obtained from measurements at the foil-glass interface, corresponding to:
(a) subcooled boiling region, (b) saturated nucleate boiling region

Fig. 2. The boundary conditions (note: figure not to scale)
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Table 1. Measurement data used in the calculations: I – current supplied to the heated foil,
∆U – drop in voltage along the length of the heated foil, Tf – fluid temperature, p – pressure;
indexes in, out refer to minichannel inlet and outlet

Setting I ∆U Tf,in Tf,out pin pout
number [A] [V] [K] [K] [Pa] [Pa]

#1 39.8 5.93 301.15 310.65 119850 110950
#2 41 6.03 300.95 311.85 119150 113450
#3 42.6 6.14 300.85 312.65 123250 114550
#4 44 6.84 300.85 314.35 124150 113950
#5 45.2 6.47 300.55 314.85 123650 114750
#6 46.60 6.54 300.55 315.65 123950 117450
#7 63.20 8.33 299.95 334.35 132050 124550
#8 64.40 8.53 300.25 335.95 140550 119950
#9 65.40 8.60 300.35 337.85 139650 132350
#10 61.60 8.19 301.25 338.05 140750 133150
#11 51.60 7.05 301.75 330.75 127950 119750
#12 48.20 6.79 300.75 326.05 125650 117050

The numerical calculations have been performed also for the smoothed temperature data
(see Fig. 2). The data was smoothed by means of the approximating polynomial based on the
Trefftz functions using the least squares method (Grysa et al., 2012).

3. Mathematical model

Two-dimensional stationary heat transfer in the minichannel described in Cartesian coordinates
x, y is assumed in the investigations. The x coordinate refers to the fluid flow direction and
the y coordinate relates to thickness of the heated foil and the glas panel. In this investigation,
variation in temperature along width of the minichannel is neglected.
The local values of the heat transfer coefficient between the heated foil and the boiling fluid

flowing in the minichannel are calculated using Newton’s law.

α2D(x) =
q(x)

TF (x, δG + δF )− Tf (x)
(3.1)

where q is the heat flux transferred from the heated foil to the fluid, TF – temperature of the
foil, with q and TF determined by solving the inverse heat conduction problem in the heated foil,
δG – thickness of the glass panel, δF – thickness of the foil, Tf – temperature of the fluid, with
Tf (x) = Tl(x) in the subcooled boiling region and Tf (x) = Tsat(x) in the saturated nucleate
boiling region, Tl – liquid temperature calculated on the assumption of a linear distribution of
liquid temperature along the minichannel from the temperature Tf,in to the temperature Tf,out,
and Tsat – saturation temperature determined on the assumption of a linear distribution of fluid
pressure along the minichannel (Piasecka and Maciejewska, 2015; Piasecka et al., 2017).
The mathematical model is based on the model presented by Hożejowska and Piasecka (2014).

For the purpose of the FEM, changes in the determinancy domain of the differential equation
and in the boundary conditions are taken into account.
The temperature of the heated foil satisfies the Poisson equation

∂2TF
∂x2
+
∂2TF
∂y2

= − qV
λF

for (x, y) ∈ ΩF = {(x, y) ∈ R2 : x1 < x < xP , δG < y < δG + δF }
(3.2)
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and the boundary conditions (see Fig. 2)

TF (x, δG) = TG(x, δG) λF
∂TF
∂y
(x, δG) = λG

∂TG
∂y
(x, δG)

TF (x1, y) = T1 TF (xP , y) = TP
(3.3)

and

TF (xp, δG) = Tp for p = 1, 2, . . . , P (3.4)

where x1 is the location of the first measurement point at the boundary y = δG, xP – location
of the last measurement point, P – number of measurements, Tp – measured temperature,
λF and λG – thermal conductivity coefficients of the foil and glass, respectively, qV , δG, δF have
the same denotations as in Eqs. (2.1) and (3.1).
The temperature of the glass panel, as in (Hożejowska and Piasecka, 2014), has been deter-

mined by solving the direct heat conduction problem

∂2TG
∂x2
+
∂2TG
∂y2

= 0 for (x, y) ∈ ΩG = {(x, y) ∈ R2 : 0 < x < L, 0 < y < δG} (3.5)

and

∂TG
∂y
(x, 0) = 0

∂TG
∂x
(0, y) = 0

∂TG
∂x
(L, y) = 0

TG(xp, δG) = Tp for p = 1, 2, . . . , P
(3.6)

where L denotes length of the glass panel, δG, xP , P have the same denotations as in Eqs.
(3.2)-(3.4).
The inverse problem, Eqs. (3.2)-(3.4), has been solved using Beck’s method combined with

the FEM and Trefftz functions. With the Trefftz functions used, the approximate functions
exactly satisfy the governing differential equations. The direct problem, Eqs. (3.5) and (3.6),
has been solved by means of the Trefftz method described by Hożejowska et al. (2015).

4. Beck’s method coupled with the FEMT

Beck’s method (Beck et al., 1985) involves converting an inverse problem into several direct
problems by applying the so-called sensitivity coefficients. Since the heat flux at the boundary is
the unknown quantity here, it is essential to determine the sensitivity coefficients as derivatives
of temperature with respect to the unknown flux.
The calculations have been performed assuming the heat flux q at the boundary y = δG+ δF

for x1 ¬ x ¬ xP in the form

q =
L1∑

m=1

[U(x− xm)− U(x− xm+1)]qm (4.1)

where U is the unit step function (the Heaviside function), while qm for m = 1, 2, . . . , L1 take
constant values (Kruk and Sokała, 1999). The same partition of the boundary y = δG + δF ,
x ∈ 〈x1, xP 〉 into L1 parts will also be used in the FEM.
The temperature TF dependent on the qm fluxes for m = 1, 2, . . . , L1 at the boundary

y = δG + δF for x1 ¬ x ¬ xP , like in (Kruk and Sokała, 1999), is expanded into a Taylor series
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about a fixed point (q01, . . . , q0L1). Since higher order derivatives disappear in linear problems,
we obtain the formula

TF (x, y, q1, . . . , qL1) = TF (x, y, q01, . . . , q0L1) +
L1∑

m=1

∂TF
∂qm

∣∣∣∣∣
qm=q0m

(qm − q0m) (4.2)

After introducing the denotations ΘF (x, y) = TF (x, y, q01, . . . , q0L1) and Zm(x, y) =
(∂TF /∂qm)|qm=q0m , expression (4.2) is written as

TF (x, y, q1, . . . , qL1) = ΘF (x, y) +
L1∑

m=1

Zm(x, y)(qm − q0m) (4.3)

where Zm(x, y), for m = 1, 2, . . . , L1 are the sensitivity coefficients.
ΘF (x, y) and Zm(x, y) form = 1, 2, . . . , L1 in the domain ΩF are determined by solving 1+L1

direct problems that arise after substituting Eq. (4.3) into Eq. (3.2) and boundary conditions
Eq. (3.3)

∂2ΘF
∂x2

+
∂2ΘF
∂y2

= − qV
λF

for (x, y) ∈ ΩF

ΘF (x, δG) = TG(x, δG) λF
∂ΘF
∂y
(x, δG) = λG

∂TG
∂y
(x, δG)

∂ΘF
∂y
(x, δG + δF ) = 0 ΘF (x1, y) = T1 ΘF (xP , y) = TP

(4.4)

and

∂2Zm
∂x2

+
∂2Zm
∂y2

= 0 for m = 1, 2, . . . L1 and (x, y) ∈ ΩF

Zm(x1, y) = 0 Zm(xP , y) = 0 Zm(x, δG) = 0
∂Zm
∂y
(x, δG) = 0 − λF

∂Zm
∂y
(x, δG + δF ) = U(x− xm)− U(x− xm+1)

(4.5)

Condition (3.4) will be used in the subsequent calculations.
The functions ΘF and Zm for m = 1, 2, . . . , L1 have been determined using the finite element

method combined with the Trefftz-type basis functions (FEMT), as described in (Piasecka and
Maciejewska, 2013). In this paper, the partition of the domain ΩF into finite elements is closely
linked to the partition of the boundary y = δG+ δF , x ∈ 〈x1, xP 〉 into L1 parts, like in Eq. (4.1).
The basis functions fjk(x, y), gjk(x, y), hjk(x, y) constructed with the Hermite interpolation
(Kincaid and Cheney, 2002), have the following properties in nodes (xi, yi)

fjk(xi, yi) = δki
∂fjk
∂x
(xi, yi) = 0

∂fjk
∂y
(xi, yi) = 0

gjk(xi, yi) = 0
∂gjk
∂x
(xi, yi) = δki

∂gjk
∂y
(xi, yi) = 0

hjk(xi, yi) = 0
∂hjk
∂x
(xi, yi) = 0

∂hjk
∂y
(xi, yi) = δki





i = 1, 2, . . . , N

(4.6)

where j is the element number, k – number of the basis function in the j-th element, N – number
of nodes in the j-th element, δki – Kronecker delta.
Three nodal parameters are associated with each interpolation node: the value of the function

at a node, the value of the partial derivative with respect to x, and the value of the partial
derivative with respect to y.
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In each element Ωj
F , the function ΘF (x, y) is approximated by means of a linear combination

of the basis functions

ΘjF (x, y) = u(x, y) +
N∑

k=1

{
[an − u(xn, yn)]fjk(x, y) + [bn − u′x(xn, yn)]gjk(x, y)

+ [cn − u′y(xn, yn)]hjk(x, y)
} (4.7)

where u(x, y) is the particular solution of equation (4.4)1, n – number of the node in the whole
domain ΩF , an – value of the unknown function at the n-th node of the domain ΩF , bn – value
of the partial derivative of the unknown function with respect to x at the n-th node of the
domain ΩF , cn – value of the partial derivative of the unknown function with respect to y at the
n-th node of the domain ΩF , fjk(x, y), gjk(x, y) and hjk(x, y) – basis functions, j, k, N have
the same denotations as in Eqs. (4.6).
The unknown coefficients an, bn, cn in linear combination (4.7) have been calculated, like

in (Piasecka and Maciejewska, 2013), by minimizing the functional J which describes the mean
square error of fit of the approximate function to the boundary conditions and the difference
between the values of the approximate function at the common edges of the adjacent elements,
and in this calculations has the form

J =
L1∑

j=1

xj+1∫

xj

[ΘjF (x, δG)− T
j
G(x, δG)]

2 dx+
L1∑

j=1

xj+1∫

xj

[
λF

∂ΘjF
∂y
(x, δG)− λG

∂T jG
∂y
(x, δG)

]2
dx

+
L1∑

j=1

xj+1∫

xj

[∂ΘjF
∂y
(x, δG + δF )

]2
dx+

L2−1∑

i=0

δG+yi+2∫

δG+yi+1

[Θ1+iL1F (x1, y)− T1]2 dy

+
L2−1∑

i=0

δG+yi+2∫

δG+yi+1

[Θ(i+1)L1F (xP , y)− TP ]2 dy

+
L2−1∑

i=0

L1−1∑

j=1

δG+yi+2∫

δG+yi+1

[Θj+iL1F (xj+1, y)−Θj+1+iL1F (xj+1, y)]2 dy

+
L2−1∑

i=0

L1−1∑

j=1

δG+yi+2∫

δG+yi+1

[∂Θj+iL1F

∂x
(xj+1, y)−

∂Θj+1+iL1F

∂x
(xj+1, y)

]2
dy

+
L2−1∑

i=1

L1∑

j=1

xj+1∫

xj

[Θj+(i−1)L1F (x, δG + yi+1)−Θj+iL1F (x, δG + yi+1)]2 dx

+
L2−1∑

i=0

L1∑

j=1

xj+1∫

xj

[∂Θj+(i−1)L1F

∂y
(x, δG + yi+1)−

∂Θj+iL1F

∂y
(x, δG + yi+1)

]2
dx

(4.8)

Similarly, the solutions to the L1 direct problems give the sensitivity coefficients Zm for
m = 1, 2, . . . , L1.
The values of qm for m = 1, 2, . . . , L1 in expression (4.3) have been calculated by minimizing

the functional JPF that describes the mean square error between the values of the function
TF (x, y, q1, . . . , qL1) at the measurement points and temperature measurements

JPF =
P∑

p=1

[TF (xp, yp, q1, . . . , qL1)− Tp]2 (4.9)
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5. Calculation results

The values of the heat transfer coefficient have been obtained by solving the inverse heat con-
duction problem through Beck’s method coupled with the finite element method in which the
Trefftz functions were used as basis functions. The values of this coefficient were determined in
the subcooled boiling region and in the saturated nucleate boiling region.
The calculations were performed using the raw temperature data presented in Fig. 1 as well

as the smoothed temperature data. In both approaches, two variants of the partition of the
boundary y = δG + δF for x ∈ 〈x1, xP 〉 into subdomains were considered. In variant one, the
boundary was partitioned into L1 = 10 subdomains, while in variant two, it was partitioned into
L1 = 20 subdomains. In neither case the domain ΩF was partitioned in the y-direction. The four
Hermite interpolation nodes were placed at the vertices of rectangular elements of the mesh. As
three nodal parameters were associated with each interpolation node, the basis functions were
constructed using 12 Trefftz functions. The particular solution to Eq. (4.4)1 was written in the
following form u(x, y) = −0.25qV λ−1F (y2 + x2). The calculations were performed using the data
from 12 settings shown in Fig. 1 as well as Table 1. The heat transfer coefficients as a function
of distance from the minichannel inlet are shown in Figs. 3-5.

Fig. 3. Heat transfer coefficients in the subcooled boiling region vs. distance from the minichannel inlet
obtained on the basis of the raw temperature data with the boundary partitioned into:

(a) L1 = 10 subdomains, (b) L1 = 20 subdomains

Fig. 4. Heat transfer coefficients in the saturated nucleate boiling region vs. distance from the
minichannel inlet obtained on the basis of the raw temperature data with the boundary partitioned

into: (a) L1 = 10 subdomains, (b) L1 = 20 subdomains

The relative differences between the values of the heat transfer coefficients obtained for both
variants of the boundary partition into L1 = 10 subdomains and L1 = 20 subdomains were
calculated according to formula (5.1) and shown in Table 2
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Fig. 5. Heat transfer coefficients vs. distance from the minichannel inlet obtained on the basis of the
smoothed temperature data with the boundary partitioned into L1 = 10 subdomains: (a) in the

saturated nucleate boiling region, (b) in the subcooled boiling region

σi =
1
P

P∑

p=1

√√√√ [αi,L1=102D (xp)− αi,L1=202D (xp)]2

{min[αi,L1=102D (xp), α
i,L1=20
2D (xp)]}2

i = Raw,Smoo (5.1)

where P denotes the number of measurements, αi,L1=102D and αi,L1=202D are values of the heat
transfer coefficients calculated for L1 = 10 and L1 = 20 subdomains, respectively, indexes
i = Raw and i = Smoo refer to the calculations based on the raw measurement data and
the smoothed temperature data, respectively. From Table 2, it is evident that the greatest
differences between the values of the heat transfer coefficients occurred at setting #11 when the
raw measurement data was used. Since there are very small differences between the values of
the heat transfer coefficient obtained from the smoothed data for the case when the domain is
divided into L1 = 10 subdomains and those reported for the division into L1 = 20 subdomains,
Fig. 5 shows only the results obtained for L1 = 10.

Table 2. Relative differences between the values of the heat transfer coefficient obtained for
both variants of the boundary partition into L1 = 10 subdomains and L1 = 20 subdomains
using the raw and smoothed temperature data

Subcooled boiling region Saturated nucleate boiling region
Setting number

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

σRaw [%] 1.33 1.23 1.2 3.11 2.98 2.07 5.54 5.73 8.55 5.1 12.57 9.32
σSmoo [%] 0.08 0.12 0.08 0.04 0.05 0.4 1.9 1.57 2.8 2.76 0.17 0.12

The obtained results are in agreement with the data presented in (Grysa et al., 2012; Hoże-
jowska and Piasecka, 2014; Hożejowska et al., 2009; Ozer et al., 2011; Piasecka and Maciejewska,
2012, 2013, 2015; Piasecka et al., 2017), which are provided in Table 3. The values of the heat
transfer coefficient are high in the saturated nucleate boiling region (like in Hożejowska and
Piasecka, 2014; Piasecka and Maciejewska, 2015, Piasecka et al., 2016); they are much lower in
the subcooled boiling region (like in Grysa et al., 2012; Hożejowska et al., 2009; Ozer et al.,
2011; Piasecka and Maciejewska, 2012, 2013, 2015). The experimental parameters provided in
Section 2 reported for the minichannel in the subcooled boiling region are most similar to the
data described by Piasecka and Maciejewska (2012); while in the saturated nucleate boiling
region resembled those discussed by Hożejowska and Piasecka (2014). The values of the heat
transfer coefficient shown in Figs. 3-5 are not very different from those presented in (Piasecka
and Maciejewska, 2012) and (Hożejowska and Piasecka, 2014).
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Table 3. Experimental data and heat transfer coefficients presented in (Grysa et al., 2012 [7];
Hożejowska and Piasecka, 2014 [11]; Hożejowska et al., 2009 [12]; Ozer et al., 2011 [23]; Piasecka
and Maciejewska, 2012 [29], 2013 [30], 2015 [31]; Piasecka et al., 2017 [32])

Subcooled boiling region Saturated nucleate
boiling region

Reference [7] [12] [23] [29] [30] [31] [11] [31] [32]
No. of experim. 1 1 2 3 1 3 1 3 2
analysed
Working fluid R 123 R 123 Novec FC-72 FC-72 FC-72 FC-72 FC-72 FC-72

649
Minichannel 1, 40, 1, 40, 1, 2, 1, 60, 1, 40, 1, 40, 1, 40, 1, 40, 1.7, 24,
dimensions 300 360 357 360 360 360 360 360 360
dept, width,
length [mm]
Spatial vert. vert. hori- Exp. 1: vert. Exp. 1: vert. Exp. 1: Exp.1 :
orientation zontal vert. vert. vert. vert.

Exp. 2: Exp. 2: Exp. 2: Exp. 2:
horiz. horiz. horiz. vert.
Exp. 3: Exp. 3: Exp. 3:
horiz. horiz. horiz.

Type of heated smooth smooth smooth smooth enhan- enhan- enhan- enhan- enhan-
surface ced ced ced ced ced
Heat flux 25.4-37.6 14.0, Exp. 1: Exp. 1: 9.4-23.1 Exp. 1: 8.9-27 Exp. 1: Exp. 1:
qw [kW/m2] 23.6 6.407 11.2-16.2 11.7-17.7 20.2-21.6 11.6-16.9

Exp. 2: Exp. 2: Exp. 2: Exp. 2: Exp. 2:
6.135 9.3-10.1 14.8-18.4 19.3-22.9 12.2-17.3

Exp. 3: Exp. 3: Exp. 3:
13.8-16.6 7.1-11.6 13.3-13.9

Maximum 1.05-1.33 0.36, Exp. 1: Exp. 1: 0.19-0.56 Exp. 1: 10-80 Exp. 1: Exp. 1:
values of 0.53 0.2 0.32-0.5 0.32-0.55 100-175 50-70
heat transfer Exp. 2: Exp. 2: Exp. 2: Exp. 2: Exp. 2:
coefficient 0.325 0.202-0.22 0.4-0.5 70-130 60-65

α [kW/(m2K)] Exp. 3: Exp. 3: Exp. 3:
0.375-500 0.2-0.27 20-33

Pressure at 330 190 – Exp. 1: 130 Exp. 1: 125 Exp. 1: Exp. 1:
minichannel 136 125 125 140
inlet Exp. 2: Exp. 2: Exp. 2: Exp. 2:

pin [kPa] 115 140 145 140
Exp. 3: Exp. 3: Exp. 3:
120-123 120 139

Average 219 412 Exp. 1: Exp. 1: 236 Exp. 1: 285 Exp. 1: Exp. 1:
mass flux 60 160 211 204 260

G [kg/(m2s)] Exp. 2: Exp. 2: Exp. 2: Exp. 2: Exp. 2:
44 165 207 204 144

Exp. 3: Exp. 3: Exp. 3:
163 211 208

Reynolds 946 – Exp. 1: Exp. 1: 735 Exp. 1: 880 Exp. 1: Exp. 1:
number 205 552 704 755 1003
Re Exp. 2: Exp. 2: Exp. 2: Exp. 2: Exp. 2:

152 478 720 758 968
Exp. 3: Exp. 3: Exp. 3:
510 670 714

Inlet liquid 68 36 Exp. 1: Exp. 1: 50 Exp. 1: 42 Exp. 1: Exp. 1:
subcooling 56.2 54 42 44 38.5
∆Tsub,in [K] Exp. 2: Exp. 2: Exp. 2: Exp. 2: Exp. 2:

45 55 43 43 42.5
Exp. 3: Exp. 3: Exp. 3:
55 30 42
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6. Comparison of the results obtained by Beck’s method coupled with the FEMT
and those obtained using the one-dimensional method

The one-dimensional method described by Piasecka et al. (2017) has been employed to verify
the results. This method assumes that the whole heat flux supplied to the heated foil qV is
transferred to the fluid flowing in the minichannel. The temperature measured at the surface
y = δG is assumed to be the temperature of the wall y = δG + δF . This approach is appropriate
only when the foil thickness δF is negligible. In the one-dimensional method, the heat transfer
coefficients have been calculated from the formula (Piasecka et al., 2017)

αi1D(xp) =
I∆U

AF [Tp − Tf (xp)]
p = 1, 2, . . . , P i = Raw,Smoo (6.1)

where I, ∆U , AF , Tf , Tp, i have the same denotations as in expressions Eqs. (2.1), (3.1), (3.4),
(5.1).
The calculations have been performed using the raw and smoothed measurement data.
The relative differences between the values of the heat transfer coefficient determined with

the one-dimensional method and those obtained by means of Beck’s method coupled with the
FEMT have been calculated from the following formula

σL1=ji =
1
P

P∑

p=1

√√√√ [αi1D(xp)− α
i,L1=j
2D (xp)]2

[αi,L1=j2D (xp)]2
for j = 10, 20; i = Raw,Smoo (6.2)

where P , αi,L1=102D , αi,L1=202D , and i have the same denotations as in formula (5.1), αRaw1D and
αSmoo1D are values of the heat transfer coefficient obtained by the one-dimensional method using
the raw measurement data and the smoothed measurement data, respectively, Eq. (6.1).
The calculation results are presented in Table 4. The greatest differences between the values

of the heat transfer coefficient obtained with the one-dimensional method and those reported
for Beck’s method coupled with the FEMT occurred at setting #11 when the raw measurement
data was used and the domain was partitioned into L1 = 10 subdomains in the x-direction, see
Fig. 6.

Table 4. Relative differences between the values of the heat transfer coefficient obtained with
the one-dimensional method and those reported for Beck’s method coupled with the FEMT

Subcooled boiling region Saturated nucleate boiling region

Setting number

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

σL1=10Raw [%] 1.72 1.9 1.85 1.91 1.5 1.4 12.1 9.18 11.34 10.56 13.24 12.33

σL1=20Raw [%] 1.35 1.66 1.57 2.6 2.24 1.49 10.56 8.43 8.79 9.14 8.23 11.96

σL1=10Smoo [%] 0.3 0.33 0.38 0.49 0.6 0.32 6.8 4.87 5.67 4.87 4.0 2.96

σL1=20Smoo [%] 0.31 0.35 0.39 0.49 0.59 0.31 6.48 5.54 5.48 4.48 4.01 2.99

7. Conclusions

This paper discusses the application of Beck’s method combined with the FEMT to calculate
the local values of the heat transfer coefficients for the heat transfer between the heated foil and
the fluid flowing in the minichannel. The sensitivity coefficients are introduced as derivatives
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Fig. 6. Heat transfer coefficients at setting #11 vs. distance from the minichannel inlet obtained by
means of the one-dimensional method and Beck’s method coupled with the FEMT using the raw
measurement data for the domain partitioned into L1 = 10 subdomains in the x-direction

with respect to the unknown heat flux at the edge in order to directly calculate the values of
the heat flux with no need to differentiate the temperature functions.
The calculations have been performed using both the raw and smoothed measurement data.

In both cases, the boundary y = δG+δF , x ∈ 〈x1, xP 〉 was partitioned into L1 = 10 and L1 = 20
subdomains.
Partitioning of the domain in the x-direction does not cause considerable changes in the

values of the heat transfer coefficient calculated in the subcooled boiling region (the maximum
relative difference is approximately 3%, see Table 2 and Fig. 3). However, changes in the values
of this coefficient are reported in the saturated nucleate boiling region. Further partitioning in
the x-direction has a significant influence on the values of this coefficient when raw data rather
than smoothed is used, see Table 2 and Fig. 4.
The local values of the heat transfer coefficients are relatively low in the subcooled boiling

region (like in Grysa et al., 2012; Hożejowska et al., 2009; Ozer et al., 2011; Piasecka and Macie-
jewska, 2012, 2013, 2015; Piasecka and Maciejewska, 2015) and high in the saturated nucleate
boiling region (like in Hożejowska and Piasecka, 2014; Piasecka and Maciejewska, 2015; Piasecka
et al., 2017), see Figs. 3-5.
The values and distribution of the coefficient obtained by means of the proposed method

are similar to those reported for a simple, one-dimensional method, see Fig. 6. The relative
differences between the coefficients obtained with the two methods, given in Table 4, does not
exceed 2.6% in the subcooled boiling region. In the saturated nucleate boiling region, however,
they are greater and reach approximately 13.5%. Further partitioning of the domain, i.e. from
L1 = 10 into L1 = 20 subdomains, contributes to reduction in the differences in the values
of the coefficients obtained with both approaches only in the saturated nucleatesboiling region
when the raw measurement data is used. The differences are negligible in the subcooled boiling
region as well as when the smoothed temperature data is used.
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This article addresses the Falkner-Skan flow of an incompressible Walter-B fluid. Fluid flow
is caused by a stretching wedge with thermal radiation and prescribed surface heat flux.
Appropriate transformations are used to obtain the system of nonlinear ordinary differen-
tial equations. Convergent series solutions are obtained by the homotopy analysis method.
Influence of pertinent parameters on the velocity, temperature and Nusselt number are in-
vestigated. It is observed that by increasing the viscoelastic parameter, the fluid velocity
decreases. There is an enhancement of the heat transfer rate for the viscoelastic parameter
and power law index. It is also found that the Prandtl number and radiation parameter
decrease the heat transfer rate.

Keywords:Walter-B fluid, Falkner-Skan flow, prescribed surface heat flux, thermal radiation

1. Introduction

Non-Newtonian materials in view of its complex constitutive expression yield much more com-
plicated and higher order differential systems when compared with viscous materials. Such com-
plexities in differential systems are due to additional rheological parameters appearing in the
constitutive relationships. Even a simpler constitutive equation like for Walter-B gives rise to
nonlinear boundary initial value problems which are far from trivial. These boundary value pro-
blems have great interest of researchers from different quarters. For example Chang et al. (2011)
numerically analyzed the free convective heat transfer in viscoelastic flow of Walter-B fluid. Na-
deem et al. (2015) examined oblique flow of Walter-B fluid in presence of magnetohydrodynamics
and nanoparticles. Nandeppanavar et al. (2010) explored stretched flow of Walter-B liquid in
presence of non-uniform heat source/sink. Hakeem et al. (2014) extended such analysis in pre-
sence of thermal radiation. Stagnation point flow and Blasius flow for Walter-B liquid were also
addressed by Madani et al. (2012). Hayat et al. (2014a, 2015c) examined heat transfer in flow
of Walter-B fluid over a surface with Newtonian heating and convective condition. Talla (2013)
studied the flow of Walter-B fluid bounded by an exponentially stretching sheet. Peristalsis of
Walter-B fluid in a vertical channel was studied by Ramesh and Devakar (2015).
Falkner-Skan flow is quite popular in fluid mechanics. It is a flow past a wedge placed

symmetrically with respect to the flow direction. These types of flows occur frequently to increase
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oil recovery and in packed bed reactor geothermal industries. Interest of recent researchers in
boundary layer flow over a continuos moving surface with prescribed surface heat flux has
increased so much. These type of flows have many applications in industrial and metallurgical
processes such as glass fiber, wire drawing, paper production and metallic plate cooling in cooling
bath, etc. Falkner and Skan (1931) presented some approximate solutions for the boundary
layer equation. Yacob et al. (2011) studied the Falkner-Skan problem for a static and moving
wedge with prescribed surface heat flux in a nanofluid. Falkner-Skan flow of the Maxwell fluid
with mixed convection was analyzed by Hayat et al. (2012). Khan and Pop (2013) examined
the nanofluid flow past a moving wedge. Abbasbandy et al. (2014b) discussed numerical and
analytical solutions for MHD Falkner-Skan flow of the Maxwell fluid. Hendi and Hussain (2012)
found the solution for MHD Falkner-Skan flow over a permeable sheet. Fang et al. (2012) studied
the momentum and heat transfer in Falkner-Skan flow with algebraic decay. Su and Zheng
(2011) presented the approximate solution of MHD Falkner-Skan flow over a permeable wall.
Abbasbandy et al. (2014a) worked for Falkner-Skan flow of an Oldroyd-B fluid in presence of
the applied magnetic field.

The radiation effect in boundary layer flow has much importance due to its applications
in physics, engineering and industrial fields such as glass production, furnace design, poly-
mer processing, gas cooled nuclear reactors and also in space technology like aerodynamics
of rockets, missiles, propulsion system, power plants for inter planetary fights and space crafts
operating at high temperatures. Heat transfer through radiation takes place in form of elec-
tromagnetic waves. Radiation emitted by a body is a consequence of thermal agitation of its
composing molecules. Hayat et al. (2013c) worked on mixed convection radiative stagnation
point flow in presence of convective boundary conditions. Hayat et al. (2013b) also discus-
sed the effect of thermal radiation in MHD flow of thixotropic fluid. Pal (2013) analyzed the
effects of thermal radiation, Hall current and MHD in flow over an unsteady stretching surfa-
ce. Bhattacharyya et al. (2012) analyzed the flow of micropolar fluid over a porous shrinking
sheet with thermal radiation. Hayat et al. (2013a)studied the three-dimensional MHD flow of
Eyring-Powell fluid with radiative effects. Rashidi et al. (2014) discussed the influence of ther-
mal radiation in MHD mixed convective flow of a viscoelastic fluid due to a porous wedge.
Bhattacharyya (2013) presented the MHD Casson fluid subject to thermal radiation. Sheikho-
leslami et al. (2015) adopted a two phase model for MHD flow of a nanofluid with thermal
radiation.

The aim of present study is to venture further in the region of Falkner-Skan flow of a non-
-Newtonian fluid. Thus flow formulation here is based upon constitutive relationship of Walters-
B fluid. Analysis of heat transfer is carried out in presence of heat flux and thermal radiation.
Transformation procedure has been used for the reduction of partial differential systems to
ordinary differential systems. The homotopy analysis technique has been implemented for the
development of convergent series solutions. Influences of pertinent parameters on the velocity,
temperature and Nusselt number are pointed out.

2. Problem formulation

We consider the steady two-dimensional Falkner-Skan flow of an incompressible Walter-B fluid.
Heat transfer analysis is carried out in the presence of prescribed surface heat flux and thermal
radiation. The fluid flow is induced via stretching a wedge moving with the velocity Uw = cxn

and the fluid flow being confined to y  0. Let T∞ be ambient temperature. The relevant
boundary layer equations are (Hakeem et al., 2014)
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The corresponding boundary conditions are (Yacob et al., 2011)

u = Uw = cxn v = 0
∂T

∂y
= −qw

k
at y = 0

u→ Ue = axn T → T∞ as y →∞
(2.2)

where (u, v) are the velocities along (x, y) directions respectively, T is temperature, ν is kinematic
viscosity, k0 is elastic parameter, k is thermal conductivity, ρ is density, cp is specific heat, c and
a are the stretching rates and qw the wall heat flux. Radiative heat flux by using Rosseland
approximation is given by

qr = −
4σ∗

3k∗
∂T 4

∂y
(2.3)

where σ∗ is the Stefan-Boltzmann constant and k∗ the mean absorption coefficient. Further, we
assume that the temperature difference within the flow is such that T 4 may be expanded in a
Taylor series. Hence expanding T 4 about T∞ and neglecting higher order terms, we get

T 4 ∼= 4T 3∞T − 3T 4∞ (2.4)

Using Eqs. (2.3) and (2.4) in (2.1)3, we obtain
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Suitable transformations for the present flow are (Yacob et al., 2011)
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where x is the distance from the leading edge and n the Falkner-Skan power-law parameter.
Using Eq. (2.3), the continuity equation is satisfied automatically and Eqs. (2.1)2-(2.2) take the
form
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and

f(0) = 0 f ′(∞)→ 1 f ′(0) = α

θ′(0) = −1 θ(∞)→ 0
(2.8)

where k1 is the viscoelastic parameter, Pr is the Prandtl number, α is the ratio of stretching
rates and R is the radiation parameter. The dimensionless parameters are defined as follows

k1 =
k0ax
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ρν
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ρcpν
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4σ∗T 3∞
kk∗

(2.9)
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The local Nusselt number in the dimensional form is
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in which qr is prescribed as follows
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The dimensionless form of the Nusselt number is
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√
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2

(
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4R
3

)
θ′(0) (2.13)

3. Homotopic solutions

3.1. Zeroth-order deformation equations

Initial approximations and auxiliary linear operators are taken as follows

f0(η) = η − (1− α)[1 − exp(−η)] θ0(η) = exp(−η)
Lf = f ′′′ − f ′ Lθ = θ′′ − θ

(3.1)

with

Lf [c1 + c2eη + c3e−η] = 0 Lθ[c4eη + c5e−η] = 0 (3.2)

where ci (i = 1-5) are constants.
Denoting q ∈ [0, 1] as the embedding parameter and ~f and ~θ as the non-zero auxiliary

parameters, then the zeroth order deformation problems are

(1− q)Lf [F (η, q) − f0(η)] = q~fNf [F (η, q)]
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(3.3)

where the nonlinear differential operators Nf and Nθ are
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3.2. m-th order deformation equations

The m-th order deformation problems are

Lf [fm(η)− χmfm−1(η)] = ~fRf,m(η) Lθ[θm(η) − χmθm−1(η)] = ~θRθ,m(η) (3.5)

and
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and

χm =

{
0 for m ¬ 1
1 for m > 1

(3.8)

The general solutions (fm, θm) comprising the special solutions (f∗m, θ
∗
m) are

fm(η) = f∗m(η) + c1 + c2e
η + c3e−η

θm(η) = θ∗m(η) + c4e
η + c5e−η

(3.9)

where the constants ci (i = 1-5) through boundary conditions (3.6) are

c1 = −c3 − f∗m(0) c3 =
∂f∗m(0)
∂η

c5 =
∂θ∗m(0)
∂η

c2 = c4 = 0
(3.10)

4. Convergence analysis

The homotopy analysis method has great advantage to adjust the convergence region by selecting
the appropriate values of ~f and ~θ. For this, we plot the ~-curves for the convergence of
velocity and temperature profiles (see Fig. 1). Admissible values of auxiliary parameters are
−0.9 ¬ ~f ¬ 0 and −0.6 ¬ ~θ ¬ −0.2. The solution converges in the whole region of η
(0 ¬ η ¬ ∞) when k1 = 0.2, n = 0.1, R = 1.6, Pr = 1.5 and α = 0.9.
Table 1 shows the convergence of functions f ′′(0) and θ′′(0) at a different order of appro-

ximations. Tabulated values show that the 25-th order of approximations is enough for the
convergence of f ′′(0), and the 22-th order of approximation is appropriate for the convergence
of θ′′(0).
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Fig. 1. ~-curves for f ′′(0) and θ′′(0) when k1 = 0.2, n = 0.1, R = 1.6, Pr = 1.5 and α = 0.9.

Table 1. Convergence of HAM (homotopy analysis method) solutions when k1 = 0.2, n = 0.1,
R = 1.6, Pr = 1.5,α = 0.9, ~f = −0.2 = ~θ

Order of
f ′′(0) θ′′(0)

approximation

1 0.09734 0.8154
5 0.09262 0.8203
10 0.09262 0.4547
15 0.09171 0.4454
20 0.09168 0.4447
22 0.09169 0.4446
25 0.09170 0.4446
30 0.09170 0.4446
35 0.09170 0.4446
40 0.09170 0.4446
45 0.09170 0.4446

5. Discussion

In this Section, we discussed the influences of different physical parameters on the fluid velocity,
temperature and heat transfer rate.

5.1. Dimensionless velocity profile

Figures 2a-2c show the effect of viscoelastic parameter k1, power law index n and stretching
rates ratio α on the velocity profile. Figure 2a depicts the influence of the viscoelastic parameter
on f ′(η). As k1 increases, the fluid velocity decreases which corresponds to a thinner momen-
tum boundary layer thickness. The viscoelasticity produces tensile stress which contracts the
boundary layer and, consequently, the velocity reduces. Figure 2b represents the impact of α
on the velocity profile. Here, the velocity enhances by increasing α. In fact higher values of α
correspond to the stronger free stream velocity which enhances the fluid velocity. The effect of
Falkner-Skan power law index n is graphed in Fig. 2c. It is observed that velocity is an increasing
function of n.

5.2. Dimensionless temperature profile

Figures 3 and 4 show the impact of the Prandtl number Pr, radiation parameter R, viscoela-
stic parameter k1, power law index n and ratio of stretching rates α on the temperature profile.
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Fig. 2. Impact of: (a) k1, (b) α and (c) n on f ′(η)

Fig. 3. Impact of (a) Pr, (b) R, (c) k1, (d) α
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Fig. 4. Impact of n on θ(η)

Figure 3a shows the effect of Pr on the temperature profile. For increasing values of the Prandtl
number, the temperature decreases. Higher values of Pr correspond to low thermal diffusivity,
and the fluid temperature decreases. Figure 3b depicts the behavior of fluid temperature for
the radiation parameter R. This figure shows that the temperature profile enhances when ra-
diation effects strengthen. An increase in the radiation parameter corresponds to a decrease in
the mean absorption coefficient. Hence the rate of radiative heat transfer to the fluid increases.
Figure 3c describes the behavior of temperature for viscoelastic parameter. Fluid temperature
enhances for increasing k1. Figure 3d presents the effect of stretching ratio rates α on the tem-
perature profile. The temperature profile shows decreasing behavior for increasing values of α.
The velocity increases when the ratio of stretching rates enhances. There is less resistance for
fluid particles motion and, consequently, the temperature reduces. Figure 4 shows the effect of
increasing values of n on fluid temperature. The temperature profile and n have a direct relation
with each other.

5.3. Nusselt number

In this Section, we show the effects of different physical parameters on the Nusselt number.
Figures 5a-5d depict the influence of the viscoelastic parameter k1, Falkner-Skan power law
index n, radiation parameter R and Prandtl number Pr. These figures show that by increasing
the viscoelastic and power law index parameters, the rate of heat transfer increases whereas the
Nusselt number shows decreasing behavior for increasing values of the radiation parameter and
the Prandtl number.

6. Conclusions

The Falkner-Skan wedge flow of Walter-B fluid is studied in presence of thermal radiation and
prescribed surface heat flux. Key points of the presented analysis are as follows:

• Fluid velocity is a decreasing function of the viscoelastic parameter and increasing function
of the ratio of stretching rates.

• The Prandtl number and radiation parameter have opposite impact on the temperature
profile.

• For increasing values of the viscoelastic parameter, the temperature enhances.
• The Nusselt number has opposite impact on the power law index and the Prandtl number.
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Fig. 5. Impact of (a) k1, (b) n, (c) R and (d) Pr on NuxRe−0.5x (see Eq. (2.13))
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A method based on energy is a very useful tool for description of mechanical properties of
materials. In the current paper, on the base of geometrical interpretation of a deformation
process, the strain energy density function for isotropic nonlinear materials has been con-
structed. On account of hydrostatic interpretation of the volumetric deformation, the elastic
part of energy has been extracted. The initiation of the damage process due to plastic flow of
the material under plane stress has been determined and the stability conditions have been
formulated by using in the stability analysis the strain energy density function in addition to
Sylvester’s theorem and assumption of zero volume change during pure plastic deformations.
This concept is an original part of the work and continuation of the investigations previously
carried out by Wegner and Kurpisz. The theoretical investigations have been illustrated on
the example of aluminium.

Keywords: energy-based method, nonlinear material, phenomenological description, strain
energy density function, Sylvester’s theorem

1. Introduction

The phenomenological description of mechanical properties of nonlinear materials is interesting
due to possibility of its application to real engineering structures. The knowledge about mecha-
nisms of deformation under the influence of external loads and the relations between them can
be very important in the design process. There is a lot of publications devoted to the modelling
of mechanical properties based both on the ground of microstructure relations in the material
(multi-scale modelling methods), see for example Silva et al. (2007), Terada et al. (2008), Speirs
et al. (2008), or on a phenomenological concept, see for example Wegner (2000, 2005). Because
we consider mechanical properties on the base of a real experiment in which the object (mate-
rial sample) and measured properties are usually in macro-scale, so using the phenomenological
method as the way of modelling of the process, which is directly connected with the experi-
ment, is recommended. From this point of view, very interesting are methods based on energy,
which were used by Petryk (1985, 1991), Schroder and Neff (2003), Wegner (2000, 2005, 2009)
and Dargazany et al. (2012). Here, the necessary tool of description of mechanical properties
of materials is the strain energy density function. It can be introduced in many different ways,
for example as a direct function of invariants of the deformation state, see Wegner (1999, 2009)
and Schroder and Neff (2003) or on the base of geometrical interpretation of the deformation
process, see Wegner and Kurpisz (2009). Wegner and Kurpisz (2013), using a phenomenological
approach and basing on the strain energy density function, investigated the damage process of
a metal foam.
Material damage as a dissipative mechanism described in form of free energy per unit volume

considered as a thermodynamic potential was taken into account by Cimetiere et al. (2005). The
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authors, in a major way, split the energy into two parts. The first is an elastic (reversible) part,
whereas the second (dissipative) includes, among others, the hardening effect. Because each of
these two parts depends on internal variables, so the internal variables influence the damage
threshold.
Gajewska and Maciejewska (2005) investigated the influence of internal restrictions (con-

nected with the type of the material, for example isotropic or anisotropic one) in form of limit
conditions based on energy of anisotropic materials. Such conditions can be interpreted as diffe-
rent yield conditions. It was shown that as long as the energy scalar product was defined properly
in the elastic range, the limit condition having the energy-based interpretation could be found.
A much more interesting case takes place when we have nonlinear-elasticity, what implies the
necessity of modification of the limit condition.
In the further part of the current paper, on the base of geometrical interpretation, the strain

energy density function of a nonlinear material will be introduced and used for formulation of
stability conditions due to the damage process, what is an alternative point of view to that
presented by Gajewska and Maciejewska (2005).

2. Geometrical interpretation of the deformation state – the basic equation

To introduce a geometrical interpretation of the deformation process, let us take into account
the following assumptions:

• The material is isotropic and nonlinear, so the mechanical properties are the same in all
directions, but the relations between stress and strain can not be described in form of
classic Hook’s law (for linear materials).

• The loading process is static, which means that dynamic effects can be neglected.
• The dissipated part of energy includes thermal and plastic deformation energy.
• The material is under plane stress.
• The longitudinal deformation coefficient is a function of the deformation state due to
nonlinear properties of the material.

• The principal stress and strain directions are the same due to material isotropy.

Every deformation process can be interpreted as a deformation path C, which is located in
space of principal deformation state components. Every point of such path is one deformation
state. So a change of deformation due to a change of external loads (change of principal stress
components) implies a displacement along the path

C : εi = εki t for i = 1, 2, 3 (2.1)

where εki are the final deformation state components, and t ∈ T = 〈0, 1〉 is a parameter.
The relation between stress and strain in every point of the deformation path takes the form

of generalized Hook’s law

ε1 =
σ1(t)

Ẽ(ε1)
− ṽ(ε2)

σ2(t)

Ẽ(ε2)
− ṽ(ε3)

σ3(t)

Ẽ(ε3)

ε2 =
σ2(t)

Ẽ(ε2)
− ṽ(ε1)

σ1(t)

Ẽ(ε1)
− ṽ(ε3)

σ3(t)

Ẽ(ε3)

ε3 =
σ3(t)

Ẽ(ε3)
− ṽ(ε1)

σ1(t)

Ẽ(ε1)
− ṽ(ε2)

σ2(t)

Ẽ(ε2)

(2.2)
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Fig. 1. Deformation paths for a triaxial and plane stress state in a material

where longitudinal and transversal deformation coefficients follow from experimental characte-
ristics σ(ε), εt(ε) (εt is transversal deformation) obtained from a uniaxial tension test and take
respectively the form

Ẽ(ε) =
σ

ε
ṽ(ε) = −εt

ε
(2.3)

Because both stress and strain are changeable (along path Cf ) in time t ∈ 〈0, 1〉 of the
deformation process, then the density of deformation work from the initial state εi = 0 for t = 0
to the final state εi = εki for t = 1 can be expressed as

WC(εk1 , ε
k
2 , ε

k
3) =

∫

Cf

3∑

i=1

σi dεi =
1∫

0

3∑

i=1

σi(t)ε′i(t) dt (2.4)

where on the basis of (2.2) for i = 1, 2, 3

σi(t) = Ẽ(εi)

εi
3∏
l=1
[1 + ṽ(εl)] + [1 + ṽ(εi)]

3∑
l=1

ṽ(εl)(εl − εi) + 1+ṽ(εi)ṽ(εi)

3∏
l=1

ṽ(εl)

(
3∑
l=1

εl − 3εi
)

3∏
l=1
[1 + ṽ(εl)]− [1 + ṽ(εi)]2

(
3∑
l=1

ṽ(εl)− ṽ(εi) + 2
ṽ(εi)

3∏
l=1

ṽ(εl)

)

(2.5)

In particular, if we assume the plane stress in plane 1O2, then the stress components in the
third direction are equal zero, and relations (2.4) and (2.5) simplify respectively to

WC(εk1 , ε
k
2) =

∫

Cf

2∑

i=1

σi dεi =
1∫

0

2∑

i=1

σi(t)ε′i(t) dt (2.6)

and

σ1(t) = Ẽ(ε1)
ε1 + ε2ṽ(ε2)
1− ṽ(ε1)ṽ(ε2)

σ2(t) = Ẽ(ε2)
ε2 + ε1ṽ(ε1)
1− ṽ(ε1)ṽ(ε2)

(2.7)
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The strain component in the passive (third) direction takes the form

ε3 = −ṽ(ε1)
ε1 + ε2ṽ(ε2)
1− ṽ(ε1)ṽ(ε2)

− ṽ(ε2)
ε2 + ε1ṽ(ε1)
1− ṽ(ε1)ṽ(ε2)

(2.8)

In the geometrical interpretation, function (2.6) specifies the values of deformation work
density (2.4), which are defined in the space of three-dimensional deformation to present a
strain energy density distribution function plot (Fig. 5) along section surface (2.8).

3. Extraction of the volumetric part of energy

Let us consider purely volumetric deformations. Such type of deformations takes place if a
material is under influence of hydrostatic pressure. The relation between deformation state
components and stress state components according to hydrostatic pressure takes the form

εV1 =
ks

Ẽ(εV1 )
− ṽ(εV2 )

ks

Ẽ(εV2 )
− ṽ(εV3 )

ks

Ẽ(εV3 )

εV2 =
ks

Ẽ(εV2 )
− ṽ(εV1 )

ks

Ẽ(εV1 )
− ṽ(εV3 )

ks

Ẽ(εV3 )

εV3 =
ks

Ẽ(εV3 )
− ṽ(εV1 )

ks

Ẽ(εV1 )
− ṽ(εV2 )

ks

Ẽ(εV2 )

(3.1)

where s ∈ T and hence, due to symmetry

εV1 = ε
V
2 = ε

V
3 = ε

V (3.2)

where εV satisfies the equation

εV =
1− 2ṽ(εV )
Ẽ(εV )

ks = β(s) (3.3)

and s is a non-dimensional parameter: the ratio of hydrostatic pressure to the basic value k,
ks is the current value of hydrostatic pressure.
The above relation does not provide the information about the connection between the

current value of deformation (point of path C) and its volumetric part (point of path CV ), see
the picture below.

Fig. 2. Relation between the deformation path C and the path due to pure volumetric deformation CV

To determinate this relation, we have to take into account two analytical descriptions of a
volume change in an elementary piece of the material.
The first way

∆V

V0
=
3∏

i=1

[1 + εi(t)]− 1 (3.4)
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where ε1(t), ε2(t) and ε3(t) are deformation components of the path C.
The second way explores hydrostatic pressure

Θ =
∆V

V0
=
3∏

i=1

[1 + β(s)]− 1 = [1 + β(s)]3 − 1 (3.5)

where Θ is the relative volume change.
After comparison of the right-hand sides of equations (3.4) and (3.5), we receive

s = h(t) = β−1
(
3

√√√√
3∏

i=1

[1 + εi(t)]− 1
)

(3.6)

and after substitution into (3.3)

εV = 3

√√√√
3∏

i=1

[1 + εi(t)]− 1 (3.7)

Hence, we can write that

WCV =
∫

CV

σ1 dε
V
1 +

∫

CV

σ2 dε
V
2 +

∫

CV

σ3 dε
V
3 =

3∑

i=1

∫

CV

σi dε
V (3.8)

where σi (i = 1, 2, 3) are solutions to the system of equations (2.2) given in form (2.5).

4. Stability conditions for the material under plane stress

The material is in the stable state of equilibrium if every change of the deformation state needs
work to be done by external loads. So, in other words, we say about material stability when the
strain energy density function is convex. In an analytical form, it can be written as

δ2WC =
3∑

i=1

3∑

j=1

∂2WC

∂εki ∂ε
k
j

δεki δε
k
j > 0 (4.1)

where δ2 denotes the second order variation of the function WC .
In the case of plane stress, the deformation work WC can be interpreted as a function of two

deformation state components, however from the other side, the strain energy density depends
on three deformation state components and the sign of its second order variation of the strain
energy is strictly connected with the three variation increments of deformation state components.
Hence, on the base of Sylvester’s theorem, we receive

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2WC

∂(εk1)2
∂2WC

∂εk1∂ε
k
2

∂2WC

∂εk1∂ε
k
3

∂2WC

∂εk1∂ε
k
2

∂2WC

∂(εk2)2
∂2WC

∂εk2∂ε
k
3

∂2WC

∂εk1∂ε
k
3

∂2WC

∂εk2∂ε
k
3

∂2WC

∂(εk3)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0

∣∣∣∣∣∣∣∣∣

∂2WC

∂(εk1)2
∂2WC

∂εk1∂ε
k
2

∂2WC

∂εk1∂ε
k
2

∂2WC

∂(εk2)2

∣∣∣∣∣∣∣∣∣
> 0

∣∣∣∣∣∣∣∣∣

∂2WC

∂(εk1)2
∂2WC

∂εk1∂ε
k
3

∂2WC

∂εk1∂ε
k
3

∂2WC

∂(εk3)2

∣∣∣∣∣∣∣∣∣
> 0

∣∣∣∣∣∣∣∣∣

∂2WC

∂(εk2)2
∂2WC

∂εk2∂ε
k
3

∂2WC

∂εk2∂ε
k
3

∂2WC

∂(εk3)2

∣∣∣∣∣∣∣∣∣
> 0

∣∣∣∣∣
∂2WC

∂(εk1)2

∣∣∣∣∣ > 0
∣∣∣∣∣
∂2WC

∂(εk2)2

∣∣∣∣∣ > 0
∣∣∣∣∣
∂2WC

∂(εk3)2

∣∣∣∣∣ > 0

(4.2)
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Inequality (4.1) implicates a system of six nonlinear inequalities (4.2) which allow us to draft
the region of material stability. Because the plastic deformation leads to permanent loss of the
element shape, so very important is the knowledge about material deformation due to plastic
flow. This type of phenomenon takes place if during the deformation process, the volume change
of an elementary piece of the material is unchanging.
On the basis of (A.15, see Appendix), the second order variation takes the form

δ2W V=const =
3∑

i=1

3∑

j=1

(
∂2WC

∂εki ∂ε
k
j

− 1
3

3∑

k=1

σk
3
√
A1A2A3

∂Ai

∂εkj

)
δεki δε

k
j

=
3∑

i=1

3∑

j=1

Bijδε
k
i δε

k
j

(4.3)

where A1, A2, A3 are given as in Appendix (A.3), and σk are expressed by using (2.5).
Hence, stability assumption (4.3) takes respectively the form
∣∣∣∣∣∣∣

B11 B12 B13
B21 B22 B23
B31 B32 B33

∣∣∣∣∣∣∣
> 0

∣∣∣∣∣
B11 B12
B21 B22

∣∣∣∣∣ > 0

∣∣∣∣∣
B11 B13
B31 B33

∣∣∣∣∣ > 0
∣∣∣∣∣
B22 B23
B32 B33

∣∣∣∣∣ > 0

|B11| > 0 |B22| > 0 |B33| > 0

(4.4)

In the case of a plane state of stress, so when σ3 = 0, εk3 must to be replaced by relation
(2.8).

5. Example

As an example of using theoretical investigations, aluminum in plain stress has been taken. The
experimental plots of material characteristics are presented in Figs. 3 and 4.

Fig. 3. Experimental relation between stress and strain (in a uniaxial tensile test) and its approximation
in the nonlinear range (red line)

However, the precision of approximation of the experimental characteristic between stress
and strain is not sufficient for very small (closed to zero) deformations, it is very accurate in the
range ε ∈ 〈0.0023; 0.0033〉, where there exists danger of the appearance of plastic flow. Because
in the analytical assessment of the limit surface the second order partial derivatives of the strain
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Fig. 4. Experimental plot of transversal deformation coefficient (relation between the ratio of
transversal to longitudinal deformation and longitudinal deformation) and its approximation (red line)

energy density function are very important, then much more important is the accuracy of the
approximation for ε ∈ 〈0.0023; 0.0033〉 than for ε ∈ 〈0; 0.0023〉.
Analytical approximations of the above characteristics (σ [MPa], ṽ(ε) [MPa], Ẽ(ε) [MPa])

can be written respectively as

σ = −11100000ε2 + 86700ε + 9 for ε ∈ 〈0; 0.0033〉

ṽ(ε) =





0.317 for ε ∈ 〈0; 0.0032〉
0.366
π
arctan

(
2601ε

ε− 0.0032
0.02 − ε

)
+ 0.317 for ε > 0.0032

(5.1)

Hence from (2.3)1 and (5.1), we have

Ẽ(ε) = −11100000ε + 86700 + 9
ε

for ε ∈ 〈0; 0.0033〉 (5.2)

The strain energy density function (WC [MJ/m3]) due to (2.5), (5.1) and (5.2) takes the
form

WC(εk1 , ε
k
2 , ε

k
3) =

1∫

0

3∑

i=1

σi(t)ε′i(t) dt =
1∫

0

3∑

i=1

σi(t)εki dt

=
a1(1 + c1)− 3a1c1
3(1 + c1)(1− 2c1)

3∑

i=1

(εki )
3 +

b1(1 + c1)− 3b1c1
2(1 + c1)(1− 2c1)

3∑

i=1

(εki )
2

+
a1c1

3(1 + c1)(1− 2c1)
3∑

i=1

(εki )
2
3∑

l=1

εkl +
b1c1

2(1 + c1)(1− 2c1)

(
3∑

i=1

εki

)2
+

1
1− 2c1

3∑

i=1

εki

(5.3)

where a1 = −11100000, b1 = 86700, c1 = 0.317.
If we would like to represent and plot in an easy way the strain energy density func-

tion for a plain state of stress, then we have to substitute (on the basis of relation (2.8))
εk3 = −[c/(1 − c)](εk1 + εk2) into relation (5.4). After transformations, we receive

WC(εk1 , ε
k
2) = −36815920[(εk1 )3 + (εk2)3] + 431343.3[(εk1 )2 + (εk2)2]

+ 117.94(εk1 + ε
k
2)− 331343284[(εk1 )2εk2 + εk1(εk2)2] + 7764179.1εk1εk2

(5.4)

for εk1 ∈ 〈0; 0.0033〉, εk2 ∈ 〈0; 0.0033〉.
If we apply relation (5.3) to stability assumptions (4.5) then we receive stability regions

shown in Fig. 6.
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Fig. 5. The strain energy density function

Fig. 6. Region of stability according to assumptions (4.5) in space of the deformation (a) and the
stress (b) components

The above plots are obtained from the major form of stability assumptions (formulated for
a three-axial state of stress), after substituting the relation εk3 = −[c(1 − c)](εk1 + εk2), which is
true in the case of plain stress.

6. Conclusions

• The strain energy density function is a sufficient tool in the description of mechanicals
properties of nonlinear material and necessary for stability analysis.

• Extraction of the volumetric part of energy is possible due to hydrostatic interpretation.
• The constant volume assumption plays an important role in formulation of stability con-
ditions due to plastic flow.

• The limit surfaces are convex (see. Figs. 6) and are comparable with the known limit
surfaces for linear-elastic materials.

A. Appendix

The material is in the stable state of equilibrium if every change of current deformation state
needs a work by external loads. So, if we take into account a very small fluctuation of the current
deformation state in three principal directions then relation (4.1) has to be satisfied.
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The plastic flow takes place in the case when an increment in volume equals zero, see (Wegner,
2000).
If l1, l2 and l3 are dimensions of an elementary volume piece of the material in an unloaded

state then the ratio of volume change to its virgin state can be written as

θ =
∆V

V0
=

3∏
i=1
(li +∆li)−

3∏
i=1

li

3∏
i=1

li

=
3∏

i=1

(1 + εi)− 1 (A.1)

and hence

δθ = δ

[
3∏

i=1

(1 + εi)

]
=
3∑

i=1

Aiδεi (A.2)

where

A1 = (1 + ε2)(1 + ε3) A2 = (1 + ε1)(1 + ε3) A3 = (1 + ε1)(1 + ε2) (A.3)

If we take into considerations purely volumetric deformations then εi = εV , which by substitution
into (A.1) implies

θ = (1 + εV )3 − 1 ⇒ δθ = 3(1 + εV )2δεV ⇒ δεV =
δθ

3(1 + εV )2
(A.4)

The first order variation of the strain energy density function according to plastic flow can be
divided as follows

δW (V =const ) = σ1δε
(V =const )
1 + σ2δε

(V =const )
2 + σ3δε

(V =const )
3

δε
(V =const )
i = δεi − δεV

(A.5)

In the case of the limit surface according to plastic flow, we do not observe a change in the
volume, so

δW V=const = δWC − δWCV = δW s (A.6)

where on the basis of (3.8), we have

δWCV =
3∑

i=1

σiδε
V (A.7)

Hence, taking into account (A.4)

δ2WCV =
1
3

3∑

i=1

σi
[ δ2θ

(1 + εV )2
− 2δθδε

V

(1 + εV )3
]

(A.8)

In the absence of volumetric deformations

δθ = δεV = 0 (A.9)

we have

δ2WCV =
1
3

3∑

i=1

σi
δ2θ

(1 + εV )2
(A.10)
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and after using (A.6)

δ2W V=const = δ2WC − δ2WCV =
3∑

i=1

3∑

j=1

∂2WC

∂εi∂εj
δεiδεj −

1
3

3∑

i=1

σi
δ2θ

(1 + εV )2
(A.11)

which on the basis of (A.2) gives

δ2W V=const =
3∑

i=1

3∑

j=1

(
∂2WC

∂εi∂εj
− 1
3

3∑

k=1

σk
(1 + εV )2

∂Ai
∂εj

)
δεiδεj (A.12)

On the grounds of (A.4)

1 + θ = (1 + εV )3 ⇒ 1 + εV = 3
√
1 + θ ⇒ 1 + εV = 3

√√√√
3∏

i=1

(1 + εi)

⇒ (1 + εV )2 = 3
√
A1A2A3

(A.13)

The above relation enables us to write (A.12 in an equivalent form

δ2W V=const =
3∑

i=1

3∑

j=1

(
∂2WC

∂εi∂εj
− 1
3

3∑

k=1

σk
3
√
A1A2A3

∂Ai
∂εj

)
δεiδεj (A.14)
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This study addresses the task of predicting the transformation plasticity induced during pha-
se transformation of the 16MND5 carbon steel from austenite to bainite under low externally
applied stress using a semi-theoretical model based on the Greenwood-Johnson mechanism.
Both models proposed by Leblond et al. (1989) and Taleb and Sidoroff (2003) sufficiently
describe the evolution of the TRansformation Induced Plasticity (TRIP) during continuous
cooling of the austenitic phase. Nevertheless, TRIP values predicted by these models unde-
restimate measured data through the first half of the transformation and overestimate them
through the second half. So, we propose in this paper a method to improve Taleb’s model in
order to remove discrepancies between theoretical and experimental results throughout the
whole transformation and obtain a better description of experimental data.

Keywords: bainitic transformation, transformation induced plasticity (TRIP), traction
loading

1. Introduction

In some thermo-mechanical manufacturing processes, especially heat treatment and welding,
phase transformations can occur and can affect significantly the mechanical behavior and struc-
tural properties of quenched or welded steel parts. Indeed, when metallurgical transformations
occur under small external stress lower than the yield stress of the weaker phase (austenite), a
supplementary plastic strain is observed (Leblond et al., 1986, 1989; Fischer et al., 1998; Taleb
et al., 2001; Taleb and Sidoroff, 2003; Meftah et al., 2007; Hoang et al., 2008; Moumni et al.,
2011). This plastic strain increment is called TRansformation Induced Plasticity (TRIP) and
has a significant effect on the distribution of the residual stresses, distortions and mechanical
properties (Leblond et al., 1986, 1989; Taleb et al., 2004; Dan et al., 2008; Tahimi et al., 2012;
Deng and Murakawa, 2013; Song et al., 2014). In the literature, there are two mechanisms pro-
posed to explain the origin of the TRIP: Magee’s mechanism which is proposed for displacive
transformations and Greenwood-Johnson’s mechanism which is well suitable for the diffusio-
nal transformations (Meftah et al., 2007; Hoang et al., 2008). According to Magee, TRIP is
due to privileged orientation of martensitic plates during transformation in presence of exter-
nal stress. While Greenwood and Johnson supposed that accommodation between differences in
compactness and dilation coefficients of the parent and the product phase leads to apparition
of local dislocations in the vicinity of the interface between phases. When deviatoric stress is
applied, dislocations are oriented in the direction of the applied stress which induces transforma-
tion plasticity at the macroscopic scale. However, it was revealed through experimental analysis
that Magee’s mechanism was not dominant for low applied stresses; hence, it was admitted
that Magee’s mechanism might not be considered for carbon steels; however it is normally de-
emed for shape memory alloys (Moumni et al., 2011). In addition, it was illustrated that only
Greenwood-Johnson’s mechanism was considered when modeling TRIP for both diffusional and
shear transformations (Taleb et al., 2001).
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It is well known that much works have been done in the last thirty years for better modeling
of the evolution of TRIP during phase transformations of steel alloys under different types of
loadings. So this additional strain increment originating from phase transformation is accounted
in the development of constitutive behavior of a multiphasic material in order to perfectly
simulate the material response in continuum mechanical computation. The approaches describing
the evolution of the TRIP during phase transformations can be classified into phenomenological
models (Mohr and Jacquemin, 2008), micromechanics-based models (Leblond et al., 1989; Taleb
and Sidoroff, 2003; Sun et al., 2009) and discrete dislocation-transformation model (Shi et al.,
2010).
In this paper, we focus only on the micromechanics-based model proposed by Leblond et al.

(1989) and improved later by Taleb and Sidoroff (2003). This theoretical model was established
by considering Greenwood-Johnson’s mechanism where an elementary volume of austenite ha-
ving spherical shape in which a spherical core of α-phase was growing. The homogeneity of strain
and stress fields in the transforming elementary volume was assumed. So, micromechanical ana-
lysis permits establishing the theoretical model describing TRIP during phase transformation.
The purpose of this work is to present a summarization of the hypothesis and theoretical

development carried out by the authors to obtain their TRIP models, appraise their simulation
results, and improve some assumptions resulting then in a better model which predicts effectually
the evolution of the TRIP during phase transformation. Simulations obtained by the new model
will be compared with experimental results provided in the literature in order to investigate the
efficiency of our modeling.

2. Basic framework

We are interested in the theoretical model developed by Leblond et al. (1989) which is one of
the most widely used for practical applications and which is implemented in the finite element
codes such as SYSWELD and ASTER. This model was improved later by Taleb and Sidoroff
(2003).

Fig. 1. Geometry considered by Leblond to illustrate phase transformation of austenitic nuclei

Leblond’s model is obtained from a micromechanical analysis of stress and strain fields which
evolve in an austenitic spherical nuclei occurring during continuous cooling. The growth of a
spherical product phase core is carried out in the center of austenitic spherical nuclei as shown in
Fig. 1. Rγ and Rα are radii of parent and product phase, respectively. One should note that Rα is
nil before the beginning of transformation and it grows progressively during transformation until
it reaches Rγ . δRα is the radius increasing of the spherical phase α during a time increment δt.
Because of the positive volume change induced by the transformation, points located originally
at Rα + δRα come to a new location Rα + δRα + δu. As revealed by Leblond, the macroscopic
plastic strain rate generated during phase transformation under external loading depends only
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on the shape variation of each phase. Indeed, the author assumed through its hypothesis 1 that
the effect of local anisotropy due to a small difference between elastic parameters of each phase
is negligible with respect to the stresses and deformations due to volume differences between
phases α and γ. So, the general expression for the plastic strain rate is given by the following
equation

Ėp = (1− z)〈ε̇pγ〉Vγ + z〈ε̇pα〉Vα + ż〈∆εpγ→α〉F (2.1)

where z is the volume fraction of the product phase, ε̇pγ and ε̇
p
α are the microscopic plastic

strain rate tensors in phases γ and α, respectively, ∆εpγ→α is the deviatoric component of the
transformation strain tensor and 〈∆εpγ→α〉F expresses the average value of ∆εpγ→α along the
transformation front F .
The author assumed that the average of deviatoric transformation strain tensor on the front F

is negligible since there is no favorite orientation. Subsequently, the last term in equation (2.1)
is omitted. The second hypothesis proposed by the author is that for small or moderately high
applied stresses, the austenitic phase is entirely plastic, but the α-phase remains elastic or its
plastic strain rate remains always much smaller than that of the γ-phase. Afterward, the second
term in the right-hand side of equation (2.1) disappears, and this later is reduced to

Ėp = (1− z)〈ε̇pγ〉Vγ (2.2)

Given that the plastic strain in the parent phase is the sum of the classical plastic term due to
variation of the loading conditions and transformation induced plastic term corresponding to
the evolution of new phase fraction z, then

Ėp = Ėcp + Ėtp (2.3)

Ėcp is the classical plastic term and the transformation induced plastic term is written as follows

Ėtp = (1− z)
〈δεpγ
δz

〉

Vγ
ż (2.4)

The third hypothesis used by the author is that material obeys the Von Mises criterion and
possesses an ideal-plastic flow. By assuming a uniform austenitic yield stress σyγ , equation (2.4)
can be transformed into

Ėtp =
3(1− z)
2σyγ

〈δεeqγ
δz

sγ
〉

Vγ
ż (2.5)

where εeqγ is the von Mises equivalent microscopic plastic strain in the parent phase (phase γ),
σyγ and sγ are respectively the yield stress and the deviatoric tensor of the microscopic stress in
this phase.
At this stage, Leblond assumed through hypothesis 4 and 5 that correlation between δεeqγ /δz

and sγ can be neglected and the average Sγ of sγ within the volume Vγ is equal to the overall
average S of s in the whole nuclei. Then

Ėtp =
3(1− z)
2σyγ

〈δεeqγ
δz

〉

Vγ
Sż (2.6)

Using a spherical coordinate system and considering a purely radial displacement, the solution of
the mechanical problem is performed using the dynamic equilibrium equation in the continuous
mediums. Finally, it is found that

δεeqγ
δz
=
2∆εαγR3γ

r3
(2.7)
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So

Ėtp = −3∆εαγ
σyγ
ln(z)żS (2.8)

where ∆εαγ is the volume change that corresponds to phase transformation.
Because equation (2.8) includes a singularity at the beginning of the transformation (z = 0),

the author proposed to cut off the TRIP below z = 0.03 leading then to the following model

Ėtp =





0 if z ¬ 0.03

−3
2
k ln(z)żS if z > 0.03

(2.9)

Fig. 2. Geometry considered by Taleb and Sidoroff (2003): γ-phase is composed by an outer elastic
layer Le around an inner plastic layer Lp

Taleb and Sidoroff (2003) developed their model by following the micromechanical scheme
assumed by Leblond to formulate its transformation plasticity kinetic model. They extended
the Leblond model by keeping all hypotheses except hypothesis 2. Afterwards, the behavior of
the austenitic phase has been considered elastoplastic with ideal plasticity. Indeed, according to
Taleb and Sidoroff (2003), the product phase remains elastic while the parent phase consists of
an outer elastic layer Le around an inner plastic layer Lp with an elastic-plastic boundary at
r = ξ where Rα ¬ ξ ¬ Rγ as shown in Fig. 2. The boundary between these layers increases
progressively during transformation until ξ becomes equal to Rγ . At this instant, the remainder
of the parent phase turns into completely plastic. By executing the solution of the mechanical
problem using the dynamic equilibrium equation in the continuous medium, Taleb and Sidoroff
(2003) found that

ξ = 3

√
2∆εγα
σyγ

9Kµ
4µ+ 3K

Rα (2.10)

where K and µ are respectively the bulk and shear elastic moduli.
Finally, Taleb’s model assuming elastoplastic parent phase and extending Leblond’s one to

low values of z; is the following

Ėtp =





−2∆εγα
σy1
ln(zℓ)ż

3
2
S if z ¬ zℓ

−2∆εγα
σy1
ln(z)ż 32S if z > zℓ

(2.11)

with

zℓ =
σyγ
2∆εαγ

4µ+ 3K
9Kµ
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Experimental tests on bainitic transformation of the 16MND5 steel under small applied stres-
ses were performed and their results were given by Taleb and Sidoroff (2003). These tests allow
comparison between simulation and experiment results. Indeed, theoretical and experimental
curves are presented in Fig. 3 providing the evolution of the TRIP against the product phase
fraction. So, a coincidence between Taleb’s and Leblond’s models is observed when the threshold
of Leblond’s model is equal to 0.03. Theoretical prediction given by Taleb’s model that agrees
with Leblond’s forecast (Leblond 0.03) illustrates slow transformation plasticity kinetic during
the first half of the transformation with respect to the experimental result while the latter seems
overestimated at the end of the transformation. Therefore, the aim of the following Section is to
revise some assumptions made by the authors; that lead to formulate enhanced transformation
plasticity kinetics ensuring then a better congruence with the experimental curve through all
the transformation.

Fig. 3. Transformation plasticity evolution during bainitic transformation in the 16MND5 steel under
applied stress (24MPa) versus volume fraction of the formed bainite

3. Numerical procedure

Our new model will be developed basing on the micromechanical analysis presented above after
reviewing some assumptions made by the authors. Indeed, some hypothesis will be more discus-
sed and improved leading thus to a more refined model that better agrees with the experimental
results.
Hypothesis 4 suggested by the author which assumes that

〈δεeqγ
δz

sγ
〉

Vγ
=
〈δεeqγ
δz

〉

Vγ
〈sγ〉Vγ

is mathematically inaccurate because the integral of the product of two functions is different to
the product of their integrals. So, we suppose that the previous equation can be calibrated by
introducing a function m(z) as follows

〈δεeqγ
δz

sγ
〉

Vγ
= m(z)

〈δεeqγ
δz

〉

Vγ
〈sγ〉Vγ (3.1)

In order to have an idea about the evolution of the function m(z), let us consider Fig. 4a
which is available in Leblond et al. (1989) that points out the simulation of 〈(δεeqγ /δz)sγ〉Vγ and
〈δεeqγ /δz〉Vγ 〈sγ〉Vγ versus z. Basing on this result, we remark that disagreement between the two
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curves is moderately small; thus we admit that the function m(z) is not varying much in the
interval [0, 1]; so we can substitute equation (3.1) by

〈δεeqγ
δz

sγ
〉

Vγ
≈ 〈m(z)〉[0,1]

〈δεeqγ
δz

〉

Vγ
〈sγ〉Vγ (3.2)

Then hypothesis 4 is replaced by hypothesis 4’, thinking that
〈δεeqγ
δz

sγ
〉

Vγ
= m

〈δεeqγ
δz

〉

Vγ
〈sγ〉Vγ (3.3)

with m is the average of the function m(z) in the interval [0, 1].

Fig. 4. Verification of: (a) hypothesis 4 and (b) hypothesis 5

Hypothesis 5 assuming that the average stress deviator in the parent phase is almost equal
to the overall average stress deviator (Sγ = S with Sγ = 〈sγ〉Vγ and S = 〈s〉V ) is not verified.
Indeed, Fig. 4b which is taken from Leblond et al. (1989) illustrates the simulation of Sγ and S
versus the product phase fraction z in the uniaxial case, and an important discrepancy between
them has been shown. More precisely, the curves in this figure prove that Sγ/S is a decreasing
function versus z. Afterwards, we propose that the function Sγ/S has a style of 1− zn defining
then hypothesis 5’. The new relationship between Sγ and S is the following

Sγ = (1− zn)S (3.4)

with n is a constant.
Replacing hypotheses 4 and 5 by hypotheses 4’ and 5’ respectively, one can obtain
〈δεeqγ
δz

sγ
〉

Vγ
= m(1− zn)

〈δεeqγ
δz

〉

Vγ
S = χ(z)

〈δεeqγ
δz

〉

Vγ
S (3.5)

with

χ(z) = m(1− zn) (3.6)

The function χ depends on two parameters m and n and should accomplish more coincidence
between quantities 〈(δεeqγ /δz)sγ〉Vγ and 〈δεeqγ /δz〉VγS. Afterwards, the new model of transforma-
tion plasticity evolution is defined as follows

Ėtp(z) = χ(z)ψ(z)ż (3.7)

with

ψ(z) =





−2∆εαγ
σyγ
ln(zℓ)

3
2
S if z ¬ zℓ

−2∆εαγ
σyγ
ln(z)
3
2
S if z > zℓ

(3.8)
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with

zℓ =
σyγ
2∆εαγ

4µ+ 3K
9Kµ

According to the new model, Eq. (3.7), the transformation plasticity increment that corresponds
to a product phase increment produced during a time increment is the following

∆Etp(zj) = χ(zj)ψ(zj)(∆z)j = χ(zj)∆TPT (zj) (3.9)

where zj is obtained until j-th time increment by accounting from the beginning of bainitic
transformation zj =

∑i=j
i=1(∆z)i, (∆z)j is the increment of the product phase formed during the

j-th time increment. ∆TPT (zj) represents the transformation plasticity increment generated
during the j-th time increment according to Taleb’s model. Indeed, the function χ(zj) is defined
as a quotient obtained by dividing ∆TPExp(zj) by ∆TPT (zj) for a non nil value of zj

χ(zj) =
∆TPExp(zj)
∆TPT (zj)

zj 6= 0 (3.10)

where ∆TPExp(zj) designates the experimental value of the plasticity transformation incre-
ment developed during the j-th time increment. ∆TPExp(zj) and ∆TPT (zj) are determined
graphically from curves illustrated in Fig. 3. χ(1) is directly equal to zero from equation (3.6).
Subsequently, the curve characterizing the evolution of function χ against z is illustrated in
Fig. 5. One can remark then that the function χ which depends on m and n parameters is

Fig. 5. Evolution of the function χ versus z

decreasing versus z. The parameters m and n can be determined by evaluating the derivative of
the function χ for two different values z1 and z2 as follows

χ′(z1) = −mnzn−11
χ′(z2) = −mnzn−12

}
⇒



n =

ln χ
′(z1)
χ′(z2)

ln z1z2
+ 1 m ≈ 1

2

( χ(z1)
1− zn1

+
χ(z2)
1− zn2

)
(3.11)

The estimation of the function χ′ at a given value z is accomplished by applying the following
formulation

χ′(z) =
χ(z + ~)− χ(z − ~)

2~
(3.12)

with ~ being a parameter of too small value (it is chosen equal to 0.02 in our case). χ(z + ~)
and χ(z − ~) are determined graphically from Fig. 5. It is found that χ′(0.2) = −1.98 and
χ′(0.7) = −0.96. So

n = 0.405 m = 1.93 (3.13)
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Finally, the function χ is determined

χ(z) = 1.93(1 − z0.405) (3.14)

According to equations (3.7) and (3.8), the new model for TRIP kinetics, which is formulated
to get an improved agreement with the experimental result, is defined by

Ėtp =





−2∆εαγ
σyγ

χ(z) ln(zℓ)ż
3
2
S if z ¬ zℓ

−2∆εαγ
σyγ

χ(z) ln(z)ż
3
2
S if z > zℓ

(3.15)

with
χ(z) = 1.93(1 − z0.405) zℓ =

σyγ
2∆εαγ

4µ+ 3K
9Kµ

Now, the new model will be investigated through comparison between numerical simulations
and measured TRIP generated during bainitic transformation of 16MND5 steel specimens.

4. Experimental validation

In this Section, free dilatometry and TRIP tests carried out by Coret et al. (2002) are deemed.
Specimens were 16MND5 steel tubular cylinders having inner and outer diameters equal to
22.4mm and 23.4mm, respectively. The feeble thickness of the specimen enables obtaining low a
radial thermal gradient and, subsequently, homogenous stress and strains fields. Specimens were
austenitized by induction current at 900◦C for 30 s and then cooled by injecting argon inside.
The heating and cooling rate were 10◦C/s and −3◦C/s, respectively. We consider in this paper
three experimental results of dilatometric tests provided by Coret et al. (2002). The first was
the free dilatometric test while the second and the third were the TRIP dilatometric tests under
uniaxial traction loading equal to 30MPa and 60MPa, respectively. Traction loading was applied
during the cooling stage when temperature reached 600◦C (somewhat before the beginning of
bainitic transformation at 560◦C) and released at the end of the test. In this study, dilatation
curves obtained by these tests were adjusted in such a way that there was no difference between
them before reaching temperature 600◦C. In addition, only difference due to elastic strains was
considered for temperature between 600◦C and 560◦C. This procedure takes away experimental
uncertainty and allows getting reliable results. Dilatometric curves are plotted together in Fig. 6
for the temperature range 700◦C-390◦C which includes bainitic transformation during cooling.
The difference between TRIP curves and free dilatometric curve is due to elastic strain caused by
the external loading and essentially to TRIP generated by phase transformation under external
stress.
The total strain occurred during a TRIP test is supposed to be the sum of thermo-

-metallurgical strain, elastic strain due to external loading and plasticity transformation strain
generated through phase transformation (Taleb et al., 2001; Coret et al., 2002; Dutta et al.,
2013). Then

εpt(T ) = εtot(T )− εthm(T )− εe(T ) (4.1)

with εtot(T ) being the total strain issued from TRIP curve. εthm(T ) corresponds to strain obta-
ined from the free dilatometric curve and εe(T ) is the elastic strain. It is given by

εe(T ) =
σ

E(T )
(4.2)

where σ is the external applied stress and E(T ) is the thermal dependent Young modulus.
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Fig. 6. Dilatometric curves obtained during bainitic transformation under different tension loadings

The evolution of TRIP against the temperature is estimated for two TRIP tests assuming
that there is no TRIP evolution before starting of the bainitic transformation. For the 16MND5
steel, when the austenite transforms under cooling rate equal to −3◦C/s, the obtained phase
proportions are respectively 87% of bainite and 13% of martensite (Moumni et al., 2011). Sub-
sequently, we will not take into account of the TRIP occurred below 390◦C when estimating the
evolution of TRIP against temperature because we consider in this study only TRIP occurred
through bainitic transformation. Experimental results for the evolution of TRIP according to
temperature during cooling are illustrated in Table 1. Now, these experimental results will be
used to evaluate numerical simulations performed in the following Section.

Table 1. TRIP obtained from dilatometric tests

Temperature [◦C] 560 540 520 500 480 460 440 420 390
εtp [%], σ = 30MPa 0 0.052 0.118 0.152 0.169 0.182 0.188 0.192 0.194
εtp [%], σ = 60MPa 0 0.099 0.212 0.290 0.335 0.359 0.378 0.390 0.402

5. Simulations and discussions

The simulation of the quenching process is performed through calculation of temperature evo-
lution in the specimen during treatment. It is coupled with calculation of metallurgical phases
distributions followed by the solution of the mechanical problem by the finite element method.
The ABAQUS software linked to many subroutines is used to simulate heat treatment phase
transformation histories and strain fields as mentioned by Yaakoubi et al. (2013b). The thermal
cycle recorded by Coret et al. (2002) is used as the boundary condition to carry out the simu-
lation (Fig. 7). Phase transformation kinetics is modeled by using the JMAK formalism (Barbe
et al., 2008; Yaakoubi et al., 2013a). Thermo-physical properties of the material are available
in Moumni et al. (2011). The analysis is realized two times for each loading case by using in
the first time Taleb’s model to predict TRIP evolution and using the new model in the second
time. It is found that the maximum value of bainite proportion obtained by simulation is equal
to 0.883, which is very close to value (0.87) obtained by Moumni et al. (2011).
The comparison between numerical and measured TRIP (εtp = f(T )) appears in Fig. 8. It

is evident that the transformation plasticity predicted by the new model is considerably better
than Taleb’s predictions for the loading case of 30MPa. However, for the loading case of 60MPa,
new predictions are not adequate because they show overestimations through the first half of the
transformation and underestimations through the second half. We observe that as the tension
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Fig. 7. Thermal cycle used as the boundary condition to carry out the simulation

Fig. 8. Transformation plasticity evolution versus temperature during transformation plasticity tests
under (a) 30MPa, (b) 60MPa. Comparison between experimental results and predictions of Taleb’s and

the new model

load becomes larger, the discrepancies of the new model become increasingly significant. This
fact is explained by that the function χ which appears in the new model is identified for the
loading case of 24MPa. So, we think that this new model can be refined by making parameters
m and n (those define the function χ) dependent on the applied stress σ. Indeed, analysis of the
function χ shows that the increasing of the parameter m increases the predictions of TRIP at
the beginning of transformation, and that the increasing of the parameter n increases them at
the end of the transformation and vice versa. The fitting of numerical simulations conducted to
define parameters m and n versus σ is as follows

m =
10√
σ + 3

n =
σ

60
(5.1)

Subsequently, the function χ becomes

χ(z, σ) =
10√
σ + 3

(1− z) σ60 (5.2)

Then, the final new model that describes the evolution of TRIP during bainitic transformation
of the 16MND5 steel under low applied stress is

Ėtp =





−2∆εαγ
σyγ

χ(z, σ) ln(zℓ)ż
3
2
S if z ¬ zℓ

−2∆εαγ
σyγ

χ(z, σ) ln(z)ż
3
2
S if z > zℓ

(5.3)
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with

χ(z, σ) =
10√
σ + 3

(1− z) σ60 zℓ =
σyγ
2∆εαγ

4µ+ 3K
9Kµ

The results of the new refined model and experimental results are illustrated by Fig. 9.
It has been found that new predictions achieved by the refined model, Eq. (4.5), are more
convenient with experiments than those obtained from the preliminary version of this model for
all considerate cases of the applied stress. Indeed, the refined new model is capable to capture
not only the fast transformation plasticity observed experimentally at the beginning of the
transformation but also the deceleration of this plasticity rate during the second half of the
transformation; a profit which cannot be accomplished by the previous models.

Fig. 9. Transformation plasticity evolution versus temperature during transformation plasticity tests
under (a) 30MPa, (b) 60MPa. Comparison between experimental results and predictions of Taleb’s and

new refined models

6. Conclusion

In this study, a new (semi-theoretical) model to predict TRIP induced during bainitic trans-
formation under an external tension loading is developed by upgrading the existing models in
the literature. A way to improve these models would be the revising some simplifying assump-
tions suggested by authors during analysis of the micromechanical approach. Subsequently, new
substitute assumptions are reasonably suggested leading then to multiplying Taleb’s formula
by an appropriate function that is numerically established. The new semi-theoretical model for
predicting TRIP produced during bainitic transformation under low tension stress is finally
established.
The investigation of the accuracy of the new model is performed in the light of comparison

between numerical simulations and experimental results provided in the literature. It has been
found that predictions obtained by the refined new model are significantly better than Taleb’s
forecasts. Furthermore, this new model leads not only to elevate TRIP values at the beginning
of the transformation but also to lower them during the second half of the transformation; a
result that is experimentally perceived and cannot be described by prior models. Further studies
are needed in order to extend this new model for the case of high applied stress and other kinds
of transformations.
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The subject of this paper is to study the thermoelastic behavior of a functionally graded
semi-infinite medium heated uniformly by a laser beam having temporally Gaussian distri-
bution. The surface of the medium is taken as traction free. The general solution is obtained
in the Laplace transform domain. The inverse of the Laplace transform is computed numeri-
cally using the Riemann-sum approximation method. The numerical results for temperature,
displacement and stress are obtained and presented graphically for the generalized theory
of thermo-elasticity with one relaxation time.
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1. Introduction

The study of the problem of thermoelasticity has been taken up by several authors. Biot (1956)
developed the coupled theory of thermoelasticity to eliminate the paradox inherent in the clas-
sical uncoupled theory according to which elastic changes have no effect on temperature. The
main drawback of Biot’s equations was that they were based on Fourier’s low, which predicted
an infinite speed of propagation of heat.
Lord and Shulman (1967) derived equations of dynamic thermoelasticity based on modified

Fourier’s law, and these equations are usually regarded as the basis of generalized thermoelasti-
city and called the generalized theory of thermoelasticity with one relaxation time. Green and
Lindsay (1972) developed another generalized theory of thermoelasticity. This theory modifies
both the energy equation and the Duhamel-Neumann relation. It admits two relaxation times.
The theory of thermoelasticity without energy dissipation is another generalized theory and was
formulated by Green and Naghdi (1993). It includes the thermal displacement gradient among
its independent constitutive variables, and differs from the previous theories in that it does
not accommodate dissipation of thermal energy. Ozisik and Tzou (1994), and Tzou (1995a,b)
developed a new model called the dual phase-lag model for the heat transport mechanism in
which Fourier’s law is replaced by an approximation to the modification of Fourier’s law with
two different time translations for the heat flux and the temperature gradient.
A large amount of work has been devoted to solving thermoelasticity problems with consi-

deration of the coupling effect between temperature and strain rate. Stress waves in a half-space
induced by variations of surface strain, temperature or stress were studied by Boley and Tolins
(1962) and Chandrasekhariaiah and Srinath (1998). Mozina and Dovc (1994) attempted to use
the Laplace transform to solve the thermoelastic stress wave induced by volumetric heating.
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Due to the difficulty in finding analytical Green’s functions, only a solution for locations on the
surface was obtained.
Researches have also been examining thermoelastic problems with consideration of the non-

-Fourier effect, but without considering the coupling effect between temperature and strain rate.
Kao (1976) was the first to investigate the non-Fourier effect and the thermoelastic wave in a
half-space.
When a solid is illuminated with a laser pulse, absorption of the pulse leads to a localized

temperature increase which in turn causes thermal expansion and generates a thermoelastic
wave in the solid (Wang and Xu, 2001). McDonald (1990) studied the importance of thermal
diffusion on the generation of thermoelastic waves in metals induced by surface Gaussian laser
beam heating. Engelhard and Bertrand (1977) studied the influence of optical penetration depth
and the laser pulse duration on longitudinal acoustic waves induced by volumetric absorption
of a laser beam. Henain et al. (2014) studied the thermoelastic interaction caused by heating a
homogeneous and isotropic thermoelastic semi-infinite body induced by a Gaussian laser pulse.
Allam et al. (2014) studied thermoelastic waves induced by pulsed laser in a non-homogeneous
microscal beam.
The purpose of the present work is to study the thermoelastic interaction caused by heating

a non-homogeneous and isotropic thermoelastic semi-infinite body induced by a laser pulse
by employing the generalized theory of thermoelasticity. The problem is solved by using La-
place transform techniques. The inverse Laplace transform is computed numerically using the
Riemann-sum approximation method. Numerical solutions for spatial temperature, displacement
and stress are obtained using the generalized theory of thermoelasticity with one relaxation time.
At the end of this work, we present the computed results obtained from the theoretical relations
applied on a (Cu) target.

2. Mathematical modeling and basic equations

Consider a non-homogeneous anisotropic thermally conducting elastic solid at a uniform tem-
perature T0. The governing equations for linear generalized thermoelastic media, in the absence
of incremental body forces, and heat source are discussed below:
• The general model of heat conduction equation corresponding to five models of thermo-
elasticity takes the form (Allam et al., 2014)

(
1 + λ2k

∂

∂t

)
(Kijθj),i =

(
λ3k + λ4k

∂

∂t
+ λ5k

∂2

∂t2

)(
ρCE

∂θ

∂t
+ T0βij

∂um,m
∂t

)
(2.1)

• The constitutive equations for an anisotropic medium are given by

σij = Cijmnεmn − βijδij
(
1 + λ1k

∂

∂t

)
θ

i, j = 1, 2, 3
k = 1, 2, . . . , 5

(2.2)

The parameters λik, are given by

λik =




0 0 τ1 0 0
0 0 0 0 τθ
1 1 1 0 1
0 τ0 τ0 1 τq
0 0 0 0 1

2τ
2
q




which may be called the relaxation time matrix, or given by the relations

λ1k = τ1δ3k λ2k = τθδ5k λ3k = 1− δ4k

λ4k = δ4k + τ0(δ2k + δ3k) + τqδ5k λ5k =
1
2
τ2q δ5k
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• The strain-displacement relations are given by Cauchy’s relations

εij =
1
2
(ui,j + uj,i) (2.3)

• The equations of motion are

Cijmnum,jn − βij
(
1 + λ1k

∂

∂t

)
θ,j = ρüi (2.4)

where Cijmn are isothermal elastic constants, ui are the displacement components,
θ = T−T0 is the temperature increment, and T0 is the environmental temperature assumed
to be such that |θ/T0| ≪ 1.

In the above formulas, Kij is the thermal conductivity tensor, CE – specific heat at a constant
strain, τ0, τ1 are the 1st and 2nd relaxation times, τq is the phase-lag of the heat flux, τθ is the
phase-lag of the temperature gradient 0 ¬ τθ < τq and ρ is the mass density. The dummy index
implies summation. The dot and comma notations denote differentiation with respect to time
and space, respectively.
Equations (2.1)-(2.4) describe the coupled dynamical thermoelasticity theory, generalized

thermoelasticity theory proposed by Lord and Shulman, generalized thermo-elasticity theory
with two relaxation times developed by Green and Lindsay, Green and Naghdi theory without
energy dissipation and dual phase-lag model for different sets of values of the parameters λik.
In equations (2.1)-(2.4):

1) if we put k = 1, then they reduce to equations of the classical theory of thermoelasticity
(CTE),

2) when k = 2, then they reduce to equations of the generalized theory with one relaxation
time (LS),

3) putting k = 3, then they reduce to equations of the generalized theory with two relaxation
time (GL),

4) when k = 4 and K = K∗ (K∗ is a material constant characteristic of the Green and
Naghdi theory), then they reduce to equations of the generalized theory without energy
dissipation (GN).

5) if k = 5, then they reduce to equations of the generalized theory with dual-phase-lags
(DPL).

Consider a thermoelastic, non-homogeneous isotropic semi-infinite medium occupying the
region (z  0) and initially at uniform temperature T0. The surface of the target (z = 0) is uni-
formly heated by a pulsed laser beam and assumed to be traction free. The Cartesian coordinates
(x, y, z) are considered in the solution with z-axis pointing vertically into the medium.
The generalized equation of heat conduction (2.1) takes the form

(
1 + λ2k

∂

∂t

)
(∇K · ∇θ +K∇2θ) =

(
λ3k + λ4k

∂

∂t
+ λ5k

∂2

∂t2

) ∂
∂t
(ρCEθ + γT0e) (2.5)

where γ = Eαt/(1 − 2ν), E is Young’s modulus, αt is the thermal expansion coefficient, ν is
Poisson’s ratio, e is the relative volume dilatation and ∇2 is the Laplace operator.
The equations of motion in the case of body free forces (2.4) reduces to

∂σzz
∂z
= ρ

∂2w(z, t)
∂t2

(2.6)

w(z, t) is the only component of the displacement vector.
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The strain components (2.3) become

ezz =
∂w

∂z
exx = eyy = exy = exz = eyz = 0 (2.7)

The volume dilatation e and Laplace operator are thus given by

e = exx + eyy + ezz =
∂w

∂z
∇2 = ∂2

∂z2
(2.8)

Using (2.7) and (2.2), the stress components are

σzz =
E

1− 2ν
[1− ν
1 + ν

∂w

∂z
−
(
1 + λ1k

∂

∂t

)
αtθ

]

σxx = σyy =
E

1− 2ν
( ν

1 + ν
∂w

∂z
−
(
1 + λ1k

∂

∂t

)
αtθ

] (2.9)

The boundary conditions at z = 0

−
(
1 + λ2k

∂

∂t

)
K∇θ =

(
λ3k + λ4k

∂

∂t
+ λ5k

∂2

∂t2

)
q

σzz = 0
(2.10)

where q is the laser radiation propagating in the z direction, given by q = A0q0f(t), with A0 the
coefficient of heat absorption, q0 intensity of the laser beam and f(t) temporal distribution of
the laser radiation.
We use, sience the material is consiered inhomogeneous

{E(z),K(z), ρ(z)} = {E0,K0, ρ0}F (z)

where E0, K0 and ρ0 are assumed to be constants.
Thus, the stress components are in form

σzz =
E0F (z)
1− 2ν

[1− ν
1 + ν

∂w

∂z
−
(
1 + λ1k

∂

∂t

)
αtθ

]

σxx = σyy =
E0F (z)
1− 2ν

[ ν

1 + ν
∂w

∂z
−
(
1 + λ1k

∂

∂t

)
αtθ

] (2.11)

3. Non-dimensionalization

The governing equations takes a more convenient form by using the following non-dimensional
variables (Allam et al., 2014)

(z′, w′) =
(z,w)
h

c0 =

√
E0
ρ0

θ′ =
θ

T0

σ′z =
σz
E0

t′ =
c0
h
t τ ′i =

c0
h
τi i = 0, 1, q, θ, p

For simplicity, we drop the dashes of all variables and parameters.
The equation of heat conduction (2.5) is in the form

(
1 + λ2k

∂

∂t

)( ∂2

∂z2
+ Φ(z)

∂

∂z

)
θ =

(
λ3k + λ4k

∂

∂t
+ λ5k

∂2

∂t2

) ∂
∂t

(
c1θ + c2

∂w

∂z

)
(3.1)
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Equation of motion (2.6) reduces to

c3
( ∂2

∂z2
+ Φ(z)

∂

∂z
− 1
c3

∂2

∂t2

)
w − c4

(
1 + λ1k

∂

∂t

)( ∂
∂z
+ Φ(z)

)
θ = 0 (3.2)

where

c1 =
hρ0CEc0
K0

c2 =
αthCEc0
K0(1− 2ν)

c3 =
1− ν

(1− 2ν)(1 + ν)

c4 =
αtT0
1− 2ν Φ(z) =

1
F (z)

dF (z)
dz

z is the dimensionless coordinate.
The structure of the governing equations and the boundary conditions suggests the idea of

looking for the solution to the problem in a Laplace transform integral, which was given by
(Roberts and Kaufman, 1966)

f(z, s) =
∞∫

0

f(z, t)e−st dt (3.3)

Thus, equations (3.1) and (3.2) assume the form

( d2

dz2
+ Φ(z)

d

dz
− Λc1

)
θ − Λc2

dw

dz
= 0

c3
( d2

dz2
+ Φ(z)

d

dz
− s2

c3

)
w − c4(1 + λ1ks)

( d
dz
+ Φ(z)

)
θ = 0

(3.4)

Eliminating w or θ from Eqs. (3.4), we arrive at two differential equations for θ and w

(D4 + b3D3 + b2D2 + b1D + b0){θ,w} = 0 (3.5)

which may be written in form

[
(D2 + Φ(z)D)2 − a(D2 + Φ(z)D) + s2Λc1

c3
− c5

dΦ(z)
dz

]
{θ,w} = 0 (3.6)

where

c5 =
Λc2c4(1 + λ1ks)

c3
D =

d

dz

b0 =
Λc1s

2

c3
− c5 dΦ(z)dz b1 =

( d2

dz2
+ Φ(z)

d

dz
− a

)
Φ(z)

b2 = Φ(z)2 + 2
dΦ(z)
dz
− a b3 = 2Φ(z)

Λ =
s(λ3k + λ4ks+ λ5ks2)

1 + λ2ks
a = Λc1 + c5 +

s2

c3

Dimentionless boundary conditions (2.10) after using the Laplace transform are

dθ

dz

∣∣∣∣∣
z=0

= −c1A0q0Λ
s

f(s) σzz
∣∣∣
z=0
= 0 (3.7)

Equations (3.6) and (3.7) are a complete system of ordinary differential equtions in w and θ.



160 M.N.M. Allam, I.M. Tayel

4. Special case

We take F (z) in the form F (z) = e−z, then Φ(z) = (1/F (z))(dF (z)/dz) = −1 and then

b0 =
Λc1s

2

c3
b1 = a b2 = 1− a b3 = −2 (4.1)

In this case, equations (3.6) may be rewritten in form

[
(D2 −D)2 − a(D2 −D) + s2Λc1

c3

]
{θ,w} = 0 (4.2)

Consider the solution to equations (4.2) in form

θ =
2∑

j=1

Aje
−mjz w =

2∑

j=1

Bje
−mjz (4.3)

where mj (i = 1, 2) are the roots of equation

(m2 −m)2 − a(m2 −m) + s2Λc1
c3
= 0 (4.4)

Substitution of (4.3) into (3.4)1, yields

Bj = −
m2j +mj − Λc1

Λc2mj
Aj j = 1, 2 (4.5)

Then, Eqs. (4.3) take the form

θ =
2∑

j=1

Aje
−mjz w =

2∑

j=1

−
m2j +mj − Λc1

Λc2mj
Aje
−mjz (4.6)

To evaluate the unknown parameters Aj , we shall use boundary conditions (3.7).
Taking Laplace’s transformation of the component of stress σzz in non-dimensional form,

yields

σzz =
F (z)
1− 2ν

[1− ν
1 + ν

∂w

∂z
− (1 + λ1ks)αtT0θ

]
(4.7)

After applying the boundary conditions, we arrive at the following two equations

2∑

j=1

mjAj = −
c1A0q0Λ

s
f(s)

2∑

j=1

fj(s)Aj = 0 (4.8)

where

fi(s) =
1− ν
1 + ν

(m2j +mj − Λc1
Λc2

)
− (1 + λ1ks)αtT0 i = 1, 2

Thus, the solution to system of equations (4.8) is

A1 =
ΛA0c1q0f(s)f2
s(m1f2 +m2f1)

A2 = −
ΛA0c1q0f(s)f1
s(m1f2 +m2f1)

(4.9)
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5. Inverse Laplace transform

Since the formulas of temperature, displacement and stresses are difficult to invert to the time
domain, therefore a numerical inverse will be used. In order to invert the Laplace transform of
temperature, displacement and stresses, we applay the Riemann-sum approximation method by
using the relation

f(t) =
ekt

t

[1
2
f(k) + Re

N∑

n=1

(−1)nf
(
k +
inπ
t

)]

where Re is the real part, i =
√
−1 is the imaginary unit number and N is a sufficiently

large integer representing the number of terms. For faster convergence, numerous numerical
experiments have shown that the value of k should satisfy the relation kt = 4.7, see (Tzou,
1995a,b).

6. Application and computation

Now the generalized theory of thermoelasticity with one relaxation time (LS), where k = 2
will be considered in the calculation. Consider the intensity of the laser pulse to be given by
a Gaussian distribution G(t) = exp[−(t − t0)2/(∆t)2] that the laser beam incidents uniformly
on a (Copper) target. Temperature, displacement and stresses are to be calculated taking the
following constants (Henain et al., 2014)

T0 = 293K ρ0 = 8954 kg/m
3 τ0 = 35 · 10−15 s

cE = 383.1 J/(kg ·K) αt = 1.78 · 10−5K−1 k0 = 386W/(m ·K)
t0 = 3 · 10−3 s ∆t = 10−3 s E0 = 89.6GPa

ν = 0.44 h = 1m A0 = 0.01

where t0 is the time at which G(t) is maximum, ∆t is the time at which the intensity of the
laser beam reduces to 1/e.

7. Results and discussion

Figure 1 represents in curve (a) the laser pulse with the maximum value at t = 0.003. The
surface temperature distribution calculated per unit intensity is represented in curve (b). From
the figure, it is evident that the maximum of the temperature distribution occurs at a time
greater than the maximum of the laser pulse. This behavior can be attributed to the fact that
at the beginning of the laser pulse the absorbed power compensates the heat losses due to
conductivity. This fact leads to an increase in temperature. This increase lasts up until the
absorbed laser power is equal to the heat losses, when the maximum of the temperature occurs.
After this point, the absorbed laser radiation can not compensate the losses, and the temperature
begins to decrease.
Figure 2 represents the temperature distribution per unit intensity calculated at different

times as a function of z. In Fig. 2, it is shown that the temperature decreases as z increases,
and that for (t = 0.002, t = 0.004 and t = 0.005) it is smaller than for (t = 0.0035). This can be
attributed to the temporal profile of the laser radiation which is chosen to be Gaussian having
its peak value at (0.003) and a half width (0.003). It is noted that the temperature moves deeper
in the target as the time increases and vanishes at large values of z.



162 M.N.M. Allam, I.M. Tayel

Fig. 1. (a) Temporal behavior of the laser radiation, (b) surface temporal temperature distribution per
unit intensity

Fig. 2. Temperature distribution per unit intensity as a function of z for different time parameters

Fig. 3. Displacement distribution per unit intensity as a function of z for different time parameters

Figure 3 represents the displacement w calculated for different z values with time as the
parameter. It is found that it is a negative displacement at z = 0 and its vicinity, which is due to
the heating effect of laser radiation that allowed the particles to move in the upward direction
in the free half space corresponding to negative values of z. By increasing z values, Fig. 3 shows
a positive displacement representing also movement of the particles downward.
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Figure 4 represents the calculated spatial stress σzz per unit intensity calculated at different
z values with time as the parameter. Figure 4 shows a strong negative gradient decrease with
an increase in the z values. It takes place after reaching their maximum magnitude when the
positive gradient decreases with increasing z values. It is also seen that the behavior of the curve
with time is followed by the chosen temporal behavior of the laser radiation.

Fig. 4. Stress distribution σzz per unit intensity as a function of z for different time parameters

Figures 5 represents σxx per unit intensity as a function of z with time as the parameter.
The curves show the same behavior as σzz.

Fig. 5. Stress distribution σxx per unit intensity as a function of z for different time parameters

Figure 6 represents the temperature distribution θ per unit intensity as a function of z at the
time (t = 0.0035) with h as the parameter. It is seen that for a fixed time and different values
of h, the temperature decreases and enlarges z values as h increases.

Figure 7 represents the displacement distribution w per unit intensity as a function of z
at the time (t = 0.0035) with h as the parameter. One can observe that for a fixed time and
different values of h, the displacment decreases and goes down to small z value as h increases.
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Fig. 6. Temperature distribution θ per unit intensity as a function of z at t = 0.0035 with h as the
parameter

Fig. 7. Displacement distribution w per unit intensity as a function of z at t = 0.0035 with h as the
parameter
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The interval lattice Boltzmann method (ILBM) with an uncertainly defined internal heat
source function is used to simulate heat transfer in a thin silicone film. The solution to the
interval Boltzmann transport equations has been obtained taking into account the rules of
directed interval arithmetics. A similar analysis has been done using the sensitivity model
where the Boltzmann transport equations and boundary-initial conditions have been diffe-
rentiated with respect to the no-interval heat source value. The knowledge of the sensitivity
function distribution and the application of the Taylor formula allow one to find the border
solutions of the problem analyzed, which (to some extent) correspond to the solution obta-
ined under the assumption of the uncertainly defined source function. In the final part of
the paper, numerical computations obtained for both methods are presented.

Keywords: lattice Boltzmann method, directed interval arithmetics, sensitivity analysis

1. Introduction

The problem of heat transfer in nano-layers is frequently encountered in many fields of science
and engineering such as mechanical engineering, thermal management of electronic cooling and
improvement of performance of heat transfer systems (Escobar et al., 2006; Huanga et al., 2005;
Joshi and Majumdar, 1993; Mansoor and Yilbas, 2011, 2014). Heat transfer problems are usually
solved using equations with deterministic thermophysical parameters (Eshraghi and Felicelli,
2012; Narumanchi et al., 2003). However, in most cases of the engineering practice, values of
these parameters cannot be defined with a high precision and, in such cases, it is much more
convenient to define these parameters as interval numbers (Piasecka-Belkhayat and Korczak,
2014, 2016).
In this paper, an interval version of the lattice Boltzmann method with the uncertainly

defined heat source function has been presented with the application of the directed interval
arithmetics. The solution obtained corresponds to±5% perturbations of the heat source function.
The results of numerical computations (energy and temperature heating curves at the selected
points) have an interval form, of course. Additionally, the sensitivity analysis with respect to the
constant heat source function has been done (Chonga et al., 2016; Dems and Rousselet, 1999;
Goethals et al., 2011; Hwang et al., 2016). The heat source value has been assumed as the middle
value of the heat source interval. The application of the sensitivity function distribution and the
Taylor formula with an increment of the source function equal to the half of the width of the
heat source interval allows one to find the solution to the boundary-initial problem similar to
the solution with some “uncertainties” appearing in the mathematical model. The aim of the
paper is comparison of the results obtained using both methods.
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2. Directed interval arithmetics

Let us consider a directed interval a which can be defined as a set D of all directed pairs of real
numbers defined as follows (Neumaier, 1990; Piasecka-Belkhayat, 2011a,b)

a = [a−, a+] for a−, a+ ∈ R (2.1)

where a− and a+ denote the beginning and the end of the interval, respectively.
The left or the right endpoint of the interval a can be denoted as as, s ∈ {+,−}, where s

is a binary variable. This variable can be expressed as a product of two binary variables and is
defined as

+ + = −− = +
+− = −+ = − (2.2)

An interval is called proper if a− < a+, improper if a− > a+ and degenerate if a− = a+.
The set of all directed interval numbers can be written as D = P ∪ I, where P denotes a set of
all directed proper intervals and I denotes a set of all improper intervals.
Additionally, a subset Z = ZP ∪ ZI ⊂ D should be defined, where

ZP = {a ∈ P| a− ¬ 0 ¬ a+}
ZI = {a ∈ I| a+ ¬ 0 ¬ a−}

(2.3)

For directed interval numbers, two binary variables are defined. The first of them is the
direction variable

τ(a) =

{
+ if a− ¬ a+

− if a− > a+
(2.4)

and the other is the sign variable

σ(a) =

{
+ if a− > 0, a+ > 0

− if a− < 0, a+ < 0
a ∈ D\Z (2.5)

For the zero argument σ([0, 0]) = σ(0) = +, for all intervals including the zero element a ∈ Z,
σ(a) is not defined.
The sum of two directed intervals a = [a−, a+] and b = [b−, b+] can be written as

a+ b = [a− + b−, a+ + b+] a, b ∈ D (2.6)

The difference is of the form

a− b = [a− − b+, a+ − b−] a, b ∈ D (2.7)

The product of the directed intervals is described by the formula

ab =





[a−σ(b)b−σ(a), aσ(b)bσ(a)] a, b ∈ D\Z
[aσ(a)τ(b)b−σ(a), aσ(a)τ(b)bσ(a)] a ∈ D\Z, b ∈ Z

[a−σ(b)bσ(b)τ(a), aσ(b)bσ(b)τ(a)] a ∈ Z, b ∈ D\Z
[min(a−b+, a+b−),max(a−b−, a+b+)] a, b ∈ ZP

[max(a−b−, a+b+),min(a−b+, a+b−)] a, b ∈ ZI

0 (a ∈ ZP, b ∈ ZI) ∨ (a ∈ ZI, b ∈ ZP)

(2.8)
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The quotient of two directed intervals can be written as

a/b =




[a−σ(b)/bσ(a), aσ(b)/b−σ(a)] a, b ∈ D\Z
[a−σ(b)/b−σ(b)τ(a), aσ(b)/b−σ(b)τ(a)] a ∈ Z, b ∈ D\Z

(2.9)

In the directed interval arithmetics, two extra operators are defined, the inversion of summation

−Da = [−a−,−a+] a ∈ D (2.10)

and the inversion of multiplication

1/Da = [1/a−, 1/a+] a ∈ D\Z (2.11)

So, two additional mathematical operations can be defined as follows

a−D b = [a− − b−, a+ − b+] a, b ∈ D (2.12)

and

a/Db =




[a−σ(b)/b−σ(a), aσ(b)/bσ(a)] a, b ∈ D\Z
[a−σ(b)/bσ(b), aσ(b)/bσ(b)] a ∈ Z, b ∈ D\Z

(2.13)

Now, it is possible to obtain the number zero by subtraction of two identical intervals a−D a = 0
and the number one as the result of division a/Da = 1, which is impossible when applying
classical interval arithmetics (Markov, 1995).

3. Boltzmann transport equation

The Boltzmann transport equation (BTE) is one of the fundamental equations of solid state
physics and takes the following form (Escobar et al., 2006)

∂f

∂t
+ v∇f = f0 − f

τr
+ gef (3.1)

where f is the phonon distribution function, f0 is the equilibrium distribution function given by
the Bose-Einstein statistics, v is the phonon group velocity, τr is the relaxation time and gef is
the phonon generation rate due to electron-phonon scattering.
In order to take advantage of the simplifying assumption of the Debye model, the BTE can

be transformed into an equation of the carrier energy density, and for a one-dimensional problem
has the following form (Escobar et al., 2006)

∂e

∂t
+ v∇e = −e− e

0

τr
+ qv (3.2)

where e is the phonon energy density, e0 is the equilibrium phonon energy density and qv is the
internal heat source related to a unit of volume. Equation (3.2) must be supplemented by the
adequate boundary-initial conditions.
Using the Debye model, the relation between the phonon energy density and lattice tempe-

rature is given by the following formula (Escobar et al., 2006)

e(T ) =

(
9ηkb
Θ3

D

ΘD/T∫

0

z3

exp(z) − 1 dz
)
T 4 (3.3)
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where ΘD is the Debye temperature of the solid, kb is the Boltzmann constant, T is the lattice
temperature while η is the number density of phonons, and can be calculated using the formula
(Escobar et al., 2006)

η =
1
6π2

(kbΘD

~ω

)3
(3.4)

where ~ is the Planck constant divided by 2π and ω is the speed of sound in the analysed
material.

4. Interval lattice Boltzmann method

The lattice Boltzmann method (LBM) is a numerical technique for simulation of fluid flows and
heat transfer. Here LBM has been successfully applied to simulate heat transfer in nano layers.
Unlike the conventional numerical methods based on discretizations of macroscopic continuum
equations, the LBM is based on nanoscale models and heat transfer equations.
In this paper, it is shown how the LBM solves a discretized set of the Boltzmann transport

equation (BTE) in the case of interval values appearing in the mathematical model. Then the
interval Boltzmann transport equation for a one-dimensional problem has the following form
(Piasecka-Belkhayat and Korczak, 2014)

∂e(x, t)
∂t

+ v
∂e(x, t)
∂x

= −e(x, t)− e
0(x, t)

τr
+ qv(x, t) (4.1)

where e(x, t) is the interval phonon energy density, e0(x, t) is the interval equilibrium phonon
energy density, τr is the relaxation time, v1 = v and v2 = −v (see Fig. 1) and qv(x, t) is the
interval heat source, x is the spatial coordinate and t is the time.

Fig. 1. Directions of the lattice vibrations

The interval total phonon energy density is defined as the sum of phonon energy densities in
all directions. In the paper, a one-dimensional model with two directions of the phonon velocities
is assumed (Piasecka-Belkhayat and Korczak, 2014, 2016)

e(x, t) = e1(x, t) + e2(x, t) =
2∑

d=1

ed(x, t) (4.2)

where e1(x, t) is the phonon energy density in the positive x direction while e2(x, t) is the phonon
energy density in the negative x direction, d means the lattice direction (see Fig. 1).
In the interval lattice Boltzmann method it is needed to solve system of two partial differential

equations allowing one to compute phonon energy in different lattice nodes according to the
following equations (Piasecka-Belkhayat and Korczak, 2014)

∂ed(x, t)
∂t

+ (−1)d−1v∂ed(x, t)
∂x

= −ed(x, t)− e
0
d(x, t)

τr
+ qv(x, t) d = 1, 2 (4.3)

where v = ∆x/∆t is the component of velocity along the x-axis, ∆x is the lattice distance from
site to site, ∆t = tf+1 − tf is the time step needed for a phonon to travel from one lattice site
to the neighboring lattice site and

e0d(x, t) = e(x, t)/d (4.4)
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The set of equations (4.3) must be supplemented by the boundary-initial conditions (Goethals
et al., 2011)

x = 0 : e1(0, t) = e(Tb1)

x = L : e2(L, t) = e(Tb2)

t = 0 : e(x, 0) = e(T0)

(4.5)

where Tb1 and Tb2 are the boundary temperatures, T0 is the initial temperature.
The approximate form of equations (4.3) is of the following form

(e1)
f+1
i+1 =

(
1− ∆t

τr

)
(e1)

f
i +

∆t

τr
(e01)

f
i +∆tqv

(e2)
f+1
i−1 =

(
1− ∆t

τr

)
(e2)

f
i +

∆t

τr
(e02)

f
i +∆tqv

(4.6)

After subsequent computations, the interval lattice temperature is determined according to
the rules of directed interval arithmetics using the formula (see Eq. (3.3))

T
f
=

4

√√√√√√efΘ3
D

(
9ηkb

ΘD/T
f−1

∫

0

z3

exp(z)− 1 dz
)−1

(4.7)

5. Sensitivity analysis

In order to analyze the sensitivity of the phonon energy density field, the governing equations
should be differentiated with respect to the chosen parameter (Kleiber, 1997). In the paper, the
sensitivity analysis is presented with respect to the value of the internal heat source.
The Boltzmann transport equation for the one-dimensional problem and the constant value

of the heat source qv has the following form (Kałuża et al., 2016; Majchrzak and Mochnacki,
2014; Mochnacki and Majchrzak, 2007; Mohebbi and Sellier, 2016)

∂ed(x, t)
∂t

+ (−1)d−1v∂ed(x, t)
∂x

= −ed(x, t)− e
0
d(x, t)

τr
+ qv d = 1, 2 (5.1)

with the boundary-initial conditions

x = 0 : e1(0, t) = e(Tb1)

x = L : e2(L, t) = e(Tb2)

t = 0 : e(x, 0) = e(T0)

(5.2)

Using the direct approach of sensitivity analysis, equation (5.1) is differentiated with respect
to qv (Jasiński, 2014; Mochnacki and Majchrzak, 2007; Mohebbi and Sellier, 2016)

∂

∂qv

(∂ed(x, t)
∂t

)
+ (−1)d−1v ∂

∂qv

(∂ed(x, t)
∂x

)
= − 1
2τr

∂ed(x, t)
∂qv

+
∂qv
∂qv

d = 1, 2 (5.3)

Next, differentiation of boundary-initial conditions (5.2) leads to the following formulas

x = 0 :
∂e1(0, t)
∂qv

=
∂e(Tb1)
∂qv

= 0

x = L :
∂e2(L, t)
∂qv

=
∂e(Tb2)
∂qv

= 0

t = 0 :
∂e(x, 0)
∂qv

=
∂e(T0)
∂qv

= 0

(5.4)
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To equation (5.3) and boundary-initial conditions (5.4), the sensitivity functions Ud(x, t, qv) =
∂ed(x, t)/∂qv are introduced

∂Ud(x, t, qv)
∂t

+ (−1)d−1v∂Ud(x, t, qv)
∂x

= − 1
2τr

Ud(x, t, qv) + 1 d = 1, 2

x = 0 : U1(0, t, qv) = 0

x = L : U2(L, t, qv) = 0

t = 0 : U(x, 0, qv) = 0

(5.5)

Then equations (5.3) are the following

∂Ud(x, t, qv)
∂t

+(−1)d−1v∂Ud(x, t, qv)
∂x

= −Ud(x, t, qv)− U
0
d (x, t, qv)

τr
+1 d = 1, 2 (5.6)

where

U0d (x, t, qv) =
∂e0d(x, t)
∂qv

=
∂

∂qv

(e(x, t)
2

)
=
U(x, t, qv)
2

(5.7)

while

U(x, t, qv) =
2∑

d=1

Ud(x, t, qv) (5.8)

The phonon energy density function e(x, t, qv ±∆qv) is expanded into the Taylor series taking
into account the first two components according to the formulas

e(x, t, qv +∆qv) ≈ eb(x, t) +
∂e(x, t)
∂qv

∆qv

e(x, t, qv −∆qv) ≈ eb(x, t)−
∂e(x, t)
∂qv

∆qv

(5.9)

where∆qvis a certain increment of the source function, and the starting point eb(x, t) corresponds
to the basic solution.
Taking into account the sensitivity function U(x, t, qv) = ∂e(x, t)/∂qv , one obtains

e(x, t, qv +∆qv) ≈ eb(x, t) + U(x, t, qv)∆qv
e(x, t, qv −∆qv) ≈ eb(x, t)− U(x, t, qv)∆qv

(5.10)

and a certain increment of the energy function ∆e can be calculated using the formula

∆e(x, t) ≈ 2U(x, t, qv)∆qv (5.11)

6. Numerical example

In the paper, heat transfer in a one-dimensional silicon film of dimension L = 200 nm has been
analyzed. The following input data have been introduced: relaxation time τr = 6.53 ps, Debye
temperature ΘD = 640K, initial temperature T0 = 300K, boundary conditions Tb1 = Tb2 =
300K, lattice distance ∆x = 20 nm and the time step ∆t = 5ps.
In the first example, the interval value of the heat source function has been considered

qv = [10
18− 0.05 · 1018 , 1018+0.05 · 1018 ]W/m3. Figure 2a illustrates the interval heating curves

of the phonon energy at the internal nodes 1 (20 nm), 2 (80 nm) and 3 (140 nm).
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Fig. 2. Energy heating curves: (a) – first method, (b) – second method

In the second example, the no-interval value of the heat source function has been introduced
qv = 1018W/m3 and the sensitivity analysis with respect to the heat source parameter has
been applied. In this model, an increment of the heat source parameter has been introduced as
∆qv = 0.05 · 1018W/m3. In Fig. 2b, the courses of heating curves of the phonon energy at the
same internal nodes are presented. One can see that the both results are similar.
Figures 3a and 3b present the courses of heating curves taking into account the same internal

nodes for the first and second example, respectively.

Fig. 3. Temperature heating curves: (a) – first method, (b) – second method

7. Conclusions

In the paper, heat transfer in one-dimensional crystalline solids is considered. The main subject
of the paper is the comparison of the results obtained using two methods. In the first method,
the interval lattice Boltzmann method with an uncertainly defined internal heat source function
is used. The solution to the interval Boltzmann transport equations has been obtained taking
into account the rules of directed interval arithmetics. In the second method, the sensitivity
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analysis with respect to the internal heat source parameter has been done. The application of
the sensitivity functions and the Taylor formula enables one to find a solution similar to the
solution received using the interval lattice Boltzmann method.
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Rubber tubes under pressure can undergo large deformations and exhibit a particular non-
linear elastic behavior. In order to reveal mechanical properties of rubber tubes subjected
to internal pressure, large deformation analysis and stability analysis have been proposed
in this paper by utilizing a modified Gent’s strain energy function. Based on the nonlinear
elastic theory, by establishing the theoretical model of a rubber tube under internal pressure,
the relationship between the internal pressure and circumferential principal stretch has been
deduced. Meanwhile stability analysis of the rubber tube has also been proposed and the
relationship between the internal pressure and the internal volume ratio has been achieved.
The effects on the deformation by different parameters and the failure reasons of the rubber
tube have been discussed, which provided a reasonable reference for the design of rubber
tubes.

Keywords: large deformation analysis, stability analysis, rubber tube, nonlinear elastic theory

1. Introduction

Cylindrical tube structures have been a subject of interest in the recent years due to their ap-
plicability in numerous fields. In many engineering applications, cylindrical tubes are subject
to internal pressures and as a result undergo large deformations (Bertram, 1982, 1987). In the
past, the analysis of this problem was based on small deformations and on the assumption that
the material was linear elastic, but this led to prediction results not inaccurate for large defor-
mation. It is well known that rubber-like materials exhibit highly nonlinear behavior character.
In the case of nonlinear rubber tube structures undergoing large deformations, the problem is
even more acute due to geometric and material nonlinearities (Antman, 1995; Bharatha, 1967;
Green and Zerna, 1968; Ogden, 1984), and we can not utilize typical Hooke’s law to describe
the relationship between stress and strain.
From the point of view of mechanics perspective, the vital problem that should be solved is to

select the reasonable and practical strain energy density function that describes the mechanical
property of a rubber-like material. It follows from the fundamental representation theory in
continuum mechanics that the strain-energy function of an isotropic rubber-like material can be
represented in terms of either the principal invariants or principal stretches.
The pioneering work of Mooney, Rivlin and others on the nonlinear theory of elasticity sets

up the basis for the analysis of rubber-like materials under large deformations.
In 1948, Rivlin put forward the strain energy function model to isotropic hyper elastic ma-

terials (Rivlin, 1948)

W =
∞∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j (1.1)
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in which Cij stands for the material constant; I1 and I2 are, respectively, the first and second
invariants of the left Cuachy-Green deformation tensor.
Taking the linear combination of the Rivlin model, we can get the Mooney-Rivlin material

(Mooney, 1940), the strain energy density function may be written as

W = C1(I1 − 3) + C2(I2 − 3) = C1[(I1 − 3) + α(I2 − 3)] (1.2)

in which, C1 and C2 are material constants, and α = C2/C1.
To simplify, the first of the Rivlin model can be used and it is a neo-Hookean material

(Treloar, 1976), which can be expressed as follows

W (I1) =
1
2
nkT (I1 − 3) (1.3)

A generalized neo-Hookean model widely used in the domain of biomechanics is a two-
-parameter exponential strain-energy named by Fung and Demiray (Fung, 1967)

W =
µ

2b
{exp[b(I1 − 3)]− 1} (1.4)

in which b is a positive dimensionless material parameter which can display the degree of strain-
-stiffening. In soft tissues, the value of b is in the range 1 ¬ b ¬ 5.5.
Another well-known model of this type is the three parameter Knowles power law model

(Knowles, 1977) as follows

W =
µ

2b

[(
1 +

b

n
(I1 − 3)

)n
− 1

]
(1.5)

Gent (1996) proposed a new strain energy function for the non-linear elastic behavior of
rubber-like materials. Because of its formal simplicity, this model has been widely applied to large
elastic deformations of solids. The energy density function proposed by Gent for incompressible,
isotropic, hyper elastic materials is shown as

W = −µ
2
Jm ln

(
1− I1 − 3

Jm

)
(1.6)

where µ is the shear modulus and Jm is the constant limiting value for I1−3. SinceW depends on
the only first invariant of B, the Gent model belongs to the class of the generalized neo-Hookean
materials.
Based on Gent’s constitutive model, a modified model by Gent has been proposed to describe

the mechanical property of an arterial wall in (Sang et al., 2014), whose modified strain energy
function is expressed as

W = −µJm
2
ln
(
1− In1 − 3n

Jm

)
(1.7)

where n is the material parameter.
From constitutive model (1.7), we can see that it can be transformed to the Gent model when

n = 1. If n = 1 andJm → ∞, constitutive model (1.7) can be transformed to the neo-Hookean
model.
The developments of analysis of rubber tubes have continually been accompanied by discus-

sions. Zhu et al. (2008, 2010) analyzed the finite axisymmetric deformation of a thick-walled
circular cylindrical elastic tube subject to pressure on its external lateral boundaries and zero
displacement on its ends. Meanwhile, they considered bifurcation from a circular cylindrical
deformed configuration of a thick-walled circular cylindrical tube of an incompressible isotro-
pic elastic material subject to combined axial loading and external pressure. Research on the
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physical behavior of compressible nonlinear elastic materials for the problem of inflation of
a thin-walled pressurized torus was developed by Papargyri-Pegiou and Stavrakakis (2000).
Gent (2005) analyzed a inflating cylindrical rubber tube in terms of simple strain energy func-
tions using Rivlin’s theory of large elastic deformations. Mangan and Destrade (2015) used the
3-parameter Mooney and Gent-Gent (GG) phenomenological models to explain the stretch-strain
curve of typical inflation. Based on the strain energy function by Gent, a thorough discussion
(Feng et al., 2010; Hariharaputhiran and Saravanan, 2016; Horgan, 2015; Horgan and Sacco-
mandi, 2002; Pucci and Saccomandi, 2002; Rickaby and Scott, 2015) was given on molecular
models and their relation to deformation of rubber-like materials.

Akyüz and Ertepinar (1999) investigated cylindrical shells of arbitrary wall thickness sub-
jected to uniform radial tensile or compressive dead-load traction. By using the theory of small
deformations superposed on large elastic deformations, the stability of the finitely deformed
state and small, free, radial vibrations about this state are investigated. Akyüz and Ertepinar
(2001) also investigated the stability of homogeneous, isotropic, compressible, hyperelastic, thick
spherical shells subjected to external dead-load traction and gave the critical values of stress
and deformation for a foam rubber, slightly compressible rubber and a nearly incompressible
rubber. Alexander (1971), by using the non-linear analysis, predicted that the axial load had
a significant effect on the value of tensile instability pressure. With thin-walled tubes of latex
rubber, experiments were performed and the results were according with the results of the non-
linear analysis in stable regions where the membrane retained its cylindrical shape. Based on the
theory of large elastic deformations, Ertepinar (1977) investigated finite breathing motions of
multi-layered, long, circular cylindrical shells of arbitrary wall thickness. And a tube consisting
of two layers of neo-Hookean materials was solved both by exact and approximate methods,
which was observed as an excellent agreement between the two sets of results. Bifurcation of
inflated circular cylinders of elastic materials under axial loading was researched by Haughton
and Ogden (1979a,b), who proposed that bifurcation might occur before the inflating pressure
reached the maximum. A combination of the two mode interpreted in terms of bending for a
tube under axial compression was discussed in terms of the length to radius ratio of the tube. At
the same time, prismatic, axisymmetric and asymmetric bifurcations for axial tension and com-
pression combined with internal or external pressure was discussed and presented for a general
form of incompressible isotropic elastic strain energy function. Haughton and Ogden (1980) put
a research on the deformation of a circular cylindrical elastic tube of finite wall thickness rotating
about its axis, and achieved a range of values of the axial extension for which no bifurcation
could occur during rotation. Jiang and Ogden (2000) proposed the axial shear deformation of
a thick-walled right circular cylindrical tube of the compressible isotropic elastic material and
discussed explicit solutions for several forms of the strain-energy function. Jiang and Ogden
(2000) also analyzed the plane strain character of the finite azimuthal shear of a circular cy-
lindrical annulus of a compressible isotropic elastic material by utilizing the strain energy as
a function of two independent deformation invariants. Merodio and Ogden (2015) proposed a
new example of the solution to the finite deformation boundary-value problem for a residually
stressed elastic body and combined extension, inflation and torsion of a circular cylindrical tube
subject to radial and circumferential residual stresses.

Based on Gent’s constitutive model, a modified model has been proposed to describe incom-
pressible rubber-like materials. The inductive material parameter n can reflect the hardening
character of rubber-like materials. With the modified model, mechanical properties of rubber
tubes subjected to internal pressure has been revealed and large deformation analysis and sta-
bility analysis has been proposed by utilizing Gent’s modified strain energy function. Based on
the nonlinear elastic theory, by establishing the theoretical model of rubber tubes under internal
pressure, the relationship between the internal pressure and circumferential principal stretch has
been deduced. Meanwhile, stability analysis of rubber tube has also been proposed and the rela-
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tionship between the internal pressure and internal volume ratio has been achieved. The results
show that the constitutive parameter n has a major impact on mechanical properties of the
rubber tube, and when n ¬ 1, the rubber tube becomes softening. The instability phenomenon
in the rubber tube will appear only when n is less than 1.5. For different values of n, the range
of the value of Jm which leads to instability also changes.

2. Finite deformation analysis

Based on the elastic finite deformation theory, the left Cauchy–Green tensor can be denoted by
B = F ·FT, where F is the gradient of the deformation and λ1, λ2, λ3 are the principal stretches,
then, for an isotropic material, W is a function of the strain invariants as follows

I1 = trB = λ21 + λ
2
2 + λ

2
3

I2 =
1
2
[( trB2 − tr (B2)] = λ21λ22 + λ22λ23 + λ23λ21

I3 = detB = λ21λ
2
2λ
2
3

(2.1)

By utilizing strain energy function (1.7), the Cauchy stress tensor can be expressed as

σ = −pI+ nµJm
Jm − (In1 − 3n)

In−11 B (2.2)

in which I1 is the first invariant of and p is the undetermined scalar function that justifies the
incompressible internal constraint conditions.

Fig. 1. Rubber tube under pressure

Consider a cylindrical rubber tube under uniform pressure, which is illustrated in Fig. 1.
If (R,Θ,Z) and (r, θ, z) are the coordinates of the rubber tube before deformation and after
deformation respectively, then the deformation pattern of the rubber tube can be expressed as

r = f(R) θ = Θ z = λzZ (2.3)

The deformation gradient tensor F can be expressed as

F = FT =




dr

dR
0 0

0
r

R
0

0 0 λz


 =



λr 0 0
0 λθ 0
0 0 λz


 (2.4)

in which, λr, λθ and λz are the principal stretch in the radial, circumferential and axial direction
of the cylinder membrane. It can be expressed as

λr =
dr

dR
= (λλz)−1 λθ =

r

R
= λ λz = λz (2.5)
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The left Cuachy-Green deformation tensor B can be shown as follows

B = FFT =



λ2r 0 0
0 λ2θ 0
0 0 λ2z


 =



(λλz)−2 0 0
0 λ2 0
0 0 λ2z


 (2.6)

And the first invariants of the left Cuachy-Green deformation tensor B can be expressed as

I1 = trB = (λλz)−2 + λ2 + λ2z (2.7)

Substituting (2.7) and (2.4) into (2.2), we get

σrr = −p+ 2(λλz)−2
∂W

∂I1
σθθ = −p+ 2λ2

∂W

∂I1
σzz = −p+ 2λ2z

∂W

∂I1
(2.8)

in which

∂W

∂I1
=
µ

2
nJm

Jm − (In1 − 3n)
In−11

and p is the Lagrange multiplier associated with hydrostatic pressure.
In the absence of body forces, the equilibrium equation of the axial symmetry in the current

configuration can be achieved as

dσrr
dr
+
1
r
(σrr − σθθ) = 0 (2.9)

For the cylinder rubber tube under internal pressure, it should be satisfied with that the radical
stress is zero outside of the rubber tube and the radical stress is equal to the internal pressure,
which can be expressed as

σrr(a) = −P σrr(b) = 0 (2.10)

From (2.9) and (2.10), we can get

0∫

−P

dσrr =
b∫

a

1
r
(σθθ − σrr) dr =

b∫

a

1
r

µnJm
Jm − (In1 − 3n)

In−11 [λ
2 − (λλz)−2] dr (2.11)

in which, a = f(A), b = f(B), a and b are the internal and external radii of the cylinder rubber
tube after deformation. A and B are the internal and external radii of the cylinder rubber tube
before deformation.
By utilizing the expression λ = r/R, we can arrive at the following expression

dr =
R

1− λ2λz
dλ (2.12)

Substituting (2.12) into (2.11), we get

P =

λb∫

λa

1
λ

∂W

∂I1
[λ2 − (λλz)−2]

1
1− λ2λz

dλ

=

λb∫

λa

1
λ

µnJm
Jm − (In1 − 3n)

In−11 [λ
2 − (λλz)−2]

1
1− λ2λz

dλ

(2.13)

in which, λa = a/A, λb = b/B.
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Taking into account the incompressibility of rubber-like materials, the following equations
can be achieved

(r2 − a2)λz = R2 −A2 R2(λ2λz − 1) = λza2 −A2 (2.14)

Equation (2.14) can be transformed into

λ2aλz − 1 = (ε+ 1)2(λ2bλz − 1) (2.15)

where ε = (B−A)/A. For a thin-walled cylinder rubber tube, wall thickness is far less than the
mean radius, so the value of ε is far less than 1. Removing the high-order term of ε, we can get

λ2aλz − 1 = λ2bλz − 1 + 2ε(λ2bλz − 1) (2.16)

By utilizing the expressions λa + λb = 2λ, λb = λ, Eq. (2.16) can be transformed into

λa − λb =
ε

λλz
(λ2λz − 1) (2.17)

From (2.17), a simplified equation from (2.13) can be expressed as

P =
µnJm

Jm − (In1 − 3n)
In−11 [λ

2 − (λλz)−2]
ε

λ2λz
(2.18)

In order to discuss the effect of constitutive parameters Jm and n on the mechanical properties
of the rubber tube under pressure, non-dimensional stress is introduced. From Eq. (2.18), we
can get

P# =
nJm

Jm − (In1 − 3n)
In−11 [λ

2 − (λλz)−2]
1

λ2λz
(2.19)

where P# = P/(µε).
In order to study the effect on the rubber tube under pressure by the constitutive parameters

Jm and n, three circumstances are considered. Firstly, when Jm and λz is fixed, the distribution
between the internal pressure and circumferential principal stretch with the change of n has been
researched. Secondly, when n and λz is fixed, the distribution between the internal pressure and
circumferential principal stretch with the change of Jm has also been researched. Thirdly, we
simultaneously investigate the distribution between the internal pressure and circumferential
principal stretch with the change of λz when Jm and n is fixed.
Figures 2a-2c show distribution curves between the internal pressure P# and circumferential

principal stretch λ according to the above three circumstances.
As shown in Fig. 2a, for fixed material parameters Jm = 2.3 and λz = 1, when the material

parameter n increases, the circumferential principal stretch increases in accordance with the
internal pressure. It can also be seen in Fig. 2a that the effect of the constitutive parameter n has
a major impact on the mechanical properties of the rubber tube. When the material parameter n
takes higher values, the range of the circumferential principal stretch is larger, which means that
the rubber tube has strong inflation capability and good elasticity. On the other hand, when the
material parameter n takes a lesser value, the range of the circumferential principal stretch is
smaller, which means that the rubber inflation capability tube is weak. Especially when n ¬ 1,
the rubber tube starts softening and the material becomes unstable, which means the stability
analysis is necessary.
As can be noted in Fig. 2b, the material parameter Jm has also a certain influence on the

circumferential principal stretch of the rubber tube. As the value of Jm increases, the circumfe-
rential principal stretch increases in accordance with the internal pressure. When the material
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Fig. 2. Distribution curve between P# and λ with the effect of the material parameter:
(a) n (Jm = 2.3, λz = 1), (b) Jm (n = 1, λz = 1), (c) λz (n = 1, Jm = 2.3)

parameter Jm takes higher values, the range of the circumferential principal stretch is larger,
which means that the rubber tube has strong inflation capability and good elasticity. On the
other hand, when the material parameter Jm takes a lesser value, the range of the circumferential
principal stretch is smaller, which means that the inflation capability of the tube is weak.
Figure 2c displays the relation between the internal pressure and circumferential principal

stretch. From that we can see when the material parameters Jm and n are fixed, the circum-
ferential principal stretch decreases as the axial principal stretch increases, which means that
the rubber tube is incompressible. We also can infer that the axial principal stretch has a minor
impact on the mechanical properties of the rubber tube.

3. Stability analysis

According with the membrane hypothesis, σrr = 0. From (2.8), we can get

p =
µnJm

Jm − (In1 − 3n)
In−11 (λλz)

−2 (3.1)

Substituting (3.1) into (2.8), we get

σθθ = 2
∂W

∂I1
[λ2 − (λλz)−2] =

µnJm
Jm − (In1 − 3n)

In−11 [λ
2 − (λλz)−2]

σzz = 2
∂W

∂I1
[λ2z − (λλz)−2] =

µnJm
Jm − (In1 − 3n)

In−11 [λ
2
z − (λλz)−2]

(3.2)
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For an incompressible rubber tube under pressure, when its two sides are closed, there is no
constraint along the length direction, from which the following expression can be achieved

σθθ =
Pr0
h

σzz =
Pr0
2h

(3.3)

where P is the internal pressure of the cylinder membrane, r0 is the mean radius after deforma-
tion and h is the thickness of the rubber membrane after deformation.
Considering the incompressibility of the rubber membrane, we can get

σθθ =
Pr0
h
=
Pλ2λzR0

H
σzz =

Pr0
2h
=
Pλ2λzR0
2H

(3.4)

in which, R0 is the mean radius before deformation and H is the thickness of the rubber mem-
brane before deformation.
From (3.2) and (3.4), the following equation can be formulated

Pλ2λzR0
H

=
µnJm

Jm − (In1 − 3n)
In−11 [λ

2 − (λλz)−2]

P# =
1

λ2λz
[λ2 − (λλz)−2]

nJm
Jm − (In1 − 3n)

In−11

(3.5)

where P# = PR0/H.
From (3.4), we get

σθθ = 2σzz (3.6)

Substituting (3.6) into (3.2), the following expression can be found

λ3z =
(λ2λz)2 + 1
2λ2λz

(3.7)

Substituting (3.7) into (2.5), the principal stretch in the radial and axial direction of the cylinder
membrane can be expressed as

λ = ν
1
2

( 2ν
ν2 + 1

) 1
6

λz =
(ν2 + 1
2ν

) 1
3

(3.8)

where ν = λ2λz, which can reflect the volume expansion ratio, i.e., the ratio of the internal
volume of the cylinder membrane in the deformed state to that in the undeformed state.
Substituting (3.8) into (3.5)2, we get

P# =
ν2 − 1
ν2

( 2ν
ν2 + 1

) 1
3 nJm
Jm − (In1 − 3n)

In−11 (3.9)

In order to examine stability of the rubber cylinder membrane, the stationary point of P#

should be determined first.
When Jm → ∞, Eq. (1.7) can be transformed into the strain energy function proposed by

Gao (1990) as follows

W = A(In1 − 3n) (3.10)

where A = µ/2.
Based on strain energy function (3.10), Eq. (3.9) can be transformed as

P#∞ =
ν2 − 1
ν2

( 2ν
ν2 + 1

) 1
3
nIn−11 (3.11)

When the material parameter n = 1, the neo-Hookean constitutive equation can be achieved
from (3.10). Then, we get the following expression from (3.11)

P# =
ν2 − 1
ν2

( 2ν
ν2 + 1

) 1
3 (3.12)
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4. Discussion

As shown in Fig. 3, when Jm → ∞ and n = 1, we obtain the turning point ν∗ = 2.930. For
the volume expansion ratio ν ¬ ν∗, the inflation curve is monotonically increasing. But for the
volume expansion ratio ν  ν∗, the inflation curve is decreasing.

Fig. 3. Distribution curve between P# and ν in the rubber tube inflation (Jm →∞ and n = 1)

Fig. 4. Distribution curve between P# and ν with the effect of: (a) n (Jm →∞), (b) Jm (n = 1),
(c) Jm (n = 0.5), (d)Jm (n = 0.1)

In order to discuss the effect of the material parameter n on the rubber tube inflation, the
distribution between the internal pressure and volume expansion ratio with the change of n has
been investigated when Jm →∞. Figure 4a displays the relation between the internal pressure
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and volume expansion ratio when n = 0.6, 1.0, 1.3, 1.5 and 1.6, respectively. We can see that the
inflation curve of the rubber tube has no limit point when n = 1.6, which means that there is
no instability in the rubber tube. Only if n ¬ 1.5, instability of the rubber tube under pressure
occurs.
As can be seen in Figs. 4b to 4d, the distribution between the internal pressure and volume

expansion ratio with the change of Jm when n = 1, n = 0.5 and n = 0.1, respectively. In Fig. 4b,
we can see when n = 1, the constitutive parameter Jm has obviously the effect on the stability of
the rubber tube. The inflating pressure is seen to pass through a maximum when Jm  25, which
means that instability of the rubber tube under pressure will occur. The results are consistent
with the results by Gent (2005). It can be seen in Fig. 4c that the instability of the rubber tube
under pressure occurs when Jm  2.3 with the material parameter n = 0.5. And we also can see
in Fig. 4d that the instability occurs when Jm  0.5 with the material parameter n = 0.1.

5. Conclusion

A modified Gent’s strain energy function has been utilized to examine the large deformation
problem and the stability problem of the rubber tube subjected to internal pressure. By es-
tablishing the theoretical model of the rubber tube under internal pressure, the relationship
between internal pressure and circumferential principal stretch has been deduced with the chan-
ge of the constitutive parameters Jm and n, from which we can conclude that the constitutive
parameter n has a major impact on the mechanical properties of the rubber tube. When n ¬ 1,
the rubber tube becomes softening and the material becomes unstable, which means thst the
stability analysis is necessary. For a cylinder rubber tube closed at two sides, the relationship
between the internal pressure and internal volume ratio has also been deduced and the effect of
the two constitutive parameters n and Jm on the stability of the rubber tube has been invesiga-
ted. Accordingly, the instability phenomenon appears only when n is less than 1.5. For different
values of n, the range of the value of Jm leading to the instability also changes.
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The present study deals with the linear elastic analysis of variable thickness rotating disks
made of functionally graded materials (FGMs) by the finite element method. The disks have
radially varying material properties according to an exponential law, which is achieved by
the element based grading of the material properties on the meshed domain. The results are
reported for three types of thickness profiles, namely, uniform, linearly varying and concave
thickness, having their mass constant. The disks are subjected to the clamped boundary
condition at the inner surface and the free boundary condition at the outer surface. The
obtained results show that in a variable thickness rotating disk, deformation and stresses
are less as compared to the uniform thickness disk.
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1. Introduction

Functionally graded materials (FGMs) are special composite materials that have continuous
and smooth spatial variations of physical and mechanical properties. Functionally graded com-
ponents, in recent years, are widely used in space vehicles, aircrafts, nuclear power plants and
many other engineering applications. Rotating disks, made up of such a FGM are widely used
in the field of marine, mechanical and aerospace industry including gas turbines, gears, turbo-
-machinery, etc. The stresses due to centrifugal load in rotating components have important
effects on their strength and safety. Thus, control and optimization of stress and displacement
fields can help one to reduce the overall payload in industries. Optimization of the stress to
strength ratio is done by varying the material property and thickness of the disk. Disks made
up of functionally graded materials and of variable thickness, have significant stress reduction
over the disks made up of homogeneous materials and of uniform thickness. Therefore, a higher
limit speed and higher pressure is permissible for FGM disks.
A few researchers have reported works on analysis of FGM disks, plates, shells, beams and

bars by analytical and finite element methods. Eraslan (2003) obtained analytical solutions for
the elastic plastic stress distribution in rotating variable thickness annular disks. Thickness of
the disks had parabolic variation and the analysis was based on the Tresca’s yield criterion. Bay-
at et al. (2009) reported work on analysis of a variable thickness FGM rotating disk. Material
properties varied according to power law and the disk was subjected to both the mechanical and
thermal loads. Afsar and Go (2010) analyzed a rotating FGM circular disk subjected to mecha-
nical as well as thermal load by the finite element method. The disk had exponentially varying
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material properties in the radial direction. The inner surface was made up of Al2O3 having fix bo-
undary condition and the outer surface was made up of Al having free boundary condition. The
disk was subjected to a thermal load along with centrifugal load due to non uniform temperature
distribution. The axisymmetric problem was formulated in terms of a second order ordinary dif-
ferential equation and was solved by the finite element method. Callioglu et al. (2011a) analyzed
functionally a graded rotating annular disk subjected to internal pressure and various tempera-
ture distributions such as uniform temperature, linearly increasing and decreasing temperatures
in the radial direction. An analytical thermoelasticity solution for a disk made of functionally
graded materials (FGMs) was presented by Callioglu (2011). Bayat et al. (2011) investigated
displacement and stress behavior of a functionally graded rotating disk of variable thickness by a
semi analytical method. Radially varying one dimensional FGM was taken and material proper-
ties varied according to a power law and the Mori-Tanaka scheme. A disk subjected to centrifugal
load was analyzed for the fixed boundary condition at the inner surface and the free boundary
condition at the outer surface. The results were reported for both metal-ceramic and ceramic-
etal disks and, a comparison was made for uniform and variable thickness disks. Callioglu et al.
(2011b) analyzed thin FGM disks. Density and modulus of elasticity of them varied according to a
power law in an FGM of aluminum ceramic. The effect of the grading parameter on displacement
and stresses was investigated. Sharma et al. (2012) worked on the analysis of stresses, displa-
cements and strains in a thin circular functionally graded material (FGM) disks by the finite
element method. The disk were subjected to mechanical as well as thermal loads. Ali et al. (2012)
reported a study on the elastic analysis of two sigmoid FGM rotating disks. Metal-ceramic-metal
disks were analyzed for both uniform and variable thickness disks and effect of grading index on
the displacement and stresses was investigated. Nejad et al. (2013) found a closed-form analyti-
cal solution for an exponentially varying FGM disk which was subjected to internal and external
pressure.

In his recent work, Zafarmand and Hassani (2014) worked on elastic analysis of two-
-dimensional functionally graded rotating annular and solid disks with variable thickness.
Axisymmetric conditions were assumed for the two-dimensional functionally graded disk and
the graded finite element method (GFEM) was applied to solve the equations. Rosyid et
al. (2014) worked on finite element analysis of nonhomogeneous rotating disk with arbitra-
rily variable thickness. Three types of grading laws, namely, power law, sigmoid and expo-
nential distribution laws were considered for the volume fraction distributions. The work in-
cluded parametric studies performed by varying volume fraction distributions and bounda-
ry conditions. Zafarmand and Kadkhodayan (2015) investigated a nonlinear elasticity solu-
tion of functionally graded nanocomposite rotating thick disks with variable thickness rein-
forced with single-walled carbon nanotubes (SWCNTs). The derived governing nonlinear equ-
ations were based on the axisymmetric theory of elasticity with the geometric nonlinearity
in axisymmetric complete form and were solved by a nonlinear graded finite element me-
thod (NGFEM). The nonlinear graded finite element method (NGFEM) used in that study
was based on the Rayleigh–Ritz energy formulation with the Picard iterative scheme. The re-
sults were reported for four different thickness profiles, namely, constant, linear, concave and
convex.

In the present research work, stress and deformation analysis of annular rotating FGM disks
is reported, which is based on the element based grading of material properties. Uniform as well
as variable thickness disks, made of exponentially varying FGMs, are analyzed. The disks are
subjected to centrifugal body load and have the clamped boundary condition at the inner surface
and the free boundary condition at the outer surface. The finite element method based on the
principle of stationary total potential is used to analyze disks. Numerical results are evaluated
for a uniform, linear varying thickness profile and concave thickness profile disks, and the effect
of the thickness parameter on the deformation and stresses is investigated.
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2. Geometric modeling

For an annular disk, the governing equation of radially varying thickness is assumed as

h(r) = h0
[
1− q

(r − a
b− a

)m]
(2.1)

where a and b are the inner and outer radii, h(r) and h0 are half of the thickness at the radius r
and at the root of the disk, respectively. Symbols m and q are geometric parameters that control
the thickness profiles of the disk. For a uniform thickness disk q is taken as zero and for a variable
thickness disk, q > 0 (Fig. 1b). The value of h0 is calculated for each thickness profile to get
constant mass for all thickness profile disks.

Fig. 1. (a): Geometrical parameters of the variable thickness disk, (b) disks of varying thickness;
sectional isometric view

2.1. Calculation of h0 for the variable thickness profile

Figure 1a shows half of the cross section of the variable thickness disk. The symbol Vc denotes
the volume of the disk till height h0(1 − q) and the symbol Vv is the volume from h0(1 − q) to
height at the inner radius. The symbol V denotes the total volume of the disk

Vc = π(b2 − a2)(1− q)h0 Vv =

h0∫

(1−q)h0

π(r2 − a2) dh V = 2(Vc + Vv) (2.2)

Since mass of the variable thickness disk equals mass of the uniform thickness disk

ρ1V = ρuVu (2.3)

where ρ1 and ρu are densities of variable thickness and uniform thickness disks, respectively. The
symbol Vu is the volume of the uniform thickness disk. Assuming h0 of the uniform thickness
disk as hu, Vu is obtained as

Vu = 2π(b2 − a2)hu (2.4)

Since density is independent of thickness, it is constant for all thickness profiles, therefore equ-
ation (2.3) reduces to

V = Vu (2.5)
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putting the values of V , Vu, Vc, and Vv into equation (2.5)

π(b2 − a2)(1− q)h0 +
h0∫

(1−q)h0

π(r2 − a2) dh = π(b2 − a2)hu (2.6)

Substituting the value of r from equation (2.1) to equation (2.6) and solving the resulting
equation for given thickness of the uniform disk and different values of m, we obtain value of h0
for different thickness profiles.

3. Material modeling

Young’s modulus and density of the disk are assumed to vary exponentially along the radial
direction as (Afsar and Go, 2010):

E(r) = E0eβr ρ(r) = ρ0eγr E0 = EAe−βa

ρ0 = ρAe−γa γ =
1

a− b ln
ρA
ρB

β =
1

a− b ln
EA
EB

(3.1)

where E(r) and ρ(r) are modulus of elasticity and density at the radius r; EA, EB and ρA, ρB
are modulus of elasticity and density at the inner and outer radius, respectively.

4. Finite element modeling

The rotating disk, being thin, is modeled as a plane stress axisymmetric problem. Using quadratic
quadrilateral element, the displacement vector u can be obtained as (Seshu, 2003)

u = Nδ (4.1)

where u is the element displacement vector, N is the matrix of quadratic shape functions and
δ is the nodal displacement vector

N =
[
N1 N2 . . . N8

]
δ =

{
u1 u2 . . . . . . u8

}T

In natural co-ordinates, the shape functions are given as

N1 =
1
4
(1− ξ)(1− η)(−1− ξ − η) N2 =

1
4
(1 + ξ)(1 − η)(−1 + ξ − η)

N3 =
1
4
(1 + ξ)(1 + η)(−1 + ξ + η) N4 =

1
4
(1− ξ)(1 + η)(−1− ξ + η)

N5 =
1
2
(1− ξ2)(1− η) N6 =

1
2
(1 + ξ)(1 − η2)

N7 =
1
2
(1− ξ2)(1 + η) N8 =

1
2
(1− ξ)(1 − η2)

The strain components are related to elemental displacement components as

ε =
{
εr εθ

}T
=
{
∂u

∂r

u

r

}T

{
∂u

∂r

u

r

}T
= B1

{
∂u

∂r

∂u

∂z

u

r

}T (4.2)
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where εr and εθ are radial and tangential strains, respectively. By transforming the global co-
-ordinates into natural co-ordinates (ξη), we obtain

{
∂u

∂r

∂u

∂z

u

r

}T
= B2

{
∂u

∂ξ

∂u

∂η

u

r

}T

{
∂u

∂ξ

∂u

∂η

u

r

}T
= B3

{
u1 u2 . . . u8

}T
(4.3)

The above elemental strain-displacement relationships can be written as

ε = Bδe (4.4)

where B is the strain-displacement relationship matrix which contains derivatives of the shape
functions. For a quadratic quadrilateral element, it is calculated as

B = B1B2B3 (4.5)

and

B1 =

[
1 0 0
0 0 1

]
B2 =




J22
|J|

−J12
|J| 0

−J21
|J|

J11
|J| 0

0 0 1




where J is the Jacobian matrix used to transform the global co-ordinates into natural co-
-ordinates. It is given as

J =




8∑
i=1

∂Ni

∂ξ
ri

8∑
i=1

∂Ni

∂ξ
zi

8∑
i=1

∂Ni

∂η
ri

8∑
i=1

∂Ni

∂η
zi


 B3 =




∂N1
∂ξ

∂N2
∂ξ

. . .
∂N8
∂ξ

∂N1
∂η

∂N2
∂η

. . .
∂N8
∂η

N1
r

N2
r

. . .
N8
r




(4.6)

From Hooke’s law, the components of stresses in the radial and circumferential direction are
related to the components of total strain as

εr =
1
E
(σr − νσθ) εθ =

1
E
(σθ − νσr) (4.7)

By solving the above equations, the stress-strain relationship can be obtained as follows

σr =
E(r)
(1− ν)2 (εr + νεθ) σθ =

E(r)
(1− ν)2 (εθ + νεr) (4.8)

In the standard finite element matrix notation, the above stress strain relations can be written
as

σ = D(r)ε (4.9)

where

σ =
{
σr σθ

}T
D(r) =

E(r)
(1− ν)2

[
1 ν
ν 1

]
ε =

{
εr εθ

}T
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Upon rotation, the disk experiences a body force which under constrained boundary results
in deformation and stores internal strain energy U

U =
1
2

∫

V

εTσ dv (4.10)

The work potential due to body force resulting from centrifugal action is given by

V = −
∫

V

δTqv dv (4.11)

Upon substituting Eq. (4.4) and (4.9) into Eq. (4.10) and Eq. (4.11), the elemental strain
energy and work potential are given by

U e =
∫

V

πrhrδ
eTBTD(r)Bδe dr V e = −2

∫

V

πrhrδ
eTNTqv dr (4.12)

For a disk rotating at ω [rad/s], the body force vector for each element is given by

qv =

{
ρ(r)ω2r
0

}
(4.13)

The total potential of the element is obtained from Eqs. (4.12)

πep =
1
2
δeTKeδe − δeTf e (4.14)

Here, defining the element stiffness matrix Ke and the element load vector f e as

Ke = 2
∫

V

πrhrB
TD(r)B dr f e = 2

∫

V

πrhrN
Tqv dr (4.15)

In FEM, the functional grading is popularly carried out by assigning the average material
properties over a given geometry followed by adhering the geometries, thus resulting into layered
functional grading of material properties. The downside of this approach is that it yields singular
field variable values at the boundaries of the glued geometries. To get better results, it is an
established practice to divide the total geometry into very fine geometries. However, a better
approach is to assign the average material properties to the elements of mesh of the single
geometry. This is, in other words, better described as assigning material properties to the finite
elements instead of geometry. In Eq. (4.9), the matrix D(r), being a function of r, is calculated
numerically at each node, and this yields continuous material property variation throughout the
geometry. The element matrices are then assembled to give the global stiffness matrix and the
global load vector, respectively.
The element based grading of the material property yields an appropriate approach of func-

tional grading as the shape functions in the elemental formulations being co-ordinate functions
make it easier to implement the same (Kim and Paulino, 2002)

φe =
8∑

i=1

φiNi (4.16)

where φe is the material property of the element, φi is the material property at the node i, and
Ni is the shape function.
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Total potential energy of the disk is given by

πp =
∑

πep =
1
2
δTKδ − δTF (4.17)

where K is global stiffness matrix, F isglobal load vector

K =
N∑

n=1

Ke F =
N∑

n=1

f e

and N is number of elements.
Using the Principle of Stationary Total Potential (PSTP), the total potential is set to be

stationary with respect to small variation in the nodal degree of freedom, that is

∂πp

∂δT
= 0 (4.18)

From above, the system of simultaneous equations is obtained as follows

Kδ = F (4.19)

5. Results and discussion

5.1. Validation

A numerical problem of reference (Bayat et al., 2011) is modeled and analyzed, and the
comparison is shown in Fig. 2 for the validation purpose. In the reference rotating disks having
uniform and concave thickness, the profiles are analyzed. Gradation of the material properties
is done by the Mori-Tanaka scheme and comparison is made for n = 0 for ceramic-metal and
metal-ceramic disks.

Fig. 2. Comparison of the results of the current work with the reference ones (Bayat et al., 2011)

5.2. Numerical results

Rotating annular disks made of aluminum and alumina ceramic are analyzed, and the di-
stribution of resulting displacement and stresses are presented for different thickness profiles.
The material properties are graded according to an exponential law as discussed in Section 3.
Figures 3a and 3b show the distribution of Young’s modulus and density of the exponential
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Fig. 3. Radial distribution of Young’s modulus (a) and of density (b)

FGM considered here. The properties of aluminum and alumina ceramic are given as (Afsar and
Go, 2010): EAl = 71.0MPa, Ecer = 380MPa, ρAl = 2.7 g/cm3, ρcer = 0.96 g/cm3 and ϑ = 0.3.
In the present numerical problem, the inner diameter of the disks is taken as 15mm and outer

diameter 150mm; q = 0.7 and hu is taken as 5mm, h0 for linear and concave thickness profiles
are obtained as 9.0164mm and 10.9416mm from Eq. (2.6) for m = 1 and 0.5, respectively. The
disks have an angular velocity of 100 rad/s.
Figures 4 and 5 show the distribution of radial displacement, radial stress, tangential stress

and von Mises stress, respectively, along the radial direction. It is observed that the uniform
thickness disk has highest deformation and stresses as compared to the linear thickness profile
and concave thickness profile disk. Stresses and deformations are less near the inner radius and
higher near the outer radius for the concave thick disk as compared to the linear disk. This is
because of the fact that the concave thick disk has greater thickness near the root as compared to
the linear thick disk. The radial displacement is minimum, that is zero at the inner surface and
the radial stress is zero at the outer surface for all thickness profiles, which confirms the clamped
boundary condition at the inner surface and the free boundary condition at the outer surface
applied on the disks. The tangential stress is maximum at the outer radius for all thickness
profiles, which corresponds to the complete ceramic material. Since ceramics have low tensile
strength, to withstand higher stresses at higher speeds, sufficient thickness at the outer radius
should be provided, which means that the value of geometric parameter q in equation (2.1)
should be taken smaller at higher speeds. Further it can be seen that the radial stress is higher
as compared to the tangential and von Mises stresses for all thickness profiles. Therefore, it is
suggested that during designing of rotating disks, the radial stress should be taken as the critical
limit stress, and the concave thickness profile should be selected.

Fig. 4. Distribution of: (a) radial displacements, (b) radial stress
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Fig. 5. Distribution of: (a) tangential stress, (b) von Mises stress

6. Conclusion

The present work proposes a study using the element based gradation of a varying material pro-
perty of rotating disks and reports the stress and deformation behavior of uniform and variable
thickness clamped rotating disks of exponentially graded FGMs. The element based grading of
the material property yields an appropriate approach of functional grading as the shape func-
tions in elemental formulations being co-ordinate functions make it easier to implement the
same. The layered functional grading over a discrete area instead of elements, offers singularities
in the field variables at adjoining lines or surfaces. The results obtained are found to be in good
agreement with the established reports. Further, it is observed that varying geometry of FGM
disks results into lower stress states in the disks and, hence, it can be concluded that variable
thickness disks possess better strength than uniform disks of the same mass.
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The properties of strain localization for elastic-plastic porous media with transversely isotro-
pic elasticity under undrained conditions are investigated. Under non-associated plasticity
and tri-axial stress states, the conditions for strain localization of elastic-plastic porous me-
dia are derived, in which the effects of deviation from isotropic elasticity and pore fluid
compressibility are included. Based on the Mohr-Coulomb yield criterion, the influences of
the deviation from isotropic elasticity and pore fluid compressibility on the direction angle
of localized band initiation and the corresponding critical hardening modulus for the case
of plane strain are discussed. As a result, the properties of strain localization are dependent
upon the deviation from isotropic elasticity and pore fluid compressibility. The deviation
from isotropic elasticity and pore fluid compressibility has significant impacts on the direc-
tion angle of localized band initiation and the corresponding critical hardening modulus.

Keywords: porous medium, strain localization, transverse isotropic elasticity, undrained
condition, pore fluid compressibility

1. Introduction

Strain localization of plastic flow into localized deformation bands is a typical feature of geoma-
terials such as rocks and soils undergoing non-homogeneous deformation. The onset of localized
bands is a failure precursor as it signifies the initiation of an emerging localized failure me-
chanism. Strain localization is mathematically described as the inception of a discontinuous
bifurcation in the form of a jump in the velocity gradient field within classical rate independent
continuum theory. Analysis of strain localization may provide insight into the failure mechanism
of engineering materials. Over the last decades, much attention has been drawn to the field of
strain localization (Ottosen and Runesson, 1991; Bigoni and Loret, 1999; Rizzi and Loret, 1999;
Zhang and Schrefler, 2001; Zhang et al., 2002; Longere and Dragon, 2007; Alyavuz and Gultop,
2009; Gao and Zhao, 2013). A suitable tool for delineating localization in solid mechanics is on
the basis of strain rate discontinuity in continuum theory, and its basic principles were developed
by Thomas (1961), Mandel (1962, 1964), and Rice (1976).
For a wide variety of constitutive models, conditions for the onset of strain localization were

obtained by Ottosen and Runesson (1991), Neilsen and Schreyer (1993), Runesson et al. (1996),
Zhang et al., 2002. In these studies, it was assumed that elasticity remained isotropic during
the loading process. As a matter of fact, transversely isotropic materials are of primary interest
in many engineering applications. Rudnicki (1977) proposed a transversely isotropic constituti-
ve relation and elucidated properties of deformation localization of brittle rocks. Following the
associated plastic flow rule, Rizzi and Loret (1997) presented the localization condition for an
elastoplastic von Mises material with transversely isotropic elasticity under uniaxial tension.
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With associated plasticity and uniaxial tension, further developments concerning both trans-
versely isotropic elasticity and plasticity were given by Loret and Rizzi (1997). Rudnicki (2002)
derived the conditions for localized deformation in a transversely isotropic material under axi-
symmetric compression. For non-associated plasticity, Zhang et al. (2003) deduced the general
description of properties of strain localization for elastoplastic materials with transversely iso-
tropic elasticity subjected to tri-axial stress states. It is noted that these researches involves only
the behaviour of one-phase transversely isotropic materials. As a matter of fact, the localization
phenomena are relevant also for porous media with pores filled with a fluid. Based on the specific
constitutive model developed by Rudnicki (1977) for transversely isotropic brittle rock, Zhang
et al. (2005) analysed material instabilities of saturated multiphase porous media.
In this paper, the localization analysis is performed for elastic-plastic saturated porous media

with transversely isotropic elasticity under undrained conditions. The general description of
the properties of strain localization is deduced for porous media which follow non-associated
plasticity and are subjected to tri-axial stress states. The effects of deviation from isotropic
elasticity and pore fluid compressibility at plane strain are investigated. The porous body is
assumed to undergo small deformations, and thus the nominal time rate is used instead of any
objective rate measure.

2. Elastic-plastic constitutive relations under undrained conditions

For saturated porous media (e.g. soils), the deformation and strength under loading is not
determined directly by the total stress but the effective stress. With compression being defined
as positive, the effective stress can be expressed as

σ′ = σ − pI (2.1)

where σ is the total stress tensor, σ′ is the effective stress tensor, p is the pore fluid pressure,
and I is the second-order identity tensor. It is supposed that σ′ is responsible for deformation
in the skeleton of the porous solid, whereas p is responsible for compression of the pore fluid.
Under undrained conditions, it has the form

ṗ = KfI : ε̇ (2.2)

where ε̇ is the strain rate tensor, Kf is the compression modulus of the pore fluid, and the
symbol ‘:’ is the inner product with double index contraction. It should be pointed out that the
effective stress principle defined by Eq. (2.1) is valid when the degree of saturation varies from
0.85 to 1.0. In this case, Kf can be regarded as the bulk modulus of the two-phase mixture
comprising liquid/air in the pores, and generally it may be two or three orders of magnitude
smaller than that for the case of full saturation (Runesson et al., 1996).
Generally, the relationship between the total stress rate σ̇ and the strain rate ε̇ for plastic

loading can be described by the incrementally linear relationship (Runesson et al., 1996)

σ̇ = Du : ε̇ (2.3)

where Du is the total tangent stiffness tensor pertinent to the undrained condition, which is
given by

Du = D′ +KfI⊗ I (2.4)

where D′ denotes the effective elastic-plastic tangent stiffness tensor, and the symbol ⊗ designa-
tes the outer product of two tensors. Defining the yield function F and the plastic potential G
in the effective stress space, we have

D′ = E′ − 1
A′
(E′ : Q′)⊗ (P′ : E′) (2.5)
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where P′ and Q′ are the unit outward normals to the yield surface and the plastic potential,
respectively, and they are defined as

P′ =
∂F

∂σ′

/∥∥∥∥
∂F

∂σ′

∥∥∥∥ Q′ =
∂G

∂σ′

/∥∥∥∥
∂G

∂σ′

∥∥∥∥ (2.6)

where ‖ · ‖ stands for a norm of a tensor. The positive parameter A′ is defined as A′ = H ′+P′ :
E′ : Q′, whereH ′ is the generalized plastic modulus and E′ is the effective elastic stiffness tensor.
For a transversely isotropic elastic material, it has the rotational symmetry property with

reference to a certain axis. The plane perpendicular to this axis is called the basal plane while
planes containing the axis of symmetry will be named the zonal planes. To better express material
properties componentwise, the cartesian axes (e1, e2, e3) are adopted, where e1 and e2 are two
arbitrary orthogonal unit vectors of the basal plane, and the unit vector e3 denotes the axis of
rotational symmetry. Thus, the stiffness E′ can take the form (Rizzi and Loret, 1997)

E′ = c1I⊗ I+ c2I ⊗ I+ c3(I⊗M+M⊗ I) + c4M⊗M+ c5(I ⊗M+M ⊗ I) (2.7)

where the tensor M = e3 ⊗ e3, ci (i ∈ [1, 5]) are five material constants, and the symbol ⊗
denotes a symmetrized outer product, and it has (M ⊗ I)ijkl = (MikIjl +MilIjk)/2.

3. Localization condition for non-associated plasticity

It is known that the strain rate ε̇ across the localized band is discontinuous. Assuming that ε̇i

and ε̇o denote the strain rates inside and outside the band, respectively, it follows from Eq. (2.3)
that

σ̇i = Diu : ε̇
i σ̇o = Dou : ε̇

o (3.1)

where σ̇i and σ̇o are the total stress rate inside and outside the localized band, respectively,
and Diu and D

o
u denote the total tangential stiffness tensors inside and outside the band under

undrained conditions, respectively. As mentioned by Zhang et al. (2003), the difference between
the strain rates inside and outside the band is equal to (m ⊗ n+ n⊗m)/2 with the vector m
the mode of discontinuity of the strain rate and n the unit normal vector of the band. The
traction rate across the band must be unique, namely n · (σ̇i− σ̇o) = 0 with symbol ‘·’ the inner
product with single index contraction. Moreover, it can be regarded that Dou = D

i
u = Du at the

inception of strain localization. Thus, from Eq. (3.1), we have

L ·m = 0 or det(L) = 0 (3.2)

which is the necessary condition for strain localization, and the total acoustic tensor under the
undrained condition

L = n ·Du · n = L′ +Kfn⊗ n (3.3)

where L′ is the effective acoustic tensor, which can be expressed as

L′ = n ·D′ · n = L′e −
1
A′
a⊗ b (3.4)

where L′e denotes the effective elastic acoustic tensor, which is defined as

L′e = n · E′ · n (3.5)
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Additionally, the vectors a and b are formulated by

a = n ·E′ : Q′ b = P′ : E′ · n (3.6)

Introduction of Eq. (2.7) into Eq. (3.5) yields (Zhang et al., 2003)

L′e = α1I+ α2n⊗ n+ α3(e3 ⊗ n+ n⊗ e3) + α4e3 ⊗ e3 (3.7)

with

α1 =
c2
2
+
c5
2
(e3 · n)2 α2 = c1 +

c2
2

α3 =
(
c3 + c5

2

)
(e3 · n) α4 =

(
c5
2 + c4

)
(e3 · n)2

(3.8)

Substitution of Eq. (2.7) into Eq. (3.6) leads to

a = η1n+ η2Q′ · n+ η3e3 + η4Q′ · e3 b = χ1n+ χ2P′ · n+ χ3e3 + χ4P′ · e3 (3.9)

with

η1 = c1 trQ′ + c3(e3 ·Q′ · e3) η2 = c2
η3 = [c3 trQ′ + c4(e3 ·Q′ · e3)](e3 · n) + c5(n ·Q′ · e3) η4 = c5(e3 · n)

(3.10)

and

χ1 = c1 trP′ + c3(e3 ·P′ · e3) χ2 = c2
χ3 = [c3 trP′ + c4(e3 ·P′ · e3)](e3 · n) + c5(n ·P′ · e3) χ4 = c5(e3 · n)

(3.11)

where the symbol “ tr ” denotes the trace operator of tensors.
When the tensor L is singular, the corresponding hardening modulus can be obtained by

H ′ = a ·R′e · b− ψ
(a ·R′e · n)(b ·R′e · n)

n ·R′e · n
−P′ : E′ : Q′ = hn − hE (3.12)

where ψ = Kfn ·R′e · n/(1 +Kfn ·R′e · n), and

hn = a ·R′e · b− ψ
(a ·R′e · n)(b ·R′e · n)

n ·R′e · n
hE = P′ : E′ : Q′ (3.13)

where R′e is the inverse of the effective elastic acoustic tensor L
′
e, which is expressed as (Zhang

et al., 2003)

R′e = β1I+ β2n⊗ n+ β3(e3 ⊗ n+ n⊗ e3) + β4e3 ⊗ e3 (3.14)

where

β1 =
1
α1

β2 =
1

α1∆
[−α2(α1 + α4) + α23]

β3 =
1

α1∆
[−α1α3 + (α2α4 − α23)(e3 · n)] β4 =

1
α1∆
[−α4(α1 + α2) + α23]

(3.15)

with

∆ =
1
2
(c1 + c2)(c2 + c5) + [(c3 + c5)(c2 − c3) + c4(c1 + c2)](e3 · n)2

+
1
2
[2c3(c3 + 2c5)− c4(2c1 + c2) + c5(c4 + 2c5)](e3 · n)4

(3.16)
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Substituting Eq. (2.7) into Eq. (3.13), we have

hE = c1( trP′)( trQ′) + c2P′ : Q′ + c3[(e3 ·Q′ · e3) trP′ + (e3 ·P′ · e3) trQ′]
+ c4(e3 ·P′ · e3)(e3 ·Q′ · e3) + 2c5(e3 · (P′ ·Q′) · e3)

(3.17)

As strain localization may occur along a surface of normal n when the elastoplastic acoustic
tensor gets first singular in that direction, the most critical directions n will be those correspon-
ding to the largest hardening modulus which makes the elastoplastic acoustic tensor singular.
Thus, from Eq. (3.12), we have

H ′cr = max
n,n·n=1

H ′(n) = max
n,n·n=1

(hn)− hE (3.18)

It is noted from Eq. (2.7) that the material constants c3, c4, and c5 can be interpreted as
measures of the deviation from isotropic elasticity. When c3 = c4 = c5 = 0, Eq. (2.7) reduces
to the case of isotropic elasticity. Assuming that λ and µ denote the Lamé coefficients of an
isotropic reference elastic material with positive definite elastic stiffness, it has 3λ+2µ > 0 and
µ > 0 (Zhang et al., 2003). Rizzi and Loret (1997) carried out numerical simulations on three
prototypes of anisotropic materials due to difficulties of theoretical derivations. It was found to
include most of the qualitative features common to other simulations for the case of c1 = λ,
c2 = 2µ, c3 = c5 = 0, and c4 6= 0. As a consequence, the analysis in this study is confined to this
case for simplicity in the mathematical derivations. For this case, we have (Zhang et al., 2003)

EL =
µ(3λ+ 2µ) + (λ+ µ)c4

λ+ µ
ET =

4µ[µ(3λ+ 2µ) + c4(λ+ µ)]
4µλ+ µ+ c4(λ+ 2µ)

Gl = GT = µ νL =
λ

2(λ+ µ

where EL and ET , respectively, denote the longitudinal (or axial) elastic modulus and the
transverse (or cross-axial) elastic modulus, GL and GT , respectively, denote the longitudinal
(or zonal) shear modulus and the transverse (or basal) shear modulus, and νL the longitudinal
Poisson ratio (representing the contraction in the longitudinal direction due to an imposed
traction in the basal plane).
Corresponding to the Loss of Positive Definiteness (LPD) of the elastic stiffness, there is a

lower bound for the admissible values of the elastic parameter c4, which is herein denoted by
cLPD4 and given by

c4 > cLPD4 = −µ(3λ+ 2µ)
λ+ µ

= −E (3.19)

where E is Young’s modulus corresponding to the assumed Lamé constants.
In view of the above simplification, it follows from Eq. (3.13) that

hn = U1 + U2 −
KfU3U4
1 +KfU5

(3.20)

with

U1 = [2c21β3P
′
vQ
′
v + c1c4β3(P

′
vQ
′
33 +Q

′
vP
′
33)]n3 + [c2c4(β1 + β4)(Q

′
33P
′
3jnj + P

′
33Q
′
3jnj)

+ c1c2β4(Q′vP
′
3jnj + P

′
vQ
′
3jnj)]n3 + [c1c2β3(P

′
v +Q

′
v) + c2c4β3(P

′
33 +Q

′
33)](niQ

′
ijnj)n3

+ [c21β4P
′
vQ
′
v + c1c4(β2 + β4 + β1)(P

′
vQ
′
33 +Q

′
vP
′
33) + c

2
4(β1 + β4)P

′
33Q
′
33]n

2
3

+ c2c4β2(Q′33niP
′
ijnj + P

′
33niQ

′
ijnj)n

2
3 + c2c4β3(P

′
33Q
′
3jnj +Q

′
33P
′
3jnj)n

2
3
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U2 = c24β2Q
′
33P
′
33n
4
3 + c

2
2β4P

′
3jnjQ

′
3knk + c1c2β3(Q

′
3jnjP

′
v + P

′
3jnjQ

′
v)

+ c22β2niQ
′
ijnjnkP

′
klnl + c

2
2β1niP

′
ikQ
′
kjnj + c

2
2β3(P

′
3jnjnkQ

′
klnl +Q

′
3jnjnkP

′
klnl)

+ c21(β1 + β2)P
′
vQ
′
v + c1c2(β1 + β2)(P

′
vniQ

′
ijnj +Q

′
vniP

′
ijnj)

+ [c1c4β3(Q′vP
′
33 + P

′
vQ
′
33) + 2c

2
4β3Q

′
33P
′
33]n

3
3

U3 = c1Q′v(β1 + β2 + 2β3n3 + β4n
2
3) + c2niQ

′
ijnj(β1 + β2 + β3n3)

+ c2Q′3jnj(β3 + β4n3) + c4Q
′
33n3[β3 + (β1 + β2 + β4)n3 + β3n

2
3]

U4 = c1P ′v(β1 + β2 + 2β3n3 + β4n
2
3) + c2niP

′
ijnj(β1 + β2 + β3n3) + c2P

′
3jnj(β3 + β4n3)

+ c4P ′33n3[β3 + (β1 + β2 + β4)n3 + β3n
2
3]

U5 = β1 + β2 + 2β3n3 + β4n23

and

hE = c1P ′vQ
′
v + c2P

′
ijQ
′
ij + c4P

′
33Q
′
33 (3.21)

where the summation convention is adopted for Latin indices, P ′v = trP
′, and Q′v = trQ

′.
When the modulus Kf = 0, Eq. (3.20) can be reduced to the solution of the single-phase

solid obtained by Zhang et al. (2003). When the parameter c4 = 0, Eq. (3.20) can be simplified
to the solution given by Runesson et al. (1996).

4. Properties of the localized band at plane strain

In the case of plane strain, assuming the stress principal directions are consistent with the
symmetrical axes of material and the components n1 and n3 are located in the plane of interest,
for associated plasticity Eqs. (3.20) and (3.21) can be reduced to

hn = V1 + V2 −
Kf (V3)2

1 +KfV4
(4.1)

with

V1 = c1P ′v(β1 + β2)[c1P
′
v + 2c2(P

′
1n
2
1 + P

′
3n
2
3)]

+ c22(P
′2
1 n
2
1 + P

′2
3 n
2
3)[β1 + β2(P

′2
1 n
2
1 + P

′2
3 n
2
3)]

+ 2β3[c1P ′v + (c4 + c2)P
′
3[c1P

′
v + c2(P

′
1n
2
1 + P

′
3n
2
3)]n3

V2 = [(2c2c4 + c24)(β1 + β4)P
′2
3 + c1β4P

′
v(2c2P

′
3 + c1P

′
v)

+ 2c1c4(β1 + β2 + β4)P ′3P
′
v + c

2
2β4P

′2
3 ]n

2
3 + 2c2c4β2P

′
3(P
′
1n
2
1 + P

′
3n
2
3)n
2
3

+ 2c4β3P ′3(c2P
′
3 + c1P

′
v + c4P

′
3)n
3
3 + c

2
4β2P

′2
3 n
4
3

V3 = c1P ′v(β1 + β2 + 2β3n3 + β4n
2
3) + c2(β1 + β2 + β3n3)(P

′
1n
2
1 + P

′
3n
2
3)

+ c2(β3 + β4n3)P ′3n3 + c4P
′
3n3[β3 + (β1 + β2 + β4)n3 + β3n

2
3]

V4 = β1 + β2 + 2β3n3 + β4n23

and

hE = c1P ′2v + c2(P
′2
1 + P

′2
2 + P

′2
3 ) + c4P

′2
3 (4.2)

It should be mentioned that for the present case of plane strain we have

n21 + n
2
3 = 1 n21 = 1− n23 (4.3)
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Combination of Eqs. (3.8), (3.15), (3.16), (4.1) and (4.3) yields

hn =
1

u2∆

[
u2(r4n43 + r2n

2
3 + r0)−

Kf (s5n53 + s4n
4
3 + s2n

2
3 + s0)

2

∆+Kf (u+ c4n23 − c4n43)
]

(4.4)

where

r4 = −P ′23 (λ+ µ)c24 + [4µP ′1P ′3(λ+ µ)− 4µP ′23 (λ+ µ)− 4µ2P ′21
− 4λµP ′1P ′v − λ2P ′2v ]c4 − 4µ2(P ′3 − P ′1)2(λ+ µ)

r2 = (λ+ 2µ)P ′23 c
2
4 + [4µP

′2
3 (λ+ 2µ)− 4µP ′1P ′3(λ+ µ) + 4µ2P ′21

+ λ2P ′2v + 4λµP
′
vP
′
1 + 2λµP

′
3P
′
v]c4 + 4λµ

2P ′v(P
′
3 − P ′1)

+ 4µ2(P ′3 − P ′1)[(P ′3 + P ′1)(λ+ 2µ)− 2P ′1(λ+ µ)]
r0 = 4µ3P ′21 + λ

2µP ′2v + 4λµ
2P ′1P

′
v

(4.5)

and

s5 = P ′3(λ+ µ)c
2
4 s4 = c4[P ′3(λ+ 2µ)c4 − λµP ′v − 2µ2P1]

s2 = µc4(λP ′v + 2µP
′
1) + 2µ

3(P ′3 − P ′1) + µ2c4P ′3 s0 = µ2(λP ′v + 2µP
′
1)

(4.6)

Additionally, we have

∆ = µ(λ+ 2µ) + c4(λ+ 2µ)n23 − c4(λ+ µ)n43 (4.7)

It is seen from Eq. (3.18) that the critical hardening modulus H ′cr corresponding to the
initiation of strain localization is defined as the constrained maximization of H ′ over all possible
localized band directions n for a given state. Assuming that the maximum value of H ′ is reached
when n3 = ncr3 , it has tan

2 θ = (ncr3 )
2/[1− (ncr3 )2], where θ denotes the angle in the e1−e3 plane

from the e1-axis to the normal vector (n1, n3) as shown in Fig. 1. Then substituting ncr3 into Eq.
(4.4) and combining Eq. (4.2), the corresponding maximum value of the hardening modulus H ′cr
can be obtained.

Fig. 1. Geometric relationship among the anisotropy axes, stress principal axes and the localized band
direction at plane strain

5. Numerical results and discussions

In this Section, the properties of strain localization at strain plane is investigated based on the
Mohr-Coulomb yield criterion. The Mohr-Coulomb yield criterion can be defined by

F =
1
2
(σ′I − σ′III) +

1
2
(σ′I + σ

′
III) sinϕ− c = 0 (5.1)

where σ′I  σ′II  σ′III are the effective principal stresses (which are taken positive in compres-
sion), ϕ is the angle of internal friction, and c is a cohesion intercept.
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As the direction of the effective principal stress σ′3 is assumed to be consistent with the
cartesian axe e3, there exist two situations for the in-plane effective principal stresses, namely
σ′1  σ′3 and σ

′
3  σ′1. For the situation σ

′
1  σ′3, there are three cases depending on the

magnitude of the out-of-plane stress σ′2.

Case A

When σ′1  σ′2  σ′3, it has σ′I = σ1 and σIII = σ′3, and from Eqs. (2.6) and (5.1), we obtain

P ′1 =

√
2
2
1 + sinϕ√
1 + sin2 ϕ

P ′2 = 0 P ′3 =
−
√
2
2
1− sinϕ√
1 + sin2 ϕ

(5.2)

and

P ′v =

√
2 sinϕ√
1 + sin2 ϕ

(5.3)

Substituting Eqs. (5.2) and (5.3) into Eqs. (4.2) and (4.4) and combining Eq. (3.18), the
critical hardening modulus and the band direction angle at the onset of strain localization can
be determined. Suppose λ/µ = 1, we know from Eq. (3.19) that c4/µ > −2.5. In addition,
for soils the magnitude of the ratio Kf/(2µ) may range from 10−1 to 103 in practice, which
represent extreme states for moduli for partial and full liquid saturation, respectively. Thus,
with ϕ = 10◦, the influences of the parameters c4 and Kf on the angle θ and the critical
hardening modulus H ′cr are shown in Figs. 2a and 2b, respectively. As can be seen from Fig. 2a,
the angle θ first increases with the increase of the parameter c4, and then decreases with its
further increase. The influence of the modulus Kf on the angle θ is related to the magnitude of
the parameter c4. It can be observed from Fig. 2b that at first the critical hardening modulusH ′cr
becomes larger with the increase of the parameter c4, but it becomes smaller with the further
increase of the parameter c4 when −2.5 < c4/µ ¬ 0 or c4  0. In addition, the critical hardening
modulus H ′cr generally decreases with the increase of the modulus K

f .

Fig. 2. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various Kf in the case σ′1  σ′2  σ′3

Case B

When σ′1  σ′3  σ′2, it has σ′I = σ′1 and σ′III = σ′2. Then it follows from Eqs. (2.6) and (5.1) that

P ′1 =

√
2
2
1 + sinϕ√
1 + sin2 ϕ

P ′2 =
−
√
2
2
1− sinϕ√
1 + sin2 ϕ

P ′3 = 0 (5.4)

and
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P ′v =

√
2 sinϕ√
1 + sin2 ϕ

(5.5)

Thus, assuming λ/µ = 1 and ϕ = 10◦, the impacts of the parameters c4 and Kf on the band
angle θ and the critical hardening modulus H ′cr are illustrated in Figs. 3a and 3b, respectively.
As can be seen, the direction angle of localized band initiation and the corresponding critical
hardening modulus are significantly dependent upon the deviation from isotropic elasticity and
pore fluid compressibility. For the effect of deviation from isotropic elasticity, it is shown that
a larger value of the parameter c4 leads to smaller values of the band angle θ and the critical
hardening modulus H ′cr. As for the effect of pore fluid compressibility, it is indicated that a
larger value of the modulus Kf results in a larger value of the band angle θ for the vast majority
of cases and a smaller value of the critical hardening modulus H ′cr.

Fig. 3. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various Kf in the case σ′1  σ′3  σ′2

Case C

When σ′2  σ′1  σ′3, it has σ′I = σ′2, σ′III = σ′3. Hence, combination of Eqs. (2.6) and (5.1) yields

P ′1 = 0 P ′2 =

√
2
2
1 + sinϕ√
1 + sin2 ϕ

P ′3 =
−
√
2
2
1− sinϕ√
1 + sin2 ϕ

(5.6)

and

P ′v =

√
2 sinϕ√
1 + sin2 ϕ

(5.7)

In this case, with λ/µ = 1 and ϕ = 10◦, the dependences of the band direction angle
at the inception of strain localization and the corresponding critical hardening modulus on
the deviation from isotropic elasticity and pore fluid compressibility are indicated in Figs. 4a
and 4b, respectively. It can be observed that the band direction angle θ and the critical hardening
modulus H ′cr get smaller with an increase in the value of modulus K

f . However, it should be
noted that the influence of pore fluid compressibility on the critical hardening modulus is very
limited when c4/µ ranges between −2.5 and −1. On the other hand, it is found that the effects of
the deviation from isotropic elasticity on the band direction angle and the corresponding critical
hardening modulus are obvious. When c4  0, the band direction angle θ diminishes with an
increase in the parameter c4. When c4 ¬ 0, the band direction angle θ becomes larger with the
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Fig. 4. Variation of the band direction angle θ (a) and the critical hardening modulus H ′cr (b) with the
parameter c4 for various Kf in the case σ′2  σ′1  σ′3

increasing parameter c4 in the cases of Kf/µ = 1 and Kf/µ = 10, whereas it first decreases and
then increases with the diminishment of the parameter c4 in the case ofKf/µ = 0.1. Additionally,
the critical hardening modulus H ′cr becomes smaller with an increase in the parameter c4.
For the situation σ′3  σ′1, there also exist three cases depending on the magnitude of the

out-of-plane stress σ′2, which are defined by σ3  σ2  σ1, σ3  σ1  σ2, and σ2  σ3  σ1,
respectively. Similar to those cases for the situation σ′1  σ′3, with λ/µ = 1 and ϕ = 10

◦ the
influences of the deviation from isotropic elasticity and pore fluid compressibility on the band
direction angle at the initiation of strain localization and the corresponding critical hardening
modulus are calculated and shown in Figs. 5-7. Among these figures, Figs. 5a and 5b are for the
case σ3  σ2  σ1, Figs. 6a and 6b are for the case σ3  σ1  σ2, and Figs. 7a and 7b are for the
case σ2  σ3  σ1. It can be found from Figs. 5-7 that the effects of the deviation from isotropic
elasticity and pore fluid compressibility on the band direction angle and the critical hardening
modulus are considerable.

Fig. 5. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different Kf for the case σ′3  σ′2  σ′1

In addition, for both the situations σ′1  σ′3 and σ′3  σ′1, it can be concluded from the above
discussions that the initiation of strain localization for porous media with transversely isotropic
elasticity is delayed with the increase of pore fluid compressibility, which is consistent with the
conclusions for isotropic porous media drawn by Han and Vardoulakis (1991) and Runesson et
al. (1996). For associated plasticity, it is found from the corresponding figures that the values of
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Fig. 6. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different Kf for the case σ′3  σ′1  σ′2

Fig. 7. Relationship between the band direction angle θ (a) and the critical hardening modulus H ′cr (b)
and parameter c4 for different Kf for the case σ′2  σ′3  σ′1

the critical hardening modulus at the onset of strain localization are non-positive, which is in
agreement with the point of view proposed by Ottosen and Runesson (1991).

6. Conclusions

This study conducts an investigation on the properties of strain localization for elastic-plastic
porous media with transversely isotropic elasticity under undrained conditions. Under non-
-associated plasticity and tri-axial stress states, the conditions for localization of deformation
into a band in the incremental response of porous media are derived, in which the effects of the
deviation from isotropic elasticity and pore fluid compressibility are taken into account. The
explicit expression for the hardening modulus at the onset of strain localization are obtained.
With reference to the Mohr-Coulomb yield criterion, the effects of deviation from isotropic

elasticity and pore fluid compressibility in the formulation of strain localization for the case of
plane strain are discussed. It turns out that the properties of strain localization are dependent
upon the deviation from isotropic elasticity and pore fluid compressibility. The deviation from
isotropic elasticity and pore fluid compressibility have great impacts on the direction angle of
localized band initiation and the corresponding critical hardening modulus. In general, a larger
value of the compression modulus of pore fluid leads to a smaller value of the critical hardening
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modulus at the initiation of strain localization. In other words, the onset of strain localization
for elastic-plastic porous media with transversely isotropic elasticity is delayed with an increase
in the pore fluid compressibility. The influence of the pore fluid compressibility on the direction
angle of localized band is related to the magnitude of deviation from isotropic elasticity.
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The structural modeling and dynamic properties of a spinning beam with an unsymmetri-
cal cross section are studied. Due to the eccentricity and spinning, transverse deflections
along the two principal directions and the torsional motion about the longitudinal axis are
coupled. The structural model of the beam is established based on the Hamilton principle
and by incorporating the torsional inertia. Moreover, because of its significant influence on
characteristics for the non-circular cross-sectional beam, the warping effect is considered in
the formulation. The proposed model is effectively validated in two cases: the spinning be-
am with a symmetric cross section and the cantilevered beam with an unsymmetrical cross
section. Then the effects of the spinning speed on natural frequencies and mode shapes are
investigated. Numerical results reveal that the critical speed is altered with respect to nonco-
incidence of the centroid and the shear center. For the beams with strong warping rigidities,
the warping effect cannot be neglected due to significant influence on natural frequencies.

Keywords: spinning beam, critical speed, warping, coupled flexural-torsional vibration

1. Introduction

Spinning beams are important components of turbine blades, propellers, elastic linkages, satellite
booms and are widespread in various branches of structural engineering. Dynamic characteristics
such as natural frequencies and mode shapes of these systems are meaningful for analysis of
position accuracy, throughput, fatigue and safety. As a consequence, it is essential to accurately
establish the dynamic model of spinning beams and predict its vibration characteristics.
For the last decades, there has been a growing interest in the investigation of structural

modeling, and excellent work has been done on the dynamic analysis of spinning beams. The
fully flexural-torsional coupling model for spinning beams has been successfully established based
on the analytical method by Bishop (1959), Dimentberg (1961), Kane (1961), Newland (1972)
and Zu and Han (1992). Bishop (1959) utilized Newton’s method to derive the characteristic
equation of a bent shaft in the Euler-Bernoulli beam model and investigated the stability of
the system. Lagrangian approach (Shiau et al., 2006) and Hamilton’s principle (Yoon and Kim,
2002) were also utilized to derive the governing equations for the system. Besides, different
methods were proposed by researchers in order to solve the governing equations, i.e. assumed-
-modes method, finite element method, and dynamic stiffness method. Shiau et al. (2006) studied
the dynamic behavior of a spinning Timoshenko beam with general boundary conditions based
on the global assumed mode method. Yoon and Kim (2002) utilized the finite element method
to analyze the dynamic stability of an unconstrained spinning beam subjected to a pulsating
follower force. Banerjee and Su (2004) developed the dynamic stiffness method and the Wittrick-
-Williams algorithm was applied to compute natural frequencies and mode shapes. This method
was also used in the free vibration analysis of a spinning composite beam (Banerjee and Su,
2006).



214 J. Wang et al.

Based on the proposed methods, many researchers dealt with problems of spinning beams
subjected to different kinds of loads (Ho and Chen, 2006; Lee, 1995; Zu and Han, 1994) under
various boundary conditions (Choi et al., 2000; Zu and Melanson, 1998). Sheu and Yang (2005)
studied the dynamic response of a spinning Rayleigh beam with rotary inertia and gyroscopic
effects in general boundary conditions. The relationship between the critical speed and the
hollowness ratio and length-to-radius ratio was investigated by Sheu (2007). Ouyang and Wang
(2007) presented a dynamic model for vibration of a rotating Timoshenko beam subjected to a
three-directional load moving in the axial direction. Popplewell and Chang (1997) investigated
free vibrations of a simply supported but stepped spinning Timoshenko beam with the Galerkin
method. Ho and Chen (2006) discussed the vibration problems of a spinning axially loaded
pre-twisted Timoshenko beam. Na et al. (2006) established the model of a tapered thin-walled
composite spinning beam subjected to an axial compressive force. Moreover, dynamic stability
of spinning structures around the longitudinal axis such as a shaft or an unconstrained beam
has been widely investigated (Lee, 1996; Tylikowski, 2008). Experimental investigations on a
cantilevered spinning shaft have been reported. Qian et al. (2010) conducted a non-contact
dynamic testing of a highly flexible spinning vertical shaft.
In all of these studies, spinning beams had symmetric cross-sections and the shear center and

centroid were assumed to superpose each other. In practical applications, the cross-section of the
spinning beam can be eccentric due to errors during processing. Moreover, in some circumstances
the cross-section is intended to be eccentric to meet the requirement of the engineering. For a
beam with an arbitrary uniform cross section, the coupling of bending and torsion may occur
when the beam experiences rotating motion. Yoo and Shin (1998) studied the eigenvalue loci
veerings and mode shape variations for a rotating cantilever beam with the coupling effect
considered. Latalski et al. (2014) investigated a rotating composite beam with piezoelectric active
elements. An analysis of a rotor with several flexible blades was conducted with the spin softening
effects and the centrifugal stiffening effects considered through a pre-stressed potential (Lesaffre
et al., 2007). Sinha and Turner (2011) further researched the characteristics of a rotating pre-
twisted blade. In these studies, the direction of rotation is vertical to the longitudinal direction.
Literature focused on the analysis of a beam rotating about its longitudinal direction is few.
Filipich et al. (1987) studied the free vibration coupling of bending and torsion of a uniform
spinning beam having one axis of symmetry. Then they extended the approach to a beam having
no symmetric axis and developed a dynamic model of coupled torsional an bending deformations
(Filipich and Rosales, 1990). The model accounted for the dynamic coupling terms due to the
rotation and the eccentricity.
This paper further discusses the bending-torsion coupling effects with the warping effect

considered. Natural characteristics including natural frequencies and mode shapes with respect
to the spinning velocity and the eccentricity are investigated. And the critical spinning speed
variation is observed in the presence of coupling effects. The paper is organized as follows. In
Section 2, differential equations of the beam are formulated based on the Hamilton principle.
The formulations are built on Euler-Bernoulli beam theory with the warping effect and torsional
rigidity while neglecting the effect of shear rigidities. In Section 3, we calculate mode shape
functions and natural frequencies of the system by applying the assumed mode method. In
Section 4, the present model is validated by comparing with literature and numerically simulated
with examples. The effects of spinning speed and warping on natural frequencies, mode shapes
and critical speed are examined.

2. Governing differential equations

This Section deals with the formulation of differential equations for a spinning beam with an
arbitrary cross section based on Hamilton’s principle.



Modeling and analysis of coupled flexural-torsional spinning beams... 215

2.1. System description

A homogeneous slender beam with a uniform arbitrary cross-section is depicted in Fig. 1a.
The left end of the beam is fixed to a base which rotates about the longitudinal axis at a constant
angular velocity designated as Ω while the right end is free. When in undeformed configuration,
the longitudinal axis of the beam goes through the shear center of the cross section.

Fig. 1. Deformed configuration of a spinning beam with arbitrary cross section

Three sets of orthogonal right-handed coordinate frames are defined in order to describe the
position vector R of a differential element dM at a generic point P . The rectangular coordinate
system XY Z is fixed with the inertial frame and the origin O is placed at the shear center of
the cross-section on the clamped end. The frame xyz is a rotating frame whose origin o remains
coincident with the point O and the x axis remains parallel to the X axis. When the beam
spins, directions of the y and z axes are time-varying. The angle between the y axis and the
Y axis is represented by the symbol ϕ. The third reference frame ξηζ is the element coordinate
of the differential beam element which is attached to the shear center S of the beam section.
C represents the center of mass of the beam section and (ey, ez) denote the coordinates of C in
the frame Sηζ.
The orientations of these frames at a time during free vibration are shown in Fig. 1b. The

deformation of a differential beam element located at a distance x from the left end is defined
by spatial displacement v(x, t), w(x, t) and rotation φ(x, t) about x-axis. The v(x, t) and w(x, t)
represent lateral displacements in the y and z directions, respectively.

2.2. Equations of motion

The governing equation of the flexible beam is formulated based on the following assumptions:
(1) for the elementary case of beam flexure and torsion using the Euler-Bernoulli beam theory
with torsional inertia but not shear deformation or axial-force effects, (2) the warping effect is
considered due to the fact that the torsion induced warping occurs when the beam section is not
circular, (3) the axial displacement of the beam is neglected. Moreover, the deformation of the
beam is small and yields to the linear conditions. Physical properties of the material are elastic
and constant.
We consider the spinning beam undergoing transverse displacements and torsional motion.

Also, it is assumed that the shear center S and the center of mass C of the cross section are not
coincident. For such a beam, the position vector of a representative point after beam deformation
can be defined as

R(x) = vj+ wk+ eyj1 + ezk1 (2.1)
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where i, j and k are unit vectors in the x, y and z directions, respectively. And i1, j1 and k1 are
unit vectors in the ξ, η and ζ directions, respectively.
The velocity of the point can be obtained as follows

υ(x) = v̇j+ ẇk+Ωi× (vj+ wk) + (Ω + φ̇)i× (eyj1 + ezk1) (2.2)

The overhead dot denotes partial derivatives with respect to time t.
The kinetic energy can be simplified as

T =
1
2

L∫

0

ρA(v̇2 + ẇ2) dx+
1
2
ρJp

L∫

0

φ̇2 dx+
1
2

L∫

0

ρA[Ω2(v2 +w2)− 2Ωv̇w + 2Ωvẇ] dx

+
1
2

L∫

0

ρA[(e2y + e
2
z)φ̇
2 − 2ez v̇φ̇+ 2eyẇφ̇+ 2ezΩwφ̇+ 2eyΩvφ̇] dx

+
L∫

0

ρA[(e2y + e
2
z)Ωφ̇− ezΩv̇ + ezΩ2w + eyΩẇ + eyΩ2v] dx

+
L∫

0

ρA(−eyΩv̇φ+ eyΩ2wφ− ezΩẇφ− ezΩ2vφ) dx+
1
2

L∫

0

ρA(e2y + e
2
z)Ω
2 dx

(2.3)

The symbols ρ, E and A denote density, Young’s modulus and cross sectional area. Jp is the
polar moment of inertia and is given by

Jp =
∫∫

A

r2p dη dζ (2.4)

where rp represents the distance between a certain point in the section and the center.
The potential strain energy of the beam including the warping effect is considered as below

U =
1
2

L∫

0

E(Izv′′
2 + Iyw′′

2) dx+
1
2

L∫

0

GJpφ
′2 dx+

1
2

L∫

0

EΓφ′′
2
dx (2.5)

where G denotes the shear modulus. Iy and Iz show the second moments of area about the
z-axis and y-axis, EΓ is warping rigidity. Primes denote partial derivatives with respect to x.
For uniform beams, A, Iy, Iz, Jp and EΓ are constant throughout the span.
Then the Lagrangian function of the beam system can be expressed as

L = T − U = 1
2

L∫

0

ρA(v̇2 + ẇ2) dx+
1
2

L∫

0

ρA[Ω2(v2 + w2)− 2Ωv̇w + 2Ωvẇ] dx

+
1
2
ρJp

L∫

0

φ̇2 dx+
1
2

L∫

0

ρA(e2φ̇2 − 2ez v̇φ̇+ 2eyẇφ̇+ 2ezΩwφ̇+ 2eyΩvφ̇) dx

+
L∫

0

ρA(e2Ωφ̇− ezΩv̇ + ezΩ2w + eyΩẇ + eyΩ2v) dx

+
L∫

0

ρA(−eyΩv̇φ+ eyΩ2wφ− ezΩẇφ− ezΩ2vφ) dx+
1
2

L∫

0

ρAe2Ω2 dx

− 1
2

L∫

0

E(Izv′′
2 + Iyw′′

2) dx− 1
2

L∫

0

GJpφ
′2 dx− 1

2

L∫

0

EΓφ′′
2
dx

(2.6)
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Using Hamilton’s principle, the dynamic model of the system can be obtained

EIz
∂4v

∂x4
+ ρA(v̈ −Ω2v − 2Ωẇ − ezφ̈− 2Ωeyφ̇+ ezΩ2φ) = ρAexΩ2

EIy
∂4w

∂x4
+ ρA(ẅ −Ω2w + 2Ωv̇ + eyφ̈− 2Ωezφ̇− eyΩ2φ) = ρAezΩ2

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ (ρAe2 + ρJp)φ̈+ ρAey(2Ωv̇ + ẅ −Ω2w)

+ ρAez(−v̈ +Ω2v + 2Ωẇ) = 0

(2.7)

When skipping the eccentricity of the cross section, Eq. (2.7) has the following form

EIz
∂4v

∂x4
+ ρA(v̈ −Ω2v − 2Ωẇ) = 0 EIy

∂4w

∂x4
+ ρA(ẅ −Ω2w + 2Ωv̇) = 0

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ ρJpφ̈ = 0

(2.8)

The first two equations in Eq. (2.8) are fully consistent with the results by Banerjee and Su
(2004). Also, it can be concluded that the eccentricity induces the coupling between transverse
deformations and torsional motion.
When skipping the spinning, Eq. (2.7) has the following form, which is consistent with the

results by Tanaka and Bercin (1999)

EIz
∂4v

∂x4
+ ρA(v̈ − ezφ̈) = 0 EIy

∂4w

∂x4
+ ρA(ẅ + eyφ̈) = 0

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ (ρAe2 + ρJp)φ̈+ ρA(−ez v̈ + eyẅ) = 0

(2.9)

It is obvious that the coupling between v and w takes place due to spinning.

3. Mode shape and frequency equation

For a free homogeneous vibration problem, a sinusoidal oscillation is assumed

v(x, t) = V (x)ejωt w(x, t) =W (x)ejωt φ(x, t) = Φ(x)ejωt j =
√
−1
(3.1)

where ω is the circular frequency of oscillation, V , W and Φ are amplitudes of v, w and φ,
respectively. Substituting Eq. (3.1) into differential equation (2.7) leads to

EIz
ρA

V (4) − (ω2 +Ω2)V − 2jωΩW + ez(ω2 +Ω2)Φ− 2jωΩeyΦ = 0

EIy
ρA

W (4) − (ω2 +Ω2)W + 2jωΩV − ey(ω2 +Ω2)Φ− 2jωΩezΦ = 0

EΓ

ρA
Φ(4) − GJp

ρA
Φ′′ −

(
e2 +

Jp
A

)
ω2Φ+ (ω2 +Ω2)(ezV − eyW ) + 2jωΩ(eyV + ezW ) = 0

(3.2)

For convenience, we consider a beam with a monosymmetric cross-section with the symmetry
axis y. The centroid C is on the axis y and the scalar ez is equal to zero. Then Eq. (3.2) can be
simplified as
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EIz
ρA

V (4) − (ω2 +Ω2)V − 2jωΩW − 2jωΩeyΦ = 0

EIy
ρA

W (4) − (ω2 +Ω2)W + 2jωΩV − ey(ω2 +Ω2)Φ = 0

EΓ

ρA
Φ(4) − GJp

ρA
Φ′′ −

(
e2y +

Jp
A

)
ω2Φ+ 2jωΩeyV − ey(ω2 +Ω2)W = 0

(3.3)

Then introducing the differential operator D and subsequent variables as follows

D =
d

dx
L11 =

EIz
ρA

D4 − (ω2 +Ω2)

L12 = −2jωΩ L13 = −2jωΩey

L21 = 2jωΩ L22 =
EIy
ρA

D4 − (ω2 +Ω2)

L23 = −ey(ω2 +Ω2) L31 = 2jωΩey

L32 = −ey(ω2 +Ω2) L33 =
EΓ

ρA
D4 − GJp

ρA
D2 −

(
e2y +

Jp
A

)
ω2

(3.4)

It can be seen that Y , Z and Ψ satisfy the equation

∆



V
W
Φ


 = 0 (3.5)

where

∆ =



L11 L12 L13
L21 L22 L23
L31 L32 L33


 (3.6)

Introducing

κ1 =
ρA

EIz
κ2 =

ρA

EIy
κ3 =

ρA

EΓ

κ4 =
GJp
EΓ

κ5 =
(
e2y +

Jp
A

)
κ6 = ω2 +Ω2

(3.7)

and setting the determinant of differential operator matrix (3.6) equal to zero leads to the
following twelvth order differential equation:

(D4 − κ6κ1)[(D4 − κ6κ2)(D4 − κ4D2 − κ3κ5ω2)− e2yκ2κ3κ26]
− 4ω2Ω2κ1κ2[(D4 − κ4D2 − κ3κ5ω2) + e2yκ3κ6] + 4ω2Ω2e2yκ1κ3D4 = 0

(3.8)

The solution to the above equation can be expressed in an exponential form

R(x) = erx (3.9)

Specifying s = r2, then substituting Eq. (3.9) into (3.8), the following characteristic equation
can be obtained

s6 − κ4s5 − (κ3κ5ω2 + κ2κ6 + κ1κ6)s4 + (κ2κ4κ6 + κ1κ4κ6)s3

+ (κ1κ2κ26 − 4κ1κ2ω2Ω2 − κ2κ3κ26e2y − 4κ1κ3e2yω2Ω2 + κ1κ3κ5κ6ω2

+ κ2κ3κ5κ6ω2)s2 + κ1κ2κ4(4ω2Ω2 − κ26)s− κ1κ2κ3(κ5κ26ω2 − κ36e2y
+ 4κ6e2yω

2Ω2 − 4κ5ω4Ω2) = 0

(3.10)
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s1-s6 are solutions to Eq. (3.10). The twelve roots of Eq. (3.8) can be written as

±ri ri = j
√
si i = 1, 2, . . . , 6 (3.11)

Then the general solutions of V , W and Φ are expressed as

V (x) = A1 cosh r1x+A2 sinh r1x+A3 cosh r2x+A4 sinh r2x+A5 cosh r3x+A6 sinh r3x

+A7 cos r4x+A8 sin r4x+A9 cos r5x+A10 sin r5x+A11 cos r6x+A12 sin r6x

W (x) = B1 cosh r1x+B2 sinh r1x+B3 cosh r2x+B4 sinh r2x+B5 cosh r3x+B6 sinh r3x

+B7 cos r4x+B8 sin r4x+B9 cos r5x+B10 sin r5x+B11 cos r6x+B12 sin r6x

Φ(x) = C1 cosh r1x+ C2 sinh r1x+ C3 cosh r2x+ C4 sinh r2x+ C5 cosh r3x+ C6 sinh r3x

+ C7 cos r4x+ C8 sin r4x+ C9 cos r5x+ C10 sin r5x+ C11 cos r6x+ C12 sin r6x

(3.12)

where Ai, Bi and Ci (i = 1-12) are three different sets of constants.
Substituting Eq. (3.12) into Eq. (3.2), relations between Ai, Bi and Ci can be derived

B1 = p1A1 B2 = p1A2 B3 = p2A3 B4 = p2A4
B5 = p3A5 B6 = p3A6 B7 = p4A7 B8 = p4A8
B9 = p5A9 B10 = p5A10 B11 = p6A11 B12 = p6A12
C1 = q1A1 C2 = q1A2 C3 = q2A3 C4 = q2A4
C5 = q3A5 C6 = q3A6 C7 = q4A7 C8 = q4A8
C9 = q5A9 C10 = q5A10 C11 = q6A11 C12 = q6A12

(3.13)

where

pi =
κ2κ6
2jωr4iΩ

( 1
κ1
r4i − κ6 +

4ω2Ω2

κ6

)
i = 1, 2, . . . , 6

qi =





κ2κ
2
6e(
1
κ1
r4i − κ6 +

4ω2Ω2

κ6

)
+ 4eyω2Ω2r4i

2jωr4iΩ
( 1
κ3
r4i −

κ4
κ3
r2i − κ5ω2

) i = 1, 2, 3

κ2κ
2
6e
( 1
κ1
r4i − κ6 +

4ω2Ω2

κ6

)
+ 4eyω2Ω2r4i

2jωr4iΩ
( 1
κ3
r4i +

κ4
κ3
r2i − κ5ω2

) i = 4, 5, 6

(3.14)

The constants A1-A12 can be determined from the boundary conditions. For a clamped-free
beam, the boundaries are as follows

clamped end (x = 0) : V = 0, V ′ = 0,W = 0,W ′ = 0, Φ = 0, Φ′ = 0

free end (x = L) : V ′′ = 0, V ′′′ = 0,W ′′ = 0,W ′′′ = 0, κ4Φ′ − Φ′′′ = 0, Φ′′ = 0
(3.15)

Using boundary condition (3.15), a set of twelve homogeneous equations in terms of the
constants A1-A12 will be generated. The natural frequencies ω can be numerically solved by
setting the determinant of the coefficient matrix of A1-A12 to be equal to zero.

4. Numerical applications and results

In this Section, firstly some limiting cases are examined to validate the model presented he-
re. Secondly, the dynamic characteristics of the beam with unsymmetrical cross sections are
investigated using the proposed method.



220 J. Wang et al.

4.1. Validation

The example for validating is taken from literature (Banerjee and Su, 2004). The beam has
a rectangular cross section and possesses equal flexural rigidities in the two principal directions
of the cross section. The properties are given by: EIyy = 582.996 Nm2, EIzz = 582.996 Nm2,
ρA = 2.87 kg/m, L = 1.29m.
The non-dimensional natural frequency and the spinning speed parameter are defined as in

literature (Banerjee and Su, 2004)

ω∗i =
ωi
ω0

Ω∗ =
Ω

ω0
(4.1)

where

ω0 =

√√
EIyyEIzz
ρAL4

(4.2)

Comparison of the first three natural frequencies in the current study with those given in
published literature is listed in Table 1. Both examples apply to cantilever end conditions, and
the effect of warping stiffness is excluded in the analysis. It is concluded that the resulting
frequencies are in good agreement with the one given in the previous work. Because EIyy equals
EIzz in this example, the natural frequency parameters of the first two modes are equal when
the spinning speed parameter is zero.

Table 1. Natural frequencies of the spinning beam: (1) Banerjee and Su (2004), (2) present
method

Spinning Natural frequency parameters (ω∗i )
speed ω∗1 ω∗2 ω∗3

parameter (Ω∗) (1) (2) (1) (2) (1) (2)

0 3.516 3.516 3.516 3.516 22.034 22.034
2 1.516 1.516 5.516 5.516 24.034 24.034
3.5 0 0 7.016 7.016 25.534 25.534
4 – – 7.516 7.516 26.034 26.034

Then, to investigate characteristics of the beam with unsymmetrical cross section, two uni-
form beams with a semi-circular open cross section and with a channel cross section showed in
Fig. 2, are considered. Physical properties of the beams for validation are derived from (Bercin
and Tanaka, 1997), as shown in Table 2.

Fig. 2. The cross sections of the two beams studied

The first seven natural frequencies for the beams given in Fig. 2 are obtained by including
and excluding the effect of warping stiffness when the spinning speed is zero, and compared
with the results by Bercin and Tanaka (1997), as shown in Table 3. It is observed that when
the effect of warping is neglected, the errors associated with it become increasingly large as the
modal index increases.
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Table 2. Physical properties of the beams studied

Parameters Example I Example II

EIy [Nm2] 6380 1.436 · 105
EIz [Nm2] 2702 2.367 · 105
GJ [N] 43.46 346.71

EΓ [Nm4] 0.10473 536.51
ρ [kg/m3] 2712 2712
A [m2] 3.08 · 10−4 1.57 · 10−3
L [m] 0.82 2.7
e [m] 0.0155 0.0735

Table 3. Natural frequencies [Hz] of the beam: (1) Bercin and Tanaka (1997); (2) present
approach including warping; (3) present approach excluding warping

Modal Example I Example II
index (1) (2) (3) (1) (2) (3)

1 63.79 63.79 62.65 11.03 11.02 8.332
2 137.7 137.7 130.4 – 18.10 18.10
3 – 149.7 149.7 39.02 39.02 23.92
4 278.4 278.4 261.5 58.19 58.20 36.74
5 484.8 484.8 422.5 – 113.4 47.42
6 663.8 663.8 613.3 152.4 152.4 67.41
7 – 768.4 656.3 209.4 209.4 86.64

4.2. Spinning speed

To examine the effect of the spinning speed on natural frequencies of the beam with an
unsymmetrical cross section, various values with the interval [0, 4] for the spinning speed pa-
rameter are considered for Example I and Example II, and the corresponding frequencies are
presented in Tables 4 and 5.

Table 4. Natural frequencies of Example I versus the spinning speed parameter

Spinning speed Natural frequency parameters (ω∗i )
parameter (Ω∗) ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 ω∗6

0 2.149 4.639 5.044 9.378 16.333 22.365
1 1.783 4.607 5.453 9.355 16.319 22.340
2 0.760 4.729 6.235 9.287 16.278 22.268
2.25 0 4.783 6.453 9.262 16.264 22.244
3 – 4.988 7.132 9.174 16.212 22.163
4 – 5.327 8.069 9.027 16.122 22.043

It is found that the spinning speed alters the natural frequencies, especially at the lower
vibration modes. With an increase of the spinning speed, the coupling between y-axial and
z-axial deformations becomes larger, which is demonstrated in Eq. (3.3). Therefore, mode shapes
of the system change due to larger coupling and natural frequencies vary correspondingly. Mostly,
as the modal index rises, the effect of spinning speed on natural frequencies weakens since
the motion amplitudes become smaller with an increasing frequency, which corresponds to an
insignificant change in the reference kinetic energy.
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Table 5. Natural frequencies of Example II versus the spinning speed parameter

Spinning speed Natural frequency parameters (ω∗i )
parameter (Ω∗) ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 ω∗6

0 2.426 3.984 8.587 12.809 24.966 33.541
1 1.943 4.461 8.737 12.741 25.038 33.517
2 1.024 5.335 9.166 12.547 25.249 33.448
2.63 0 5.937 9.553 12.372 25.449 33.380
3 – 6.300 9.811 12.255 25.588 33.332
4 – 7.303 10.532 11.971 26.038 33.171

Figures 3a and 3b show variations of the first four non-dimensional natural frequencies with
respect to the spinning speed parameter. Because of the large difference between the bending
rigidities in the two principal planes, the natural frequencies start off with different values. The
fundamental frequencies of both examples decrease with the increasing spinning speed while the
others decrease or increase. At a certain spinning speed, which is defined as the critical speed,
the first natural frequency becomes negative, resulting in instability. For the spinning beam
with circular or rectangular cross-section, the natural frequencies are obtained by subtracting or
adding the natural frequencies when Ω∗ = 0 to the spinning speed parameter (Banerjee and Su,
2004). So the value of the critical spinning speed when the beam becomes unstable equals to the
first frequency of the beam with Ω∗ = 0. For the spinning beam with an unsymmetrical cross-
section, the noncoincidence of mass center and shear center induces coupled flexural-torsional
modes and alters the critical speed. Both values of the critical speed are larger than the first
frequencies for the examples studied.

Fig. 3. Natural frequencies versus the spinning speed for (a) Example I, (b) Example II

4.3. Warping effect

The relative errors of natural frequencies due to the warping effect are discussed in this
Section. Figures 4a and 4b show changes of natural frequencies with respect to the spinning
speed with inclusion and exclusion of the warping for Example I and II, respectively.
It is evident that the inclusion of the warping effect increases the natural frequencies. And

when the warping effect is neglected, the errors associated with it become increasingly larger as
the modal index increases. Additionally, errors in Example II are more severe than in Example I.
This is because the proportion of warping rigidity to bending rigidity in Example II is larger
than that in Example I. It is also observed that the exclusion of warping makes the critical speed
decrease.
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Fig. 4. Natural frequencies versus the spinning speed for (a) Example I, (b) Example II

Fig. 5. Mode shapes in Example I with the speed parameter for Ω∗ = 0

4.4. Mode shapes

The first four normalized modal shape functions in Example I are illustrated in Figs. 5 and 6.
It is concluded that in any case, the transverse deflection along the z-axis and torsional motion
about the x-axis are coupled. The first two modes are coupled vibration modes of z-axial bending
and x-axial torsion, while the third mode is the y-axial bending mode. When the spinning speed
parameter is set to 2.0, all the modes become strongly coupled. Moreover, the speed has caused
significant changes to the relative amplitudes between the z-axial displacement and x-axial
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torsional angle, especially for lower modes. The beams with unsymmetrical cross-sections show
different characteristics compared with symmetric cross-sectional beams, for which the effects
of spinning speed on mode shapes are marginal, as declared by Banerjee and Su (2004).

Fig. 6. Mode shapes in Example I with the speed parameter for Ω∗ = 2

5. Conclusions

This paper presents dynamic analysis of a spinning beam with an unsymmetrical cross section.
The governing equations are formulated based on the Euler-Bernoulli beam theory and the
Hamilton principle, and then natural frequencies and mode shapes are derived by the assumed
mode method. Effects of the spinning speed and warping on natural frequencies are investigated.
Numerical simulations are conducted in order to validate the present method and some main
conclusions are derived as follows.
The noncoincidence of centroid and shear center of the unsymmetrical cross section induces

the coupling of transverse deflection and torsional motion. The spinning speed induces coupling
between transverse deflections along two orthogonal axes. The value of the spinning speed is
critical to natural frequencies of the system. The mode shapes are notably changed due to the
spinning speed which is different compared to the beam with the symmetric cross section. Also
the critical speed increases for the spinning beam with unsymmetrical cross sections. It has also
shown that the warping effect has a significant influence on the natural frequencies. Moreover,
the effects of warping on the natural frequencies become increasingly large when the proportion
of warping rigidity to bending rigidity is notable.
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A new mechanism, an elastically coupled tri-rotor system, is proposed to implement synchro-
nization. It is composed of a rigid body, three induction motors, coupling unit and springs.
According to the Lagrange equation, the model of the system is established. The average
method of small parameters is applied to study the synchronization characteristics of the
system, therefore, the balance equation and stability criterion of the system can be obta-
ined. Obviously, many parameters affect the synchronous state of the rotors, especially the
spring stiffness, the stiffness of the coupling unit and the installation location of the system.
Finally, computer simulations are used to verify the correctness of theoretical analysis.

Keywords: tri-rotor, synchronization characteristics, stability, computer simulations

1. Introduction

The synchronization phenomenon is common in nature. General definitions of synchronization
were presented by Blekhman et al. (1997, 2002). The synchronization phenomenon is conside-
red as an adjustment of rhythms of oscillating objects due to their internal weak couplings.
Dutch scholar Huygens was first to discover the synchronization phenomenon, the synchronous
motion of a pendulum hanging on the common base in 1665 (Huygens, 1673). In 1960s, Blekh-
man proposed the synchronization theory of vibrating machines with two or multiple exciters
and successfully solved many engineering problems related to self-synchronization (Blekhman,
1998; Blekhman et al., 1997). Many fields, such as the modeling of nonlinear dynamics, co-
upling pendulums, mechanical rotors, have attracted attention of reserchers. In dynamics of
coupled pendulums and rotors, Blekhman proposed the Poincaré method for the synchroniza-
tion state and stability. Now it is a method widely used in engineering (Jovanovic and Koskhin,
2012). Based on Blekhman’s method, many scientists have developed other methods to analyze
synchronization of rotors (Blekhman, 1988). Koluda et al. (2014a,b) derived synchronization
conditions and explained observed types of synchronization for coupled double pendula. They
used an energy balance method to show how the energy is transferred between the pendula via
an oscillating beam. For synchronization of mechanical rotors, Zhao et al. (2010) and Zhang
et al. (2012) proposed an average method of modified small parameters, which was applied to
study of synchronous multiple unbalanced rotors (Zhang et al., 2013). Hou (2007) studied the
synchronism theory of three motors using the Hamilton principle. Balthazar (2004) and Baltha-
zar et al. (2005) described self-synchronization of two and four non-ideal rotating unbalanced
motors via numerical simulations. For synchronization and modeling of nonlinear dynamics, a
mechanism of interaction between two non-linear dissipative oscillators was presented by Rui
(2014). Two pendulums coupled with a weak spring were proposed by Blekhman (1988). Kumon
et al. (2002) showed the synchronization phenomenon by designing the controller with applying
speed the Gradient Energy method. Fradkov and Andrievsky (2007) focused on the study of
phase relations between coupled oscillators.
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However, for synchronization of three non-identical coupled exciters, the phase difference
of co-rotating motors stabilizes around 120◦ (Zhang et al., 2013). This results in a weakened
amplitude of the center of mass. In order to improve vibration amplitude and screening efficiency
of the system, three rotors coupled with a weak spring are proposed in this paper. To explore
coupling characteristics of the system, synchronization conditions and the synchronous stability
criterion of the system are derived with the Poincaré method. Finally, computer simulations
are implemented to verify the results of theoretical analysis. It is demonstrated that the spring
stiffness, the coupling spring and the installation location plays a significant role in the vibration
system.
This paper is organized as follows. The analysis strategy and considered model are described

in Section 2. In Section 3, the synchronization condition and the synchronization stability crite-
rion are obtained. In Section 4, the results of numerical simulations and results of the computer
simulations are presented, which validate correctness of the theoretical model of the vibration
system. Finally, the results are summarized in Section 5.

2. Model description

2.1. Strategy

The equations of motion for the considered rotation system are as follows (Fang et al., 2015)

Jsϕs = µΦs(ϕs, ẍ) s = 1, . . . , k

ẍ+ 2ωxξxẋ+ ω2xx =
k∑

j=1

Fj(ωt, α1, . . . , αk) + µFk+1(ωt, α1, . . . , αk)
(2.1)

where µΦs = Tms − Tfs, µ is the small parameter, Js is the rotational inertia of s-th induction
motor, Tms is the driving torque of the induction motors, Tfs is the mechanical damping torque
of the induction motors, ξx and ωx are the damping coefficient and the natural frequency of
the system in the x-direction, ω and ϕs are mechanical velocity and rotation angles of the s-th
unbalanced rotor.
In the synchronous state, the velocity of the rotors is assumed as ω. Steady forced vibrations

with T = 2π/ω are determined by

x = x(ωt, α1, . . . , αk) (2.2)

Considering that the rotors are uniformly rotating with an initial phase α1, . . . , αk, then the
phase angle of rotors should satisfy the synchronous solutions from the second formula Eq. (2.2)

ϕs = ϕ0s = ωt+ αs (2.3)

The above-mentioned basic equation may be satisfied with such values of constants α1, . . . , αk

Ps(α1, . . . , αk) = µ〈Φs(ϕs(ϕs, ẍ))〉 = 0 (2.4)

Here, the angle brackets 〈∗〉 show the average value for one period by the variable t, and the
symbol ∗ represents a function related to time t

〈∗〉 = 1
T

T∫

0

∗ dt (2.5)
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If a certain set of constants α1, . . . , αk is satisfied by Eq. (2.4), all the roots χ of the algebraic
equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂(P1 − Pk)
∂α1

− χ ∂(P1 − Pk)
∂α2

. . .
∂(P1 − Pk)
∂αk−1

∂(P2 − Pk)
∂α1

∂(P2 − Pk)
∂α2

− χ . . .
∂(P2 − Pk)
∂αk−1

. . . . . . . . . . . .
∂(Pk−1 − Pk)

∂α1

∂(Pk−1 − Pk)
∂α2

. . .
∂(Pk−1 − Pk)

∂αk−1
− χ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (2.6)

would have negative real parts, then unique constant values α1, α2, . . . , αk are determined when
the parameter µ is sufficiently small. Meanwhile, there exists an asymptotic periodic solution to
Eq. (2.1). Only a single root have a positive real part, and the corresponding solution is unstable.
For zero or imaginary roots, additional analysis would further be explored (Blekhman, 1998).

2.2. Kinematic equation of the vibrating system

The model of the vibration system is shown in Fig. 1. The system is mainly composed of
three induction motors, coupling unit, crossbeam, screen frame, motor seat. And two motors
rotate in the same direction connected with the coupling unit, which consists of a connecting
rod, chutes, coupling springs and slide blocks. The chute, linked to the end of the connecting rod
by welding, should be mutually parallel. The slide blocks and the coupling springs are installed
in the chutes. Besides, the stiffness of the connecting rod is bigger than the coupling springs,
and the connecting rod has smaller density. The cross-section area of the connecting rod changes
with stiffness of the simplified spring.

Fig. 1. The model of an elastically coupled tri-rotor system

Figure 2 describes the dynamical model of the considered model. The exciters mi

(i = 1, 2, 3) are installed in the screen frame. The rigid vibro-body m0 is supported on an
elastic foundation by some stronger stiffness springs kx, ky, kψ in x-, y-, ψ-directions. The foun-
dation is characterized by damping constants Cx, Cy, Cψ. The elastic coupling unit is simplified
as a linear spring k, and the distance between the point of connecting of the springs and the mo-
tors axles is assumed to be a. As illustrated in Fig. 2b, the mass centers of the rigid vibro-body
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is the point o. Three reference coordinate system of the vibration system is designed as follows:
the non-rotating moving frame o′x′y′ is always parallel to the fixed coordinate frame oxy in
the x- and y-directions, and the moving frame o′x′′y′′ swings around the point o′. The exciters
also rotate around their own spin axes, which are denoted by ϕi (i = 1, 2, 3). M is mass of the
system, and the installation angle of the motor is expressed by βi (i = 1, 2, 3). The responses
x, y and the angular rotation ψ are considered as independent coordinates.

Fig. 2. Simplified model: (a) dynamic model of three rotors coupled with a weak spring, (b) the
reference frame system

The expressions for the kinetic energy of the system can be written as follows

T =
1
2
m0
{
[ẋ− ℓ0ψ̇ sin(β0 + ψ + π)]2 + [ẏ + ℓ0ψ̇ cos(β0 + ψ + π)]2

}
+
1
2

3∑

i=1

Jiϕ̇
2
i

+
1
2

2∑

i=1

mi

{
[ẋ− ℓiψ̇ sin(βi + ψ) + riϕ̇i sinϕi]2

+ [ẏ + ℓiψ̇ cos(βi + ψ) + riϕ̇i cosϕi]2
}
+
1
2
m3
{
[ẋ− ℓ3ψ̇ sin(β3 + ψ)− r3ϕ̇3 sinϕ3]2

+ [ẏ + ℓ3ψ̇ cos(β3 + ψ) + r3ϕ̇3 cosϕ3]2
}
+
1
2
J0ψ̇

2

(2.7)

Moreover, considering that the distance of the co-rotating induction motors is r, and assu-
ming that the ratio (a/r ≪ 1) is infinitesimally small, the elongation of the coupled spring can
be obtained

∆ℓ = ℓ− ℓ0 ≈ a(cosϕ1 − cosϕ2) (2.8)

And the potential energy of the system can be written as

V =
1
2
kxx
2 +
1
2
kyy
2 +
1
2
kψψ

2 +
1
2
∆ℓ2 (2.9)

In addition, the viscous dissipation function of the vibration system can be expressed as

D =
1
2
Cxẋ

2 +
1
2
Cyẏ

2 +
1
2
Cψψ̇

2 +
1
2
C1ϕ̇

2
1 +
1
2
C2ϕ̇

2
2 +
1
2
C3ϕ̇

2
3 (2.10)
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The dynamics equation of the system can be obtained according to Lagrange’s equation

d

dt

∂(T − V )
∂q̇i

− ∂(T − V )
∂qi

+
∂D

∂qi
= Qi (2.11)

If q = [x, y, ψ, ϕ1, ϕ2, ϕ3]T is chosen as the generalized coordinates, the generalized forces are
Qx = Qy = Qψ = 0, Qϕi = Tmi − Tfi. It can be seen that mi ≪ m0 and ψ ≪ 1 in the
system, and the inertia coupling from asymmetry of the system can be neglected. Considering
M =

∑3
i=1mi +m0, m1 = m2, r1 = r2, the kinetic equation of the vibration system is derived

as

Mẍ+Cxẋ+ kxx = m3r3(ϕ̈3 sinϕ3 + ϕ̇23 cosϕ3)−
2∑

i=1

miri(ϕ̈i sinϕi + ϕ̇2i cosϕi)

Mÿ + Cy ẏ + kyy = m3r3(ϕ̇23 sinϕ3 − ϕ̈3 cosϕ3) +
2∑

i=1

miri(ϕ̇2i sinϕi − ϕ̈i cosϕi)

Jψ̈ + Cψψ̇ + kψψ =
2∑

i=1

miℓiri[ϕ̇2i sin(ϕi + βi + ψ)− ϕ̈i cos(ϕi + βi + ψ)]

+m3r3ℓ3[ϕ̇23 sin(ϕ3 − β3 − ψ)− ϕ̈3 cos(ϕ3 − β3 − ψ)]
+ C3(ϕ̇3 − ψ̇)− C1(ϕ̇1 + ψ̇)− C2(ϕ̇2 + ψ̇)

Jo1ϕ̈1 = Tm1 − Tf1 − C1(ϕ̇1 + ψ̇)−m1r1[ẍ sinϕ1 + ÿ cosϕ1]
+m1r1ℓ1[ψ̇2 sin(ϕ1 + β1 + ψ)− ψ̈ cos(ϕ1 + β1 + ψ)]− ka2(cosϕ2 − sinϕ1) sinϕ1

Jo2ϕ̈2 = Tm2 − Tf2 − C2(ϕ̇2 + ψ̇)−m2r2[ẍ sinϕ2 + ÿ cosϕ2]
+m2r2ℓ2[ψ̇2 sin(ϕ2 + β2 + ψ)− ψ̈ cos(ϕ2 + β2 + ψ)]− ka2(cosϕ1 − sinϕ2) sinϕ2

J03ϕ̈3 = Tm3 − Tf3 − C3(ϕ̇3 − ψ̇) +m3r3[ẍ sinϕ3 − ÿ cosϕ3]
+m3r3ℓ3[−ψ̇2 sin(ϕ3 − β3 − ψ)− ψ̈ cos(ϕ3 − β3 − ψ)]

(2.12)

3. Criterion of synchronization and stability of synchronous states

3.1. Method description

According to the Poincaré method (i.e., based on fundamental Eq. (2.1)), introducing the
small parameter µ into Eq. (2.12), the influence of the small parameter can be ignored, then a
new form of Eq. (2.12) is given

Mẍ+ kxx = m3r3(ϕ̈3 sinϕ3 + ϕ̇23 cosϕ3)−
2∑

i=1

miri(ϕ̈i sinϕi + ϕ2i cosϕi)

Mÿ + kyy = m3r3(ϕ̇23 sinϕ3 − ϕ̈3 cosϕ3) +
2∑

i=1

miri(ϕ̇2i sinϕi − ϕ̈i cosϕi)

Jψ̈ + kψψ =
2∑

i=1

miℓiri[ϕ̇2i sin(ϕi + βi + ψ)− ϕ̈i cos(ϕi + βi + ψ)]

+m3r3ℓ3[ϕ̇23 sin(ϕ3 − β3 − ψ)− ϕ̈3 cos(ϕ3 − β3 − ψ)] +C3ϕ̇3 − C1ϕ̇1 − C2ϕ̇2
Jo1φ̈1 = µφ1 Jo2φ̈2 = µφ2 J03φ̈3 = µφ3

(3.1)
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where

µφ1 = Tm1 − Tf1 −m1r1[ẍ sinϕ1 + ÿ cosϕ1]
+m1r1ℓ1[ψ̇2 sin(ϕ1 + β1 + ψ)− ψ̈ cos(ϕ1 + β1 + ψ)] − ka2(cosϕ2 − sinϕ1) sinϕ1

µφ2 = Tm2 − Tf2 −m2r2[ẍ sinϕ2 + ÿ cosϕ2]
+m2r2ℓ2[ψ̇2 sin(ϕ2 + β2 + ψ)− ψ̈ cos(ϕ2 + β2 + ψ)] − ka2(cosϕ1 − sinϕ2) sinϕ2

µφ3 = Tm3 − Tf3 +m3r3[ẍ sinϕ3 − ÿ cosϕ3]
+m3r3ℓ3[−ψ̇2 sin(ϕ3 − β3 − ψ)− ψ̈ cos(ϕ3 − β3 − ψ)]

(3.2)

Solving Eq. (3.1), the steady responses in the x-, y- and ψ-directions are obtained

x = a3 cosϕ3 − a1 cosϕ1 − a2 cosϕ2
y = b1 sinϕ1 + b2 sinϕ2 + b3 sinϕ3
ψ = c1 sin(ϕ1 + β1) + c2 sin(ϕ2 + β2) + c3 sin(ϕ3 + β3)

(3.3)

where

αi =
miriϕ̇

2
i

kx −Mϕ̇2i
bi =

miriϕ̇
2
i

ky −Mϕ̇2i
ci =

miriϕ̇
2
i ℓi

kψ − Jϕ̇2i
i = 1, 2, 3 (3.4)

Here, introducing the following dimensionless parameters, the standard mass m is defined, and
the natural frequencies are denoted by ωx, ωy, ωϕ in the x-, y-, ψ-direction, respectively.

η1 =
m1
m

η2 =
m2
m

η3 =
m3
m

rm = m
M re =

m

J

ωx =
√
kx
M

ωy =
√
ky
M

ωψ =
√
kψ
J

σ =
re
rm

ρ =
r3
r1

λ1 =
ω2m

ω2m − ω2x
λ2 =

ω2m
ω2m − ω2y

λ3 =
ω2m

ω2m − ω2ψ

(3.5)

Consequently, basic Eq. (3.3) will be written as

x = rmλ1(η1r1 cosϕ1 + η2r2 cosϕ2 − η3r3 cosϕ3)
y = −rmλ2(η1r1 sinϕ1 + η2r2 sinϕ2 + η3r3 sinϕ3)
ψ = −reλ3[η1r1 sin(ϕ1 + β1) + η2r2 sin(ϕ2 + β2) + η3r3 sin(ϕ3 − β3)]

(3.6)

3.2. Synchronization criterion

Theoretical derivation of the synchronization condition is discussed in this Section. Assume
that αi, ϕi are the initial phase and phase angle of the unbalanced rotor i, respectively. The
solution mentioned above is corresponding with Eq. (2.3)

ϕ1 = ωt+ α1 ϕ2 = ωt+ α2 ϕ3 = ωt+ α3 (3.7)
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According to Eq. (2.4), substituting Eq. (3.7) into Eq.(3.2), Pi can be calculated

P1 = 〈µφ1〉 = Tm1 − Tf1 −
1
2
m1rmr1ω

2[η2r2(λ1 + λ2) sin(α2 − α1)

+ η3r3(λ2 − λ1) sin(α3 − α1)]−
1
2
m1r1ℓ1reλ3ω

2[η2r2 sin(α2 − α1 + β2 − β1)

+ η3r3 sin(α3 − α1 − β3 − β1)] +
1
2
ka2[sin(α2 − α1) + 1] = 0

P2 = 〈µφ2〉 = Tm2 − Tf2 −
1
2
m2rmr2ω

2[−η1r1(λ1 + λ2) sin(α2 − α1)

+ η3r3(λ1 − λ2) sin(α2 − α3)]−
1
2
m2r2ℓ2reλ3ω

2[η1r1 sin(α1 − α2 + β1 − β2)

+ η3r3 sin(α3 − α2 − β3 − β2)] +
1
2
ka2[− sin(α2 − α1) + 1] = 0

P3 = 〈µφ3〉 = Tm3 − Tf3 +
1
2
m3rmr3ω

2[η1r1(λ1 − λ2) sin(α1 − α3)

+ η2r2(λ1 − λ2) sin(α2 − α3)]

− 1
2
m3r3ℓ3reλ3ω

2[η1r1 sin(α1 − α3 + β1 + β3) + η2r2 sin(α2 − α3 + β2 + β3)] = 0

(3.8)

When the angular velocity of the tri-rotors is near to the synchronous velocity ωm, the excessive
torque Zs(ω) of the rotors is equal to zero in the synchronization state

Zi(ω) = Tmi − Tfi = 0 i = 1, 2, 3 (3.9)

The balance equation of synchronization of the vibrating system can be expressed as

µ1[sin(α3 − α1) + sin(α3 − α2)] + µ2 sin(α2 − α1 + β2 − β1)
+ µ3 sin(α3 − α1 − β3 − β1) + µ4 sin(α3 − α2 − β3 − β2)− µ7 = 0

µ5[sin(α1 − α3) + sin(α2 − α3)] + µ6[sin(α3 − α1 − β1 − β3)
+ sin(α3 − α2 − β2 − β3)] = 0

(3.10)

where

µ1 = η1η3ρ(λ2 − λ1) µ2 = η1η2σλ3(ℓ1 − ℓ2) µ3 = η1η3ℓ1σρλ3
µ4 = η2η3ℓ2σρλ3 µ5 = λ1 − λ2 µ6 = ℓ3σλ3

µ7 =
2ka2

m0r21rmω
2

(3.11)

3.3. Stability criterion of synchronization states

Introduce now new parameters A, B, C, D, i.e:

A =
∂(P1 − P3)

∂α1
B =

∂(P2 − P3)
∂α2

C =
∂(P2 − P3)

∂α1
D =

∂(P2 − P3)
∂α2
(3.12)

According to Eq.(2.6), the stability criterion of synchronization of the system can be expressed
as

A+B < 0 (3.13)



234 Y. Hou et al.

Inserting Eq. (3.8) and Eq. (3.12) into Eq. (3.13), the stability criterion of synchronization states
can be simplified as

2µ8 cos(α2 − α1) + 2µ1[cos(α3 − ϕ1) + cos(α2 − α3)] + µ9 cos(α2 − α1 + β2 − β1)
+ µ10 cos(α1 − α3 + β1 + β3) + µ11 cos(α2 − α3 + β2 + β3)− µ7 cos(α2 − α1) < 0

(3.14)

where

µ8 = η1η2(λ1 + λ2) µ9 = η1η2(ℓ1 + ℓ2)σλ3
µ10 = η1η3ρσλ3(ℓ1 + ℓ3) µ11 = η1η2ρσλ3(ℓ2 + ℓ3)

(3.15)

Therefore, only the system parameters satisfy balance equations (3.10) and the stability criterion
of synchronization (3.14) can be implemented in the considered case.

4. Numerical verification

In the above Sections, the differential equations, balanced equations and the stability criterion
of synchronization have been derived. The theoretical and simulation results are presented in
this Section, where the correctness of the theory is to be verified.

4.1. Analysis of numerical results

Some examples are used to prove the correctness of the results of the above theoretical de-
rivation. Based on Eq. (4.1), the stiffness coefficients kx, ky and kϕ are separately transformed
into frequency ration ηx, ηy, ηϕ. Balance equations (3.10) are nonlinear equations related to
the system parameters, including the supporting spring stiffness, stiffness of elastic spring k,
installation location, etc., which seriously influence the stability of self-synchronization of the
system. When the system parameters are simultaneously satisfied, balance equation (3.10), sta-
bility criterion (3.14) and the stable phase difference can be estimated by applying a numerical
method. In order to simplify calculations, we assume ηx = ηy = ηϕ, i.e.,

ηx =
ω

ωx
ηy =

ω

ωy
ηϕ =

ω

ωϕ
(4.1)

Studying synchronization of the vibration system, the parameters are shown in Table 1, and
the dimensionless values are shown in Table 2 according to Eq. (3.5).

Table 1. Parameter values of the system

Unbalanced rotor for i = 1, 2, 3 mi = 3kg, ri = 0.02m, ωm = 156 ∼ 157 rad/s,
ci = 0.01N·s/m

Vibro-platform M = 100 kg J = 10 kg·m2, fx = 1000N/(m/s),
fy = 1000N/(m/s), fz = 1000N/(m/s),
kx = 1 · 104 ∼ 3.65 · 105N/m,
ky = 1 · 104 ∼ 3.65 · 105 N/m,
kψ = 1 · 103 ∼ 3.65 · 104 N/m

Other parameters l1 = 0.8m, l2 = 0.73, 0.41m, l3 = 0.8m,
β1 = 2π/3, 5π/6, β2 = 2π/5, 5π/12, β3 = π/3, π/6

The spring k = 0 ∼ 1.4 · 105 N/m, a = 0.01m

Equations (3.10) and (3.14) describe the approximate analytical solution for the stable phase
difference. Based on the parameters in Table 2, we can acquire an approximate value of ϕ1−ϕ2
and ϕ1 − ϕ3 considering different parameters k, ηx, ηy, ηϕ when three motors are installed in
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Table 2. Parameter values according to dimensionless Eq. (3.5)

η1 = 1, η2 = 1, η3 = 1, rm = 0.02, re = 0.18, σ = 8.82, ρ = 1,
nx = 1 ∼ 19, ny = 1 ∼ 19, nϕ = 1 ∼ 15.7

different positions. The analytical results are shown in Fig. 3 and Fig. 4. They indicate that
the parameters ηx, ηy, ηϕ, have little influence on the value of the phase difference when the
above-mentioned balance equation and the stability criterion equation are satisfied. But the
parameter k directly affects the phase difference. Figure 3 shows numerical results for positional
parameters (i.e, l1 = 0.8m, l2 = 0.73m, l3 = 0.8m, β1 = 2π/3, β2 = 2π/5, β3 = π/3) for
different frequency ratios. When k = 0N/m (there is no coupling unit in co-rotating motors),
the phase difference ϕ1 − ϕ2 of the co-rotating motors is stabilized in the vicinity of 3 rad, and
the phase difference ϕ1−ϕ3 of the counter-rotating motors is near 1 rad. When k  30000 N/m,
the phase difference of the co-rotating motors is close to 0 rad and the stable difference ϕ1 −ϕ3
is near 1 rad. Meanwhile, the vibration amplitude improves when the stiffness of the coupling
spring k exceeds the maximum value kmax = 140000 N/m (Fig. 3a), and kmax = 120000 N/m
(Fig. 3b,c,d), which means that the synchronous motion is unstable. The numerical results for
l1 = 0.8m, l2 = 0.41m, l3 = 0.8m, β1 = 5π/6, β2 = 5π/12, β3 = π/6 are displayed in Fig. 4.
Similar conclusions are also obtained.

Fig. 3. Stable phase difference with theoretical analysis for l1 = 0.8m, l2 = 0.73m, l3 = 0.8m,
β1 = 2π/3, β2 = 2π/5, β3 = π/3; (a) ηx = ηy = ηϕ = 1.76, (b) ηx = ηy = ηϕ = 3.51,

(c) ηx = ηy = ηϕ = 5.23, (d) ηx = ηy = ηϕ = 7.85; − · − shows there is no stable phase difference

The above analysis implies that these parameters play an important role in the synchronous
state, which mainly include the stiffness coefficient k, frequency ratios and installation location
of three induction motors. Besides, the coupled spring connecting the co-rotation rotors is also
compliant with the condition and stability of synchronization. By selecting a large value of k,
the vibration amplitude and the screening efficiency of the system can be improved.

4.2. Buckling analysis of the connecting rod

The two chutes are connected by the connecting rod. During the process of self-
-synchronization, the elasticity coupling between the two induction motors can be achieved
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Fig. 4. Stable phase difference with theoretical analysis for l1 = 0.8m, l2 = 0.41m, l3 = 0.8m,
β1 = 5π/6, β2 = 5π/12, β3 = π/6; (a) ηx = ηy = ηϕ = 2.22, (b) ηx = ηy = ηϕ = 4.96,

(c) ηx = ηϕ = 5.55, (d) ηx = ηy = ηϕ = 7.02, − · − shows there is no stable phase difference

by the springs in the chutes. Owing to the connecting rod with smaller density and the strong
stiffness, the centrifugal inertia force of the rod is small, in which case a deflection of the elastic
rod can be ignored. For example, the location parameters of vibration motors are identical with
the parameters in Fig. 3. According to theoretical analysis (Fig. 3), the stiffness of the simplified
spring has the maximum value kmax = 120000 N/m. Assume k = 80000N/m in this case.
The phase difference of co-rotating motors is expressed as α, which satisfies

α = |ϕ1 − ϕ2| (4.2)

The range of the phase difference α is obtained as 0 ¬ α ¬ π. When α = 0◦, the deformation of
the simplified spring is equal to 0; when α = 180◦, the deformation of the simplified spring has
the maximum value, xmax = 2a = 0.02m (the simplified spring is in stretched state or under
compression), 0 ¬ x ¬ xmax.
The force in the connecting rod satisfies

F = kx ¬ Fmax = kxmax = 80000
N
m
· 0.02m = 1600N (4.3)

Assuming that the material of the rod is 2024(LY12), then the yield strength and the density
are [σ] = 325MPa, ρ = 2770 kg·m−3, E = 72GPa = 7.2 · 104N/mm2. Then the cross-section
area A of the connecting rod can be determined

A  Fmax
[σ]
= 4.92mm2 (4.4)

The model of the connecting rod in buckling analysis is shown in Fig. 5. The applied load is
expressed as F (µ = 1). The inertia moment of circular section can be expressed as

I =
1
32
πd4 (4.5)
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Fig. 5. The model of the connecting rod in buckling analysis

The cross-sectional area A of the connecting rod

A =
πd2

4
(4.6)

The critical load of the rod can be computed by Euler’s formula

Fcr =
π2EI

(µL)2
(4.7)

If the buckling of the rod is not achieved, the statical criterion for elastic stability satisfies

F < Fcr (4.8)

Based on the critical condition F = Fmax, from equation (4.5)-(4.8), A can be calculated

A >

√
2Fmax(µL)2

Eπ
= 35.7mm2 (4.9)

Therefore, the cross-section area the connecting rod A can be obtained

A > 35.7mm2 (4.10)

If A = 36mm2, so the mass can be calculated

m = ρLS = 2770
kg
m2
· 0.3m · 36mm2 = 0.03 kg ≪M = 100 kg (4.11)

Therefore, the mass is too small to be neglected.
According to the national design standard, the size of the coupling springs can be finally

established.

4.3. Simulation results for nx = ny = nϕ = 5.23, k = 60000N/m, l1 = 0.8m, l2 = 0.73m,
l3 = 0.8m

Simulation results for the dimensionless parameters in Table 3 are shown in Fig. 6. Here,
kx = ky = 9.0 · 104N/m,kψ = 9.0 · 103 N/rad, l1 = 0.8m, l2 = 0.73m, l3 = 0.8m, and the
other parameters are identical with those in Table 1. From Fig. 6a to Fig. 6f, it can be seen
that the self-synchronization of the system is implemented. The three induction motors cannot
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Table 3. Dimensionless parameter values

η1 = 1, η2 = 1, η3 = 1, rm = 0.02, re = 0.20, σ = 8.70, ρ = 1,
nx = 8.54, ny = 8.54, nϕ = 8.54

Fig. 6. Results of computer simulations. (a),(b),(c) Displacement responses of the vibrating body in the
x-, y-, ψ-directions, respectively; (d) rotational velocities of the vibration system; (e) electromagnetic

torques of the tri-rotors; (f) phase difference of unbalanced rotors

simultaneously start at the same angular velocity owing to the difference coupling characteri-
stics when three exciters are switched on at the same time. Eventually, the value of angular
velocity is identical, see Fig. 6d. The average angular velocity of the three unbalanced rotors is
155.7 rad/s at about 2 s, which is always defined as the synchronous velocity. In addition, the
coupling torques (Fig. 6e), keeping the vibration system working in a steady synchronization
state, are approximately 0.4N/m. The phase difference ϕ1−ϕ2 of the co-rotating motors is near
0.205 rad. The phase difference ϕ1 − ϕ3 of the counter-rotating motors stabilized in the vicinity
of 88.73 rad (88.73 rad = (28π+0.77) rad, Fig. 6f), agrees with the approximate theoretical value
0.83 rad. The stable difference ϕ1 −ϕ2 is equal to 0.28 rad, Fig. 3c. It can be seen that the ideal
phase synchronization is achieved by two co-rotation rotors coupled with a weak spring, and the
excitation forces of the system are improved. The displacement response of the vibrating body
is displayed in the x-, y- and ψ-directions, respectively, Fig. 6a,b,c. The computer simulation
results further proved the validity of theoretical analysis.
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5. Conclusions

Based on the theoretical research and numerical analysis, the following conclusions are obtained.
In this paper, a new vibration mechanism, an elastically coupled tri-rotor system, is proposed

to implement synchronization. The average method of small parameters is used to study synchro-
nization characteristics of the system. The dynamical equations are converted into dimensionless
equations, and the synchronized state have been investigated. When the values of the system
parameters satisfy the balance equations and the stability criterion of synchronization, the vi-
bration system can operate in a steady state. The study indicates that many factors, such as
the spring stiffness, stiffness of the elastic unit and the installation location, influence stability
of the system. Finally, computer simulations have been preformed to verify the correctness of
the approximate solution from computations for the vibration system. Besides, it can be found
that the spring connecting the co-rotation rotors makes the phase difference stabilized in the
vicinity of 0 rad, and the vibration amplitude of the system is improved in contrast to the former
one. In this case, the screening efficiency of the system can be improved as well. Moreover, when
stiffness of the coupling spring exceeds the maximum value, the vibration system locates in an
unstable state. In short, a new balanced elliptical vibrating screen is proposed having a bright
future in applications.
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The paper presents changes of modal parameters such as natural frequencies, damping ratios
and energy transfer ratios (ETR) following damage of the connection of a steel-concrete
composite beam. Sensitivity analysis of the parameters is conducted both for numerical
simulation and experimental results. The energy transfer ratio ETR is determined: i) for
the whole beam – as a global parameter which can be used for damage detection, ii) for
segments of the beam – as a local parameter which can be used for damage localisation.
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1. Introduction

Steel-concrete composite beams are often used in the bridge engineering as main carrying gir-
ders. Safety of bridge structures, both during constructional work and particularly during their
use, is of major importance. Therefore, continuous monitoring of the structure condition is an
increasingly common practice with a view to damage diagnosis in early stages for substantial
reduction of the cost of necessary repairs. Monitoring systems are often based on non-destructive
damage detection methods. They enable damage detection in places inaccessible during visual
inspection, e.g. in shear connectors of steel-concrete composite bridges (Liu and de Roeck, 2009;
Li et al., 2014a,b; Dilena and Morassi, 2004, 2009).
Non-destructive methods are often based on measurements of vibration of the structure.

Vibrations that are excited by a changing load are recorded and modal characteristics of the
structure are analysed. When damage appears, stiffness, damping and sometimes mass of the
structure change, causing changes in frequency response functions. This is reflected in changes
of modal parameters, including natural frequencies, mode shapes and damping parameters.
Methods based on analysis of such changes can provide an effective tool to damage diagnosis.
One of them, which deserves an in-depth analysis, is based on changes of the energy transfer
ratio (ETR). Since the method is used for non-proportionally damped structures, it has gained
little recognition as most studies assume analysed structures to be proportionally damped.
The energy transfer ratio was defined by Liang and Lee (1991). It defines the ratio of energy

which is transferred between different mode shapes. Based on an experimental research con-
ducted on a model of a composite bridge, the authors demonstrated that ETR was much more
sensitive to damage than the natural frequency or damping ratio. Their study revealed that
modal energy was transferred not only between mode shapes but also between their fragments.
It means that ETR can be determined both globally, for the whole construction, and locally, for
its segments, which can be used for damage localisation. Similar studies conducted on composite



242 T. Wróblewski et al.

bridge models were also carried out by Kong et al. (1996), Liang et al. (1997), Wang and Zong
(2002, 2003).
The present paper is a continuation of two earlier studies published by Wróblewski et al.

(2011, 2013) which demonstrated a method of how ETR changes could be used for damage
detection and localisation in steel-concrete composite beams. The results obtained in numerical
analysis confirmed that ETR was more sensitive to changes in steel-concrete beam structure
than the natural frequency or damping ratio. However, it should be pointed out that the studies
were based on numerical damage simulation only. The present paper assesses changes of modal
parameters both based on numerical simulation results and experimental data. ETR is discussed
and tested as a damage detection tool, i.e. as a global parameter determined for the whole beam
and as a local parameter determined for segments of the beam, which can be useful for damage
localisation.

2. Experimental research

The analysed composite beam measures 3200mm in length and consists of IPE 160 made of
S235JRG2 steel, connected to a concrete slab made of C30/37 concrete. The connection between
the concrete and steel is made using headed steel studs, 10mm in diameter and 50mm in height.
The studs are placed in pairs every 150mm. The cross-section of the beam and stud distribution
along the beam are shown in Fig. 1.

Fig. 1. Composite beam: (a) cross-section, (b) distribution of connectors

Experiments have been conducted for a free-free beam. They were carried out by suspending
the tested beam on a steel frame by means of four elastic steel cables. The places where the
cables were attached to the concrete slab overlapped with the nodes of the fundamental flexural
mode shape of vibration of the beam.
An impulse test with a modal hammer was conducted to excite vibration of the structure. The

system response was measured in three orthogonal directions using piezoelectric accelerometers.
LMS SCADAS III, a multi-channel analyser, was used to measure the signal. It was connected
to a workstation, fitted with LMS Test.Lab software.
A grid of 52 measurement points were defined on the beam. In these points, accelerations

were measured. Two additional points, 53 and 54, were situated at one end of the beam. To
excite flexural vibration of the beam, force impulse was applied at point 53 perpendicularly to
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the slab (−Y direction). To excite axial vibration of the beam, a force impulse was delivered at
point 54, on the slab edge (+X direction). A grid of measurement points and the directions of
the force impulse are presented in Fig. 2.

Fig. 2. Measurement point grid, points and directions of the force impulse

The Polymax algorithm, available in Test.Lab, was used to determine parameters of the
modal beammodel. The poles of the system were identified based on the analysis of a stabilisation
diagram. Only the measurement points on the beam mid plane (2, 4, 6, 8, . . . , 52) were used in
the analysis. This approach substantially made it easier to find flexural vibration modes which
were later analysed to detect and locate damage. It also enabled analysis of a two-dimensional
beam model.
Natural frequencies fi,exp obtained in experimental research and their corresponding modal

damping ratios ξi,exp for the first five flexural mode shapes are presented in Table 1.

Table 1. Modal parameters obtained during experimental research

i → 1flex 2flex 3flex 4flex 5flex
fi,exp [Hz] 74.68 172.72 273.01 373.40 472.03
ξi,exp [%] 0.15 0.30 0.41 0.39 0.34

In the successive stage of the experiment, connection damage was introduced into the be-
am. The damage was obtained by removing concrete around a pair of studs, which eliminated
the interaction between steel and concrete (Fig. 3). Dilena and Morassi (2003) used the same
approach to simulate damage.

Fig. 3. Damage of the connection
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Two degrees of damage, denoted by UZ1 and UZ2, were introduced into the beam. In damage
UZ1 concrete was removed around one pair of studs (Fig. 4a) while in damage UZ2 around two
pairs of studs (Fig. 4b).

Fig. 4. Damage localisation: (a) damage UZ1, (b) damage UZ2

3. Numerical analysis

The numerical model of the beam has been created using the Rigid Finite Element method
(Kruszewski et al., 1975, 1999; Wittbrodt et al., 2006). The central idea of the method is division
of a real system into rigid bodies which are called rigid finite elements (RFE), which are then
connected by means of spring-damping elements (SDE). For continuous parts of a structure, it
is customary to start creating a model with segmentation of a beam into equal or nearly equal
segments. This segmentation is also called a primary division, see Fig. 5a. A spring-damping
element SDE is placed in the centre of gravity of every segment. This SDE is supposed to
concentrate all spring and damping properties of a given segment. In Fig. 5b, SDE elements are
shown as ⊗ symbols. In the 2D model, each SDE is made up of three (two translational and one
rotational) independent spring-damping elements. The next step is to connect SDEs created in
the primary division by means of RFE. This is the so-called secondary division, see Fig. 5b.
While creating the model, the steel and concrete parts of the beam are treated separately.

Owing to this, the elasticity of the connection can be taken account of the simulations. The
connection between adjacent rigid finite elements (RFE) modelling the concrete slab is performed
in the classical way, i.e. using one SDE located in the axis of the slab. In the case of the steel
beam, another approach is proposed. One SDE is substituted with three separate SDEs placed
in the axes of the web and the flanges of the I-section. The SDEs modelling the connection
are located in the place where in the real beam a pair of steel studs would be found. Figure 5
presents the composite beam model.
To develop a mathematical model of a composite beam, it is necessary to know parame-

ters characterising the I-section, the concrete slab and the connection. Some parameters, e.g.
Young’s modulus of the steel, density of the materials, Poisson’s ratios, cross-sectional areas,
are determined on the basis of measurements and literature data. Other parameters necessary
to define the model are determined in two-stage parametric identification.
The first identification stage has been focused on determining the missing stiffness parame-

ters, i.e. Young’s modulus of the reinforced concrete slab Ec and stiffness of the connection Kv in
the vertical direction (perpendicular to the connection plane) and in the horizontal direction Kh

(parallel to the connection plane). The stiffness of the connection is influenced by spring proper-
ties of the steel studs, stiffness of concrete surrounding the studs and stiffness of the adjacent
section of the steel-concrete interface. The first identification criterion is the best fit of the first
five frequencies of flexural vibrations determined numerically to those found experimentally.
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Fig. 5. RFE model of the composite beam: (a) primary division, (b) secondary division

The second identification criterion is defined as the complete fit of the fundamental frequency
of axial vibration determined numerically and experimentally (it is due to strong correlation of
this frequency with Young’s modulus of the concrete slab Ec). Identification process has been
conducted with a MATLAB optimization toolbox, using fmincon function which finds a mi-
nimum of a constrained nonlinear multivariable function. The function can be used to find a
minimum with four different algorithms. Active-set and Interior-point were tested during the
analysis. Finally, the second algorithm was selected. The algorithm required determination of
the Hessian matrix, a matrix of second-order derivatives. The Hessian was determined using
BFGS, a variable metric method. The obtained fit of frequencies and the results of stiffness
parameter identification are presented in Table 2.

Table 2. Identification results of stiffness properties of the beam

i → 1flex 2flex 3flex 4flex 5flex 1ax

fi,exp [Hz] 74.68 172.72 273.01 373.40 472.03 585.94
fi,num [Hz] 74.93 170.91 275.55 375.06 469,05 585.94

∆i 0.34% −1.05% 0.93% 0.44% −0.63% 0.00%

Ec [N/m2] 2.89 · 1010
Kh [N/m] 2.19 · 108
Kv [N/m] 1.44 · 108

At the second identification stage, the values of parameters defining damping properties, loss
factors for concrete Q−1c and connection Q

−1
con, have been identified. According to Rao (2004), the

loss factor for steel is Q−1s ∈ 〈2 · 10−4, 6 · 10−4〉. Finally, the loss factor for steel was predefined
to be equal Q−1s = 4 · 10−4. The identification process was based on fitting the amplitudes
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of the frequency response function (FRFs) obtained using RFE model with those obtained
during the experiment. For FRFs determined in the vertical direction (axis Y , impulse excitation
at point 53 : −Y ), the frequency range from 50Hz do 350Hz was fitted. The range includes
frequencies of the first three modes of flexural vibration. For FRFs determined in the horizontal
direction (axis X, impulse excitation at point 54 : +X), the frequency range including the
fundamental longitudinal vibration was considered. The following loss factors were determined in
the identification: Q−1c = 0.0100 and Q

−1
con = 0.0269. Figure 6 shows a comparison of illustrative

FRFs obtained experimentally with those calculated with the RFE model. The numbers of
points from a grid of measurement points used during the experiment and their corresponding
rigid finite elements numbers from the numerical model are given in Fig. 6. Location of RFE
No. 7 and RFE No. 17 corresponds exactly to the location of point No. 16 and point No. 40
which was placed on the bottom flange of the I-section during experiment (see Fig. 2).

Fig. 6. A comparison of FRFs (Y direction) obtained in the experimental research and those simulated
with the RFE model. The excitation force applied at point 53 : −Y

The comparison of the experimental and numerical mode shapes of vibration has been de-
termined using the Modal Assurance Criterion – MAC (Allemang and Brown, 1982)

MAC =
|QTnumQexp|2

(QTnumQnum)(QTexpQexp)
(3.1)

where the vectors Qnum and Qexp denote respectively mode shapes determined numerically and
experimentally. The obtained values of MAC are presented in Table 3.

Table 3. Values of the coefficient MAC

i → 1flex 2flex 3flex 4flex 5flex

MAC i 0.97 0.92 0.88 0.82 0.72

According to literature reports (Uhl, 1997), the fit of a numerical model and an experiment
occurs when the MAC is above 0.8. As can be seen from Table 3, the condition is not satisfied
for the fifth mode shape. Therefore, the fifth mode shape is not included in further analysis.

Numerical simulation of damage in the connection, which included damage introduced in
experiments into the real beam, has been conducted for the developed model. Damage in the
connection was simulated by changing the spring properties of SDEs that modelled the connec-
tion: the stiffness coefficients of the respective SDEs were preset to equal zero Kh = Kv = 0.
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4. Analysis results

The sensitivity analysis of modal parameters following damage introduced into the beam has
begun with examination of changes in the fundamental modal parameters, such as natural
frequency and damping ratio. Then, the energy transfer ratio (ETR) was analysed. ETR was
determined globally, for the whole beam, and locally, for some parts of the beam.

4.1. Vibration frequency and damping ratio

The changes of natural vibrations and damping ratio after damage introduction both for the
calculated and experimental data are presented in Tables 4 and 5, respectively.

Table 4. Changes of natural frequencies following beam damage

Beam state → UZ0 UZ1 UZ2
i ↓ fi,num [Hz] fi,num [Hz] ∆i [%] fi,num [Hz] ∆i [%]

N
um
er
ic
al

an
al
ys
is

1flex 74.93 74.53 −0.53 73.96 −1.29
2flex 170.91 170.23 −0.40 168.89 −1.18
3flex 275.55 272.87 −0.97 265.71 −3.57
4flex 375.06 369.74 −1.42 363.58 −3.06

i ↓ fi,exp [Hz] fi,exp [Hz] ∆i [%] fi,exp [Hz] ∆i [%]

E
xp
er
im
en
t 1flex 74.68 73.97 −0.95 73.29 −1.86

2flex 172.72 170.22 −1.45 167.63 −2.95
3flex 273.01 267.45 −2.04 259.91 −4.80
4flex 373.40 365.50 −2.12 357.81 −4.18

As can be seen in Table 4, high consistency of natural frequency changes determined experi-
mentally and numerically has been achieved. Somewhat larger changes of the parameter, follo-
wing damage introduction, were recorded in experimental measurements. In each analysed case,
an increase of damage extent caused a decrease in the natural frequency, which was directly
associated with a stiffness loss of the beam.

Table 5. Changes of the damping ratio following beam damage

Beam state → UZ0 UZ1 UZ2
i ↓ ξi,num [%] ξi,num [%] ∆i [%] ξi,num [%] ∆i [%]

N
um
er
ic
al

an
al
ys
is

1flex 0.26 0.28 9.62 0.33 27.04
2flex 0.41 0.42 4.74 0.51 26.47
3flex 0.51 0.57 12.98 0.86 68.67
4flex 0.61 0.68 11.47 0.78 27.02

i ↓ ξi,exp [%] ξi,exp [%] ∆i [%] ξi,exp [%] ∆i [%]

E
xp
er
im
en
t 1flex 0.15 0.16 4.79 0.16 4.99

2flex 0.30 0.28 −5.56 0.29 −1.86
3flex 0.41 0.44 9.28 0.44 8.27
4flex 0.39 0.44 12.86 0.45 15.66

Changes in the damping ratio determined experimentally and numerically do not show the
level of similarity as in the frequency. The ratio is more sensitive than natural frequencies to
damage introduction, which is particularly true for numerical simulation results. There is a
tendency for the damping ratio to increase as damage extent increases.
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4.2. Energy transfer ratio ETR

The sensitivity analysis of the energy transfer ratio ETR for damage introduced into the
steel-concrete composite beam has been conducted in two stages. First, the results of numerical
simulations of damage produced with the rigid finite element model were analysed. Then, the
sensitivity analysis of ETR based on experimental results was conducted.
The equilibrium of a vibrating system with n degrees of freedom, including the effect of

damping, can be given by a system of differential equations

MẌ+CẊ+KX = F (4.1)

where:M, C, K – are mass, damping and stiffness matrices, Ẍ, Ẋ, X – vectors of acceleration,
velocity and displacement, F – the external force vector.
When considering free damped vibrations, the above equation can be written as

Ÿ +CẎ +KY = 0 (4.2)

where: Y =M0.5X, C =M−0.5CM−0.5, K =M−0.5KM−0.5.
For the system defined with Eq. (4.2), there is a set of modal parameters, i.e. natural fre-

quencies ωi, modal damping ratios ξi and the mode shapes Pi, where i = 1, . . . , n. For the
generalized stiffness matrix K, there are eigenvectors Qi, for which in proportionally damped
systems it is true that Qi = Pi. In non-proportionally damped systems, for which Qi 6= Pi, it
is true that (Liang and Lee, 1991)

ζi = Im

(
1
2ωi

Q
T
i CPi

Q
T
i Pi

)
(4.3)

where ζi denotes the energy transfer ratio ETR. The component (Q
T
i CPi)/(Q

T
i Pi) is defined

as the generalized Rayleigh quotient.
A more comprehensive discussion of ETR can be found in reports by Liang and Lee (1991)

and by Wang and Zong (2002).

4.2.1. Numerical analysis

Table 6 presents changes in the global ETR determined in numerical simulation of the beam
damage.

Table 6. Changes of global ETR following beam damage

Beam state → UZ0 UZ1 UZ2

N
um
er
ic
al

an
al
ys
is

i ↓ ζi,num · 102 [%] ζi,num · 102 [%] ∆i [%] ζi,num · 102 [%] ∆i [%]

1flex 2.9 3.7 27 5.5 89
2flex 4.3 5.0 16 12.3 187
3flex 4.9 7.6 56 28.9 495
4flex 5.4 7.4 38 12.5 132

The analysis of the data demonstrates that the value of ETR increases with an increase in
the degree of damage in the connection of the beam. ETR can be said to be substantially more
sensitive to this type of damage than both the natural frequency and damping ratio. The largest
change of ETR occurred in the third mode shape, for UZ2 damage, when it amounted to 495%.
As mentioned above, the local ETR was determined for parts of the beam. It is to be

emphasised that the division into parts was conducted individually for each mode shape, so that
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each analysed part covered the area of a substantial curvature while at the same time avoiding
nodes of the mode shape. The analysis started from the second mode shape.
Figure 7 shows changes of the locally determined ETR following damage introduction. The

figure also presents the calculated mode shapes for the undamaged beam – the horizontal axis
shows the localisation of damaged stud connectors.

Fig. 7. Changes of local ETR ζi,num with mode shapes and damage area: (a) 2nd mode shape,
(b) 3rd mode shape, (c) 4th mode shape

The changes of the locally determined ETR distinctly show the area of damage. The minimum
sensitivity was observed for UZ1 damage, where the maximum change was 181%. Much larger
changes occurred for UZ2 damage, with the order of magnitude ranging from several hundreds
to even several thousands percent. The highest sensitivity was observed for the third mode shape
when ETR change was 1836%.

4.2.2. Experimental analysis

To determine ETR based on experimental data, it is necessary to know the damping matrix C.
The matrices determined for the RFE model for successive states of the beam, UZ0, UZ1 and
UZ2, were used in the analysis.
Table 7 shows changes of global ETR determined with the experimental data. The results

include changes that occurred for the second, third and fourth mode shape, i.e. those which were
going to be analysed in damage localisation.
The ETR changes determined with the experimental data occurred in the range of 13%-

-268%. Compared to numerical analysis results, the changes are smaller. However, it is to be
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Table 7. Changes of the global ETR following beam damage

Beam state → UZ0 UZ1 UZ2
E
xp
er
im
en
t i ↓ ζi,num · 102 [%] ζi,num · 102 [%] ∆i [%] ζi,num · 102 [%] ∆i [%]

2flex 20.5 50.8 147 75.4 268
3flex 26.8 7.2 73 68.6 156
4flex 30.6 8.0 74 34.5 13

emphasised that the numerical analysis was not affected by distortions which did take place
during real measurements. The presence of uncontrolled distortions and measurement noise
may affect the results. However, despite this fact, changes of ETR, compared to frequency and
damping ratio changes, are much larger. It demonstrates that ETR is more sensitive to the
damage introduced into the beam.
Changes of local ETR following the connection damage are presented in a graphical form

in Fig. 8. Figure 8 also shows experimentally the determined mode shapes for the undamaged
beam – the horizontal axis shows the localisation of damaged stud connectors.

Fig. 8. Changes of local ETR ζi,exp with mode shapes and damaged areas: (a) 2nd mode shape,
(b) 3rd mode shape, (c) 4th mode shape

The analysis of graphs presented in Fig. 8 can identify locations where damage occurred. Very
good results were obtained for the second and fourth mode shapes. A comparison of Figs. 8 and 7
reveals that changes determined with the experimental data are smaller than those obtained in
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numerical simulation. As mentioned above, this is due to the influence of external factors and
measurement noise.
More comprehensive data on the experimental research, the model and the numerical analysis

can be found elsewhere (Jarosińska, 2014).

5. Conclusions

The paper presents results of sensitivity analysis conducted for natural frequencies, damping
ratio and energy transfer ratio following damage introduced into the connection of a steel-
concrete composite beam. Both numerical analysis results and experimental research confirmed
that ETR is more sensitive to the beam damage than the vibration frequency and damping
ratio. Interestingly, it is possible to effectively localise the damage introduced into the beam,
based on the analysis of changes of the locally determined ETR. It must be stressed, however,
that the determination of ETR requires experimental measurements to be conducted with high
precision since the method is based on changes in composite mode shapes.
Diagnostics of structures is a multistage process. Firstly, the damage must be detected using

modal parameters determined globally for the whole structure: vibration frequency, modal dam-
ping coefficient, global ETR, etc. Secondly, the detected damage is localised using locally deter-
mined parameters, e.g. PMAC (Heylen and Janter, 1990), CDF (Wahab and de Roeck, 1999) or
local ETR which has been used in the paper. Effectiveness of any method may be dependent on
external factors and measurement apparatus. The best way to detect and precisely localise the
damage is to use several methods at the same time. Evaluation of changes in modal parameters,
including global and local ETR, when accompanied by other methods, may be a successful tool
for detecting and localising damage in steel-concrete composite structures.
The problem of damage detection and localisation in composite beams is going to be conti-

nued in further research. Future investigations will be extended to include other types of damage
and localisation techniques.
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Planetary gears are widely used in modern machines as ones of the most effective forms
of power transmission. In this paper, a special configuration of a gearbox composed of
one stage spiral bevel gear and a two stage helical planetary gear used in a bucket wheel
excavator gearbox is presented to investigate its modal properties. A lumped-parameter
model is formulated to obtain equations of motion and the eigenvalue problem is solved.
The modes are presented in low-frequency and high-frequency bands. Distributions of modal
kinetic and strain energies are studied.

Keywords: spiral bevel gear, helical planetary gear, bucket wheel excavator, modal properties

1. Introduction

Gear transmissions such as bevel and planetary gears are widely used in transmissions of wind
turbines, agricultural machinery, mining machines such as excavators and transportation such
as helicopters. Spiral bevel gears BG coupled in two stages helical planetary gears can be found
in gearboxes of bucket wheel excavators. The first step to investigate the dynamic behavior of
such systems is the determination of natural frequencies and mode shapes.
Many research works has been done on common parallel axis geared rotor systems dynamics,

see e.g. Ozguven and Houser (1988a,b), Blankenship and Singh (1995), Velex and Maatar (1996)
however few research works were dedicated to bevel gears dynamics. The existing models are
mostly similar to those of parallel axis gears. Gosselin et al. (1995) proposed a general formula
and applied it to analyze the load distribution and transmission error in spiral bevel gear pairs
and hypoid gear pairs. Karray et al. (2013) investigated the dynamic behavior of a single stage
bevel gear in the presence of local damage. Choy et al. (1991) presented vibration signature
analysis for multi-stage gear transmissions which combined gear mesh dynamics and structural
modal analysis in the study of transmission vibrations.
For planetary gears, Kahraman (1994b) provided expressions for natural frequencies by

using a rotational lumped-parameter model. Lin and Parker (1999a, 2000) showed that two-
-dimensional, spur planetary gears with equally spaced and diametrically opposed planets po-
ssess well-defined modal properties. Wu and Parker (2008) proved the modal properties of spur
planetary gears having elastically deformable ring gears. These vibration mode characteristics
are crucial in vibration suppression strategies using mesh phasing (Seager, 1975; Lin and Parker,
2004) and eigensensitivity analysis (Lin and Parker, 1999b), Guo and Parker (2010) of planetary
gears. Although the vibration modes of two-dimensional planetary gears have been studied, few
studies were dedicated to those of helical planetary gears with three-dimensional motion. Ha-
bib et al. (2005) determined critical frequencies for helical planetary gears and examined their
sensitivity to the helix angle. Eritenel and Parker (2009) examined three-dimensional motion of
helical gears and shafts.
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Researches on modal characteristics of multistage planetary gears are rare. Sun et al. (2014)
analyzed the natural frequency and coupled mode characteristics in a multi-stage planetary gear
and distinguished the dominant vibration stage by a criterion. Hammami et al. (2015) discussed
the modal properties of a special configuration of two stage planetary gears mounted back-to-
-back. Zhang et al. (2016) attempted to establish a translational-rotational coupled dynamic
model of a two-stage closed-form planetary gear set to predict natural frequencies and vibration
modes.
This paper discusses the modal properties of a special configuration of a gearbox composed of

one stage spiral bevel gear and two stage helical planetary gear used in bucket wheel excavators.
A lumped-parameter model is formulated to obtain the equations of motion.

2. Dynamic model

Figure 1 shows a general view of a bucket wheel excavator. The kinematic scheme of its gearbox
transmission system is presented in Fig. 2. It is composed of a spiral bevel gear as the input and
two stages planetary gear.

Fig. 1. View of the bucket wheel excavator: (a) from the side of winning-receiving belt and (b) from the
side of the transmission system (Rusinski et al., 2010)

Fig. 2. Kinematic scheme of the gearbox transmission system
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3. Model and equation of motion

The model of the transmission is presented in Fig. 3.

Fig. 3. Lumped parameter model: (a) planetary gear, (b) bevel gear

3.1. Spiral bevel gear model

The spiral BG model is divided into two rigid blocks (pinion with Z1 teeth and wheel with
Z2 teeth). Each block has four degrees of freedom (three translations xi, yi, zi (i = 1, 2), one
rotation θ1 for the pinion, θ2 for wheel and θm for the motor). The shafts are modeled with
torsional stiffness. In order to simulate the meshing, linear mesh stiffness acting along the lines
of action is considered following the procedure given by Karray et al. (2013). The vector defining
different degrees of freedom is

qBG = {x1, y1, z1, θm, θ1, x2, y2, z2, θ2}T (3.1)

3.2. Planetary gear model

For both stages of the planetary gear, a three-dimensional model is adopted. Each stage
is composed of the sun gear s, ring gear r, which are coupled to each other by 3 planets P
mounted on a carrier c. These elements are considered as rigid bodies. Linear springs acting on
the lines of action are used to simulate the meshing stiffness (Kahraman, 1994a,c). Bearings are
accounted for by linear springs. Each component has six degrees of freedom: three translations
uji, vji and wji and three rotations ϕji, ψji and θji (j = c, r, s, 1, . . . , n, i = 1 for the first
stage and i = 2 for the second one). These coordinates are measured with respect to a frame
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(Oi, s1i, t1i, z1i) fixed to the carrier and rotating with a constant angular speed Ωci. The rotations
ϕji, ψji and θji are replaced by their corresponding translational gear mesh displacements as

ρjix = Rbjiϕji ρjiy = Rbjiψji ρjiz = Rbjiθji
j = c, r, s, 1, . . . , n
i = 1, 2

(3.2)

where Rbji is the base circle radius for the sun, ring, planet, and the radius of the circle passing
through planet centers for the carrier.
The system elasticity is accounted for by 6n + 18 DOFs for each stage, and the planetary

gear displacement vector qjPGi of each element is defined as

qjPGi = [uji, vji, wji, ρjix, ρjiy, ρjiz]T j = c, r, s, 1, . . . , n i = 1, 2 (3.3)

3.3. Global model

The objective is to obtain a unique differential system combining the BG stage and both
stages planetary gear coordinates. The principle of the coupling consists in using an additional
torsional stiffness joining the rotational degree of freedom of the bevel gear wheel and the sun
gear of the first stage planetary gear and adding a linear spring joining the axial degrees of
freedom of the same wheel and sun. The same are used to couple the axial and rotational degree
of freedom of the carrier of the first stage and the sun of the second one.
Introducing the following extended state variable vector composed of the bevel and two

stages planetary gear displacements

qG = {qBG,qPG1,qPG2} (3.4)

Applying Lagrange formulation for each element allows us to obtain the equations of motion
of the 9 + 2(18 + 6n) degrees of freedom of the global system

MGq̈G +CGq̇G + [KpG +KeG(t)]qG = FG(t) (3.5)

where qG, MG, CG, KpG, KeG, FG are respectively the displacement vector, mass, damping,
bearing, mesh stiffness matrices and the force vector for the global system.

4. Modal analysis

The characteristics of the bevel gear model are presented in Table 1 while the characteristics of
the two stages planetary gear are presented in Table 2. It has a fixed ring and three planets.

Table 1. Characteristics of the spiral bevel gear

Parameters Pinion Wheel

Number of teeth Z 27 62
Mass [kg] 300 800
Moment of inertia [kg·m2] 18 72
Axial stiffness kx1, ky2 [N/m] 1 · 109 2.3 · 109
Lateral stiffness ky1, kz1, kx2, kz2 [N/m] 8.8 · 109 1.3 · 1010
Torsional stiffness kθ1, kθ2 [Nm/rad] 1.2 · 104 7.4 · 104
Pressure angle α = 20◦

Spiral angle β = 20◦
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Table 2. Characteristics of the planetary gear model

Sun Ring Carrier Planet

Teeth number Zs1 = 21 Zr1 = 150 – Zp1 = 64
Zs2 = 27 Zr2 = 90 – Zp2 = 31

Mass [kg] Ms1 = 270 Mr1 = 4500 Mc1 = 2600 Mp1 = 1200
Ms2 = 446 Mr2 = 1960 Mc2 = 1300 Mp2 = 600

J/R2bi (J/R2bi)1 = 200 (J/R
2
bi)1 = 740 (J/R

2
bi)1 = 990 (J/R

2
bi)1 = 592

(J/R2bi)2 = 281 (J/R
2
bi)2 = 387 (J/R

2
bi)2 = 618 (J/R

2
bi)2 = 294

I/R2bi (I/R2bi)1 = 100 (I/R2bi)1 = 370 (I/R2bi)1 = 495 (I/R2bi)1 = 296
(IR2bi)2 = 140 (I/R2bi)2 = 193 (I/R2bi)2 = 310 (I/R2bi)2 = 147

Gearmesh ksp1 = 2.28 · 108, krp1 = 2.6 · 108
stiffness [N/m] ksp2 = 2.2 · 108, krp2 = 2.3 · 108
Bearing stiffness kjx = kjy = 108, kjz = 109, j = c, s
[N/m] krx = kry = krz = 1010, kxx = kyy = 108, kzz = 109

Torsional kjϕ = kjψ = 109, kjθ = 0, j = c, s, 1, . . . , n
stiffness [N/m] krϕ = krψ = krθ = 1010

Pressure angle α = 20◦

Helix angle β = 20◦

Table 3. Eigenfrequencies of the system

Mode type
Multipli- Eigenfrequency
city [m] [Hz]

Bevel gear
mode

C f11 = 56, f17 = 64
T 1 f20 = 67
R f81 = 1237

First
planetary
mode

R-A 1
f4 = 30, f35 = 165, f44 = 212, f49 = 220,
f50 = 246, f75 = 649

T-T 2

f2,3 = 20, f8,9 = 38.7, f12,13 = 58,
f18,19 = 66, f24,25 = 84.8, f36,37 = 173,
f41,42 = 204, f45,46 = 213, f51,52 = 251,
f56,57 = 313, f73,74 = 516, f77,78 = 890

Second
planetary
mode

R-A 1
f23 = 84.7, f59 = 345, f60 = 361,
f65 = 420, f68 = 442, f76 = 838

T-T 2

f5,6 = 38.5, f14,15 = 63, f27,28 = 100,
f31,32 = 119, f33,34 = 153, f47,48 = 216,
f61,62 = 364, f63,64 = 416, f66,67 = 434,
f69,70 = 447, f71,72 = 482, f79,80 = 1147

Coupled
modes

f1 = 0, f7 = 38.6, f10 = 46, f16 = 63.7,
f21 = 75, f22 = 79, f26 = 92, f29 = 111,

1 f30 = 117, f38 = 179, f39 = 199,
f40 = 203, f43 = 209, f53 = 255,
f54 = 275, f55 = 300, f58 = 341

4.1. Natural frequencies and vibration modes

The undamped eigenvalue problem derived from the equation of motion by considering only
the mean stiffness matrix K is

(
−ω2iMG +KG

)
φi = 0 (4.1)

where φi is the eigenvector and ωi is the corresponding eigenfrequency.
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Natural frequencies and vibration modes of the system are given in Table 3. The natural
modes are grouped according to the multiplicity of the natural frequencies. Several characteristics
are revealed after a thorough comparison on the natural frequencies ωi and modal vectors φi.

• The first-order natural frequency is ω1 = 0, and the corresponding vibration mode is the
rigid body mode. It is obvious that the rigid body mode can be eliminated by removing
rigid-body motion.

• Bevel gear modes contain only modal deflection of BG components. They include four
distinct natural frequencies:

– two natural frequencies with combined (C) translational and rotational modal deflec-
tion. An example of this mode is observed in Fig. 4. The equilibrium positions are
represented by a solid black line and the deflected positions are shown by a dashed
black line. Similarly, Figs. 5-7 all abide by these rules;
– one natural frequency in which only rotation (R) is observed;
– one in which only translation (T) is observed.

Fig. 4. Combined bevel gear mode at f11 = 56Hz

Fig. 5. Rotational-axial mode of the first stage planetary gear at f4 = 30Hz
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Fig. 6. Translational-tilting mode of the second stage planetary gear at f5,6 = 38.5Hz

Fig. 7. Coupled mode at f7 = 38.6Hz

• Planetary gear modes in which there are only modal deflection of the 2 stage planetary
gear components include:

– twelve natural frequencies with the multiplicity m = 1. The related vibration mo-
des are rotational-axial (R-A) modes in which the carriers, rings and suns rotate
and translate axially, but they do not tilt or translate in-plane. The planets move
identically and in phase. Figure 5 shows one rotational mode of the system;

– twenty four natural frequencies with the multiplicity m = 2. The related vibration
modes are translational-tilting (T-T) modes in which the carriers, rings and suns
only translate in-plane and tilt but do not rotate or translate axially. In addition,
the following relations between the deflections are noticed for each double mode:
ui1 = vi2, vi1 = ui2 and ϕi1 = ψi2, ψi1 = −ϕi2 (i = c, r, s), where ui1, vi1, ϕi1, ψi1 are
modal deflections in the first mode and ui2, vi2, ϕi2, ψi2 are modal deflections in the
second mode;

– the planets exhibit sequentially phased motion. Figure 6 shows one rotational mode
of the system;



260 M. Karray et al.

– the planet modes exist only if the number of planet N > 3 and have the multiplicity
m = N−1. In both stages of theplanetary gear, there are only three planets (N = 3).
So, only the previous classes of modes appear when solving the eigenvalue problem.

• Modal properties of the two-stage planetary gears are analogous to those of simple, single-
stage planetary gears. Features of rotational and translational modes are identical.

• The coupled mode which includes seventeen distinct natural frequencies includes movement
of the different stages. Figure 7 illustrates the vibration modes of the system.

4.2. Analysis of the distribution of modal kinetic strain energies

Computation of the modal strain energy and the modal kinetic energy distributions gives
information on bodies brought to critical speeds (which excite the natural frequencies) in terms
of dominant motion and deformation.

The total modal strain energy can be written as the sum of strain energies of rotation and
translation from each component of the system

Epφ =
1
2
φTi Kφi =

∑
Epφk +

∑
Epφkω + Epφpw +

∑
Epφji +

∑
Epφjiω

+
∑
(Epφsin +Epφrin)

(4.2)

where Epφk and Epφkω are the strain energies of the bearing stiffness in the rotational and
translational motion of the pinion and wheel (k = p,w), respectively. Epφpw is the strain energy
of the pinion-wheel meshing. Epφji and Epφjiω are the strain energies of the bearing stiffness in
the rotational and translational motion of the carriers, suns, rings and planets (j = c, r, s, 1, 2, 3)
in both stages (i = 1 for the first stage and i = 2 for the second stage). Epφsin and Epφrin are
the strain energies of the sun i-planets and ring i-planets meshing in both stages.

The modal kinetic energy can also be written as the sum of the kinetic energies of rotation
and translation from each component of the system

Ecφ =
1
2
ω2iφ

T
i Mφi =

∑
Ecφk +

∑
Ecφkω +

∑
Ecφji +

∑
Ecφjiω (4.3)

where Ecφk and Ecφkω are the kinetic energies of the bearing stiffness in the rotational and
translational motion of the pinion and wheel (k = p,w). Ecφji and Ecφjiω are the kinetic
energies in the rotational and translational motion of the suns, carriers, rings and planets
(j = s, c, r, t, 1, 2, 3) in the first stage and the second one (i = 1, 2).

Figure 8 shows the distribution of modal kinetic energies in low frequencies.

In the X-axis, the contribution of each degree of freedom in the total modal strain energy is
represented. Details are given in Table 4.

Figure 9 shows the distribution of modal strain energies in low frequencies, where the X-axis
is defined in Table 5.

Table 6 presents a resume of the modal dominant motion and the dominant strain energy in
each low-frequency mode.

Figure 10 shows the distribution of modal kinetic and strain energies in high frequencies.
The X-axis is defined in Table 4.
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Fig. 8. Modal kinetic energies in low-frequencies

Table 4. The X-axis location of kinetic energies

1-3 Translation of pinion 40-42 Translation of planet 3 of 1st stage
4 Rotation of bearing motor 43-45 Rotation of planet 3 of 1st stage
5 Rotation of pinion 46-48 Translation of carrier of 2nd stage
6-8 Translation of wheel 49-51 Rotation of carrier of 2nd stage
9 Rotation of wheel 52-54 Translation of ring of 2nd stage
10-12 Translation of carrier of 1st stage 55-57 Rotation of ring of 2nd stage
13-15 Rotation of carrier of 1st stage 58-60 Translation of sun of 2nd stage
16-18 Translation of ring of 1st stage 61-63 Rotation of sun of 2nd stage
19-21 Rotation of ring of 1st stage 64-66 Translation of planet 1 of 2nd stage
22-24 Translation of sun of 1st stage 67-69 Rotation of planet 1 of 2nd stage
25-27 Rotation of sun of 1st stage 70-72 Translation of planet 2 of 2nd stage
28-30 Translation of planet 1 of 1st stage 73-75 Rotation of planet 2 of 2nd stage
31-33 Rotation of planet 1 of 1st stage 76-78 Translation of planet 3 of 2nd stage
34-36 Translation of planet 2 of 1st stage 79-81 Rotation of planet 3 of 2nd stage
37-39 Rotation of planet 2 of 1st stage

Fig. 9. Strain energy in low-frequencies
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Table 5. The X-axis location of strain energies

1-3,5 Bearing of pinion 52-57 Bearing of ring of 2nd stage
4 Bearing of motor 58-63 Bearing of sun of 2nd stage
6-9 Bearing of wheel 64-69 Bearing of planet 1 of 2nd stage
10-15 Bearing of carrier of 1st stage 70-75 Bearing of planet 2 of 2nd stage
16-21 Bearing of ring of 1st stage 76-81 Bearing of planet 3 of 2nd stage
22-27 Bearing of sun of 1st stage 82 Meshing pinion-wheel
28-33 Bearing of planet 1 of 1st stage 83-85 Meshing ring-planets of 1st stage
34-39 Bearing of planet 2 of 1st stage 86-88 Meshing sun-planets of 1st stage
40-45 Bearing of planet 3 of 1st stage 89-91 Meshing ring-planets of 2nd stage
46-51 Bearing of carrier of 2nd stage 92-94 Meshing sun-planets of 2nd stage

Table 6. Dominant motion and dominant strain energy in low-frequencies

No. of Frequencies
Modal dominant movement Dominant strain energy

mode [Hz]

2,3 20 (T-T) Transl. of planet 3 of 1st stage Bearing of carrier of 1st stage
4 30 (R-A) Transl. of planet 3 of 1st stage Meshing sun-planets of 1st stage
5,6 38.5 (T-T) Transl. of planet 3 of 2nd stage Bearing of carrier of 2nd stage
7 38.6 (C) Transl. of planet 3 of 2nd stage Meshing ring-planets of 2nd stage
8,9 38.7 (T-T) Transl. of all planets of 1st stage Bearing of sun of 1st stage
10 46 (C) Transl. of all planets of 1st stage Bearing of carrier of 1st stage
11 56 (B) Transl. of wheel Bearing of wheel
12,13 58 (T-T) Transl. of planet 2 of 1st stage Bearing of carrier of 1st stage
14,15 63 (T-T) Transl. of planet 3 of 2nd stage Bearing of sun of 2nd stage
16 63.7 (C) Transl. of planet 3 of 2nd stage Bearing of carrier of 2nd stage

Meshing sun-planets of 2nd stage
Bearing of pinion

Fig. 10. Kinetic and strain energy in high-frequencies

Table 7 presents a resume of the modal dominant motion and the dominant strain energy in
each high-frequency mode.
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Table 7. Dominant motion and dominant strain energy in high-frequencies

No. of Frequencies
Modal dominant movement Dominant strain energy

mode [Hz]

77,78 890 (T-T) Rotation of ring of 1st stage Bearing of ring of 1st stage
79,80 1147 (T-T) Rotation of ring of 2nd stage Bearing of ring of 2nd stage
81 1237 (B) Rotation of bearing motor Rotation of pinion

Meshing pinion-wheel

5. Conclusion

This paper investigates modal properties of a special configuration of a gearbox composed of one
stage spiral bevel gear coupled in a two stage helical planetary gear. A lumped-parameter model
is formulated to obtain the equations of motion. The helical planetary gear system is represented
by a three-dimensional lumped-parameter model with six degrees of freedom per gear and the
shaft body supported by bearings. Solution of the eigenvalue problem allowed recovering modal
characteristics of the transmission. It has been found that natural frequencies can be divided into
three main mode classes: coupled modes, bevel gear modes and planetary gear modes. The last
class of modes includes two types: the first one is a rotational-axial mode in which the central
components rotate and move axially but do not tilt or translate with identical modal deflection of
the planets; there are also 12 rotational-axial modes with distinct natural frequencies, the second
one is a translational-tilting mode in which the central members tilt and translate in-plane but
do not rotate or move axially; there are 12 pairs of degenerate translational-tilting modes with
the natural frequency multiplicity two. When looking at the modal kinetic and strain energy
distributions, another classification emerges according to the dominant energy in the system for
each natural frequency.
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In this work, we present an improved sliding mode control (ISMC) technique designed and
implemented for control of 6R manipulator. Sliding mode control (SMC) is a well-known
nonlinear robust method for controlling systems in the presence of uncertainties and distur-
bances and systems with complex dynamics as in manipulators. Despite this good property,
it is difficult to implement this method for the manipulator with a complex structure and
more than three degree-of-freedom because of the complicated and massive equation and
chattering phenomenon as a property of SMC in control inputs. Here, the chattering phe-
nomenon is eliminated by using an effective algorithm called ISMC and implemented to 6R
manipulator by using a low-cost control board based on an ARM microcontroller with high
accuracy and memory. The carrying load is considered as the uncertainty for the manipula-
tor, while the dynamic load carrying capacity (DLCC) is considered as a robot performance
criterion showing robustness of the controller. The results of simulations and experiments
show that the proposed approach has a good performance and is suitable and practical to
be applied for manipulators.

Keywords: improved sliding mode control, chattering, DLCC, hardware implementation

1. Introduction

Models of manipulators are complex nonlinear dynamical systems with uncertainties due to dif-
ferences between mathematical models and real robots. The sliding mode control (SMC) is one
of the methods in the category of nonlinear control capable of controlling systems with uncer-
tainties. The SMC technique and the improved SMC (ISMC)-based algorithms have been used
frequently in the field of manipulator control. One of the benefits of the SMC is insensitivity to
variation of parameters such as load for manipulating. Since the dynamics of manipulators is so
complicated, the ISMC method is selected for controlling the system in this work. And yet a lot
of work in this field has been applied. Ertugrul et al. (2000) presented gain adaptation in SMC
of robotic manipulators via MIT rule. The method was implemented on a two-link planar ma-
nipulator to validate the proposed algorithm. Vega et al. (2003) presented dynamic sliding PID
control for trajectory tracking on manipulators. Implementation and comparative experimental
study on a two-DOF robot arm were expressed via PD, PID, adaptive and SMC method. Shi et
al. (2008) expressed robust control of robotic manipulators based on the integral sliding mode.
Capisani and Ferrara (2009) used a second-order SMC approach and presented experimental
test on COMAU SMART3-S2 rigid industrial manipulator with three joints. Korayem et al.
(2009) presented the observer-based SMC for determining the dynamic load-carrying capacity
of manipulators. Islam and Liu (2011) applied the SMC method for overcoming the problem of
large-scale uncertainties in control of manipulators. The parameter uncertainties and external
disturbances were considered in the modelling. Foster and Harrison (2011) expressed the experi-
mental investigation of a 5-DOF robot arm with SMC. The method was simulated and verified
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with the experimental results. Islam et al. (2014) applied SMC and CTC control methods for a
multi-DOF articulated robotic arm manipulator and demonstrated superior performance of the
SMC by simulation results of a 6-DOF robot manipulator.
The chattering phenomenon is one of the SMC difficulties. This phenomenon occurs because

of the existence of switching nature in the sliding mode controller. It is unwanted and leads
to an excessive usage of actuator; therefore, the control law may become impractical. Many
methods have been proposed for eliminating or reducing the chattering including the boundary
layer, continuous approximations and higher order SMC methods. The methods also include
synthesized SMC with other techniques such as the fuzzy SMC, adaptive neural network, and
optimal SMC (Thangavelusamy and Ponnusamy, 2012; Beyhan et al., 2011; Sefriti et al., 2012;
Korayem et al., 2014). Obviation of the chattering phenomenon, in this paper, is the use of
ISMC applied to this problem (Ataei et al., 2014).
The model in this paper is a 6R manipulator. The first three links are made as the base

of the robot and developed by adding a wrist with three-DOF on that (Jamali et al., 2005;
Hamraz et al., 2005). The control system of this manipulator is a digital board with six PIC
chips for motors to perform open-loop control. Implementing nonlinear controllers, which are
ideal for this manipulator, is not possible. To extend the performance and options of the arm,
a new digital board based on ARM LPC1768 CortexM3 microcontroller has been designed and
built (Korayem et al., 2013). In the following, we first describe the mathematical model of the
manipulator and then design a SMC for it. Then, we briefly describe the control board and,
finally, this method is simulated and implemented for the robot.

2. SMC design

SMC is a nonlinear robust control method that is often used in cases that have uncertainty in
dynamics and external disturbance. We used this method for its inherent property in robustness
and compared to other nonlinear methods. SMC and ISMC are easily implemented.

2.1. SISO system

In order to start the procedure of designing the controller, the dynamical equation should
be expressed in the standard form as

x(n)(t) = f(x(t)) + b(x(t))u(t) (2.1)

where the scalar x(t) is the output, the scalar u(t) is the control input and x(t) =
[x(t), ẋ(t), . . . , x(n−1)(t)]T is the state vector. f(x(t)) is an uncertain nonlinear function bo-
unded by a known continuous function of x(t), and b(x(t)), similarly, is an uncertain nonlinear
function that is of known sign and is bounded by the known continuous function of x(t).
Consider the uncertainty of parameters in the system, which is denoted as follows

f(x(t)) = (1 +∆)f̂(x(t)) b(x(t)) = (1 +∆)b̂(x(t)) (2.2)

Let the subscript (̂·) means the system nominal value and symbol ∆ means the system uncerta-
inty (small value). The time-varying surface named sliding surface is defined as follows (Slotine
and Li, 1991)

s(x(t)) =
( d
dt
+ λ

)n−1
x̃(t) (2.3)

where λ is a strictly positive constant and x̃(t) = x(t) − xd(t) is the tracking error in the
variable x(t). For the second-order system, by considering n = 2, the sliding surface is obtained
as follows
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s(x(t)) = ˙̃x(t) + λx̃(t) (2.4)

The control input law in the sliding mode method is considered as

u(t) = ueq(t) + ucorr(t) (2.5)

where ueq(t) is the equivalent control input and ucorr(t) is the correction or switching control
input for reaching to the sliding surface when distanced from the sliding surface by the effect of
uncertainty and disturbance. ueq(t) is defined by solving ṡ(x(t)) = 0 and, therefore, we get

ueq(t) = b̂−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)] (2.6)

Hence, ucorr(t) is defined as

ucorr(t) = −b̂−1(x(t))k(x(t)) sgn (s(x(t)) (2.7)

To reach the sliding surface in finite time, the sliding condition that is defined as follows shall
be satisfied
1
2
s(x(t))ṡ(x(t)) ¬ −η|s(x(t))| (2.8)

and η > 0 must be satisfied as well. By assuming
∣∣∣f̂(x(t)) − f(x(t))

∣∣∣ ¬ fb b̂(x(t)) =
√
bmaxbmin (2.9)

where fb is the maximum estimation error in the bound of uncertainty of f(x(t)), bmax and
bmin are the maximum and minimum estimation errors, respectively, in the bound of b(x(t))
and considering (Slotine and Li, 1991)

k(x(t))  β(fb + η) + (β − 1)|ueq(t)| (2.10)

where β =
√
bmax/bmin, the sliding condition is satisfied and implies that the system trajectories

will asymptotically converge to the sliding surface from any non-zero initial state and guarantees
the robust stability of the closed-loop system.
To eliminate the chattering phenomena in the conventional SMC, we use ucorr(t) as follows

and name it an improved SMC. In this algorithm, for the decreasing rate of variations of u(t)
around the sliding surface and in order to increase the convergence rate, the idea of using the
following sliding condition is proposed (Ataei et al., 2014)

s(x(t))ṡ(x(t)) ¬ −η|s(x(t))| exp
( −ξ
|s(x(t))|

)
− γs2(x(t)) (2.11)

in which η, γ, and ξ are strictly positive constants. Using the exponential function, makes that
whatever the distance of the scalar function s(x(t)) increases from the surface, the fall rate
with respect to time is greater and this action develops with an exponential factor. Also, the
continuous function tanh(s(x(t))/ε) is used instead of the discontinuous function sgn (s(x(t))
for preventing the chattering in which the parameter ε is the boundary layer thickness. By the
above-mentioned description, the correction input is defined as follows for the SISO system

ucorr(t) = −b̂−1(x(t))w(x(t)) (2.12)

where

w(x(t)) =
[
fb + α exp

(
− β

|s(x(t))|
)]
tanh

(s(x(t))
ε

)
+ γs(x(t))

α > η α− η < 2fb exp
(
− β

|s(x(t))|
) (2.13)

Therefore, the control input is defined as

u(t) = b̂−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)− w(x(t))] (2.14)
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2.2. MIMO system

In order to extend the method for MIMO systems, a system of second order differential
equations is regarded as follows

q̈(t) = f(q(t), q̇(t)) +B(q(t), q̇(t))u(t) (2.15)

where q(t) ∈ ℜn is the system variable and u(t) ∈ ℜn is the input vector and

f(q(t), q̇(t)) : ℜn ×ℜn → ℜn

B(q(t), q̇(t)) : ℜn ×ℜn → ℜn×n
(2.16)

and (2.15) is changed to the state-space form

ẋ(t) =

[
q̇(t)

f(q(t), q̇(t))

]
+

[
0n×n

B(q(t), q̇(t))

]
u(t) (2.17)

in which the state vector has the shape of x(t) = [q(t), q̇(t)]T. The maximum bound of uncer-
tainties in system (2.2) are modified as

f(x(t)) = f̂(x(t)) +∆f̂(x(t)) B(x(t)) = (I+∆)B̂(x(t)) (2.18)

where ∆ is the vector of the uncertainty coefficient, ∆ is a diagonal matrix of that and I is the
identity matrix. Hence, the maximum bound of f(x(t)) is restricted to

∣∣∣f̂(x(t)) − f(x(t))
∣∣∣ ¬ fb (2.19)

and B(x(t)) to

B̂ij(x(t)) =
√
bmax,ijbmin,ij (2.20)

which leads to an extended form of (2.10)

Ki(x(t))  β(fb,i + ηi) + (β − 1)|ueq,i(t)| (2.21)

in which β = bmax/bmin, bmax = max(bmax,ij) and bmin = min(bmin,ij). Ki(x(t)) is also the i-th
diagonal element of the matrix K(x(t)). The control law of the conventional SMC possesses the
shape

u(t) = B̂−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)]− B̂−1(x(t))K(x(t)) sgn (s(x(t)) (2.22)

where s(x(t)) = ˙̃x(t)+λx̃(t). The MIMO structure of the control law of ISMC (2.14) is rewritten

u(t) = B−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)−w(x(t))] (2.23)

where

wi(x(t)) =
[
fb,i + αi exp

(
− β

|si(x(t))|
)]
tanh

(si(x(t))
ε

)
+ γisi(x(t)) (2.24)

in which αi > ηi and

αi − ηi < 2fb,i exp
(
− β

|si(x(t))|
)

(2.25)
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3. Applied ISMC for the robot manipulator

Let us consider generalized coordinates of an n-link manipulator as q = {q1, . . . , qn}, where qi is
the generalized coordinate of the i-th joint; either revolute or prismatic. By using Lagrange’s
approach, the manipulator dynamical equation can be expressed as

Mn×n(q(t))q̈n×1(t) + cn×1(q(t), q̇(t)) + gn×1(q(t)) = un×1(t) (3.1)

where Mn×n(q(t)) is the inertia matrix, cn×1(q(t), q̇(t)) is a vector consisting of Coriolis and
centrifugal forces, gn×1(q(t)) is the gravity force, and un×1(t) is the input vector of joints.
Elements of state-space equation (2.17) are structured as

f(q(t), q̇(t)) = −M−1(q(t))[c(q(t), q̇(t)) + g(q(t))]
B(q(t), q̇(t)) =M−1(q(t))

(3.2)

Inserting the proposed ISMC structure into the robot equation of motion changes Eq. (2.23)
into

u(t) =M(q(t))
(
M−1(q(t))[c(q(t), q̇(t)) + g(q(t))] + q̈desired (t)− λ ˙̃q(t)−w(s)

)
(3.3)

where

wi(si) =
[
fb,i + αi exp

(
− β

|si(q(t))|
)]
tanh

(si(q(t))
ε

)
+ γisi(q(t)) (3.4)

in which wi(si) is a set as coefficients of tanh function fb,i+αi exp[−β/|si(q(t))|]; and γisi(q(t))
is added to the first term, fb,i+αi exp[−β/|si(q(t))|] depends on the sign of si(q(t)). As shown in
Fig. 1a, near the origin, wi(si) is equal to zero and then increases exponentially, and far from the
origin converges to a constant value. Figures 1b-3b present the effect of parameters on behaviour
of wi(si).

Fig. 1. (a) wi(si) function versus the switching function in the ISMC method; (b) changes of the design
parameter α of the ISMC method in function of wi(si)

As it is depicted in Fig. 21b, an increase in αi results in an increase of the ultimate value
of wi(si), but around the origin, the effect is less observable. Hence the changes of αi do not
contribute to the chartering. In Fig. 2a, an increase in β makes wi(si) more nonlinear near the
origin and does not affect the bounds of wi(si), hence a steady state error might occur. The
effects of changes in ε (boundary layer width) are similar to β and do not change the final value
of wi(si), though it might lead to the steady state error, presented in Fig. 2b. Figures 3a and 3b
show the similarity of f and γ behavior to α as well.
With regard to the try-and-error procedure as well as experimental and simulation study,

the mentioned parameters have been designed for the 6R manipulator. The ISMC eliminates
the chattering and provides more precision rather than the conventional SMC.
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Fig. 2. Changes of the design parameter (a) β and (b) ε of the ISMC method in function of wi(si)

Fig. 3. Changes of the design parameter (a) f and (b) γ of the ISMC method in function of wi(si)

4. Dynamic load carrying capacity

The dynamic load carrying capacity (DLCC) is one of the important parameters of robots that
should be determined. The DLCC is described as the maximum load that a manipulator can
repeatedly lift and carry on the extended configuration in a particular path with an acceptable
tracking accuracy. The DLCC is a useful criterion for the assessment of different controllers on
the same arm, especially for the estimation of energy consumption and efficiency. The DLCC of
a manipulator calculates with respect to the limitation of motors and error of the final point in
a finite time. Upper and lower limits of motor torques can be computed from

umax,i(t) = us,i −
us,i
ωnl,i

q̇i(t) umin,i(t) = −us,i −
us,i
ωnl,i

q̇i(t) (4.1)

where us,i is the stall torque of the i-th motor, ωnl,i is no-load speed of that and q̇i(t) is actual
rotational speed of the motor. In the point-to-point motion, the carrying load increases until the
error of the final point in a finite time reaches the allowable bound, while in trajectory tracking,
it increases until the torques of motors touch the bounds of limitations. The algorithm of finding
the DLCC is shown in Fig. 4.

5. Model of 6R manipulator

5.1. Mechanical structure

The case study of this article is a 6R manipulator with six revolute joints that have massive
and complex dynamic and uncertainty in the modelling that shows the capability of the purposed
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Fig. 4. Algorithms for finding DLCC: (a) point-to-point motion and (b) trajectory tracking

Fig. 5. 6R manipulator (Korayem et al., 2013)

controller. Figure 5 presents the 6R manipulator. Figure 6 shows a schematic of the robot. The
Denavit-Hartenberg parameters of the robot are presented in Table 1.

Korayem et al. (2013) described the forward kinematics, inverse kinematics, and Jacobian
matrix of 6R. The hardware of the previous controller (Korayem et al., 2010) was improved to
perform the nonlinear methods better. The new developed digital board of 6R (Korayem et al.,
2013) consists of LPC1768 ARM microcontroller. This board is capable of computing massive
programs with adequate speed. In the next Subsection, the structure of hardware is explained
to a greater extent.
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Fig. 6. Schematic of 6R manipulator (Korayem et al., 2013)

Table 1. The Denavit-Hartenberg parameters of 6R arm

Joint i ai [mm] di [mm] αi [◦]

1 0 438 −90
2 251.5 0 0
3 125 0 0
4 92 0 90
5 0 0 −90
6 0 152.8 0

5.2. Hardware of controller

The old system of the controller of 6R was built in a way to perform open loop control
(Ahmadi et al., 2009), and it needed an alternative electronic controller unit (ECU) to upgrade
the whole system to a closed loop level. The previous ECU was based on PIC microcontrollers;
the system used six PIC chips to perform the task. The new 6R robot main board consists
of LPC1768 microcontroller, input feedback read, PWM output, and digital communications.
LPC1768 is a 32 bit microcontroller based on ARM Cortex M3 processor which operates at up
to 100MHz frequency. This microcontroller has 100 pins, which are allowed to manage driving
of six motors easily, and a 12-bit A/D to give feedback on the position of links to the processor.
The processor has also six pins for generating different PWMs that enable motors to drive in
both directions (Korayem et al., 2013).
The main board duty is to compute and apply the algorithms and for driving the motors,

but another board needs to be used. The driver board of motors is an other section of the
setup. BTS7810 having H-bridge design is chosen for driving the motors. This driver is capable
of providing 40A and 48V. Six potentiometers as the feedback are placed on the joints. The
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sensitivity and speed of the response are two important items in this part. The voltage of
each potentiometer separately passes through a low pass filter and after that an ADC channel
converts the voltage to data. The commands are initiated in computers and then are sent to
LPC1768. Next, the error is computed by comparing the position of current angles and desired
ones. Derivative of the error is computed approximately by division of two consecutive data on
the sample time. Then, the control signals are sent to motor drivers to provide the needed power
for DC motors.

6. Simulation and experimental result

6.1. Illustrative example

For the assurance of preference of the ISMC method, in this part of article, we compare this
method with the conventional SMC and use it for the two-link manipulator as an illustrative
example. The schematic of the two-link manipulator is shown in Fig. 7. The parameters of
the two-link manipulator are illustrated in Table 2, and the parameters of conventional SMC
are considered as K1 = K2 = 10 and λ1 = λ2 = 2; and ISMC coefficients are considered as
fb,1 = fb,2 = 250, α1 = α2 = 50, and β = 500, γ1 = γ2 = 10, ε = 0.5 and λ1 = λ2 = 2. Figure 8
shows the end-effector tracking. Figure 9 shows the path error of two methods, and Figs. 10a
and 10b show the correction input of the first and second joint of the two methods that caused
chattering.

Fig. 7. Schematic of the two-link manipulator

Table 2. Parameters of the two link manipulator

l1 l2 lc1 lc2 m1 m2 mp I1 I2

1m 1m 0.5m 0.5m 2 kg 2 kg 0.5 kg 0.166 kgm2 0.166 kgm2

As it is shown in the results, by consideringmp = 0.1 kg as the external disturbance, the main
distinction between conventional and improved SMC could be directed in chattering reduction
topic, which eventually leads to more precision, while less energy is consumed by the actuators.
The point is evident in Figs. 9 and 10; however, to have a clearer view in the matter, Table 3

is arranged for more information in terms of norms of inputs and errors of the system.

6.2. 6R manipulator

In this Section, the results of simulation and experimental tests on the 6R manipulator
are presented. For simulation, the dynamical equation of the robot is generated as differential
equations and solved with MATLAB software. The motor characteristics are given in Table 4.
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Fig. 8. Trajectories and configuration of the two-link arm

Fig. 9. Error of path tracking of the planar robot

Fig. 10. Correction input of the (a) first link and (b) second link, two-link arm

Table 3. Comparison of errors in inputs and end-effectors between ISMC and SMC of the planar
robot

Methods
Max |u1| Max |u2| Maximum
[N·m] [N·m] error [m]

SMC 127.1296 51.5406 0.0054
ISMC 6.8886 3.3870 0.0023
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Table 4. Specifications of motors of the 6R robot

Motor 1 2 3 4 5 6

us [N·m] 114 98 382.2 40.4 40.4 40.4
ωnl [rad/s] 1.3 1.04 0.73 0.9 0.9 0.9

The torque equation is calculated in a parametric form and programmed in the microcon-
troller to change to the PWM voltage level. The computed voltages are sent to the motors in
real time, and the measured feedback of potentiometers is sent to the main board. This process
continues till the error sets in the allowable bound. Then, the values which are obtained from
the potentiometers are stored in the main PC.

6.2.1. Point-to-point motion

Point-to-point motion starts from point A(0.0533, 0.4585, 0.4033) and ends with point
B(0.5264, 0.07115, 0.5885) during 6 s. The parameters of the SMC controller are given in Table 5
by experiments. Figure 11 shows the end-effector trajectories theoretically and experimental-
ly. In Fig. 12, the variation angles of links are shown. The comparison of simulation results
with experiments show sufficient accuracy. The difference between the actual angles and desired
ones is due to clearances in the gearbox. Figure 13 shows the chattering reduction and smooth-
ness of ISMC as the main controller for the experimental implementation with respect to the
conventional SMC in point-to-point motion.

Fig. 11. ISMC point-to-point motion of the 6R robot via simulation and experiment

Regarding the solid structure and heavy links of the 6R manipulator, the conventional SMC
has only been implemented theoretically. In experiments, the ISMC method has been applied in
the 6R robot to reduce the risk of any defect to motors brought up by probable chattering of
SMC. For the error of the end point in a finite time, the allowable bound is given as δ = 0.02.
By this constraint, DLCC is obtained to be about 920 g.
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Fig. 12. Angle of links in ISMC point-to-point motion of the 6R robot

Fig. 13. Theoretical comparison of SMC and ISMC for actuators of the 6R robot

Table 5. Parameters of the ISMC controller for point-to-point motion of the 6R robot

Joint
λ fb α β γ ε

number

1 10 10 2 10 0.01 0.5
2 10 10 2 10 0.01 0.5
3 10 10 2 10 0.01 0.5
4 10 10 2 10 0.01 0.5
5 10 50 2 10 0.01 0.5
6 10 50 2 10 0.01 0.5
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6.2.2. Trajectory tracking

The trajectory tracking has also been performed in a circular path. Equations of the desired
path are given as follows

xe(t) =
7
9315

t5 − 1
1242

t4 − 5
621

t3 +
5
10

ye(t) = −
14
9315

t5 +
1
621

t4 +
10
621

t3 +
1
10

ze(t) = −
7
9315

t5 +
1
1242

t4 +
5
621

t3 +
6
10

The initial conditions are defined as

x(0) =
[
−0.1 −0.44 0.2 0.65 −1.1 0 01×6

]T

The best parameters for the SMC controller in this path are given in Table 6 through expe-
riments. Figure 14 shows the end-effector trajectory both theoretically and experimentally. In
Fig. 15, the variations of angles of links are shown, and in Fig. 6, angular velocities are shown.

Table 6. Parameters of the ISMC controller for trajectory tracking of the 6R robot

Joint
λ fb α β γ ε

number

1 10 100 2 10 0.01 0.5
2 10 100 2 10 0.01 0.5
3 10 100 2 10 0.01 0.5
4 10 100 2 10 0.01 0.5
5 10 150 2 10 0.01 0.5
6 10 150 2 10 0.01 0.5

Fig. 14. ISMC trajectory tracking of the 6R robot via simulation and experiment

In the trajectory tracking, DLCC is calculated with respect to the limitation of motors and
error path. In Fig. 17, the control inputs are shown. The allowable error is considered 10mm. As
it is shown, the torque of the third motor reaches its lower bound. The DLCC in this trajectory
is obtained to be 700 g.
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Fig. 15. Angle of links in ISMC trajectory tracking of the 6R robot

Fig. 16. Angular velocities of links in ISMC trajectory tracking of the 6R robot

7. Conclusions

In this work, we have designed the improved sliding mode control method for manipulators and
studied the effect of various parameters on the behaviour of the ISMC controller. First, the ISMC
method was simulated for the two-link manipulator for the assurance of good performance and
then was implemented to the 6R manipulator as a good case study. The new hardware of robot
based on LPC1768 ARM microcontroller allowed performing massive calculation of dynamics
and closed loop control of the 6R manipulator. The point-to-point motion and trajectory tracking
problems were compared with experimental results. A good performance for manipulator control
in the presence of modelling the uncertainty and disturbance was confirmed. The main problem
of SMC was the chattering phenomenon, and as a result, the IMSC method provided smooth
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Fig. 17. Control inputs of ISMC trajectory tracking of the 6R robot

input torques for robot motors. Also, the dynamic load carrying capacity for the 6R robot in
point-to-point motion and trajectory tracking was increased by considering the robustness of
the controller.
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The ladder track is a new type of an elastically supported vibration-reduction track system
that has been applied to several urban railways. This paper is devoted to the investigation of
dynamic behavior of a ladder track under an oscillating moving load. The track is represented
by an infinite Timoshenko beam supported by a random elastic foundation. In this regard,
equations of motion for the ladder track are developed in a moving frame of reference. In
continuation, by employing perturbation theory and contour integration, the response of
the ladder track is obtained analytically and its results are verified using the stochastic
finite element method. Finally, using the verified model, a series of sensitivity analyses are
accomplished on effecting parameters including velocity and load frequency.

Keywords: ladder track, moving load, stochastic stiffness, perturbation theory

1. Introduction

In the 1940s to 1960s, weakness caused by resistance to lateral movement of cross-ties prompted
studies on longitudinal sleepers laid in parallel pairs under the rails. The aim was to produce a
railway track requiring a minimum of maintenance. Ladder sleepers were subsequently developed
having parallel longitudinal concrete beams held together by transverse steel pipes (Wakui et al.,
1997). Ladder sleepers provide continuous support to the rails assuring train safety, decreasing
maintenance and promising an increase in railway efficiency.
In recent years, a floating ladder track (Fig. 1a) has been developed to decrease vibration in

a structure and withstand noise. Younesian et al. (2006) studied the dynamic performance of a
ballasted ladder track. The rail and ladder units were simulated using a Timoshenko beam and
the governing equations were solved using the Galerkin method. Figure 1b shows the ballasted
ladder track.

Fig. 1. (a) Floating ladder track; (b) ballasted ladder track
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Hosking and Millinazzo (2007) developed a mathematical method for a floating ladder track
under a moving oscillating load in which the track was simulated using an Euler-Bernoulli beam
on periodic discrete elastic supports. They were able to predict the frequency and critical speed
for design purposes. Xia et al. (2009) dynamically simulated an elevated bridge with a ladder
track under a moving train and measured its dynamic response. Xia et al. (2010) carried out a
field experiment at the trial section of an elevated bridge on Beijing Metro line where the ladder
track was installed and investigatd the vibration reduction characteristics of the track.
Yan et al. (2014) developed dynamic models of the vehicle and the ladder track to analyze

the track vibration behavior. They optimized the mechanical properties of the ladder track to
reduce or eliminate the track vibrations at the corrugation frequency and ultimately to reduce
the chance of rail corrugation. Ma et al. (2016) investigated the effect of ballasted ladder tracks
and the vibration reduction effect. The results show that the ballasted ladder track can effectively
decrease the peak value in the time domain and has the potential effect to control environmental
vibration in low frequencies.
Analysis of beams subjected to moving loads is of substantial practical importance. Many

researchers have studied the vibration of beams subjected to various types of moving loads.
Since parameters such as loading, rail defection and nature of the substructure are stochastic,
the dynamic response of the track is assumed to be stochastic. Table 1 lists the major studies in
this area. Thus far, no study has been carried out on ladder tracks using a stochastic approach.

Table 1. Major research on stochastic approach in railway engineering

Author(s) Subject Loading Year

Fryba et al. Euler-Bernoulli beam resting on Harmonic 1993
a Winkler random foundation moving load

Anderson and Nielsen Beam on a random modified Kelvin Moving vehicle 2003
foundation

Kargarnovin et al. Infinite Timoshenko beams supported Harmonic 2005
by nonlinear foundations moving loads

Younesian et al. Timoshenko beam on a random Harmonic 2005
foundation under moving load

Younesian Infinite Timoshenko beam supported Harmonic 2009
and Kargarnovin by a random Pasternak foundation moving loads
Mohammadzadeh Risk of derailment using a numerical Railway vehicle 2010
and Ghahremani method
Mohammadzadeh et al. Probability of derailment where Railway vehicle 2011

irregularity of the track is random
Mohammadzadeh et al. Double Euler-Bernoulli beam resting Harmonic 2013

on a random foundation moving loads
Mehrali et al. Double Euler-Bernoulli beam resting Railway vehicle 2014

on a random foundation
Mohammadzadeh et al. Reliability analysis of the rail fastening Moving train 2014

where load and velocity are random
Pouryousef Reliability evaluation of design codes Live load 2014
and Mohammadzadeh applied for railway bridges (LM71)

Engineering experience has revealed that uncertainties occur in the assessment of loading as
well as in the material and geometric properties of engineering systems. The logical behavior
of these uncertainties in probability theory and statistics cannot be obtained accurately using
the deterministic method. This approach is based on extremes (minimum, maximum) and mean
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values of system parameters (Stefanou, 2009). More detail on the random behavior of a structure
can be found in Lutes and Sarkani (2004).
The Taylor series expansion of the stochastic finite element matrix of a physical system is

known in the literature as the perturbation method. This method is used to solve probabilistic
problems (Kleiber and Hein, 1992; Liu et al., 1986). Another method is the Karhunen-Loeve
expansion technique (Ghanem and Spanos, 1991a,b). The main initiative of the perturbation
method is to formulate an analytical expansion of an input parameter around its mean value
using a series representation (Jeulin and Ostoja-Starzewski, 2001; Nayfeh and Mook 1979).
A novel analytical method is presented for the analysis of the governing equations of motion

for an infinite Timoshenko ladder track on a viscoelastic foundation with random stiffness under
a harmonic moving load. For the stationary analysis of the response of the beam to variations in
stiffness in the support, it is useful to describe it in a local moving coordinate system subjected
to a harmonic moving load. Furthermore, by applying the perturbation method and complex
Fourier transformation, the mean and variance of the response of the beam can be calculated
analytically in an integral form. Sensitivity analysis is run using the residue theorem and key
parameters are introduced.

2. Theory

Assume a harmonic load moves uniformly along a ladder track at velocity v. The ladder track
is modeled using two parallel Timoshenko beams. The connection of the two beams is described
using a series of springs and dashpots. In addition, the lower beam rests on a viscoelastic
foundation. The vertical stiffness of the support is described by a stochastic variable along
the beam with a mean of k and a stochastic component of ks(x) (Mohammadzadeh et al., 2013).
Here, κ(x) is a random stationary ergodic function with zero mean value and φ is a small constant
parameter

kB(x) = k + φκ(x) = k + ks(x) (2.1)

2.1. Equation of motion

The equations of motion for the rail and ladder units are

ρ1A1
∂2w1
∂t2
+ k1A1G1

(∂ψ1
∂x
− ∂2w1

∂x

)
+ kp(w1 −w2) + cp

(∂w1
∂t
− ∂w2

∂t

)

= P eiΩtδ(x − vt)

EI1
∂2ψ1
∂x2
− k1A1G1

(
ψ1 −

∂w1
∂x

)
= ρ1I1

∂2ψ1
∂t2

(2.2)

and

ρ2A2
∂2w2
∂t2
+ k2A2G2

(∂ψ2
∂x
− ∂2w2

∂x

)
+ kBw2 − kp(w1 − w2)

− cp
(∂w1
∂t
− ∂w2

∂t

)
+ cB

∂w2
∂t
= 0

EI2
∂2ψ2
∂x2
− k2A2G2

(
ψ2 −

∂w2
∂x

)
= ρ2I2

∂2ψ2
∂t2

(2.3)

where w1(x, t) is the upper beam deflection, w2(x, t) is the lower deflection, δ(x) is the Dirac
delta function, and v and Ω are the speed and frequency of the load, respectively. A, E, G, I,
k and ρ are the cross-sectional areas of the beams, modulus of elasticity, shear modulus, second
moment of area, sectional shear coefficient, and beam material density, respectively. Figure 2 is
a flowchart of the solution of the governing equation for the ladder track.
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Fig. 2. Solving the governing differential equation

2.2. First-order perturbation approach

The perturbation method is proposed to compute the response of the beams to a harmonic
moving load. The responses of the ladder track (rail and ladder unit) are decomposed to zero
and first-order terms

w(x, t) = wi0(x, t) + φw
i
1(x, t)

ψ(x, t) = ψi0(x, t) + φψ
i
1(x, t)

i = 1, 2 (2.4)

where i = 1 for the rail and i = 2 for the ladder unit.

2.3. Solution

Equations (2.2) and (2.3) are solved using Eqs. (2.4) and equating terms with the same powers
of φ. The Galilean coordinate transformation is

s = x− vt (2.5)

The boundary conditions of deflection, velocity, and acceleration of the beams are assumed
to be zero in positive and negative infinity. Using the state variable transformation and applying
the complex Fourier transform results in

w10(q) =
P (β7q2 − β8q + β9)D4

H(q)
w11(q) =

D4P +D2w20
H(q)

w20(q) =
P (β7q2 − β8q + β9)(−Dβ3)

H(q)
w21(q) =

−D3P −Dβ1w20
H(q)

(2.6)

D1, D2, D3 and D4 are described in Appendix 1. H(q) is the determinant of the matrix

h =

[
D1 D2
D3 D4

]
(2.7)

and ψ10 , ψ
2
0, ψ

1
1 , and ψ

2
1 are equal to

ψ10(q) =
−β3PqD4
H(q)

ψ11(q) =
−β3q(PD4 +D2κw20)
(β7q2 − β8q + β9)H(q)

ψ20(q) =
β12Pq(β7q2 − β8q + β9)D3
(β15q2 − β16q + β17)H(q)

ψ21(q) =
β12q(D3P +D1κw20)
(β15q2 − β16q + β17)H(q)

(2.8)

General definitions for all coefficients are listed in Table 2. The response of the beams can be cal-
culated by applying the inverse Fourier transform and using contour integrals (Mohammadzadeh
et al., 2014). The mean values for the beam deflection and bending moment and the covariance of
a random function can be calculated as described by Mohammadzadeh et al. (2013) and Solnes
(1997).
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Table 2. Definitions of coefficients

Parameter Definition Parameter Definition

β1 k1A1G1 − ρ1A1v2 β10 k2A2G2 − ρ2A2v2
β2 2ρ1A1Ωv β11 2ρ2A2Ωv
β3 ik1A1G1 β12 ik2A2G2
β4 icpv β13 icBv
β5 −ρ1A1Ω2 + kp − icpΩ β14 −ρ2A2Ω2 + k + kp + icpΩ + icBΩ
β6 kp + icpΩ β15 ρ2I2v

2 − EI2
β7 ρ1I1v

2 − EI1 β16 2ρ2I2Ωv
β8 2ρ1I1Ωv β17 ρ2I2Ω

2 − k2A2G2
β9 ρ1I1Ω

2 − k1A1G1 β18 kp + icpΩ

3. Model validation of ladder track

The stochastic simulation of the ladder track foundation has been validated as described below.

3.1. Validation using the stochastic finite element method

The response of a beam resting on a stochastic foundation is obtained using the stochastic
finite element method (SFEM) as suggested by Fryba et al. (1993). Consider the second beam
as a rigid component and evaluate the behavior of the upper beam assuming stochastic behavior
for the foundation. Then, the random behavior of the system is calculated and validated using
the results of Fryba et al. (1993). Figure 3 shows that the results calculated in current study are
in good agreement with those reported by Fryba et al. (1993).

Fig. 3. Comparison between the current modeling and results by Fryba et al. (1993)

3.2. Validation by a deterministic model

Next, the deterministic behavior of the ladder track is verified using the results of Younesian
et al. (2006). They investigated the dynamic behavior of a ladder track of finite length. The
ladder track is simulated using a Timoshenko beam and the track is subjected to a moving load.
The results of verification are illustrated in Table 3. The results of the current study are in good
agreement with those reported by Younesian et al. (2006).
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Table 3. Comparison of the current study and results by Younesian et al. (2006)

S [m] Current study Younesian et al.

−8 −4.13E-09 7.86E-05
−6 5.87E-08 −1.7E-05
−4 −3.11E-07 −0.00017
−2 −1.7E-05 −0.00031
0 −0.00083 −0.00037
2 −3E-05 −0.00032
4 1.06E-06 −0.00015
6 −3.24E-08 7.61E-05
8 7.16E-10 0.00018

4. Response of the ladder track

The response of the simulated ladder track is next investigated under a harmonic moving load.
The railway substructure should be constructed and confirmed using adequate ground stiffness
and standards (Younesian et al., 2005). It is not possible to provide a track bed with absolutely
uniform specifications, and there are many factors that influence the subgrade (Phoon, 2008;
Griffiths and Fenton, 2007; Fenton and Griffiths, 2008; Baecher and Chrsitian, 2003). The finite
distance correlation can be assumed using bed stiffness as a random field. A parametric study
was done on the key parameters of solution derived using the track bed stiffness from the field
data by Berggren (2009). The physical and geometrical properties of the track are listed in
Table 4.

Table 4. Parameters used in the model

Rail Ladder
Parameters Value Parameters Value

Young’s modulus E1 210GPa Young’s modulus E2 28.2GPa
Shear modulus G1 77GPa Shear modulus G2 11.75GPa
Mass density ρ1 7850 kg/m3 Mass density ρ2 3954.7 kg/m3

Cross-sectional area A1 7.69 · 10−3m2 Cross sectional area A2 31 · 10−3m2
Second moment

30.55·10−6m4 Second moment
98.3 ·10−6 m4

of inertia I1 of inertia I2
Shear coefficient k1 0.4 Shear coefficient k2 0.43

Rail pad Foundation
Parameters Value Parameters Value

Stiffness kp 40 · 106Nm−2 Mean value of stiffness kB 50 · 106 Nm−2
Viscous damping cp 6.3 · 103Nm−2 Variance of stiffness σ2kB 4.4186 · 1013 N2m−4

Viscous damping cB 41.8 · 103Nsm−2

4.1. Load frequency influence

The velocity of the moving load is assumed to be 100 km/h. Figure 4 shows that, by increasing
the load frequency, the mean value and standard deviation of the response of the upper beam
(rail) initially decreases and then increases. In addition, the distribution widens as the oscillations
increase along the rail.
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Fig. 4. Effect of load frequency on track deflection (mean value)

An increase in the load frequency decreases the response of the lower beam (ladder unit),
indicating that both the mean value and standard deviation of the ladder unit show decreasing
trends. Figure 5 shows the wider distribution with the increase in fluctuations along the beam.

Fig. 5. Effect of load frequency on track deflection (standard deviation)

Figures 6 and 7 show the mean value and standard deviation of the rail and ladder bending
moments, respectively. As the load frequency increases, the response of the rail first decreases
and then increases. The velocity of the moving load is assumed to be 100 km/h.

Fig. 6. Effect of load frequency on track bending moment (mean value)

The mean value and standard deviation of the ladder unit decreased as the load frequency
increased. As shown, the fluctuation of the ladder first increased and then decreased.
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Fig. 7. Effect of load frequency on track bending moment (standard deviation)

4.2. Load velocity influence

The variation in load velocity versus the behavior of the double beam is shown in Figs. 8
and 9 for the response of the ladder track. The figures include the deflection and bending moment
of both beams. As shown, the maximum response of the rail versus loading frequency have been
attained and employed as design criteria. An increase in the velocity of the moving load decreased
the value of this frequency.

Fig. 8. Effect of velocity on the ladder track (mean value)

Fig. 9. Effect of velocity on the ladder track (standard deviation)
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4.3. Effect of the coefficient of variation of bed stiffness

The coefficient of variation (CV ) of the stiffness of the bed is varied to assess its effect on the
track bed (Figs. 10 and 11).It can be observed that increasing the CV increases the standard
deviation of the rail and ladder.

Fig. 10. Effect of CV on the ladder track (mean value)

Fig. 11. Effect of CV on the ladder track (standard deviation)

5. Conclusion

The dynamic behavior of the ladder track has been investigated in the present study. The ladder
track has been simulated using an analytical model with a double Timoshenko beam. The upper
beam simulated the rail and the lower beam simulated the ladder unit. A series of springs and
dashpots represent the rail pad and foundation. The foundation stiffness of the system has been
assumed to exhibit stochastic behavior as simulated by field tests. The first-order perturbation
method has been applied and the responses, including the deflection and bending moment, are
shown in form of the mean value and standard deviation. It has been found that increasing the
load frequency decreased and then increased the response of the track. The peak frequency is
the point at which all responses are at maximum value. It was found that the peak frequency
increases as the velocity of the load velocity increases.

Appendix 1

The parameters in Equations (2.6) and (2.8) are described below

D1 = β1β7q4 + (−β1β8 + β2β7 − β4β7)q3 + (β1β9 − β2β8 − β23 + β4β8 + β5β7)q2

+ (β2β9 − β4β9 − β5β8)q + β5β9
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D2 = β4β7q3 − (β4β8 + β6β7)q2 + (β6β8 + β4β9)q − β6β9
D3 = β4β15q3 − (β4β16 + β15β18)q2 + (β4β17 + β16β18)q − β17β18
D4 = β10β15q4 + (−β10β16 + β11β15 − β4β15 − β13β15)q3 + (β10β17 − β11β16 − β212
+ β4β16 + β13β16 + β14β15)q2 + (β11β17 − β4β17 − β13β17 − β14β16)q + β14β17
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To understand the loss mechanism of slot-type casing treatment, a numerical loss analysis
has been carried out in a 1.5 axial transonic compressor stage with various slots. Spanwise
and streamwise distribution curves of pitch-averaged entropy have been presented to survey
the development of loss generation. Further, detailed entropy distributions at eight axial
cuts, which have been taken through the blade row and slots, have been further analyzed
to interpret the loss mechanism. The most dramatic loss growth occurred above 95% span,
which directly resulted from slots injection flow upstream the leading edge. Loss generations
with smooth casing have been primarily ascribed to low-momentum tip leakage flow/vortex
and suction surface separation at the leading edge. CU0 slot, the arc-curved slots with
50% rotor tip exposure, has been capable of suppressing the suction surface separation loss.
Meanwhile, accelerated tip leakage flow brought about additional loss near the casing and
pressure surface. Upstream high entropy flow would be absorbed into the rear portion of
slots repeatedly, which resulted in further loss.

Keywords: axial compressor, numerical simulation, slot-type casing treatment, loss mecha-
nism, tip leakage flow

Nomenclature

SC/CT – smooth casing/casing treatment
AX, BE, CU – axial, bend, arc-curve skewed slot, respectively
cx,tip – rotor tip axial chord
LE/TE – leading edge/trailing edge
G – mass flow, [kg/s]
π∗ – total pressure ratio, [–]
η∗ – isentropic efficiency, [–]
SCPE – peak efficiency point with smooth casing
SCNS – near stall point with smooth casing
SM – stall margin
Eff – isentropic efficiency
SS/PS – suction surface/pressure surface
∆S – entropy increase relative to incoming flow, [J/(kg·K)]
∆Sref,sc – the reference entropy value, [J/(kg·K)]
Gslot – normalized mass flow through slot opening surface, [–]

1. Introduction

The axial slot is a preferable configuration of casing treatment with favorable ability of enhancing
the compressor operating range. Although the effect of casing treatment has a strong correla-
tion with a specific compressor type and a flow field pattern, a rationally designed slot-type
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configuration always achieves higher stall margin improvement than a circumferential groove,
ranging from 10% to 20% (Moore et al., 1971; Takata and Tsukuda, 1977). However, slot casing
treatment also results in a much higher efficiency loss. According to the research work by Fujita
and Takata (1984), a certain amount of loss in efficiency is inevitable in order to obtain desirable
stall margin improvement. Particularly superior configuration does not exist.
Increasing performance requirements for aero engine demands less efficiency loss. Improving

the stall margin with a serious drop in the efficiency is unacceptable. Researchers continue
further investigations on configurations and design parameters of slot-type casing treatment to
minimize the loss in efficiency. Arc-curve skewed slot (Yu et al., 2002) and bend skewed slot (Zhu
and Chu, 2005) have been proved to achieve favorable stability enhancement with acceptable
minor loss in certain circumstances. Some configurations even slightly increase the efficiency in
specific cases (Alone et al., 2014; Li et al., 2012; Tuo et al., 2011). Researches working on design
parameters presented that the efficiency loss caused by slot treatment is sensitive to slots depth,
casing porosity and blade tip axial chord exposure, especially the last one. Lu et al. (2006)
and Danner et al. (2009) both demonstrated that reduction in rotor exposure is conducive to
minimizing the efficiency loss.
To design casing treatment with a low level loss, it is urgent to master the loss mechanism of

slot treatment. Injection flow from slot casing treatment is the primary source of compressor loss
(Fan et al., 2008). This paper is committed to clarifying the influence of injection flow on the
compressor efficiency and elaborating the tip loss mechanism. Entropy distributions are utilized
to survey the loss generation development by casing treatment along spanwise and streamwise
directions. Entropy distributions at several axial cuts are examined in detail to interpret the loss
development procedure.

2. Descriptions of the investigated model and numerical method

2.1. Compressor stage and slot-type casing treatment

The 1.5 stage axial transonic compressor consists of variable inlet guide vanes (IGV), rotors
(R1) and stators (S1). Figure 1 shows a schematic of the compressor stage. Table 1 provides
an overview of the main geometric/operational parameters of this compressor stage. The mean
aspect ratio of R1 blades measures 1.4 with a hub-to-tip ratio of 0.7. The solidity at the rotor
tip is 1.1 and the clearance size comes to 0.3% span. The stage design total pressure ratio is 1.5.
At the design rotating speed, the rotors are characterized by the inlet relative Mach number of
1.2 corresponding to a blade tip velocity of approximately 380m/s. While at the specified speed
discussed in this paper, the maximum Mach number at the rotor tip is just less than 1.0.

Fig. 1. Schematic of the compressor stage
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Table 1. Main geometric/operational parameters of the compressor stage

Parameter [unit] Value

Mean aspect ratio [-] 1.4
Hub-to-tip ratio [-] 0.7
Rotor solidity at tip [-] 1.1
Relative tip gap [% of blade height] 0.3
Stage design total pressure ratio [-] 1.5
Rotor tip velocity at the design speed [m/s] 380

Three slot-type casing treatments (Notated as CT) have been designed for this compressor
stage. They are an axial skewed slot, bend skewed slot and arc-curve skewed slot (notated as
AX, BE and CU). BE and CU slot can be treated as variants of AX slot. Three baseline slots
with default design parameters are denoted as AX0, BE0 and CU0, respectively, as shown in
Fig. 2.

Fig. 2. Schematics of three baseline slots

All slots start from 26% of the tip axial chord cx,tip upstream the leading edge (LE) in the
axial direction, and its radial depth H is restricted to 21.5% cx,tip. The slots are parallel to the
rotation axis of the rotor and are inclined by 60◦ against a meridional plane in the direction of
blade rotation, as shown in Fig. 2d. Baseline slots extend to 50% cx,tip downstream LE, and five
slots are evenly distributed along the circumferential direction in one blade passage. Thus, the
ratio of W (the slot width) to G (the gap between each slot pitch) is set to 2:1, i.e., the casing
porosity Φ (the ratio of slot opening surface area to full annulus area within the slot axial extent)
is 66.7%. Fundamental design parameters of the baseline slot are listed in Table 2. Specifically,
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for BE slot, the first segment is designed to align with the axial direction, and the bending angle
between the axial direction and the second segment β roughly equals to the blade tip stagger
angle (Zhu and Chu, 2005). For CU slot, the arc chord is also aligned with the axial direction.
The rotor tip exposure Lex and casing porosity Φ are altered to study their influences on the
casing treatment effectiveness, via upstream moving of the slot ending position and reducing the
number of slots. The slots with Lex of 33.3% and 25% are denoted as CU1 and CU2. On the
basis of CU2, the slots with reduced Φ are named as CU3 and CU4. The design parameters of
four CU slots are presented in Table 3.

Table 2. Fundamental parameters of baseline slots

Parameter [unit] Value

Slots/blades ratio [-] 5:1
Axial length of slot L [%cx,tip] 79
Rotor tip axial chord exposure Lex [%cx,tip] 50
Slot width W [%cx,tip] 24
Slot width/slot gap W/G [-] 2:1
Circumferential casing porosity Φ [%] 66.7
Slot radial depth H [%cx,tip] 21.5
Radial skewed angle α [◦] 60

Table 3. Comparison of CU configurations

Notation
Lex Slots/blades Φ
[%cx,tip] ratio [-] [%]

CU0 50 5:1 66.7
CU1 33.3 5:1 66.7
CU2 20 5:1 66.7
CU3 20 4:1 53.3
CU4 20 3:1 40

2.2. Numerical methods

Commercial CFD solver ANSYS-CFX 14.5 has been employed for 3D steady-state calcula-
tions. Three-dimensional RANS equations have been discretized with the finite volume method.
The two-equation k-ω turbulence model has been used. For saving computation resources, single
blade passage computation has been conducted. Block-structured grids are generated for blade
passages, tip clearance region and casing treatment slots independently. The IGV, R1 and S1
grid consists of about 0.5 million cells per passage, with ATM topology, while the rotor tip
clearance geometry is meshed in a simple H-type mesh with 11 cells in the radial direction to
simulate tip leakage flow. The casing treatment grid consists of 18081 cells in the H-type mesh
for each slot with 41 points in the axial direction and 21 points in both radial and circumferential
directions. The grids are clustered at the solid wall to meet the resolution requirement of y+ ¬ 5.
One blade passage is calculated with a periodic boundary condition in the circumferential

direction. At the IGV inlet, the flow direction is assumed to be axial. A constant total pressure
of 101 325Pa and total temperature of 288.15 K are applied. The static back pressure is imposed
at conditions of radial equilibrium to vary the operating point and allow the flow field to develop
unimpaired. A mixing-plane scheme is applied on IGV/R1 and R1/S1 interfaces. Since unsteady
simulations are time consuming for various slots configurations, a steady frozen rotor model is
applied on R1/CT interface.
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The grid independence tests and numerical method validations are carried out by NASA
Stage 35 (Reid and Moore, 1978), in which the loading and critical flow phenomenon at the rotor
tip is similar to the investigated transonic compressor stage. Figure 3 presents the comparison of
stage performance at 100% design speed with the grids number of 0.3, 0.5 and 1.0 million cells
per passage. All these three predicted results agree well with the experimental data. Note that
report by Reid and Moore (1978) gives the stall point of Stage 35 as 18.26 kg/s. As stated by
Chima (2009), the rotor is probably in stable rotating stall at this operating point. Therefore, a
steady simulation hardly reaches this point.

Fig. 3. Compressor maps of NASA Stage 35 (Reid and Moore, 1978) at 100% design speed

Further comparisons of flow parameters are conducted at each peak efficiency point. The
total pressure and temperature profiles downstream of rotor are presented in Fig. 4. Simulated
profiles of different grid sets are all consistent with the experimental ones in trends. Curves of
0.5 and 1.0million are rather close. But the total pressure ratio value is over-estimated across
the whole span, especially below 40%. While the simulated total temperature ratio profiles agree
well with the experimental results. Convergence histories at the peak efficiency point are also
presented in Fig. 5. RMS residuals of 0.3 and 0.5million both descend below 10−6 after about
500 iterations, while 1.0million grid set costs 800 iterations. Since 0.5million is able to provide
grid-independent and reliable solutions with much less computing resources, it is reasonable to
use this grid set in this study.

3. Results and discussions

3.1. Compressor characteristics

Compressor speed lines with smooth casing (SC) and seven kinds of casing treatment (CT)
are presented in Fig. 6. The total pressure ratio π∗ and isentropic efficiency η∗ are plotted as a
function of mass flow G. π∗ and η∗ are normalized by each maximum value with SC, while G is
normalized by SC near the choked mass flow rate. The stall margin SM is calculated as follow

SM =
(π∗NS/GNS
π∗PE/GPE

− 1
)
· 100% (3.1)

where subscripts PE and NS represent the peak efficiency and near stall conditions.
According to Equation (3.1), this compressor stage has a SM of 6.67% at the specified rotating

speed, which needs to be improved badly. The smooth casing peak efficiency (SCPE) and near
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Fig. 4. Total pressure and temperature profiles downstream of Rotor 35 at the peak efficiency point

Fig. 5. Convergence histories at the peak efficiency point

stall (SCNS) points are located at 92.5% and 89.5% near the choked mass flow rate. Performance
variations with various CTs at both SPCE and SCNS conditions are listed in Table 4. Steady
results show that all slots with 50% Lex are capable of extending SM by more than 20%, with
more than a 2% peak efficiency decrease. CU0 produces smaller ∆Eff compared with AX0 and
BE0, along with 23% ∆SM. As Lex is reduced from 50% (CU0) to 33.3% (CU1), both ∆SM and
∆Eff drop significantly. Nevertheless, CU2 with 20% Lex is able to provide similar ∆SM and a
less efficiency drop compared with CU1. As the slot number decreases from 5 (CU2) to 3 (CU4)
per passage, the operating range declines along with smaller ∆Eff. Even no efficiency penalty is
created by CU4 at SCNS condition.

3.2. Entropy spanwise and streamwise distributions

In this Section, pitch-averaged entropy distributions are analyzed to survey the development
of loss generation with CTs. Entropy increase relative to incoming flow (∆S) is calculated and
normalized with the reference value ∆Sref,sc, the entropy value at 100% span with SC at SCPE
condition.
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Fig. 6. Compressor maps with SC and three slot configurations

Table 4. Compressor performance variations with various CTs

Notation ∆SM [%] ∆EffSCPE [%] ∆EffSCNS [%]

AX0 27.26 2.50 2.18
BE0 33.05 2.71 2.56
CU0 23.21 2.26 1.89
CU1 9.13 1.31 0.55
CU2 9.23 0.88 0.19
CU3 6.69 0.82 0.07
CU4 3.66 0.64 0.00

Spanwise distributions of∆S 20% cx,tip downstream the trailing edge (TE) at both conditions
are presented in Fig. 7. At SCPE condition, as shown in Fig. 7 (a), ∆S with SC grows gradually
from 90% span. While at SCNS condition, ∆S increases from 80% span at a higher growth rate.
After the installation of slots, generally, ∆S span is altered only above 80% span. AX0 brought
about loss growth from 80% to 95% span at both conditions, but has little impact near the rotor
tip. BE0 and CU0 both shift ∆S to a higher level at both conditions, especially at the near tip
regions. However, a remarkable entropy increase is merely found below 94% span with BE0/CU0
at SCNS condition, as shown in Fig. 7b. As for CU1 to CU4 slots, intensity and extent of effects
on entropy distributions both decrease. It is worth noting that all four CUs are able to reduce
entropy generation from 84% to 92% span at SCNS condition.
Since CTs have different influences on entropy spanwise distributions at different spans. The

axial distributions of ∆S at two typical spans are presented to interpret the loss streamwise
development. The x-coordinate represents the normalized axial position, while the y-coordinate
represents ∆S/∆Sref,sc. The axial range examined extends from −30% cx,tip upstream LE to
20% cx,tip downstream TE.
Figure 8 presents axial distributions of ∆S at 90% span. As shown in Fig. 8a, ∆S of SC rises

gradually downstream LE at SCPE condition. While in Fig. 8b, ∆S curve shows a rapid growth
downstream LE at SCNS condition. Slots of Lex = 50% all raise the entropy value downstream
TE at SCPE condition. The largest increase at the outlet is contributed by AX0, followed by
BE0. However, a significant growth is not found within the coverage of slots, which indicates that
the loss generation at this span does not directly result from the injection flow from slots. CUs
with smaller extending length and slots number has little impact on ∆S distribution curves at
SCPE condition. At SCNS condition, however, all slots bring down entropy curves within their
extending ranges, except AX0. Only entropy value with AX0 is higher than SC case at the rotor
outlet. CU0-CU4 even reduce the loss remarkably downstream TE.
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Fig. 7. Entropy distributions along the span at the rotor outlet at both conditions

Entropy streamwise distributions at 99.5% span at SCPE condition are presented in Fig. 9a.
∆S of SC initiates rising gradually from −10% x/cx,tip at SCPE condition. The maximum value
is reached at 8% x/cx,tip, followed by a tender decrease till 50% x/cx,tip. After the installation
of CTs, entropy begins to grow ahead of −30% x/cx,tip. For all 7 kinds of slots, local entropy
increases at the fastest rate within the range from−30% to −20% x/cx,tip. It is indicated that the
injection procedure becomes the primary source of loss generation at 99.5% span. CU0 reaches
the its peak ∆S value at about 15% x/cx,tip. Being consistent with thhe spanwise distributions
in Fig. 7a, entropy value of CU0 occupies the first place downstream TE; BE0 comes the second.
At SCNS condition, as shown in Fig. 9b, ∆S with SC starts to rise sharply from −15% and

reaches the peak value upstream LE. It results from forward motion of the interface between the
incoming flow and the tip leakage flow. ∆S distributions with slots of Lex = 50% vary slightly
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Fig. 8. Pitchwise-averaged entropy distributions along the axial direction at 90% span

compared to SCPE condition, in spite of a significant change in SC curve. But curves of CU1 to
CU4 raise obviously compared to SCPE condition. It is indicated that slots with strong effects
tend to maintain their influence on the flow filed at more critical conditions.
From the above analysis of entropy spanwise and streamwise distributions, it is concluded

that the influenced spanwise range of entropy distributions by CTs is above 80% span, and the
most dramatic growth generally occurrs above 95% span. Primary sources of loss generation
are different at lower and higher spans. At higher span high entropy regions are located within
the slots axial coverage, which directly results from the injection flow by CTs. At a lower span,
the entropy rises gradually along the streamwise direction. It is inferred that entropy variations
are indirectly induced by an altered flow field by CTs. The following Section considers he loss
development process in the main flow and inside slots, making further efforts to interpret the
loss mechanisms with CU slots.

3.3. Detailed Loss analysis with CU0

This Section discusses the loss development process in the main flow and inside slots along
the axial direction, making further efforts to interpret the loss mechanisms with CU0. Eight axial
cuts are taken through the blade row and slots to show the increase in entropy relative to the
inflow. The 8 cuts are plotted with CU0 slots in Fig. 10, with their normalized tip axial locations
marked on the right side of the figure. The axial cuts and slots in one passage are numbered by
Arabic and Roman numeral respectively, to facilitate the description in the following analysis.
On these eight cuts, the normalized entropy distributions above about 80% span with SC at
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Fig. 9. Pitchwise-averaged entropy distributions along the axial direction at 99.5% span

Fig. 10. The locations of eight axial cuts

both conditions are depicted in Fig. 12 (viewing from inlet to outlet). Figure 11 also presents
the rotor blade limiting streamlines and 3D streamlines starting above 95% span in Cut 8.
As shown in Fig. 12a, high entropy regions hardly appears in the first two cuts with SC. Then

a small piece of a high loss region initiates to emerge near the casing in the 3rd cut, as a result
of tip leakage flow spillage at LE. Besides, LE separation also gives rise to a relative high loss at
lower span at the suction surface (SS). With the development of separation and tip leakage flow,
high entropy regions near SS and casing extend in the main flow passage in following planes.
At SCNS condition, the primary losses are still ascribed to the blade separation and tip leakage
flow. However, since the tip leakage flow is spilling more upstream at this working condition,
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Fig. 11. Blade limiting streamlines and 3D streamlines starting above 95% span in Cut 8

Fig. 12. Entropy distributions on axial cuts with SC (inlet to outlet)
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loss of much larger magnitude and extent is generated near the tip region, as shown at Cut 3 to
Cut 9 in Fig. 12b. In addition, at SCNS condition, the high entropy region grows larger in the
radial extent and moves closer to SS.
As seen in Fig. 11, the limiting streamlines at both two conditions clearly show the suction

surface separation at LE. At SCNS condition, the separation region extends in both streamwise
and spanwise directions. As shown in Fig. 11a, 3D streamlines just go downstream smoothly
at a high speed at SCPE condition. Streamlines upstream Cut 8 are not observed. At SCNS
condition, however, adverse streamlines striding over rotor tip are clearly seen upstream Cut 8
in Fig. 11b as well as a tip leakage vortex. This indicates that the high entropy region above 95%
span in Cut 8 is attributed to the adverse flow. Streamlines starting from Cut 8 turn around
and flow towards the pressure surface (PS) of the adjacent blade, as a result of a high adverse
pressure gradient. Then streamlines strode over rotor tip and continue to propagate in pitchwise
and reversed-stremwise directions. Some streamlines roll up and form a tip leakage vortex,
consequently giving a rise to a larger area of the high entropy region at Cut 8.
The axial distributions of pitch-averaged mass flow through the slot opening surface Gslot

are depicted in Fig. 13. Values greater than zero represent the flow into the slot, and vice versa.
Figure 14 presents the entropy distributions with CU0.

Fig. 13. Axial distributions of pitch-averaged mass flow through each slot opening surface

In Fig. 13, the sum of exchanging mass flow through five slots is also designated by dashed
lines. Since the frozen rotor model has been used, the pattern of Gslot distribution is related to
the relative position of R1/CU0. In this case, Slot I just strides over LE as shown in Fig. 10.
Thus Slot I reaches its maximum injection mass flow rate at LE. The suction mass flow of Slot II
reaches the maximum value at about 40% x/cx,tip, where Slot II overlaps with the blade tip.
Since Slot III to V do not overlap with the blade tip, their distribution curves are similar. For the
SUM curve, 10% x/cx,tip is the dividing location of injection and suction regions. The injection
flow rate is relatively large and almost constant from −25% to 0% x/cx,tip. The suction flow
rate increases downstream 10% x/cx,tip gradually and reaches the peak value at 40% x/cx,tip.
Gslot distributions at SCNS condition are similar with SCPE case.
In Fig. 14a, pretty high entropy regions are located on the counter-rotating side of Slot I

(on the right side in current view point) at Cut 1-4. It is suggested that mixing of the injection
flow and the main flow is the primary cause of the loss. The highest value of entropy appears
at Cut 4, i.e. 10% x/cx,tip location, in accordance with the entropy axial distribution in Fig. 9a.
Downstream 15% x/cx,tip, the injection flow rate is no longer presented in any slot. Accordingly,
the entropy value starts to decline as seen in Fig. 9a. At Cut 5-6, the upstream high entropy
flow is absorbed into the rear portion of Slot I repeatedly. At Cut 8, SS separation area shrinks
slightly. In addition, a noticeable high entropy region rises near casing and PS, which results
from the accelerated tip flow by slots. The entropy distribution pattern is similar at SCNS
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Fig. 14. Entropy distributions on axial cuts with CU0

condition as shown in Fig. 14b, with a slightly higher entropy level inside the slots and rotor
passages.
From the above, loss development procedures throughout the passages with SC and CU0

are clarified. Loss generations with SC are primarily ascribed to the tip leakage flow and SS
separation at LE. At a more critical condition, the rolled-up tip leakage vortex and consequent
adverse flow occupy the major part of the high loss. CU0 is capable of suppressing SS separation
loss, meanwhile accelerating the tip leakage flow and, consequently, bringing about an additional
loss near the casing and PS. Besides, the upstream high entropy flow would be absorbed into
the rear portion of the slot repeatedly, which results in further losses.

4. Conclusions

This paper clarifies the influence of the injection flow on loss distributions and elaborates the
loss mechanisms. Several conclusions are drawn below:

• The influenced spanwise range of entropy distributions by slots is above 80% span. The
most dramatic growth generally occurs above 95% span, which directly results from the
injection flow upstream the leading edge. Entropy generation at a lower span rises gradually
along the streamwise direction, which may be indirectly induced by an altered flow field
by casing treatment.
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• Loss generations with smooth casing are primarily ascribed to the tip leakage flow and
suction surface separation at the leading edge. At a more critical condition, the rolled-up
tip leakage vortex and the consequent adverse flow occupy the major part of the high
loss. CU0 slot is capable of suppressing the suction surface separation loss, meanwhile
accelerating the tip leakage flow and, consequently, bringing about an additional loss near
the casing and pressure surface. Besides, the upstream high entropy flow would be absorbed
into the rear portion of the slot repeatedly, which results in further losses.
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Design of morphing wings at increasing TRL is common to several research programs worl-
dwide. They are focused on the improvement of their performance that can be expressed
in several ways, indeed: aerodynamic efficiency optimization, fuel consumption reduction,
COx and NOx emission reduction and so on, or targeted to overcome the classical draw-
backs related to the introduction of a novel technology such as system complexity increase
and management of certification aspects. The Consortium for Research and Innovation in
Aerospace in Quebec (CRIAQ) lunched project MD0505 that can be inserted in this crow-
ded frame. The target of this cooperation, involving Canadian and Italian academies and
a research centre, is the development of a camber “morphing aileron” integrated on an in-
novative full scale wing tip of the next generation regional aircraft. This paper focuses on
the preliminary design and the numerical modeling of its architecture. The structural layout
is, at the beginning, described in detail and furthermore, a finite element (FE) model of
the entire aileron architecture is assessed and used to verify the structural integrity under
prescribed operational conditions.

Keywords: morphing, actuation system, adaptive wing

1. Introduction

Commercial aircraft wings are typically designed for cruise operations. However, different flight
phases are encountered during a standard mission; efficiency is therefore seldom optimal (Bar-
barino et al., 2011). The realization of lifting surfaces able to “adapt” themselves to variable
operative conditions and, therefore, to match the necessity of modifying the reference configu-
ration, may improve the current performance levels. A main feature that can be associated to
a morphing structure is then for instance its potentiality to optimize the aircraft L/D ratio all
over the flight envelope. Several European projects, such as Clean Sky (2008) and Saristu (2012-
-2015) were launched in recent years to develop and assess new technologies devoted to add the
structural systems with new adaptation capabilities through the use of innovative, integrated
devices, demonstrating their real applicability and benefits. Aiming at those same targets, the
CRIAQ Project was launched, with a specific focus on the wing trailing edge, specifically in the
aileron region, (CRIAQ MDO-505, 2012). In fact, many studies (Monner et al., 1999; Bolonkin
and Gilyard, 1999), demonstrated the particular effectiveness of morphing trailing edge devices
located in that area. Moreover, the aileron region constitute a very delicate wing zone for several
reasons. Mainly, the aileron constitutes a primary safety critical control surface whose failure is
catastrophic for the entire aircraft and in addition, it must be demonstrated that no aeroelastic
instability (flutter) occurs during operations. Also the reduced available space constitutes an
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important aspect which makes the morphing aileron design challenging, because it results are
difficult to integrate actuators and kinematic leverage. The present paper describes the design
phase of a morphing aileron prototype, ready for installation and tests in a wind tunnel. The
adaptive aileron device is integrated with another complementary morphing wing system, de-
scribed by Kammegne et al. (2016). The present aileron is otherwise not aimed at substituting
the conventional architecture but adds new functionalities to the classical design. In fact, the
aileron can still rotate rigidly around its main hinge axis while it can morph (by modifying its
camber). When it is not actuated, the aileron works in the usual manner, preserving the aircraft
roll control and stability (the morphing part behaves as a rigid component). In the presented
application, the system works in cruise to compensate aircraft weight variations following fuel
consumption. During classical manoeuver, the aileron works classically. The morphing techno-
logy can be applied also to give a better solution to the active load control on aircraft with new
approaches such as active flow control (Stalewski and Sznajder, 2014), which change the flow
conditions on the wing surface and, in turn, the aerodynamic loads. In the current paper, it is
described how the modification of wing load distribution could be tailored to achieve wing-root
bending moment alleviation as a sudden increase of aerodynamic loads occurs (gust or rapid
manoeuvers). The morphing aileron is made of three-segmented ribs assembled into a finger-like
architecture (Pecora et al., 2014), connected through longitudinal spars to guarantee a suitable
torsional rigidity. The actuation system is completely integrated within the structural body.
It includes distributed actuators the number of which is fixed according to their load-bearing
capability, their force generation possibility, the allowable space and the stiffness requirements.
In fact, the complete system must be able to deform while withstanding the external aerody-
namic loads. These two requirements may be overcome by the use of load-bearing actuators.
The kinematics allow a single degree of freedom per rib that is blocked by the actuator devi-
ce. It has then the role to absorb the external load and move the system against that load.
A mechanical chain converts the actuator torque into a controlled linear displacement in order
to amplify the transferred force vs. a limited motion penalty. Linear motion guides are made
of two main components: a stainless steel rail and a sliding element directly connected to the
leverage, in turn linked to the actuator rotating shaft by means of a fork-shaped crank. The
vertical force needed to move the trailing edge results by the contact between the slider and the
rail. The complete system is made of commercial elements: actuators, kinematics, linear guides
and all the other devices are in fact available on the market. The implemented architecture is
a slight modification of the so-called quick-return mechanism (Amendola et al., 2016). In this
paper, the aileron structure is sized with respect to the designated load chosen among the most
critical operative ones. The working principle of the actuation system is described in detail and
preliminary results of a finite element simulation are shown. Static and buckling analyses do
not show any particular criticality; in other words, no plasticization arises under the limit loads,
herein selected.

2. Morphing aileron: structural layout and evaluation of loads

The morphing aileron consists of segmented adaptive ribs based on finger-like segments enabling
aileron camber morphing upon actuation. Each rib (Fig. 1) is assumed to be segmented into three
consecutive blocks (B1,B2,B3) connected to each other by means of hinges located on the airfoil
camber line (A,B). Block B1 is rigidly connected to the rest of the wing structure through a
torsion tube enabling aileron rotation for roll control. Blocks B2 and B3 are free to rotate around
the hinges on the camber line, thus physically turning the camber line into an articulated chain
of consecutive segments. A linking rod elements (L) hinged on not adjacent blocks forces the
camber line segments to rotate according to specific gear ratios.
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Fig. 1. Morphing rib architecture: (a) blocks and links, (b) hinges

The ribs kinematic is transferred to the overall aileron structure by means of a multi-box
arrangement (Fig. 2) where the skin is hidden for clarity.

Fig. 2. Morphing aileron structure: multi-box arrangement

Referring to Fig. 3, the internal structural components are depicted, and it is also shown that
the aileron is divided into one actuated and one passive segment. The internal kinematic chain
actuates the first two bays while the last are considered slaved during the morphing movement.
The reference Cartesian system S0 (Fig. 4) has been used as the datum for the load evaluation

addressed by this paper; the following conceptual definition applies to S0:

• Origin (O) at the intersection point between the Test Article (T/A) leading edge and the
root rib plane;

• X-axis onto root rib plane, parallel to the chord of the T/A airfoil @ the root section and
aft oriented;

• Y -axis normal to the root rib plane and oriented towards the T/A tip;
• Z-axis perpendicular to XOY plane and oriented upwards.

The rotation angle γ of block B2 with respect to block B1 is determined in order to appro-
ximate target shapes by means of the articulated one-DOF mechanism described in Fig. 1. The
angle γ is represented in Fig. 5.
It is measured respect to the unmorphed chord direction and it corresponds to rigid rotation

of the plain control surface comprised between −5◦ and +5◦. The VLM method has been adop-
ted to evaluate aerodynamic pressure distribution along the aileron in correspondence to each
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Fig. 3. CAD of the morphing aileron with an internal view to the actuation system

Fig. 4. CAD of the Test Article with the reference system used for aerodynamic loads

Fig. 5. Morphing aileron deflection angle γ in morphed down and morphed up
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considered flight attitude (namely the wing angle of attack, flight altitude and speed) and aileron
geometrical configuration. 3D flat-panels mesh is generated in correspondence to the outer wing
segment. For each flight attitude and aileron shape, the lifting pressure (Pi) acting along each
box (bi) is calculated according to the following equation

Pi = q(P0,i + αPα,i + γPγ,i) (2.1)

where: q = 0.5ρV 2∞ is the dynamic pressure, ρ the air density and V∞ the airspeed; α is the wing
angle of attack; P0,i is the pressure arising on bi in correspondence to unit dynamic pressure at
α, γ equal to zero (airfoil baseline camber effect); Pα,i is the pressure on bi due only to unit α
at unit dynamic pressure (incidence effect); Pγ,i is the pressure on bi due only to unit γ at unit
dynamic pressure (morphing effect).
Thanks to Eq. (2.1), P0,i, Pα,i, Pγ,i are calculated only one time for all the boxes and then

combined according to the flight attitude parameters (α, q) and aileron morphed shape (γ) to
be investigated. The combination of α, q, γ leading to the most significant pressure levels along
aileron segments is then determined and used as the design operative condition for the structural
sizing purpose. The spanwise pressure distributions on the aileron segments at the design point
(α = 2◦, q = 4425N/m2, γ = 7◦) are plotted in Fig. 6.

Fig. 6. Pressure distribution along aileron span

The estimated pressure distribution will be considered as the reference load for structural
sizing and it will be applied to the aileron finite element model in order to asses the stress anlaysis.
This constitutes the foundamental step to be done before proceeding with the manufacturing
process.

3. Actuation system

The main target of the actuation kinematics is to develop a means of transforming the actuator
motion to specific rotation of the morphing device. It must be designed to withstand the external
aerodynamic loads without undergoing structural damage and at the same time to move the
system to the desired morphed shape. It is based on the classical quick-return mechanism, also
referred to as oscillating glyph kinematics that (Fig. 7) is widely discussed and was validated by
Amendola et al. (2016).
Figure 7 shows the main structural components of the glyph kinematic system. It is composed

of crank R with an actuator shaft positioned at the point O, leverage beam BL connected to
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Fig. 7. Oscillating glyph kinematic scheme

aileron B3 rib segment. The sliding element moves along its rail subjected during operation
to the vertical force F . The actuator shaft rotation is transmitted to the structure by means
of the crank R and a contact force is generated by the sliding element along the linear guide.
Thereby, a moment is produced that equilibrates the aerodynamic hinge moment, so that the
system keeps its desired morphed shape. The mechanism is then a SDOF architecture. In the
kinematic scheme, the angle β is the actuator shaft rotation while ϕ is the morphing deflection
directly related to the aileron angle γ (Fig. 5). The relation between the achieved angle and the
mechanical advantage (MA), expressed as a ratio between the external load and the generated
momentum, may be represented as in Fig. 8. The diagram shows that the greater rib morphing
angle, the higher MA and, consequently, the actuator torque required to equilibrate the external
aerodynamic moment decreases. The aileron design condition (selected as the most severe one)
occurs at ϕ = 7◦ with MA = 4.2. This peculiarity may lead to significant benefits in terms of
the actuator power and weight.

Fig. 8. MA vs. rib morphing angle

The actuator shaft rotation β may be related to the morphing angle ϕ as described by Eq.
(3.1) and represented in Fig. 9

cotϕ =
L

R sinβ
− cot β (3.1)

It is evident that in the design range between +7◦ of morphed down and −7◦ of morphed up,
the actuator rotation is comprised among ±45◦. The actuation system kinematics with details
of the linear guides and its integration on the aileron rib are shown in Fig. 10.
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Fig. 9. Rib morphing angle vs. actuator shaft rotation

Fig. 10. Integration between the actuation system and rib (left) and details of the linear guide
elements (rigth)

4. FE validation

In order to verify the structural robustness of the conceived morphing architectures as well as to
estimate its dynamic behavior, a very refined finite element model (FEM) has been generated
(Fig. 11). The model has been realized with solid finite TET10 elements both for structural
components (ribs and spars) and actuation system leverages. All the hinges have been modeled
by means of two-nodes CBUSH elements. Each node of the CBUSH has been rigidly connected
to a representative set of nodes belonging to the structural item by means of RBE2 (Fig. 12)
(MSC-Nastran).
The materials adopted for the aileron are described in Table 1 and highlighted in Figs. 13a

and 13b. The aluminum components are depicted in grey while the steel components in black.

Table 1. Aileron component materials

Material E ρ ν
Items

(isotropic) [Gpa] [kg/m3] [-]

Harmonic steel 210 7850 0.3 Beam of the actuation system, linear guide
features, crank and rib links

Al 2024-T351 70 2768 0.33 All the other items

The aileron model is considered constrained in correspondence to the crank exactly where the
actuator shaft is located in order to prevent its rotation (clamped configuration). The following
analyses have been carried out:

• Linear static analysis at the limit load
• Buckling analysis at the limit load.
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Fig. 11. Details of the aileron structure mesh

Fig. 12. Morphing aileron finite element model with details of the hinges

Fig. 13. Aileron materials: complete structure (a), inner structure (b)

The global magnitude of the displacements exhibited by the aileron at the limit load condition
is shown. The maximum value (21.8mm) is located at the trailing edge in proximity of the 1st
bay (Fig. 14). The maximum von Mises stresses are detected around the rib links (257MPa) and
around hinges of the second rib (231MPa) and on the actuation beam (467MPa), resulting below
the yield strength of AL 2024 alloy and steel. The described results are depicted in Figs. 14-16.
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The first buckling eigenvalue occurs at −10.391, which means that the first critical load is more
than 10 times of the applied pressure but in the opposite direction. The buckling deformation
related to this eigenvalue involves rib connection links as shown in Fig. 16.

Fig. 14. Global aileron displacement distribution

Fig. 15. Global von Mises stress distribution on the ribs

5. Conclusions

In this paper, the working principle of a morphing aileron actuation system is presented. The
actuation mechanism is based on an oscillating glyph mechanism, combining characteristics of
functionality, robustness and integrability required for adaptive structures. In particular, the
study of the smart mechanical system involved functional integration of the kinematic actuation
chain into a finger-like adaptive ribs architecture. The static load has been imposed to the
structures and the stress results and the buckling eigenvalue have been provided. The results
show that all margin of safety are positives and there are no critical points for structural safety
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Fig. 16. First buckling deformation mode of the aileron

of the proposed morphing aileron. The next step will involve the manufacture phase where the
aileron prototype will be built. Subsequently, the results herein presented will be validated by
means of dedicated ground tests campaign where both static and dynamic behavior will be
assessed before wind tunnel tests.
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This study investigates the formation process of droplets in a Y-junction microchannel using
two immiscible fluids: water as the continuous fluid and oil as the dispersed phase. We have
examined the influence of the capillary number, flow rate ratio and viscosity ratio between
the two fluids; parameters which determine the length and generation frequency of the
droplets. Numerical simulations have been performed using the software Ansys Fluent with
the interface capture method Volume of Fluid (VOF) for solving the governing equations.
Three different algorithms have been tested for the pressure-velocity coupling: SIMPLE,
SIMPLEC and PISO. The results are quite similar for SIMPLE and SIMPLEC, however
it turned out that PISO is a better algorithm to solve the two-phase flow. Additionally,
another Y-junction is coupled in the initial geometry to observe a symmetric breakup of the
droplets and their formation is explained using the pressure field and the velocity field.

Keywords: microfluidic, Y-junction, two-phase flow, numerical simulation, VOF

1. Introduction

Microfluidics can be defined as science which studies the behaviour of fluids in micro-channels
(dimensions varying from 10µm to 500µm). Micro-channels becomes increasingly used every
day due to a microminiaturization of biomedical devices (Micro-electromechanical system –
MEMS technologies) (Lih and Miao, 2015). Microfluidics have many applications such as: DNA
fabrication, encapsulation of cells, drug delivery and protein crystallization (Dolomite, 2015).
For these applications, it is important to control as well as possible the geometry of the generated
droplets. There are many ways of making droplets depending on the geometry used, as it was
shown and briefly explained by Dolomite (2015).
In this study, we will focus on a segmented flow device. For that, a Y-junction (Fu et al.,

2011, 2014; Cong et al., 2014) is used in order to generate periodic droplets. One continuous
fluid is injected into the first channel and a dispersed fluid is injected into the secondary channel,
both fluids are incompressible and immiscible.
Several parameters such as the viscosity ratio between the two fluids, the flow rate ratio, the

capillary number, the aspect ratio of the geometry, the sizing of the meshing between others, can
affect considerably droplet generation. This study investigates the influence of those parameters
in the formation process by checking for every case the variation in length of generated droplets
and the pressure field. To have a better understanding of the phenomena, a comparison between
the predicted lengths of droplets by scaling proposed by Garstecki et al. (2006) and the numerical
ones will be made. Tarchichi et al. (2013) showed the influence of the capillary number (Ca).
Depending on its value, 3 regimes of droplets can occur: the squeezing regime for low value of Ca,
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the dripping regime as Ca increase and the jetting regime at higher value of Ca. The effects of
the viscosity ratio on the formation of the droplet are discussed in Tice et al. (2004). According
to that reference, droplets are formed when the viscosity of the dispersed fluid is significantly
higher than that of the continuous fluid.
All numerical simulations have been performed using the software Ansys Fluent 15.0 with

the volume-of-fluid (VOF) method. In every case, the continuous phase which is injected in the
main channel is water, and the dispersed phase is oil.

2. Problem description

In this study, we are using a Y-geometry (Fig. 1a) which is similar to that of Liu et al. (2015).
This geometry have two inlets with the same width h. Both extend until they meet in a junction
forming channels with two parallel plates whose distances are the same, 4h. The length of the
main channel is taken to be 36h for the development of periodic emulsions of oil in water. This
geometry is then modified by adding two orthogonal channels at the end of the main channel
(Fig. 1b) (Fu et al., 2011, 2014; Cong et al., 2014); channels which have the same width h/2 and
the same length 10h. In all the work that follows, h = 0.1mm. Water with a viscosity µw of 1 cP
(0.001 Pa·s) is injected at inlet 2 and oil with a viscosity µo of 10 cP (0.01 Pa·s) in inlet 1; both
are moving along their channel until they meet in the junction, named here Y-junction, and
moving forward along the main channel. The density of water ρw and of oil ρo are respectively
1000 kg/m3 and 900 kg/m3. The interfacial tension between water and oil (σw/o), which is an
important parameter for the formation of droplets, is equal to 0.0003N/m (30 dyn/cm)

Fig. 1. Schematic view, not in scale, of the Y-junction geometry used in this work

3. Mathematical approach of the liquid-liquid flow problem

The volume fraction of water αw and oil αo, both ranging between 0 and 1, determines the
interaction between the two fluids in the oil mobilization process, and is obtained using the
multiphase model Volume of Fluid – VOF developed by Hirt and Nichols (1981). This model
solves mass conservation and momentum equations considering the volume fraction present in
every cell from the physical domain of the problem and for different instants. The proposal
consists in calculating the volume fraction of the less dense phase, oil in this case
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∂

∂t
(αoρo) +∇ · (αoρov) = 0 (3.1)

Considering the presence of two phases, water w and oil o, the sum of the volume fractions
at each point of the domain must be unitary, i.e.

αw + αo = 1 (3.2)

The water volume fraction is obtained directly from Eq. (3.2) as αw = 1 − αo, since the oil
volume fraction is already known from Eq. (3.1).
Density ρwo and viscosity µwo in Equation (3.5), are mixture properties which vary within

the flow domain and are computed by the volume fraction weighted average as

ρwo = αwρw + αoρo µwo = αwµw + αoµo (3.3)

The continuity equation, which describes mass conservation in the whole domain, i.e., in the
water and oil region, where the velocity vector is v, is given by

∇ · v = 0 (3.4)

Similarly, the linear momentum conservation principle is applied in the whole domain

∂

∂t
(ρwov) +∇ · (ρwovv) = −∇p+∇ · (2µwoD) + ρwog+ fint (3.5)

where ρwo is the average density, g represents gravity acceleration and D = 0.5[∇v + (∇v)T]
is the strain rate tensor. The source term fint in momentum equation, added for modeling
water/oil interfacial tension σwo effects on fluid motion, is described by the Continuum Surface
Force (CSF) model proposed by Brackbil et al. (1992) and expressed by

fint = σwo
ρwoκ∇αo
1
2 (ρw + ρo)

(3.6)

this term is known in the literature as the Continuum Model Surface Force – CSF, where κ is
the curvature of the interface, ρw is density of water and ρo is density of oil.
The boundary conditions which define the solution domain, are applied as shown in Fig. 2,

where:

(1) In inlet 1, the average velocity of oil Vo is taken to be equal to 0.00009 m/s;

(2) In inlet 2, water flows with a velocity Vw of 0.000417 m/s;

(3) In the outlet, the gauge pressure is equal to 0Pa;

(4) The interface is applying a force, defined previously by Eq. (3.6); and

(5) Finally, no-slip and zero diffusive mass flux are specified in the walls.

Also, as an initial condition used in this transient problem, the microchannel is filled with
the primary phase, which is in this case water represented by white colour.
In order to deal with the interaction between the two immiscible fluids described in the

previous section, some parameter that identifies the shear forces acting on the interface needs to
be defined. According to Coelho et al. (2016) and Santos et al. (2016), the interfacial tension is an
important property that contributes to the form adopted by the droplets through the interface.
In many cases, the convergence of the solution depends on its value. In addition, several other
parameters such as viscosities and velocities of both fluids, channels width, numerical parameters,
can influence the droplets formation and convergence of the solution process. Their influence
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Fig. 2. Boundary conditions at the Y-junction geometry used in this work

in the fluid flow can be better understood using dimensionless numbers, as represented by Eqs.
(3.7) to (3.15), the following:
(i) The capillary number Ca reflects the ratio between the viscous forces and the capillary

forces. The first term depends on the viscosity of the dispersed fluid, in this case oil µo which is
injected with an average velocity Vo, and the second term is the interfacial tension between the
two fluids σwo

Ca =
µoVo
σwo

(3.7)

(ii) The comparison between the more viscous fluid, oil µo, and less viscous fluid, water µw,
is represented by the dimensionless viscosity ratio µR defined by

µR =
µo
µw

(3.8)

(iii) The Reynolds number Re represents the relationship between the inertia forces (repre-
sented by the group ρoVoh), with the viscous forces of the dispersed fluid, which is oil. The
expression is

Re =
ρoVoh

µo
(3.9)

where h is the characteristic length chosen to represent the flow, which is in this case the width
of the channel through which oil flows. In all simulations performed in this study, the Reynolds
number is relatively small (Re ¬ 1) meaning that the inertial forces are almost insignificant
when compared with the viscous forces.
(iv) The way in which droplets are formed throughout the main channel is strongly influenced

by the contact angle θc of the fluids that are in contact with the walls. Thus, the wettability (or
contact angle) indicates which phase is preferably wet to the walls. According to Jamaloei et
al. (2011), a contact angle equal to zero θc = 0 indicates complete wetting of the denser phase
(water), θc = π rad indicates complete wetting of the less dense phase (oil) and an angle of
θc = π/2 rad indicates that neither of the phases wet preferably than the other. In this study,
the contact angle is θc = 0 rad.
(v) The flow rates of oil and water are respectively noted qo and qw, and the ratio between

them is described by

qR =
qo
qw

(3.10)
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(vi) According to Garstecki et al. (2006), the length l of the droplets (Fig. 1a) depends on the
flow rate ratio between the two fluids qR, the width h of the main channel and the constant α
depending on the geometry used

l

h
= 1 + αqR (3.11)

(vii) Based on Coelho et al. (2016) and Santos et al. (2016), one of the main parameters
described in the literature to obtain the convergence of the solution with the explicit approach
to time-dependent problems is the Courant number, defined by

CO =
Vm∆t

∆x
(3.12)

where Vm is the average velocity of the dispersed fluid (Vm = Vo), ∆x is the size of a represen-
tative element of the mesh and ∆t is the time-step size. Equation (3.13) which is derived from
Eq. (3.12), is known as Courant-Friedrichs-Lewy (CFL)

∆tCFL =
Co∆x
Vm

(3.13)

the Courant number should be less than 1 (Co < 1) to assure the convergence of iterative
solution (Bethke, 2008).
In order to highlight the effects of interfacial tension and viscosities, other equations to

determine the time step are presented. One of them is the relation proposed by Brackbill et al.
(1992) which establishes the time step as a function depending on the mass density of oil and
the interfacial tension

∆tB =

√
ρo∆x3

2πσwo
(3.14)

another example is the equation proposed by Galusinski and Vigneaux (2008), where the time
step ∆tV is depending on the viscosity of oil and the interfacial tension

∆tV =
µo∆x

σwo
(3.15)

4. Numerical solution of the governing equations

To solve numerically the set of governing equations, Eqs. (3.1), (3.4) and (3.5), it is necessary
to discretize it in order to obtain a system of algebraic equations (Patankar, 1980).

4.1. Discretization algorithms

The discrete version of governing equations is solved using the commercial software Ansys
Fluent 15.0 with the VOF technique. In this process, one of the key steps is the treatment of the
pressure field. In fact, gradients in the pressure appear in the Navier-Stokes equations. However,
since we are using an incompressible fluid, the density of each fluid is constant, thus the pressure
can not be calculated directly from the equation of state. An alternative way to determine the
pressure field is to couple the pressure and the velocity. Three pressure-velocity coupling schemes
are available in Fluent: SIMPLE (Semi-Implicit Method for Pressure-Linked Equations); SIM-
PLEC (SIMPLE Consistent) is an improved version of SIMPLE, and PISO (Pressure Implicit
with Splitting of Operators) is using a similar method as SIMPLE and SIMPLEC with a better
correction. All three algorithms are used for the pressure-velocity coupling. For more details see
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Ferziger and Peric (2002) and Versteeg and Malalasekera (1998). Their effects in the flow field
behaviour will be presented and discussed in the results Section.
The PRESTO schemes (Pressure Staggering Option) and Second Order Upwind are used

respectively for the interpolation of pressure and velocity. For the evaluation of gradients, the
Least Squares Cell based method is used. It is quite accurate and computationally less expensive
compared to other methods.
The Geometric Reconstruction (Geo-Reconstruct) method, used for oil and water volumetric

fractions, allows good definition of the liquid-liquid interface of the Y-junction since it uses a
linear approach to represent the interface between the fluids.

4.2. Mesh test

For the spatial discretization of the domain, three different meshes have been tested, as
is shown in Fig. 3 (left) where the maximum size of the rectangular elements is gradually
decreased, which means a refined mesh. The first one (Fig. 3a) is the coarsest mesh, containing
1106 rectangular elements and referred as mesh 1. In Fig. 3b, corresponding to the regular mesh
contains 4423 rectangular elements. The size of the elements for this mesh is in the range between
0.001mm and 0.01mm. Reducing again the size of the rectangular elements leads to the most
refined mesh among them (Fig. 3c). This mesh contains 8838 elements. The parameters for each
mesh is detailed in Table 1.

Fig. 3. Mesh (left) and water volume fraction (right) for 3 meshes tested at 13.8 s: (a) coarse mesh,
(b) regular mesh, and (c) refined mesh

Table 1. Parameters of the three meshes

Parameters Mesh 1 Mesh 2 Mesh 3

Number of elements 1106 4423 8838
Minimum size [mm] 0.001 0.001 0.001
Maximum size [mm] 0.02 0.01 0.007
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Simulation has been performed for each mesh, with the same boundary conditions. The
results are shown in Fig. 3. In the right side of this figure, it can be seen that droplets with
similar regularity and shape are obtained for all three meshes. However, the position where the
droplet is formed is different from one mesh to another. The way in which droplets are being
formed will be explained in the next Section.
In order to choose a better mesh, a comparison between the predicted length of the droplet

and the ones obtained for meshes 1 and 2 has been made. For qR = 0.2158 and h = 0.1mm,
the length of the droplets obtained from Garstecki equation, Eq. (3.12), with α = 6.5 is
lTeo = l = 0.24mm. For the three meshes, the length of the droplet obtained numerically lNum
is shown in Fig. 4. The relative error is defined as εR = 100|lNum − lTeo|/lTeo. After calcula-
tions εRMesh 1 = 8.33%, εRMesh 2 = 4.17% and εRMesh 3 = 12.50%. The relative errors are smaller
for Mesh 2. From these results, it is clear that the regular mesh is the most suitable for this
geometry, compared to the others. It will be used in the next simulations.

Fig. 4. (a) Length of the generated droplet lNum for each mesh; and (b) comparison between length of
the droplet obtained by numerical approach lNum with analytical equation lNum

Although mesh comparisons reported in Fig. 4a is apparently not converging to a constant
solution, our main criterion to select the mesh number 2 is the best representation of the ana-
lytical equation, Eq. (3.11). The scaling relation proposed by Garstecki et al. (2006), obtained
by experiments, is commonly applied and used as a reference in the literature. This procedure
is adopted because refined mesh were tested, increasing considerable the time computing re-
quired to obtain solutions which are not completely converging to a constant droplet length.
The comment of Qian and Lawal (2006) “...All these complexities make VOF multiphase flow
simulation computationally expensive, and convergence difficult to achieve when compared to
its single phase counterpart. In fact, multiphase flow is perhaps the most difficult topic in the
CFD simulation...”, it is appropriate at this time.

4.3. Selection of the time-step

In this transient problem, the simulation time tn is determined from the previous time tn−1
by the equation tn = tn−1+∆t. The advance in time is repeated until tn = tfinal , which represents
the end of the simulation when n = N , where N is the number of time-steps. The choice of the
time-step ∆t is extremely important for problems with liquid-liquid interfaces. To assure the
convergence of the solution, the Courant number should be less than one where fluid particles
move from one cell to another within one time step. If it is higher than one, fluid particles
move through two or more cells at each time step and this can affect convergence negatively.
For Co = 0.2, ∆x = 10−5m, σwo = 0.0003N/m, Vo = 0.00009m/s, ρo = 900 kg/m3 and
µo = 10 cP = 0.01 Pa·s, the values for the time step obtained by Eqs. (3.13), (3.14) and (3.15)
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are ∆tCFL = 0.002 s, ∆tB = 2.185 · 10−5 s and ∆tV = 3.33 · 10−4 s. In simulations performed
in this study, it has been used N = 6900 time steps of ∆t = 0.002 s, therefore the end of the
simulation is at tfinal = 13.8 s.
The nine cases analysed with the values of the dimensionless parameters and the algorithms

used are detailed in Table 2. The Reynolds number is Re = 8.1 ·10−4 for all the simulated cases.

Table 2. Parameters used in nine simulated cases

Case Algorithm
Ca µr qR Geometry

Eq. (3.7) Eq. (3.8) Eq. (3.10)

1 SIMPLE 0.003 10 0.2158 Fig. 1a
2 SIMPLE 0.00474 10 0.2158 Fig. 1a
3 SIMPLE 0.01 10 0.2158 Fig. 1a
4 SIMPLE 0.003 10 0.168 Fig. 1a
5 SIMPLE 0.003 10 0.3 Fig. 1a
6 SIMPLE 0.003 1 0.2158 Fig. 1a
7 SIMPLEC 0.003 10 0.2158 Fig. 1a
8 PISO 0.003 10 0.2158 Fig. 1a
9 SIMPLE 0.003 10 0.2158 Fig. 1b

For a simulation of 13.8 s (6900 time steps), each case takes approximately 56 minutes using
a computer ASUS Intel R○ CoreTM i3-4005U CPU@1.7GHz and 4GB of RAM.
The convergence criteria is chosen to be 10−3 for the residual monitors. For this value, the

convergence happens after 9 iterations on average.

5. Results and discussions

The results for all nine cases in Table 2 are explained in the following sections. For Subsections
5.1, 5.2 and 5.3, the physical domain used is defined by Fig. 1a and for Subsections 5.4, the one
defined by Fig. 1b is used.

5.1. Microdroplet formation process

Figure 5 shows the time evolution of the droplet formation in the Y-junction for case 1.
Initially, all the geometry is filled with water (white colour). From this moment, oil represented
by black colour is injected into channel number 1 (according to notations in Fig. 1) with a
constant velocity of 0.00009m/s. In the meantime, water is continuously injected into channel 2
(according to notations in Fig. 1) with a constant velocity of 0.000417 m/s. The formation
of droplets can be described as follows. The two immiscible fluids form an interface at the
junction (Fig. 5a). The droplet begins to grow due to action of shear stress between the carrier
and dispersed phases. Thus the neck width of the droplet becomes smaller until the droplet
completely separates from the dispersed phase (Fig. 5b and Fig. 5c) forming two interfaces. At
the broken time and due to capillary effects, these two interfaces displace in opposite directions
at high velocities. One of the interface, which is always moving forward, forms the downstream
meniscus of the droplet recently created. The other interface is moving backward (Fig. 5c) and
because the fluid injection is constant, this negative velocity becomes zero and then positive.
This process repeats itself periodically and a pattern of a droplet is formed in the main channel
(Fig. 5d). The droplets areas equally spaced, have the same length and diameter larger than the
main channel. These characteristics depend on the interfacial tension, viscosity ratio and flow
rate ratio between the two fluids, besides of the geometry used. In this frame, it is also possible
to observe the zero contact angle between the system oil/water/wall.
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Fig. 5. Time evolution of droplet formation at Ca = 3 · 10−3 and qR = 0.216 at different time instants:
(a) 6 s, (b) 6.5 s, (c) 7 s, and (d) 12.8 s

The coherence of the previous results can also be explained by variation of pressure through
the geometry. The contour of pressure is shown in Fig. 6 for four different time instants: 6 s,
6.5 s, 7 s and 12.8 s which are also the same times used in Fig. 5.

Fig. 6. Contour of pressure (in Pa) for the Y-junction at Ca = 3 · 10−3 and qR = 0.216 at different
instants: (a) 6 s, (b) 6.5 s, (c) 7 s and (d) 12.8 s

Figure 6a represents the contour of pressure at 6s after the injection of the fluids, which is
when the interface arrives to the junction. Because oil (channel 1) is ten times more viscous
than water (channel 2), the pressure necessary to facilitate its movement through the channel is
increasing, the pressure in the outlet is almost equal to zero, as set in the boundary conditions.
When the dispersed fluid (oil) reaches the junction, the pressure drives a part of that fluid into
the main channel and blocks the rest of the dispersed fluid from channel 1, as shown in Fig. 6b.
Thus, as the carrier fluid (water) is moving through the secondary channel, a complete droplet
is being formed. In Fig. 6c, the upstream pressure decreases once the droplet separates from the
junction. This instantaneous drop in pressure happens because the blockage of the dispersed
fluid stops and the second droplet starts forming. This formation process repeats periodically
as both fluids are continuously injected. Figure 6d represents the contour of pressure when the
first droplet reaches the outlet causing a small increase in the outlet pressure.

For this case, the contour of pressure is illustrated by a diagram in Fig. 7. The peaks in this
figure represent the positions of droplets in the current instant (t = 13.8 s) when they move along
the main channel whose length is 0.0036m (36h, with h = 0.1mm). One droplet is situated in
a position x = 0.0015m from the junction, almost half length of the channel, and another is at
x = 0.0027m, close to the exit plane. The first droplet reaches the outlet, its pressure is equal
to zero. In Fig. 7, it can be seen that the pressure in the droplet is as high as the droplet is close
to the junction. This is due to the blockage exerted by the pressure, which has been explained
previously.
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Fig. 7. Evolution of pressure in the main channel at the time instant 13.8 s

5.2. Dimensionless numbers effect

5.2.1. Capillary number

The way in which droplets are formed is highly influenced by the capillary number. Simu-
lations have been performed for three different values of the capillary number: cases 1, 2 and 3
(refer to Table 1).
For case 1, with Ca = 0.003 the droplets or droplets generation occurs at the two-phase

intersection and they have an elongated shape in the continuous phase microchannel. This
regime is called “Squeezing regime” Tarchichi et al. (2013) (Fig. 8a). When Ca is increased, the
droplets generated do not occupy the entire width of the continuous phase microchannel at the
junction and they are smaller than the width of the continuous phase channel (Fig. 8b). This
regime of droplet formation is known as “Dripping regime” (Tarchichi et al., 2013). In case 3,
where Ca is increased again, the dispersed phase forms a long neck in the main channel (Fig. 8c).
In this regime named “Jetting regime” (Tarchichi et al., 2013), the droplet or droplet formation
occurs downstream at a some distance from the junction.

Fig. 8. Position of droplet breakup for three regimes: (a) squeezing at Ca = 0.003, (b) dripping
at Ca = 0.00474 and (c) jetting at Ca = 0.01

5.2.2. Flow rate ratio

Here we investigate the influence of the flow rate ratio (qR = qo/qw) when the capillary
number and the viscosity ratio are constant. Three different flow rate ratios are used: qR = 0.168,
qR = 0.2158 and qR = 0.3 corresponding respectively to cases 1, 4 and 5, respectively. Figure 9
shows length of the droplet generated for each flow rate ratio. When q is small (case 4), the
droplets are pinched off at the junction. The length of the droplets in this case is l = 0.23mm.
However when q = 0.2158, the detachment point moves from the corner downstream (Fig. 9b).
In this case, the droplets have a size equal to 0.25mm. When q = 0.3, the length of the droplet
is l = 0.26mm.
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Fig. 9. Droplet length for the three flow rate ratios: (a) qR = 0.17, (b) qR = 0.2158 and (c) qR = 0.3

The results obtained confirm Eq. (3.11) which relates the size of the droplet with the flow
rate ratio.

5.2.3. Viscosity ratio

Here we investigate the role of the viscosity ratio (µR = µo/µw) defined by Eq. (3.8) in
the droplet formation process. The flow rate ratio and the capillary number are kept constant.
Figure 10 shows the droplet formation for µR = 10 and µR = 1, respectively, at the same instant
t = 12.8 s. With a small viscosity ratio, the droplet formation occurs in the junction, which does
not happen with a viscosity ratio equal to 10. Also, it can be seen in Fig. 10 that the decreasing
viscosity ratio leads to smaller droplets with higher frequency. At the same instant, three droplets
are formed for µR = 10, where we have four droplets for µR = 1. In fact, the breakup of the
droplet is controlled by competition between viscous shear force and capillary force; which means
when Ca is constant, the viscosity becomes a key factor in the droplet formation. That is why
smaller droplets are obtained when µR = 1.

Fig. 10. Water volume fraction for two different viscosity ratios: (a) µR = 10 and (b) µR = 1

5.3. Influence of discretization algorithms

In this part, we investigate the effect of pressure-velocity schemes. Periodic droplets with a
similar shape are obtained for all three algorithms (Fig. 11a, 11b and 11c). In this figure, it can
be seen that the position of the droplet is little different from an algorithm to another. In fact,

Fig. 11. Oil volume fraction for three algorithms: (a) SIMPLE, (b) SIMPLEC, and (c) PISO at the time
instant 12.8 s; (d) position of the center of gravity of the first inlet
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the difference between these algorithms lies in the pressure correction and the convergence speed,
as has been mentioned in Section “Discretization algorithms”. To have a better understanding of
their effects, the time evolution of pressure is compared in each case. The pressure is measured at
the same location (point G) which is the centre of gravity of channel 2 (Fig. 11d). This position is
chosen because of the results in the contour of pressure shown in Fig. 6 and already commented.
Indeed, the pressure in channel 2 varies periodically during the formation of a droplet. Thus, it
would be easier to compare the effect of these algorithms in that position.
Figure 12 represents the time evolution of the pressure at the pointG for the three algorithms.

In this figure, at the beginning, SIMPLE and SIMPLEC are more stable than PISO. However,
from the third droplet (t = 9.5 s; N = 4750 time steps), PISO becomes more stable and accurate
compared to the other algorithms, the oscillations amplitude in PISO is smaller than in the
others. In fact, PISO is more recommended for simulation with large time steps, as has been
mentioned in Section “Discretization algorithms”. The results for SIMPLE and SIMPLEC are
quite similar during the simulation. In fact, differences between the methods arise more from
the single-phase flow. Also, the number of iterations for each time step is quite smaller in PISO
than in the other algorithms. This leads to a faster simulation. All the results confirm that the
algorithm PISO is better for a two-phase flow like that considered in our case.

Fig. 12. Time evolution of pressure at the point G (Fig. 11d) for the three algorithms SIMPLE,
SIMPLEC and PISO

5.4. Microdroplet breakup process

In this part, the geometry described in Fig. 1a is modified by placing two orthogonal chan-
nels at the outlet, thereby forming another Y-junction but with length 10h each. A theoretical
mathematical point with zero radius of curvature represents the intersection between the two
walls of the channels. The objective is to capture the breakup process of droplets formed in the
first stage. Figure 13 represents the time evolution of the droplet breakup. When the droplet
arrives at the junction, it is deformed symmetrically by the driving fluid (water in this case)
in the center of the junction (Fig. 13a). Thus, the actions of the shear force and pressure drive
the droplet to each outlet, thereby forming two half-droplets connected by the neck (Fig. 13b).
From this moment, the neck becomes smaller until the breakup occurs (Fig. 13c). This process
repeats itself when the droplet reaches the junction (Fig. 13d).
Figure 14 shows details of the breakup process with the velocity vectors in the junction.

The uniform repartition of the velocity vectors in the two exit branches leads the droplet to
form two identical liquid fingers in the upper and lower branch (Fig. 14a and Fig. 14b). When
the droplet completely penetrates the branches, the droplet creates restriction to the fluid flow,
being necessary a higher pressure to sustain the motion. Thus, a neck is formed at the junction,
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Fig. 13. Droplet breakup in the Y-exit

Fig. 14. Velocity fields during the droplet breakup

as it can be seen in Fig. 14c. As the droplet moves through the exit channels, the neck becames
gradually smaller until the droplet breaks into two daughter ones. Once the breakup occurs, the
restriction stops, thus the flow restarts normally and the two half-droplets are driven to in the
outlets (Fig. 14d).

6. Conclusions

In the study, we investigate the formation process of droplets using geometry called Y-junction.
The capillary number, the flow rate ratio and the viscosity ratio are found to be important
in droplet formation, and these parameters together control the complex droplet generation
process. Our results are in phase with what can be found in the literature. The analysis of
pressure field shows that the pressure plays a major role in droplet formations.
The predicted length of droplets, as described by Tarchichi et al. (2013) and Garstecki et al.

(2006) for the squeezing regime, is confirmed through simulations performed in this work, since
the analytical and numerical values are almost the same.
The results of the simulations reveal that the algorithm PISO is the most suitable for a two

phase flow problem, at least in the range of parameters considered in this work. SIMPLE and
SIMPLEC do not show any particular difference in the results, due to the regime of the flows.
However, the results for SIMPLE and SIMPLEC are also satisfactory.
The process of breaking the bubbles using a second Y-junction in the end shows a symmetric

distribution of the droplets in the two outlet channels. The droplets divide into parts of equal size
due to the same conditions in the two outlets (0 Pa). The dimensionless numbers also can affect
the breakup process. In fact, a high value of the capillary number can lead to an asymmetric
distribution.
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Rotating discs are the vital part of many kinds of machineries. Usually, they are operating
at relatively high angular velocity and temperature conditions. Accordingly, in practice, the
creep analysis is an essential necessity in the study of rotating discs. In this paper, the ti-
me dependent creep analysis of a thin Functionally Graded Material (FGM) rotating disc
investigated using the Generalized Differential Quadrature (GDQ) method. Creep is descri-
bed with Sherby’s constitutive model. Secondary creep governing equations are derived and
solved for a disc with two various boundary conditions and with linear distribution of SiC
particles in pure Aluminum matrix. Since the creep rates are a function of stresses, time
and temperature, there is not a closed form solution to these equations. Using a solution
algorithm and the GDQ method, a solution procedure for these nonlinear equations is pre-
sented. Comparison of the results with other existing creep studies in literature reveals the
robustness, precision and high efficiency beside rapid convergence of the present approach.

Keywords: creep, FGM, GDQ method, rotating disc, boundary conditions

1. Introduction

A wide area research has assigned to rotating discs because of their numerous utilizations in
various industries and rotating machines such as: gas and steam turbines, pumps, turbo gene-
rators, compressors, flywheels, ship propellers and automotive braking systems (Gupta et al.,
2005; Hojjati and Hassani, 2008; Singh and Ray, 2002). In most of these applications, discs have
to operate at high rotational speed leading to large centrifugal forces, and in the presence of
high temperatures, the materials strength can be reduced explicitly. These operating conditions
lead to a vast continuous time dependent deformations, so the creep phenomenon finds the prio-
rity in the research. Creep deformation can affect the performance of systems entirely. As an
example, in a turbine rotor there is always a possibility that the heat from the external surface
is transmitted to the shaft and then to the bearings, which has adverse effects on the functio-
ning and efficiency of the rotor (Bayat et al., 2008). Under high thermo-mechanical loading,
the monolithic materials cannot do well. Augmenting the second strong and stable phase to
the based phase causes a significant reduction in creep deformations. In other words, increasing
the reinforcements leads to creep strength rising. For this reason and because of more other
great benefits of FGM materials, these materials have attracted the interest of many researchers
(Loghman et al., 2011; Ghorbani, 2012). In recent years, creep analysis in rotating discs made
of functionally graded materials has been addressed by many researchers.
Whal et al. (1954) studied steady state creep behavior of a turbine rotating disc using a

power function creep law and Huber-Mises-Hencky and Tresca yield criteria. They compared
results of their work with the experimental results. Arya and Bhatnagar (1979) investigated
creep responses of an orthotropic rotating disc. They illustrated that tangential stress in all
over the disc and the radial creep rate at inner radius increased with intensification of mate-
rial anisotropy. Nieh (1984) demonstrated that a disc with SiC whiskers in Aluminum matrix
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has a better creep responses than a disc made of pure Aluminum. Białkiewicz (1986) presen-
ted a theoretical finite strain analysis in rotating discs based on creep rupture using Kachanov
theory and Norton’s creep law. Bhatnagar et al. (1986) studied steady state creep behavior in
three different discs with anisotropic materials. The discs had constant, linear and hyperbolic
decreasing thicknesses. The results illustrated that discs with decreasing thickness in the radial
direction had better creep responses. Pandey et al. (1992) studied steady state creep behavior of
an Al-SiC composite rotating disc in a uniaxial load state and temperature between 623-723 K.
They investigated various compositions of particle size (45.9 µm, 14.5 µm, 1.7µm) with the total
volume content of 10%, 20%, and 30%. They observed that the disc with finer particles shows
the better creep responses. Gupta et al. (2004) investigated the secondary creep response in
a rotating disc made of pure Aluminum with SiC particle distribution in the radial direction.
The creep law was Sherby’s model. Their results showed that the tangential and radial stres-
ses were not affect by governing temperature and particle distributions. Radial and tangential
creep rate reduced with particle size reduction, additional of particle volume content and de-
creased governing temperature. Singh and Ray (2001) studied secondary creep behavior in a
thin anisotropic rotating disc made of Aluminum with SiC whickers. The effects of anisotropy
and non-homogenous distribution of reinforcements on creep behavior of the rotating disc were
investigated.

The Generalized Differential Quadrature method was proposed by Bellman et al. (1972) and
extended by Shu and coworkers (Shu and Richards, 1992). In this numerical method, function
derivatives are approximated in terms of linear summation and weighting coefficients in various
grid points. Computation of the weighting coefficient is done using high order polynomial simu-
lation and linear vector space analysis. The weighting coefficient for the first order derivatives
is computed by a simple algebraic formulation and higher order coefficients are obtained using
a recursive relationship based on the first order weighting coefficient. The major advantage of
the GDQ method over the DQ method which was extended by Bellman et al. (1972), is its ease
in computing the weighting coefficients without any restriction to the grid point selection. The
GDQ method has been successfully applied to some fluid flow problems (Shu et al., 1995) and
structural vibration analysis (Shu, 1996). In all cases, the method valuable characteristic such
as high precision and fast convergence was confirmed.

Fig. 1. Studied disc and its parameter

In this paper, the generalized differential quadrature method is used to obtain numerical
solution of creep governing equations. For this purpose, the thermo-elastic creep equations of an
FGM rotating disc shown in Fig. 1, under free-free and fixed-free boundary conditions is derived.
Using a solution algorithm and the GDQ method, creep response of the considered structure
is achieved. There is no modeling involved, and the convergence to the final response is very
fast. Comparison of the results also illustrates that the method is very efficient and accurate. It
avoids simplifications and restrictions which other creep solution methods in the literature are
involved, therefore it is a great merit for creep studies of structures.
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2. Mathematical formulation

Before starting to develop a closed form solution for the distribution of creep stress and defor-
mation, there are some assumptions that must be asserted. Amongst them presumptions are
made that the material of the disc is isotropic and its yield criterion complies with the Huber-
-Mises-Hencky model. In addition, it is supposed that compared to other dimensions of the disc
its thickness is too small so that axial stresses can be ignored and plain stress conditions can be
assumed.
The total strain in an FGM rotating disc is an ensemble of elastic, thermal and creep strains

in the following form

εtotal = εelastic + εthermal + εcreep (2.1)

For derivation of the primary and secondary creep equation, at first we use a combination of the
strain-displacement relation and Eq. (2.1)

εr =
du

dr
=
1
E
(σr − νσθ) + αT + εr,c

εθ =
u

r
=
1
E
(σθ − νσr) + αT + εθ,c

(2.2)

In the above two equations, εr and εθ are the radial and tangential strains. σr and σθ are the
radial and tangential stresses. u is the radial displacement and E, α and T are the modulus
of elasticity, thermal expansion coefficient and governing temperature in Kelvin, respectively.
εr,c and εθ,c are the radial and tangential creep strains.
The stress relations can be concluded from Eqs. (2.2) as below
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] (2.3)

Using the equilibrium condition for an element of the rotating disc in form of Fig. 2, we obtain
the equilibrium equation as

dσr
dr
+
σr − σθ

r
+ ρrω2 = 0 (2.4)

With replacing the radial and tangential stresses from Eqs. (2.3) into Eq. (2.4), the simplest
form of the creep equation is obtained as below

A
d2u

dr2
+B

du

dr
+ Cu+D = 0 (2.5)

In which the coefficients A, B, C and D in Eq. (2.5) presented in relations given below. It should
be noted that all FGM disc parameters are a function of the radius
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dr
+ 2νE

dν

dr

]
[−(1 + ν)αT − εr,c − νεθ,c]

+
E

1− ν2
[
− dν

dr
αT − (1 + ν)dα

dr
T − (1 + ν)αdT

dr
− dεr,c

dr
− dν

dr
εθ,c − ν

dεθ,c
dr

]

(2.6)
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Fig. 2. Schematic of an element of the rotating disc

Creep governing equation for the rotating disc in terms of the displacement rate can be repre-
sented as

A
d2u̇

dr2
+B

u̇

dr
+ Cu̇ = −Ḋ (2.7)

where u̇ is the radial displacement rate, A, B and C are presented in Eqs. (2.6)1−3 and Ḋ is a
function of the creep rates as below

Ḋ =
E

r(1− ν2) [(ν − 1)ε̇r,c + (1− ν)ε̇θ,c] +
1
1− ν2

[
(1− ν2)dE

dr
+ 2νE

dν

dr

]
(−ε̇r,c − νε̇θ,c)

+
E

1− ν2
[
− ε̇r,c
dr
− dν

dr
ε̇θ,c − ν

ε̇θ,c
dr

] (2.8)

where ε̇r,c and ε̇θ,c are the radial and tangential creep rate components, respectively, which can
be computed using Sherby’s creep law as

ε̇r,c =
[M(σe − σ0)]n

2σe
(2σr − σθ) ε̇θ,c =

[M(σe − σ0)]n
2σe

(2σθ − σr) (2.9)

where in the above two equations, n is the creep exponent and, in this study, is considered to
be 8. σe is the effective stress which is obtained from the Huber-Mises-Hencky isotropic yield
criterion for the plane stress problem as Eq. (2.10). M and σ0 are creep parameters and depend
on the particle size P which is considered to be 1.7µm, particle distribution function v(r), and
the level of prevailing temperature T . Based on the experimental creep data reported by Pandey
et al. (1992) and using a regression technique, Gupta et al. (2004) represented M and σ0 as the
following functions Eqs. (2.11)

σe =
√
σ2r + σ

2
θ − σrσθ (2.10)

and

lnM = −35.38 + 0.2077 lnP + 4.98 ln T − 0.622 ln v(r)
σ0 = −2.11916 − 0.03507P + 0.01057T + 1.00536v(r)

(2.11)

As it is mentioned above, no exact solution to Eq. (2.7) can be obtained because its right hand
side contains the functions of creep rates which all are time, stress and temperature dependent.
However, there are numerous numerical methods for solving this problem. In this study, the
Generalized Differential Quadrature method is used with a solution technique which is explained
in the next section.
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3. Solution algorithm

The procedure of creep analysis in an FGM rotating disc is initiated with a GDQ thermo-elastic
solution of Eq. (2.5) in which the creep strains are ignored. Afterwards, using this displacement
field, the radial and tangential stresses are calculated using Eqs. (2.3). Within this stress field,
the distribution of radial and tangential strain rates is obtained using Eqs. (2.9). Then with GDQ
analysis of Eq. (2.7), the displacement rate can be computed so the distribution of the radial
and tangential stress rates are obtained. Afterwards, by selecting a suitable time interval ∆t,
the next radial and tangential stress at the next time step are calculated using equations

σt+1 = σ̇t∆t+ σt εt+1 = ε̇t∆t+ εt (3.1)

This procedure is continued until the stress distributions converge and reach the steady state
condition.
As mentioned above, for the numerical creep analysis of the FGM rotating disc, a numerical

procedure is inevitable. In this study the Generalized differential Quadrature method is used
because of high precision and fast convergence of this method. The Differential Quadrature
idea was proposed by Bellman et al. (1972), and extended by many other researchers later on.
In this method, the partial differential of a function with respect to a coordinate direction is
expressed as a linear weighted sum of all the functional values at all grid points in that direction
(Tornabene et al., 2016). For a smooth function f(r), GDQ discretizes its n-th order derivative
with respect to r at the grid point (ri) as

f (n)r (ri) =
N∑

k=1

a
(n)
ik f(rk) n = 1, 2, . . . , N − 1 i = 1, 2, . . . , N (3.2)

where N is the number of grid points in the r direction. a(n)ik is the weighting coefficient for
the second and higher order derivative which can be completely determined from the first order
derivatives as

a
(n)
ij =





n
(
a
(n−1)
ii a

(1)
ij −

a
(n−1)
ij

ri − rj
j 6= i

N∑
k=1,k 6=i

a
(n)
ik j = i

for i, j = 1, 2, . . . , N, n = 2, 3, . . . , N − 1

(3.3)

In the above equation a(1)ij is the first weighting coefficient to be obtained using

a
(1)
ij =





A(1)(ri)
(ri − rj)A(1)(rj)

j 6= i
N∑

k=1,k 6=i
a
(1)
ik j = i

for i, j = 1, 2, . . . , N

(3.4)

where

A(1)(ri) =
N∏

j=1,j 6=i

(ri − rj) (3.5)

When the coordinates of grid points are known, the weighting coefficient and so the discretized
derivative can be easily calculated from Eqs. (3.2)-(3.5) (Shu and Chew, 1999). Various grid point
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distributions are investigated in the literature. In this study roots of the Chebyshev polynomial
of the first kind are used for grid point generation as (Tornabene et al., 2012)

ri =
gi − g1
gN − g1

gi = cos
(2i− 1
2N

π
)

i = 1, 2, . . . , N (3.6)

where N is the total number of grid points along the radial direction. For the problem studied
herein, the GDQ method which is presented by the above equations demonstrates its numerical
accuracy, high speed and computation amount reduction.

4. Numerical application and discussion

In this Section, the above formulation for creep analysis is applied to a FGM rotating disc with
two different boundary conditions. For this purpose, a FGM disc, as can be seen in Fig. 1, with
inner radius a = 0.05m and outer radius b = 0.2m is considered. It is subjected to T = 623K
temperature and rotates with ω = 15000 rpm. The material of the disc is silicon carbide particles
distributed with a linear volume fraction in pure Aluminum matrix

v(r) = vmax − (vmax − vmin)
r − a
b− a (4.1)

In the above equation vmax = 0.4 and vmin = 0.1 are the maximum and minimum volume
fraction of silicon carbide at the inner and outer radius, respectively. The boundary conditions
of the disc are are established as:
— free-free boundary condition

σr(r = a) = 0 σr(r = b) = 0 (4.2)

— fixed-free boundary condition

ur(r = a) = 0 σr(r = b) = 0 (4.3)

In the distribution patterns of the non-homogeneous disc, the material heterogeneity is mild and
the change in thermo-mechanical properties is not very high. Therefore, similarly to the work
done by Loghman et al. (2011), the disc parameter such as density, Poisson’s ratio, thermal
expansion coefficient and elasticity modulus can be calculated using a linear mixture rule which
is presented by Eq. (4.4). In other words, based on Eq. (4.4), the material and thermal properties
depend on the reinforcement particles volume fraction at each point

P (r) = PAl + (PSiC − PAl)v(r) (4.4)

In the above equation, P (r) is the intended property in the composite disc, PAl and PSiC are the
value of the same property in pure Aluminum and silicon carbide, respectively. The following
data for pure material properties are used in this paper: EAl = 69GPa, ESiC = 410GPa,
ρAl = 2700Kgm−3, ρSiC = 3200 kgm−3, αAl = 23.1 · 10−6K−1, αSiC = 4 · 10−6K−1.
Based on the creep analysis algorithm and the above specified parameters, a computer code

has been developed to find the creep response of the FGM rotating disc. Before providing the
results of the FGM rotating disc, to validate the analysis and the developed computer code, the
results of tangential strain rate have been computed for a disc which was used by Loghman et
al. (2011) and Ghorbani (2012). A comparison between the results is shown in Fig. 3. It can
be seen that there is a good agreement between the results. However, the time consumed and
computation amount by the other method is much higher.
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Fig. 3. Results validation

The radial stress distribution versus the radial direction is presented in Fig. 4. Through the
free-free boundary condition, the value of radial stress in the inner and the outer radius of the
disc becomes zero and the maximum value of radial stress occurs near the middle of the disc.
The disc with the fixed-free boundary condition behaves in a different manner. As it can be
seen, for this condition the radial stress has its maximum value at the inner radius and then a
decreasing trend along the radial direction appears, so the minimum values are observed at the
outer radius.

Fig. 4. Radial stress distribution for two various boundary conditions

Figure 5 confirms that the tangential stress for both boundary conditions show a decreasing
trend in the radial direction. It means that tangential stress experiences a maximum near the
inner radii and gradually decreases to reach a minimum at the outer rim. It seems that the
reason for this type of behavior is the existence of a relatively higher content of particles at the
inner radius in comparison with other points in the disc. But it is obviously seen that the values
of tangential stress in the disc with fixed-free boundary conditions is lower than in the other
disc.
The distribution of the radial component of creep strain rate along the disc radius is presented

in Fig. 6. As it can be seen, for both boundary conditions the radial creep rate has its maximum
value at the inner rim and a decreasing trend along the radial direction. But their behaviour
is different, the fixed-free disc has a positive radial creep rate and the free-free disc has a
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Fig. 5. Tangential stress distribution for two various boundary conditions

Fig. 6. Radial strain rate distribution for two various boundary conditions

negative one, as well as the absolute value of the radial creep rate in the disc with the fixed-free
boundary condition is higher than the disc with the free-free boundary condition. Therefore, it
is important to choose appropriate boundary conditions during the disc installation because of
high dependency of the FGM disc behavior on boundary conditions. As depicted, the strain rate
values in fixed-free boundary conditions are much higher than in the other ones, however this
situation is the most practical condition.

Figure 7 shows the disc with the fixed-free boundary condition. It has an increasing-
-decreasing trend via the radial direction, but in the disc with the free-free boundary condi-
tion, the tangential creep rate is maximal at the inner side of the disc and minimal at the
outer side. It has a monotonic decreasing behavior at the intermediate radii. It is observed that
similarly to the radial creep rate, the maximum rate of the tangential creep rate takes place
near the inner radius of discs, also the maximum value of the effective stress occurs at the inner
rims, so it is necessary to reinforce the inner side of disc with high strength materials. The-
refore, the FGM materials with the higher values of particle reinforcements at the inner radii,
in other words, discs with the decreasing type of particle distribution along the radial direc-
tion have a better creep responses in comparison with the increasing type ones or homogenous
materials.
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Fig. 7. Tangential strain rate distribution for two various boundary conditions

Fig. 8. Radial displacement rate distribution for two various boundary conditions

The variation of the radial displacement rate for two boundary conditions is presented in
Fig. 8. As it can be seen, the disc with the free-free boundary condition has a decreasing trend and
the disc with the fixed-free boundary condition has an increasing trend along the radial direction,
as expected. Obviously, becouse of the integrated nature of the displacement (compared to the
differential nature of strain) this picture does not reveal many details appearing in the previous
stress or strain curves.

5. Conclusion

In this paper, the generalized differential quadrature method is used to obtain the time dependent
creep responses of an FGM rotating disc. The creep equations are derived for a disc with a linear
distribution of the particle content and are solved for two various boundary conditions. It can
be demonstrated that the GDQ method is an efficient and accurate method in creep analysis
of rotating discs. As it is shown, comparisons of the results with other available approaches
show a good agreement. However, the time consumed by the other methods for solving the
same problem is much higher. The results also illustrate that the material inhomogeneity has
a considerable effect on the creep behavior of FGM rotating discs. Creep rates and stress fields
at the inner side of the disc is much greater, so the disc must to be reinforced at this internal
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side. Making use of the decreasing type of particle distribution leads to better creep responses
as well as higher creep life time.

References

1. Arya V.K., Bhatnagar N.S., 1979, Creep analysis of rotating orthotropic discs, International
Journal of Nuclear Engineering and Design, 55, 323-330

2. Bayat M., Sleem M., Sahari B.B., Hamouda A.M.S., Mahdi E., 2008, Analysis of func-
tionally graded rotating disks with variable thickness, Mechanics Research Communications, 35,
283-309

3. Bellman R., Kashef B.G., Casti J., 1972, Differential quadrature: a technique for the rapid
solution of nonlinear partial differential equations, Journal of Computational Physics, 10, 40-52

4. Bhatnagar N.S., Kulkarni P.S., Arya V.K., 1986, Steady state creep of orthotropic rotating
discs of variable thickness, International Journal of Nuclear Engineering and Design, 91, 121-141

5. Białkiewicz J., 1986, Dynamic creep rupture of a rotating disc of variable thickness, International
Journal of Mechanical Science, 28, 671-681

6. Ghorbani M.T., 2012, A semi-analytical solution for time-variant thermoelastic creep analysis of
functionally graded rotating disks with variable thickness and properties, International Journal of
Advanced Design and Manufacturing Technology, 5, 2, 41-50

7. Gupta V.K., Singh S.B., Chandrawat H.N., Ray S., 2004, Steady state creep and material
parameters in a rotating disc of Al-SiC composites, European Journal of Mechanics A Solids, 23,
335-344

8. Gupta V.K., Singh S.B., Chandrawat H.N., Ray S., 2005, Modeling of creep behavior of a
rotating disc in the presence of both composition and thermal gradients, Journal of Engineering
Materials and Technology, 127, 97-105

9. Hojjati M.H., Hassani A., 2008, Theoretical and numerical analysis of rotating discs of non-
uniform thickness and density, International Journal of Pressure Vessels and Piping, 85, 10, 694-700

10. Loghman A., Gorbanpour Arani A., Shajari A.R., Amir S., 2011, Time dependent ther-
moelastic creep analysis of rotating disk made of Al-SiC composite, Archive of Applied Mechanics,
81, 1853-1864

11. Nieh T.G., 1984, Creep rupture of a silicon carbide reinforced aluminum composite, Metallurgical
Transactions, 15A, 139-146

12. Pandey A.B., Mishra R.S., Mahajan Y.R., 1992, Steady state creep behavior of silicon carbide
particulate reinforced aluminum composites, Acta Metallurgica et Materialia, 40, 2045-2082

13. Shu C., 1996, Free vibration analysis of composite laminated conical shells by generalized diffe-
rential quadrature, Journal of Sound and Vibration, 194, 587-604

14. Shu C., Chew Y.T., 1999, Application of multi-domain GDQ method to analysis of waveguides
with rectangular boundaries, Progress in Electromagnetics Research, 21, 1-19

15. Shu C., Chew Y.T., Richards B.E., 1995, Generalized differential integral quadrature and
their application to solve boundary layer equations, International Journal of Numerical Methods
in Fluids, 21, 723-733

16. Shu C., Richards B.E., 1992, Application of generalized differential quadrature to solve two-
dimensional incompressible Navier-Stokes equations, International Journal of Numerical Methods
in Fluids, 15, 791-798

17. Singh S.B., Ray S., 2001, Steady state creep behavior in an isotropic functionally graded material
rotating disc of Al-SiC composite, Metallurgical and Materials Transactions, 32A, 1679-1685

18. Singh S.B., Ray S., 2002, Modeling the anisotropy and creep in orthotropic aluminum-silicon
carbide composite rotating disc, Mechanics of Materials, 34, 363-372



Numerical creep analysis of FGM rotating disc with GDQ method 341

19. Tornabene F., Fantuzzi N., Bacciocchi M., 2016, The GDQ method for the free vibration
analysis of arbitrarily shaped laminated composites shells using a NURBS-based isogeometric ap-
proach, Composite Structures, 153, 190-218

20. Tornabene F., Liverani A., Caligiana G., 2012, Laminated composite rectangular and an-
nular plates: A GDQ solution for static analysis with a posteriori shear and normal stress recovery,
Composite: Part B, 43, 1847-1872

21. Whal A.M., Sankey G.O., Manjoine M.J., Shoemaker E., 1954, Creep test of rotating discs
at elevated temperature and comparisons with theory, Journal of Applied Mechanics, 21, 225-235

Manuscript received May 28, 2016; accepted for print September 12, 2016





JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 1, pp. 343-351, Warsaw 2017
DOI: 10.15632/jtam-pl.55.1.343

A NOVEL APPROACH TO THERMAL AND MECHANICAL STRESSES IN
A FGM CYLINDER WITH EXPONENTIALLY-VARYING PROPERTIES

Kerimcan Celebi
Adana Science and Technology University, Department of Mechanical Engineering, Adana, Turkey

Durmus Yarımpabuc
Osmaniye Korkut Ata University, Department of Mathematics, Osmaniye, Turkey

e-mail: durmusyarimpabuc@osmaniye.edu.tr

Ibrahim Keles
Department of Mechanical Engineering, Ondokuz Mayis University, Samsun, Turkey

A novel approach is employed to a general solution for one-dimensional steady-state thermal
and mechanical stresses in a hollow thick cylinder made of a functionally graded material
(FGM). The temperature distribution is assumed to be a function of radius, with general
thermal and mechanical boundary conditions on the inside and outside surfaces of the cylin-
der. The material properties, except Poisson’s ratio, are assumed to be exponentially-varying
through the thickness. Forcing functions applied to the inner boundary are internal pressures
which may be in form of steps. These conditions result in governing differential equations
with variable coefficients. Analytical solutions to such equations cannot be obtained except
for certain simple grading functions and pressures. Numerical approaches must be adopted
to solve the problem in hand. The novelty of the present study lies in the fact that the
Complementary Functions Method (CFM) is employed in the analysis. The Complementary
Functions method (CFM) will be infused into the analysis to convert the problem into an
initial-value problem which can be solved accurately. Benchmark solutions available in the
literature are used to validate the results and to observe the convergence of the numerical
solutions. The solution procedure is well-structured, simple and efficient and it can be re-
adily applied to cylinders. It is also well suited for problems in which mechanical properties
are graded.

Keywords: thermal stresses, functionally-graded materials, thick cylinder, Complementary
Functions Method

1. Introduction

Pressure vessel structural members such as cylinders, disks and spheres find broad application
fields in the industry, and their vibration analyses are deemed necessary for safe design and ope-
ration. Hollow cylinders and thick-walled cylindrical shells are common components in structural
applications and device systems involving aerospace and submarine structures, civil engineering
structures, machines, pipes, sensors and actuators, etc. These structures are often exposed to
temperature environment and thermal stresses are then induced. In many cases, thermal stres-
ses will significantly depress strength and also affect functionality of structures. Thus, the exact
analysis of thermal stresses is really important (Ying and Wang, 2010). There have been many
studies, such as Timoshenko and Woinowsky-Krieger (1959), Boley and Weiner (1960), Das and
Navaratna (1962), Das and Rath (1972), Stavsky (1963) and Thangaratnam et al. (1988), which
focused on thermal stresses in isotropic homogeneous rectangular plates. Yee and Moon (2002)
have been obtained a closed-form analytical solution for the plane thermal stress analysis of
a homogeneously orthotropic hollow cylinder subjected to an arbitrary, transient, asymmetric
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temperature distribution. They used a stress function approach for obtaining hoop, radial, and
shear stresses in a hollow cylinder. Shao (2005) presented, by using a multi-layered approach
based on the theory of laminated composites, the solutions of temperature, displacements, and
thermal-mechanical stresses in a functionally graded circular hollow cylinder. Shao et al. (2008)
used complex Fourier series and Laplace transform techniques to investigate transient heat con-
duction and thermo-mechanical stresses in an FGM hollow cylinder. Jabbari et al. (2002, 2003,
2009) derived the exact solution for one-dimensional and two dimensional steady-state thermo-
elastic problems of functionally graded hollow cylinders where material properties varied with
the power product form of the radial coordinate variable. Recently Ruhi et al. (2005) studied
thermoelastic analysis of thick walled finite length cylinders of functionally graded materials and
achieved results for stress, strain and displacement components through the thickness and along
the length. The results were presented for uniform internal pressure and thermal loading. Ootao
and Tanigawa (2006) analyzed exactly a one-dimensional transient thermoelastic problem of a
functionally graded hollow cylinder whose thermal and thermoelastic constants were assumed
to vary with the power product form of the radial coordinate variable. The resulting governing
differential equation then possessed variable coefficients. General closed-form solutions to such
equations are not available. Noda et al. (2012) studied the transient thermoelastic analysis for an
FGM solid circular disk whose material properties were expressed by a piecewise power law. As
it was done in the works cited above, in such situations the solution methods included integral
transformations, development of finite element models, and, in some special cases, series solu-
tions were attempted. Assuming that the member was composed of many homogeneous layers of
different properties emulating the FGM behavior, there was another way of tackling the problem
on hand. All of these approaches required heavy mathematical manipulations and, in the case
of having to discretize the domain into many elements, a high amount of computational time.
In the present paper, the governing differential equation is non-homogeneous with variable

coefficients which include material properties. A novel approach is attempted to obtain displa-
cements, strains and stresses in a simple and efficient manner. The complementary functions
method (CFM), theoretically explained in the literature by Aktaş (1972), Agarwal (1982) and
Roberts and Shipman (1979) is infused into analysis to convert the problem to an initial-value
problem which can be then easily solved by, for example, the fifth-order Runge-Kutta method
(RK5) with great accuracy (Chapra and Canale, 1998). Shell theories or dividing the material
into homogeneous subelements of different properties emulating the graded behavior contains
the customary approach of modeling FGM structural elements. Finite element analysis, series
expansion methods and direct methods are primary solution methods used in the literature. The
present paper uses a novel and efficient method which employes CFM. A thick hollow cylinder of
FGM under one-dimensional steady-state temperature distribution with general types of ther-
mal and mechanical boundary conditions is analysed. Two material models are used: (a) with a
simple power law with constant Poisson’s ratio (Jabbari et al., 2002) for which analytical bench-
mark solutions are available, (b) with exponentially-varying properties. It should be emphasized
once again that the solution procedure is not confined to any particular choice of the material
model; it is equally suitable for arbitrary functions defining the gradient variation of material
properties.

2. Solutions by the Complementary Functions Method

The CFM transforms two-point boundary-value problems to a system of initial-value problems.
It reduces to a particularly simple solution scheme when applied to a given class of problems,
e.g. for an annular disk of inner radius ri and outer radius ro. As it is shown in the proceeding
Sections, under axisymmetric conditions, the governing differential equation of the dependent
variable u(r) in its most general form is
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u′′ + P (r)u′ +Q(r)u = R(r) (2.1)

subject to boundary conditions on the inner (r = ri) and outer (r = ro) surfaces. Here (·)′
denotes the derivative with respect to r. A general closed-form solution of the above equation
cannot be obtained. The complete solution to Eq. (2.1) is

u = bjuj + up j = 1, 2 (2.2)

where uj and up are, respectively, homogenous and particular solutions. The coefficients bj are

determined via the boundary conditions. CFM begins by assuming ui = Y
(i)
1 and u

′
i = Y

(i)
2 ,

which means

(Y (i)1 )
′ = Y (i)2 (2.3)

Here, the index i = 1, 2 refers to homogeneous solutions and i = p means the particular solution.
To determine the homogeneous solutions, the right-hand side of Eq. (2.1) is set equal to zero,
and the following is obtained

(Y (i)2 )
′ = −P (r)Y (i)2 −Q(r)Y

(i)
1 (2.4)

The system of Eqs. (2.3) and (2.4) can be solved numerically for each homogeneous solution.
The Kronecker delta initial conditions given below are used to assure linear independence of the
solutions (Roberts and Shipman, 1979)

Y
(i)
j = δji j, i = 1, 2 (2.5)

To obtain the particular solution, Eq. (2.4) is modified as

(Y (p)2 )
′ = −P (r)Y (p)2 −Q(r)Y

(p)
1 +R(r) (2.6)

A particular solution needs only to satisfy the differential equation and homogeneous initial
conditions

Y
(p)
j = 0 j = 1, 2 (2.7)

be imposed. Equations (2.3), (2.6), (2.7) constitute a system of equations for the particular
solution along with the initial conditions. The fifth-order Runge-Kutta method (RK5) is used for
all cases considered. Note that by this procedure not only the solution u(r) itself but also its first
derivative are readily calculated. Applying the boundary conditions prescribed for the particular
problem in hand results in the following system of algebraic equations for the coefficients b1 and b2

[
A11 A12
A21 A22

] [
b1
b2

]
=

[
RHS1
RHS2

]
(2.8)

Here, Aij includes the values of the homogeneous solutions at the boundary points. RHS1 and
RHS2 contain values of the particular solutions. If the cylinder is subjected to internal and
external pressures, they will also be included in the right hand-side terms. On the other hand,
implementing CFM in the heat conduction problem yields RHS1 and RHS2 as prescribed
temperatures along the boundaries. These points will be illustrated in the following Sections.
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3. Heat conduction in the radial direction

The heat conduction equation in the steady-state condition for a one-dimensional problem in
polar coordinates and thermal boundary conditions for a FGM hollow cylinder are given, re-
spectively, as

1
r

(
rk(r)T ′(r)

)′
= 0 ri ¬ r ¬ ro

C11T (ri) + C12T ′(ri) = f1
C11T (ro) + C12T ′(ro) = f2

(3.1)

where k = k(r) is the thermal conduction coefficient, ri and ro are the inner and outer radii
of the hollow cylinder. Cij are the constant thermal parameters related to the conduction and
convection coefficients. The constants f1 and f2 are known constants on the inside and outside
radii.
It is assumed that the nonhomogeneous thermal conduction coefficient k(r) is an exponential

function of r as

k(r) = koeβr (3.2)

where ko is a material constant and β is the inhomogeneity parameter. Using Eq. (3.2), the heat
conduction equation becomes

1
r

(
reβrT ′(r)

)′
= 0 (3.3)

Steady-state axisymmetric heat conduction without heat generation is considered. The heat
balance equation in the radial direction for a nonuniform disk yields

T ′′ +B(r)T ′ = 0 (3.4)

where B(r) = (1/r)+β and it is varying as a function of the radial coordinate r. The boundary
conductions are temperatures prescribed on the inner and outer surfaces as

T (ri) = Ti and T (ro) = To (3.5)

The complete solution is the homogeneous solution

T = bjTj j = 1, 2 (3.6)

with

T ′ = bjT ′j j = 1, 2 (3.7)

Following the steps outlined in Section 2, the temperature distribution is obtained at the collo-
cation points. The constants bj can now be found by imposing the boundary conditions. This
process results in a system given by Eq. (2.8) where

A11 = T1(ri) A12 = T2(ri)

A21 = T1(ro) A22 = T2(ro)

RHS1 = Ti RHS2 = To

(3.8)
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4. Governing equation

Consider a thick walled cylinder of the inside radius ri and the outside radius ro made of FGM.
The material is graded through the r−direction. Let u be the displacement component in the
radial direction. Then the strain-displacement relations are

εrr =
du

dr
εθθ =

u

r
(4.1)

The stress-strain relations are

σrr = (λ+ 2µ)εrr + λεθθ − (3λ+ 2µ)αT (r)
σθθ = (λ+ 2µ)εθθ + λεrr − (3λ+ 2µ)αT (r)

(4.2)

where σij and εij (i, j = r, θ) are stress and strain tensors, T (r) is temperature distribution
determined from the heat conduction equation, α is the coefficient of thermal expansion, and λ
and µ are the Lame coefficients related to the modulus of elasticity E and Poisson’s ratio ν as

λ =
νE(r)

(1 + ν)(1− 2ν) µ =
E(r)
2(1 + ν)

(4.3)

The equilibrium equation in the radial direction, disregarding the body force and inertia terms,
is

∂σrr
∂r
+
σrr − σθθ

r
= 0 (4.4)

To obtain the equilibrium equation in terms of the displacement component for the FGM cylin-
der, the functional relationship of the material properties must be known. To ascertain the effect
of the inhomogeneity, the properties are considered to vary exponentially across the thickness

E(r) = Eoeβr α = αoeβr (4.5)

where Eo and αo are the material constants and β is the inhomogeneity parameter. Poisson’s
ratio varies very little through the thickness in FGM materials. Furthermore, its effects on
thermal and mechanical stresses are insignificant. For simplicity, Poisson’s ratio is assumed to
be constant (Akbari Alashti et al., 2013; Jabbari et al., 2015).
Using relations (4.1)-(4.5), the Navier equation in term of the displacement is

u′′ + P (r)u′ +Q(r)u = R(r) (4.6)

where

P (r) = (βr + 1)
1
r

Q(r) =
( νβr
1− ν − 1

) 1
r2

R(r) =
eβrαo(1 + ν)
(1− ν) (2βT + T

′)
(4.7)

Following the steps outlined in Section 2, the complete displacement is obtained at the collocation
points as

u = b1u1 + b2u2 + up (4.8)

with

u′ = b1u′1 + b2u
′
2 + u

′
p (4.9)

The coefficients b1, b2 will be determined using the stress free conditions on inner (σrr(ri) = −Pi)
and outer (σrr(ro) = −Po) boundaries. This step is particularly simple since during the solution
process the first derivative of the radial displacement has already been calculated.
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5. Results and discussions

As an example, consider a thick hollow cylinder of the inner radius a ri = 1m and the outer
radius ro = 1.2m. Poisson’s ratio is taken to be 0.3, and the modulus of elasticity and the
thermal coefficient of expansion at the inner radius are Eo = 200GPa and αo = 1.2 · 10−6/◦C,
respectively. The properties are considered to vary exponentially across the thickness. The bo-
undary conditions for temperature are taken as T (ri) = 10◦C and T (ro) = 0◦C. The hollow
cylinder has pressure on its inner surface, so the boundary conditions for stresses are assumed
as σrr(ri) = −50MPa and σrr(ro) = 0MPa.
The numerical solution in the present study is checked with the results obtained by Jabbari et

al. (2002) for the validation purpose. Comparison is illustrated in Tables 1-3. It can be observed
that the results are in good agreement with the same results by Jabbari et al. (2002). The
numerical results have been obtained to six-digit accuracy by picking only 11 collocation points.

Table 1. Comparison of CFM with Jabbari et al. (2002) for a homogenous cylinder (m = 0 and
β = 0)

r

ri

T/T (ri) u/ri σrr/Pi σθθ/Pi
CFM Jabbari CFM Jabbari CFM Jabbari CFM Jabbari

1 1 1 0.00136642 0.00136642 −1 −1 5.50909 5.50909
1.04 0.784882 0.784882 0.00133799 0.00133799 −0.754183 −0.754183 5.27802 5.27802
1.08 0.577883 0.577883 0.00131239 0.00131239 −0.534644 −0.534644 5.07268 5.07268
1.12 0.378413 0.378413 0.00128932 0.00128932 −0.337716 −0.337716 4.88943 4.88943
1.16 0.185944 0.185944 0.0012685 0.0012685 −0.160351 −0.160351 4.72526 4.72526
1.2 0 0 0.0012497 0.0012497 0 0 4.57766 4.57766

Table 2. Comparison of CFM with Jabbari et al. (2002) for FGM cylinders with constant
Poisson’s ratio and the elastic modulus obeying a simple power law (m = −2 and β = −2)

r

ri

T/T (ri) u/ri σrr/Pi σθθ/Pi
CFM Jabbari CFM Jabbari CFM Jabbari CFM Jabbari

1 1 1 0.00161944 0.00161944 −1 −1 6.62127 6.62127
1.04 0.814545 0.814545 0.00158667 0.00158667 −0.722291 −0.722291 5.84288 5.84288
1.08 0.621818 0.621818 0.00155679 0.00155679 −0.491571 −0.491571 5.19022 5.19022
1.12 0.421818 0.421818 0.00152961 0.00152961 −0.29876 −0.29876 4.63928 4.63928
1.16 0.214545 0.214545 0.00150494 0.00150494 −0.136767 −0.136767 4.1713 4.1713
1.2 0 0 0.00148263 0.00148263 0 0 3.77145 3.77145

Table 3. Comparison of CFM with Jabbari et al. (2002) for FGM cylinders with constant
Poisson’s ratio and the elastic modulus obeying a simple power law (m = 2 and β = 2)

r

ri

T/T (ri) u/ri σrr/Pi σθθ/Pi
CFM Jabbari CFM Jabbari CFM Jabbari CFM Jabbari

1 1 1 0.00114082 0.00114082 −1 −1 4.51743 4.51743
1.04 0.753093 0.753093 0.00111628 0.00111628 −0.784165 −0.784165 4.70652 4.70652
1.08 0.533109 0.533109 0.00109454 0.00109454 −0.577254 −0.577254 4.89893 4.89893
1.12 0.336271 0.336271 0.00107516 0.00107516 −0.378189 −0.378189 5.09474 5.09474
1.16 0.159442 0.159442 0.00105779 0.00105779 −0.186042 −0.186042 5.29405 5.29405
1.2 0 0 0.00104213 0.00104213 0 0 5.49697 5.49697
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Figure 1a shows variations of temperature along the radial direction for different values of the
inhomogeneity parameter (β). The figure shows that as the inhomogeneity parameter β increases,
the temperature decreases. Figure 1b shows the plot of the radial displacement along the radius.
The magnitude of the radial displacement is decreased as the inhomogeneity parameter β is
increased. The radial and circumferential stresses are plotted along the radial direction and are
shown in Figs. 1c and 1d. The magnitude of the radial stress is increased as β is increased. It
is seen that for β < 1 the hoop stress decreases along the radial direction. For β > 1, the hoop
stress increases as the radius increases, since the modulus of elasticity is an increasing function of
the radius, see Eq. (2.6). Physically, this means that the outer layers of the cylinder are biased to
maintain the stress due to their higher stiffness. There is a limiting value for β, where the hoop
stress remains almost constant along the radius. The curve associated with β = 1 shows that
the variation of hoop stress along the radial direction is minor, and is almost uniform across the
radius. To investigate the pattern of stress distribution along the cylinder radius, the effective
stress σ∗ =

√
2|σr − σθ| is plotted along the radial direction for different values of ro/ri and the

inhomogeneity parameter β. Figure 2 is plotted for ro/ri = 1.2. It is interesting to note from
Fig. 2 that for β = 1 the effective stress is almost uniform along the radius of the cylinder.

Fig. 1. Radial distribution of: (a) temperature, (b) radial displacement, (c) radial stress and (d) hoop
stress for cylinder

It should be pointed out once again that the purpose of the present work is the introduction
of CFM to the solution procedure of the class of problems in hand. Converting the two-point bo-
undary value problem to a system of an initial-value problem gives a way to the implementation
of well-established numerical schemes. The Runge-Kutta method of fifth-order (RK5) is used to
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Fig. 2. Effective stress distribution for ro/ri = 1.2

solve the system of equations. The procedure is simple and efficiently implemented. The nume-
rical results have been obtained exact up to six-digit accuracy by picking only 11 collocation
points in RK5.

6. Conclusion

This paper presents a numerical solution for calculation of axisymmetric thermal and mechanical
stresses in a thick hollow cylinder made of FGM. The material properties through the graded
direction are assumed to be nonlinear with a power law distribution and exponentially-varying
properties. The mechanical and thermal stresses are obtained through the CFM of the solution
of the Navier equation. The comparisons of temperature distributions and stress distributions
are presented in form of tables. The numerical results for all cases are shown to exactly match
those reported by Jabbari et al. (2002). Finally, we can conclude that:

• With the unified approach presented in the present study, one would not have to com-
promise on the functional continuity of the material properties. Analysis of any material
model in form of an arbitrary function subject to internal pressure has been analyzed
efficiently and accurately by employing CFM.

• The unified method used is accurate and more efficient than the conventional methods.
• The method employed in this study allows one to find solutions of continuous functions.
• The CFM of solving the differential equation provides a complete solution, yielding both
thermal stresses and temperature distributions.
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Small deviations between turbine blades exist due to manufacturing tolerances or material
inhomogeneities. This effect is called mistuning and usually causes increased vibration am-
plitudes and also a lower service life expectancy of bladed disks or so called blisks (bladed
integrated disk). The major resulting problem is to estimate the maximum amplitude with
respect to these deviations. Due to the probability distribution of these deviations, statistical
methods are used to predict the maximum amplitude. State of the art is the Monte-Carlo
simulation which is based on a high number of randomly re-arranged input parameters. The
aim of this paper is to introduce a useful method to calculate the probability distribution of
the maximum amplitude of a mistuned blisk with respect to the random input parameters.
First, the applied reduction method is presented to initiate the sensitivity analysis. This
reduction method enables the calculation of the frequency response function (FRF) of a
Finite Element Model (FEM) in a reasonable calculation time. Based on the Taylor series
approximation, the sensitivity of the vibration amplitude depending on normally distribu-
ted input parameters is calculated and therewith, it is possible to estimate the maximum
amplitude. Calculating only a single frequency response function shows a good agreement
with the results of over 1000 Monte-Carlo simulations.

Keywords: turbine blades, mistuning, sensitivity analysis

Nomenclature

d0 – structural damping σ – standard deviation
k – blade index I – identity matrix
u – modal displacement Kb – stiffness matrix of blades
x – geometric displacement Kd – stiffness matrix of one disk segment
EO – engine order KAb – stiffness matrix of blades, type A
N – number of blades [̃·] – reduced system matrices
δk – mistuning factors [̂·] – absolute amplitude
α – tolerance interval [·]H – Hermitian transpose

1. Introduction

A blade integrated disk (blisk), i.e. blades and disk made out of one piece, has a lot of tech-
nical benefits like weight reduction or omission of fretting between the blade and disk. This
causes lower damping and higher structural coupling between the blades. Due to small devia-
tions between the blade properties, energy localization can occur causing considerably higher
vibration amplitudes of a few blades. Whitehead (1966) gave a limit for the maximum vibration
amplitude of a mistuned blisk. This theoretical maximum is existent, if all modes have the same
eigenfrequency and are in phase at one blade position.
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The dynamical behavior of one blade mode can be simulated with a cyclic lumped-mass
model (see e.g. Griffin and Hoosac, 1984). The benefits of such a simple model is the simple
dynamical behavior and the low calculation time. However, different mode families and multiple
mode shapes cannot be described by this model. On the other hand, high computational cost is
inevitable to solve a full Finite Element model of a mistuned blisk. Especially for parameter stu-
dies, a high number of high-resolution FRF’s is necessary. Therefore, a lot of different reduction
methods are developed to calculate the FRF of a mistuned blisk with a lower computational
effort.

There are two ways that are frequently used to reduce the number of DOF of a mistuned
blisk. On the one hand, the model can be described by the system modes (called Subset of
Nominal Modes, SNM), which is described in Yang and Griffin (2001), extended to geometric
mistuning in Sinha (2009) and compared to the first version of the SNM in Bhartiya and Sin-
ha (2011). The model of the whole blisk is divided into single sectors which could be reduced
by a modal transformation using the modes of the segment. Afterwards, the mistuned stiff-
ness matrix can be calculated very efficiently, and a good agreement to the full model can be
shown. If there is only one mode describing the blade dominant vibration, this method can
be extended to the Fundamental Model of Mistuning (FMM), which was introduced in Feiner
and Griffin (2002). The main condition is that the mode shape remains almost unchanged and
only small difference occurs between the blades eigenfrequencies. The main benefit is that the
knowledge of the system matrices of the Finite Element model is not required. This method is
very useful for the identification of mistunig, see Shuai and Jianyao (2010), Feiner and Griffin
(2004a,b).

On the other hand, one sector can be divided into a blade and a disk sector. After mo-
dal reduction of these components, the matrices are coupled and the dynamical behavior
of the whole mistuned blisk can be calculated. This so-called Component Mode Synthesis
(see e.g. Bladh et al., 2001a,b) needs more computational effort to regard mistuning, but is
much more flexible (see Moyroud et al. (2002), for comparison, Castanier and Pierre (2006)
for an overview). It is assumed that the disk is cyclic symmetric. Thus it can be described
by cyclic boundary conditions (see Thomas (1979) for a description). The DOFs of the bla-
de are reduced by the well-known Craig Bampton method (see Craig and Bampton, 1968;
Craig, 2000). This method was extended in Hohl et al. (2011) using a reduction of the co-
upling nodes using Wave-Based Substructuring Čermelj et al. (2008) and a secondary modal
reduction.

To analyze the influence of mistuning, Monte-Carlo Simulation (MCS) can be used to find
an optimal pattern or to find the maximum amplitude of a given probability distribution of the
eigenfrequencies, see Hohl et al. (2011). In Bladh et al. (2001), it is shown that only 50 MCS
are necessary to fit the probability density function (PDF) of the maximum vibration amplitude
over all frequencies. The PDF is fitted with a Weibull distribution. In Mignolet and Hu (1997), a
direct prediction method describes how to find the maximum amplitude for one frequency using
the cumulates of the normal distributions. The distribution of a lumped-mass model with one
DOF per segment results in a Gaussian distribution.

The presented paper introduces a new method to find the Gaussian distribution of a mistuned
blisk. The aim of the paper is to show the benefits of these methods and its possible application.
First, the used reduction method is described and the universal validity is given. Thereafter, high
order sensitivity analysis is shown and compared to the MCS. The second case study emphasizes
its versatile application spectrum based on an intentional mistuned example. Therewith, the
dynamical behavior of a mistuned blisk can be analyzed depending on different mistuning factors,
engine order, or blade pattern.
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2. Reduction method

The first example analyzed is a simplified blisk with N = 12 blades (see picture in Fig. 1).
This blisk exhibits the typical dynamical behavior of a blisk without spinning effects like spin
softening, centrifugal stiffening or Coriolis effects. The blisk is cyclic symmetric with 12 blades
ignoring manufacturing tolerances. Thus, cyclic symmetry can be used to analyze the full blisk
regarding only one sector.

Fig. 1. Picture of the analyzed blisk

Fig. 2. Finite Element mesh with special nodes of interest

In Fig. 2, the mesh of such a sector is shown. The mesh of the whole system has about
170 000 degrees of freedom (DOF) and a harmonic analysis of the vibration amplitudes cannot
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be solved at a common PC in a reasonable time, especially if parameter variations are processed
or optimization problems are considered. Regarding cyclic symmetry, the number of DOFs is
reduced to 14841 for the calculation. The excitation node and the monitor node are located at
the blade tip, and the direction of excitation and monitoring is the z-direction. Of course, the
following shown method can be used to analyze a blisk with any arbitrary geometry.
In Fig. 3, the nodal diameter diagram is illustrated for the first four mode families. The

first mode family is well separated, and will be used for the analysis in this paper. Nevertheless,
the results are verified for other mode families as well. Some chosen mode shapes of the tuned
system are depicted in Fig. 3.

Fig. 3. Nodal diameter diagram

In general, the equation of the dynamical system can be written as

Mẍ(t) +Dẋ(t) +Kx(t) = F(t) (2.1)

withM, D, and K as the mass, damping, and stiffness matrix. The excitation force vector F(t)
is assumed to be harmonic in time with a constant phase shift between the blades depending on
the engine order EO

F(t) = F̂eiΩt =




1
...
e−ikφ
...

e−i(N−1)φ



f̂eiΩt (2.2)

with the phase shift

φ =
2πEO
N
= const (2.3)

The damping is modeled as structural damping depending on the stiffness matrix

D =
d0
Ω
K (2.4)
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Using the modal transformation into the frequency domain with the harmonic approach
x(t) = x̂ exp(iΩt), Eq. (2.1) reads

x̂(Ω) = [−MΩ2 + (1 + id0)K]−1F̂ (2.5)

The attentive reader notices that the equation of motion is build up for a linear model. The
following process will be described for such a model. Nevertheless, it will be very simple to
include rotating effects like centrifugal or Coriolis forces. Therefore, the matrices have to be
checked for nonsymmetry and varity over the rotation speed. The following reduction method
is limited to linear models, but other reduction methods for nonlinear models can be used.
For a large number of DOFs a lot of computational effort is required to calculate the combined

matrix (−MΩ2 + (1 + id0)K)−1.
The chosen reduction method is based on the Component Mode Synthesis (CMS) extended

by the Wave-Based Substructuring (WBS) (see Hohl et al., 2011). Firstly, the structural matrices
are divided into master nodes (m) and slave nodes (s) as described in Craig and Bampton (1968).
The master nodes are the coupling nodes between the blades and the disk (see Fig. 2). The slave
nodes are transformed to a small basis of mode shapes. Therefore, the reduced stiffness matrix K̃b
of one blade b is obtained by

K̃b =

[
Kmm K̃ms
K̃sm K̃ss

]
=

[
I 0
Ψ Φ

]H [
Kmm Kms
Ksm Kss

] [
I 0
Ψ Φ

]
(2.6)

where I is the identity matrix, (·)H denotes the Hermitian transformation and

Ψ = −K−1ss Ksm (2.7)

and Φ is the modal matrix which contains the eigenvectors of the generalized eigenvalue problem

KssΦ =MssΦλ (2.8)

Accordingly, the mass matrix is subdivided and reduced. The disk can be reduced using a cyclic
symmetric model as shown in Thomas (1979). Thus, all tuned sectors have the same dynamic
properties. To couple the segments, it is assumed that the nodes on the right hand side uk,R
have the same motion as the nodes on the left hand side uk,L, except for the phase shift (see
Fig. 2). Hence, the displacement of the nodes can be rewritten in cyclic coordinates by

uk =



uk,L
uk,M
uk,R


 =



0 exp

(
− i2πkN

)

I 0
0 I




[
uk,M
uk,R

]
(2.9)

for each nodal diameter k. Due to this transformation, the mass matrix and the stiffness matrix
can be formulated for each segment. After the Craig Bampton reduction of all blades, see Eq.
(2.6), the reduced matrices can be written in the matrix of the full disk by using a subset of
modes and the master nodes

K̃d =

[
K̃mm[ diag (K̃d,ms)]
[ diag (K̃d,sm)] [ diag (K̃d,ss)]

]
(2.10)

with

[ diag (K̃d,ss)] =




K̃d,ss,1 · · · 0
...

. . .
...

0 · · · K̃d,ss,N


 (2.11)
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and just for [ diag (K̃d,sm)] and [ diag (K̃d,ms)]. The coupling nodes have to be transformed into
the full system using the theory of cyclic systems

K̃mm =




K̃1,1 K̃1,2 · · ·
K̃2,1 K̃2,2 · · ·
...

...
. . .


 (2.12)

with the submatrices

K̃i,j =
N−1∑

h=1

(wh(i−1))HK̃hwh(j−1) (2.13)

where

w = e−i
2π
N (2.14)

As a consequence, the size of the structural matrices of the disk is strongly decreased. Neverthe-
less, the master nodes are in physical notation and can include a lot of DOFs. These coupling
nodes are reduced by the single-value decomposition (SVD) of the modal matrix of the whole
segment including the disk and the blade

KsegΦseg =MsegΦsegλ (2.15)

The SVD of a subset of the modal matrix Φsub = Φseg(cpl, ·), including only the coupling DOF,
is given by

Φsub = UΣVT (2.16)

where Σ is a square diagonal matrix with non-negative real numbers on the diagonal. Using the
matrix U to reduce the system with Ured = U(w, ·), the behavior of the coupled nodes can be
projected in an accurate way. w is the number of waves chosen to describe the motion of the
coupling nodes. The reduction method is called Wave-Based Substructuring (WBS) which is
described in Čermelj et al. (2008). In this way, the system matrices for the blades and the disk
can be written as

[
K̃mm K̃ms
K̃sm K̃ss

]
=

CMS︷ ︸︸ ︷[
I 0
Ψ Φ

]H
WBS︷ ︸︸ ︷[

Ured 0
0 I

]H [
Kmm Kms
Ksm Kss

] [
U∗ 0
0 I

] [
I 0
Ψ Φ

]
(2.17)

Thus, the physical DOF are described by
[
um
us

]
=

[
U∗ 0
0 I

] [
I 0
Ψ Φ

] [
xm
xs

]
(2.18)

with a significantly smaller number of DOFs than the Finite Element model. After the assembly
of the blades and the disks, the system matrices are reduced by the second modal reduction.
This reduction is a good possibility to decouple the equation of motion, too. Therewith, equation
of motion (2.5) can be written as a scalar function

ui =
˜̂
F i

−M̃i,iΩ2 + (1 + id0)K̃i,i
(2.19)

One possibility to take into account the mistuning is to detune the single blades by a factor of

Kb,k = δkKb,0 ⇒ K̃b,k = δiK̃b,0 (2.20)
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This can be a variation of Young’s modulus. These factors are randomly built up by a standard
deviation σ0 and a mean value of 1. Afterwards, the full system can be reassembled using the
subsystems

K̃sys =



[ diag (K̃b,ss)] [ diag (K̃b,ms] 0

[ diag (K̃b,sm)] K̃mm K̃d,ms
0 K̃d,sm K̃d,ss


 (2.21)

where

[ diag (K̃b,ss)] =




δ1K̃b,ss · · · 0
...

. . .
...

0 · · · δNK̃b,ss


 (2.22)

as the reduced diagonal matrix of all slave nodes of the mistuned blades. K̃mm is the diagonal
matrix of the reduced coupling nodes and K̃d,ss is the reduced matrix of the blisk. The mass
matrix is assembled in the same way. With the second modal reduction, the system is reduced
to a very small number of DOFs and the equations are decoupled.
In Figs. 4a and 4b, a comparison between the reduced order model (ROM) and the FEM

is given. The ROM is reduced from overall 170 000 DOF to 84 DOF for the whole system
considering mistuning. To prove the capability of the reduced order model as an example a
strongly mistuned blisk is used. Young’s modulus of one blade is 20% higher than all other. To
calculate 131 frequency points, the time needed for the FEM is about 5 minutes on a standard
personal computer with a comercial Finite Element code. The calculated points are concentrated
around the eigenfrequency to guaranty the absolute amplitude. The calculation of the FRF of
the ROM (Eq. (2.19)) with 2000 frequency points requires only 5 seconds with a very good
accuracy.

Fig. 4. Comparison between ROM and FEM: frequency response function of (a) 7th blade, (b) 9th blade

3. High order sensitivity analysis

One of the main points of interest is to calculate the maximum amplitude with respect to the
standard deviation of the mistuned blades. In this way, the maximum stress can be determined.
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Whitehead (1966) described the theoretical possible maximum of the amplitude of a mistuned
blisk by

Amax
Atuned

=
1
2
(
1 +
√
N
)

(3.1)

with N denoting the number of blades. Here it is assumed that all vibration energy of all mode
shapes is concentrated in one blade only. However, this case seems to be unreasonable for real
bladed disk geometries. The common way to analyze the maximum amplitude of a mistuned
bladed disk is the use of Monte-Carlo simulation (see Petrov, 2011; Siewert and Stüer, 2010;
Beck et al., 2012). The disadvantages are the very high calculation time and furthermore the
lack of reliability of the results, e.g. there is no statement how many MCS are necessary to have
convincing results. Using a Weibull estimation, the number of necessary MCS can be defined.
Nevertheless, a high number of simulations is needed to obtain a good agreement (50 MCS in
Bladh et al. (2001) and 500 MCS in Castanier and Pierre (2002)). Due to these problems, another
method to calculate the maximum amplitude is given by a sensitivity analysis. This approach is
motivated by Sextro et al. (2002), who described an extension of the theory of Sinha (1986) and
Sinha and Chen (1989). To calculate the maximum amplitude with a given standard deviation
of the stiffness of the blades, the sensitivity of the frequency response function is developed. By
this means, an estimation of the maximum amplitude is very efficient and a statement of the
probability of the amplitudes is given. The amplitude of the single blades can be written as

x = x0 ± ασ (3.2)

where x0 is the average of all blades. Using the reduced DOF u in place of x economizes a lot
of calculating time. It should be pointed out again that the equations of motion are decoupled
and could be solved using scalar functions. This means that for calculation of the maximum and
minimum limit of the tolerance interval of the amplitude, Eq. (3.2) can be written as

u = u0 ± ασ (3.3)

considering the transformation finally. Based on the results of Mignolet et al. (1999), it is assumed
that the maximum amplitudes over all blades distributions at one frequency follow a Gaussian
distribution. σ is the standard deviation and α the tolerance interval. α = 2 means that 95.45%
of all blade amplitudes are within the tolerance interval; for α = 3, 99.73% of all blade amplitudes
are within the interval. The definition given in Eq. (3.2) specifies the upper and lower limit for
a given interval of the vibration amplitudes. In the case of N discrete data points, the standard
deviation σ is defined as

σ =

√√√√ 1
N − 1

N∑

k=1

(uk − u0)2 (3.4)

Here, the amplitude of the single blades are used to calculate the standard deviation. It is
assumed that the average amplitude of the vibration u0 is the amplitude of the nominal, tuned
system. The amplitude of the blade k is denoted as uk. The parameters of interest are the
mistuning factors δk introduced in the previous Section. The function of the amplitude depending
on the variation factors can be approximated by a Taylor series

uk(δk) = u0 +
∞∑

h=1

1
h!

(∂u(δk)
∂δk

)h
∣∣∣∣∣
δk=1

(δk − 1)h (3.5)

The derivation of the equation of motion in Eq. (2.5) with respect to the mistuning factors reads

∂ui(δk)
∂δk

=
−(1 + d0i)

(
∂K̃i
∂δk

) ˜̂
F i

[−M̃iΩ2 + (1 + d0i)K̃i(δk)]2
(3.6)
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where only the stiffness matrix depends on the mistuning factors. K̃i denotes the scalar entry K̃i,i
and M̃i the scalar M̃i,i. To calculate the higher terms of the Taylor series, the deviation with
the higher order is

∂hui(δk)
∂δhk

= ±h!




(1 + d0i)
(
∂K̃i
∂δk

)

[−M̃iΩ2 + (1 + d0i)K̃i(δk)]︸ ︷︷ ︸
=S




h

ui(δk) (3.7)

with “+” for even h and “−” for uneven h. Using the ratio test, it can easily be shown that
the Taylor series converges if the supremum of S is less than 1. For this blisk, the maximum
is δk = 10−3 like the maximum standard deviations of the single blades. As a consequence, the
variance of the amplitude results in

σi =

√√√√√ 1
N − 1

N∑

i=1

(
∞∑

h=0

±(S)hui(δk)
)2

(3.8)

In this equation, all variances are known from the system given in Eq. (2.5), except for the
deviation of the stiffness matrix from Eq. (2.21) with respect to the mistuning factors

∂K̃

∂δk
=




[
diag

(
∂K̃b,ss
∂δk

)]
0 0

0 0 0
0 0 0


 (3.9)

with

[
diag

(∂K̃b,ss
∂δ1

)]
=




K̃b,ss 0
. . .

0 0


 (3.10)

followed by

[
diag

(
diag

∂K̃b,ss
∂δ2

)]
=




0 0

K̃b,ss
. . .

0 0




(3.11)

and so on, until the last one

[
diag

(∂K̃b,ss
∂δN

)]
=




0 0
. . .

0 K̃b,ss


 (3.12)

In Figs. 5a and 5b, the frequency response function is shown for a random mistuning pattern.
The variance of the single blades is 10−3, and three terms of the Taylor series are used. In Fig. 5a,
the first isolated mode family is shown. Obviously, the FRFs of all blades are between the upper
and the lower limit. The tolerance interval is set to α = 2, therefore, the amplitude can be
higher by 4.55% of the cases. Due to the upper limit, the deviation of the maximum amplitude
is given for every frequency with the probability which is needed. In Fig. 5b, the region of nearby
eigenfrequencies is shown. The limits show a good agreement with the randomly mistuned blades.
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Fig. 5. Upper and lower limit of the FRF compared with a random mistuning for: (a) the first mode
with EO = 1 and (b) the second and third mode with EO = 3

In all studies with the random mistuning, the upper limit fits well. In Fig. 6, a comparison of
three sensitivity analyses with different numbers of terms of the Taylor series are given. The
amplitudes are very close together but the behavior of the FRF is more detailed than with more
terms. Calculating 1000 MCS, the PDF of all amplitudes can be compared with the PDF of the
sensitivity analysis. The function of the PDF of the Gaussian distribution is given by

p(x) =
1

σ
√
2π
exp

[
−1
2

(x− µ
σ

)2]
(3.13)

with σ derived from Eq. (3.8) and µ = u0 as the amplitude of the nominal system. In Figs. 7a
and 7b, the probability distributions of the MCS and the Gaussian distrubtion of the sensitivity
analysis using Eq. (3.13) are shown.

Fig. 6. Comparison of different numbers of terms of the Taylor series (without MCS)



High order sensitivity analysis of a mistuned blisk... 363

Fig. 7. (a) Comparison between 1000 Monte-Carlo simulations (MCS) and the sensitivity analysis (SA)
with σ calculated at the first eigenfrequency at 41.15Hz for EO = 1; (b) comparison between 1000 MCS

and the PDF with σ calculated at the third eigenfrequency at 372.33Hz for EO = 4

4. Case study: intentional mistuning

The second model has 30 blades which have an off-axis angle. The first mode is the one of interest.
To show the generality of the reduction method, an intentional mistuning is introduced. This
case study underlines the possibilities of such a method. A comparison between the reduced
order model and the Finite-Element model is given in Hohl et al. (2011). With the sensitivity
analysis a lot of parameter studies are feasible without consulting the calculating time. One of
the most important ways to handle the increase of the amplitude is to use two different types
of blades. For this purpose, an alternative pattern is used called AB mistuning. The benefits of
this method are shown in Castanier and Pierre (2002), Han and Mignolet (2008), Mignolet et
al. (2000) and Tatzko et al. (2013). An optimal intentional mistuning pattern is found for the
frequency response including an additional random mistuning. In this way, costly statistics are
used requiring a lot of computation time. With the sensitivity analysis shown here, the intentional
mistuning can be classified as a simple method. To calculate the maximum amplitude of the
pattern, the upper limit has to be calculated just once. This method is not restricted to just two
different blade types or a geometric deviation.
The second blade is slightly thicker at its platform region, see Fig. 9. Therefore, it is necessary

to rebuild the finite element mesh. Assuming that the contact nodes are at the same locations
like the nodes of the disk, both types of blades are reduced using the Craig-Bampton with the
same master nodes, as it is described in Eq. (2.17). With the same mesh at the contact nodes,
the waves are the same for all blades. Only the reduced stiffness matrix of the blades is changed
to

[ diag (K̃b,ss)] =




δ1K̃
A
b,ss 0 · · · 0

0 δ2K̃
B
b,ss · · · 0

...
...

. . .
...

0 0 · · · δNK̃
B
b,ss




(4.1)

So, it is very simple to realize the intentional mistuning with geometric differences. The intro-
duced sensitivity analysis is a suitable approach to estimate different patterns of the intentional
mistuning using as many different blade types as required. The frequency response function
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Fig. 8. FEM of the second model blisk

Fig. 9. Two different blade types, including intentional mistuning

has to be calculated only once to have a good estimation for the pattern. In this paper, three
different patterns are evaluated. The first version is an AB mistuning, where the blades are
set in alternation. In the second version, three blades of the same type are collected and sorted
alternately. In the third version, all blades of type A are arranged in a row, followed by all blades
of type B arranged in a row (see Fig. 10).
These patterns are examples to show the benefits of the introduced methods. The results are

unique for every blade and disk geometry and have to be reproduced for each example.
Regarding the vibration amplitude without aerodynamical coupling, the tuned system with

only one blade type has the smallest amplitude. Due to areodynamical coupling, the intentional
mistuning due to flutter or friction damping can be very useful. Nevertheless, the influence of
the inevitable random mistuning has to be taken into account. With respect to the standard
deviation of random mistuning, the three versions show small differences. With a very small
standard deviation between 10−8 and 10−6, version 3 is the best one. With a standard deviation
higher than 10−5, version 3 is the worst one. The chosen engine order is 2.
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Fig. 10. Three patterns of the two blade types

Fig. 11. Maximum amplitude of the three patterns with respect to different standard deviations of the
blades at EO = 2

Figure 12 shows the normalized amplitude with different engine orders with a standard
deviation of 10−6. Versions 1 and 2 are the most sensitive patterns at the first engine order.

5. Conclusions

In this paper, a new analytical method has been introduced to estimate the maximum amplitude
of a mistuned bladed disk. Its benefits are proved by a simple model with characteristic dynamic
behavior. After a short introduction of the model, the used reduction method has been presented.
Therewith, the frequency response function has been calculated in a minimum of time and with
good accuracy. Using the sensitivity analysis, the maximum amplitude for a given interval has
been estimated. For this purpose, the force response function and the maximum amplitude have
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Fig. 12. Normalized amplitude with respect to the EO with a standard deviation of 10−6

to be calculated only once. This saves a significant amount of time for optimization tools or
parameter variations. Intentional AB mistuning has been presented as a possible application.
Two types of blades have been used to analyze different patterns. The sensitivity analysis is
proved to be a good tool for estimating intentional mistuning as well.
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International Society of Biomechanics has proposed a general reporting standard for joint
kinematics based on anatomical reference frames. Nevertheless, the gait analysis protocols
based on this standard are still poorly reported. The purpose of the current study is to pro-
pose and preliminarily assess the potential of an anatomically based ISB 6-DOF protocol,
which combines the ISB reporting standard together with a marker cluster technique. The
proposed technical marker set enables full description of the lower limb kinematics (including
three-dimensional ankle-foot complex rotations) according to the current biomechanical re-
commendation. The marker set provides a clinically acceptable inter-trial repeatability and
minimal equipment requirements.

Keywords: joint kinematics, gait analysis protocol, repeatability, anatomical protocol,
marker-set, motion capture system

1. Introduction

-Three-dimensional kinematic measures of the human gait provide useful data for clinical prac-
tice and biomechanical research (Baker, 2006; Syczewska et al., 2012). Increasingly, quantitative
description of the human movement is used as input data in dynamic simulation of the musculo-
skeletal system (Delp et al., 2007), including joint moment identification using inverse dynamic
methods as well as muscle force estimation using optimization based methods (Erdemir et al.,
2007; Żuk and Pezowicz, 2016). Furthermore, such data may be helpful in the design of walking
machines, exoskeletons (Oliński et al., 2015), limb prosthesis or active orthoses (Dollar and Herr,
2008).
Contemporary quantitative analysis of gait incorporates advanced, still expensive motion

capture systems for tracking marker location. The marker set together with the related biome-
chanical model for mathematical description of lower limb kinematics is called the gait analysis
protocol.
The widely used protocol in clinical gait analysis is Conventional Gait Model (Davis et al.,

1991; Kadaba et al., 1990) which is better standardised and validated than other models (Baker,
2006); therefore, it seems to be the most appropriate model in clinical practice at the moment. In
this protocol, markers are placed both above bony landmarks and wand, therefore, this protocol
is not fully anatomical. Simultaneously, the Conventional Gait Model is inconsistent with the
ISB reporting standard.
Protocols based on the current ISB recommendation (Wu et al., 2002) are still poorly repor-

ted. A recent study evaluated the performance of anatomically based protocols (Manca et al.,
2010; Leardini et al., 2007; Ferrati et al., 2008), including those using marker clusters (Collins et
al., 2009). However, both those protocols are not fully consistent with the ISB recommendation.
Gait kinematics measured using an anatomically based protocol, which also enables tracking

of each segment independently, could increase the accuracy of musculoskeletal modelling and
also seems to be more appropriate for consideration of orthoses and exoskeletons design.
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The purpose of the current study is to propose and assess the protocol, which fulfils ISB
standard, as well as to present reference data for normal subjects obtained using the proposed
protocol. The proposed anatomically based protocol combines the general reporting standard
recommended by the International Society of Biomechanics (ISB) together with a marker clu-
ster technique. In the previous paper (Żuk and Pezowicz, 2015), the proposed methodology was
presented and comparative analysis with a conventional protocol was conducted on the limi-
ted group as a preliminary verification of applied methods. In the current study, the reference
data for normal subjects have been collected and inter-trial reproducibility has been validated.
Furthermore, the applied methodology have been described in greater detail.

2. Methods

Lower limb motion was tracked using a motion capture system (Optotrak Certus, NDI, Canada)
with one position sensor, equipped with three embedded infrared cameras (Fig. 1). The system
tracked position and orientation of clusters of active markers.

Fig. 1. (a) Marker set including technical markers and virtual markers, (b) marker placement,
(c) motion capture system

Four clusters of active markers were located on pelvis and right lower limb segments: thigh,
shank, and foot. The clusters were placed laterally on the distal part of each segment. Each
cluster, consisting of three active markers (infrared LEDs) attached on a rigid base (Optotrak
Smart Marker Rigid Body, NDI, Canada), was mounted with an adhesive tape and a band. The
pelvis cluster was mounted using only adhesive tape. Locations of marker clusters and virtual
markers are shown in Fig. 1. Furthermore, two additional virtual markers (on the heel and
the metatarsal head) were included for foot visualization and gait phase identification. Davis’s
regression equation was applied to determine the hip joint centre (Davis et al., 1991)
Anatomical landmarks were defined as virtual markers whose positions with respect to the

technical markers (cluster) were measured using a tracked pointer during a static trial. The
virtual marker set was designed on the basis of the current ISB recommendation (Wu et al., 2002)
for anatomical reference frames. Anatomical coordinate systems of each anatomical segment were
defined in pursuance of the paper by Wu et al. (2002) (Fig. 2).
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Fig. 2. Anatomical coordinate systems definition according to ISB recommendation (Wu et al., 2002)
based on following virual markeres: ASIS – anterior superior iliac spine, midPSIS – midpoint between
posterior superior iliac spines, HJC – hip joint centre, FE – femur epicondyle, midFEs – midpoint
between femur epicondyles, LC – the most lateral point on the boarder of the lateral tibial condyle,
MC – the most medial point on the border of the medial tibial condyle, IC – the inter-condylar point
located modway between the MC and LC, LM – tip of medial malleolus, MM – tip of the medial

malleolus

Cardan’s angular convention was used to describe relative orientation of adjacent segments
(Tupling and Pierrynowski, 1987; Kadaba et al., 1990). In this convention, the joint rotations R
are described as compound rotations

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 = RZγRXαRY β

=



cos γ − sin γ 0
sin γ cos γ 0
0 0 1






1 0 0
0 cosα − sinα
0 sinα cosα






cos β 0 sinβ
0 1 0

− sin β 0 cos β




=



cos γ cosβ − sin γ sinα sin β − sin γ cosα cos γ sinβ + sin γ sinα cos β
sin γ cos β + cos γ sinα sin β cos γ cosα sin γ sinβ − cos γ sinα cos β

− cosα sin β sinα cosα cos β




(2.1)

whereRZγ ,RXα, RY β are rotation matrices corresponding to rotations around anatomical axes,
respectively: rotation by an angle γ around the frontal axis Z, rotation by an angle α around the
sagittal axis X and rotation by an angle β around the longituidal axis Y ; rij are rotation matrix
elements. Graphical interpretation of the adopted rotation sequence is presented in Fig. 3.
According to the adopted joint angle definition, if TALCS1→ALCS2 is the matrix of transfor-

mation from the proximal segment coordinate system to the distal segment coordinate system,
which can be like this

TALCS1→ALCS2 =




r11 r12 r13 TX
r21 r22 r23 TY
r31 r32 r33 TZ
0 0 0 1


 (2.2)

where TX , TY , TZ refers to translations, then the anatomical joint angles can be calculated as
follows

α = arcsin r32 β = arcsin
−r31
cosα

γ = arcsin
−r12
cosα

(2.3)
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Fig. 3. Graphical representation of Cardan angle convention

where α is abduction/adduction joint angle, β is external/internal rotation angle and γ is fle-
xion/extension joint angle.
Data acquisition and joint angle calculation were performed using custom-made software.

Data processing, including gait cycle normalisation and smoothing, was performed using Matlab.
Ten able-bodied subjects without walking disability (five females and five males) were ana-

lysed (aged 22 ± 2 years, weight 66 ± 11 kg, height 1.75 ± 0.11m). In the case of experimental
methods or repeatability analysis, it was used to combine females and males while preserving
the age range, which was shown in the paper by McGinley et al. (2009).
All participants provided written informed consent before participation. The subjects walked

barefoot at a preferred pace and three gait cycles were selected.
The mean value and the standard deviation of 12 rotations were calculated over three trials

for each sample of the gait cycle in ten subjects. Angle curves were plotted for a single re-
presentative subject (mean of three cycles) and for ten subjects (averaged across mean curves
of each subject). Inter-trial variability was calculated according to the recommended method
(Schwartz et al., 2004; McGinley et al., 2009) and plotted. Average inter-trial variability (AIT)
was compared to the corresponding values from recent papers (Manca et al., 2010; Schwartz et
al., 2004). Averaged intra-protocol variability was defined as a mean standard deviation over all
subjects averaged across the gait cycle.

3. Results

Calculated joint rotations (Fig. 4) are related to corresponding data derived from similar bio-
mechanical models (Benedetti et al., 1998; Leardini et al., 2007; Collins et al., 2009). The lowest
consistency of the range of motion (ROM) is observed for the ankle angle, for which the anatomi-
cal frame definition and the marker set differ considerably from other models. Average inter-trial
variability is low (Table 1) and similar to the corresponding data from other studies (Manca
et al., 2010; Schwartz et al., 2004). The most repeatable rotation within the subject is pelvis
obliquity (0.9◦), while the lowest reproducibility is observed for hip internal/external rotation
and pelvis rotation (2.6◦). The latter results from slight changes of the gait direction during the
study. Inter-trial repeatability clearly depends on the phase of gait (Fig. 5). In particular, for
knee flexion/extension and ankle inversion/eversion, inter-trial variability doubles during swing
phase. Intra-protocol (Table 1) variability is highest for hip flexion/extension (14.2◦) and pelvic
tilt (12.7◦) while for the other angles it does not exceed 10◦.
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Fig. 4. Kinematic variables as calculated by the ISB 6-DOF of one representative subject (mean across
three cycles – gray dashed line, +/- SD – gray dashed thin line) and ten subjects (averaged across mean

curves of subjects – black solid line, +/− SD grey band)

Table 1. Average inter-trial and intra-protocol variability over the gait cycle across four subjects.
Corresponding values from Manca et al. (2010) and Schwartz et al.(2004)

Rotations [◦]
Inter-trial Intra-protocol

Present study Manca et al. Schwartz et al. Present study

Pelvis tilt 1.2 0.9 0.8∗ 12.7
Pelvis obliquity 0.9 1.4 0.5∗ 4.6
Pelvis rotation 2.6 1.7 1.0∗ 10.0
Hip flex/ext 1.6 1.8 1.2∗ 14.2
Hip abd/add 1.4 1.7 0.5∗ 7.1
Hip intr/extr 2.6 2.9 1.2∗ 9.4
Knee flex/ext 1.9 2.2 1.6 6.3
Knee var/valg 1.0 1.6 0.5∗ 4.8
Knee intr/extr 1.2 4.3 1.2∗ 9.2
Ankle dor/pla 1.6 2.0 1.3∗ 4.5
Ankle inv/ev 1.8 2.3 – 6.3
Ankle abd/add 1.1 2.8 1.7 3.7
∗ data estimated from figures provide
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Fig. 5. Patterns of standard deviation across all samples of the gait cycle, one representative subject
(gray dashed line) and average for ten subjects (black solid line)

4. Discussion

The proposed technical marker set enables full description of lower limb kinematics, including
three-dimensional (3D) ankle-foot complex rotations according to the current biomechanical
convention (Wu et al., 2002). Lower limb segments are tracked separately without an assumption
being made about joint constraints. Thus, this marker set can be applied to determination the
joint centres and axes of rotation using functional methods, which was previously reported
by Żuk et al. (2014). Besides, marker clusters in combination with an anatomical calibration
allow definition of an unlimited number of virtual markers, freely placed within the segment,
including those located beyond the “line of sight” of the position sensor. Only one position sensor
(consisting of at least two cameras) is needed to track a selected lower limb (clusters located
laterally) as well as both limbs (clusters placed frontally). The application of an additional
position sensor allows such an arrangement of the clusters, particularly location of the pelvis
cluster on the sacrum (Borhani et al., 2013), which could reduce soft tissue artefacts (STA).
Reference data for normal subjects have been collected. Although the obtained selected joint

angle curves are in agreement with the literature (Leardini et al., 2007; Collins et al., 2009;
Benedetti et al., 1998), caution is recommended when comparing the results among different
protocols, especially in the case of non-sagittal planes (Ferrati et al., 2008).
The obtained average inter-trial variability is acceptable in clinical application according to

previous papers by Schwartz et al. (2004) and McGinley et al. (2009). A relatively low inter-
trial variability indicates proper mounting of marker clusters, which eliminares sliding during
examination. Further evaluation of the ISB 6-DOF protocol should include analysis of inter-



Anatomical protocol for gait analysis: joint kinematics... 375

session and inter-assessor repeatability. However, inter-session and inter-assessor repeatability
appear to be close to those achieved with other anatomically based protocols (Manca et al.,
2010) due to a similar source of variability (palpation of external bony landmarks).
An anatomically based protocol in which virtual markers are placed on bony landmarks

without wands, increase reliability of musculoskeletal modelling by more accurate matching of
marker trajectories to the scaled model.
The ISB 6-DOF protocol provides a full 3D description of lower limb kinematics according

to the current recommendation (Wu et al., 2002) with acceptable inter-trial variability. There
are some limitations of the proposed method. The use of only one position sensor is associated
with sub-optimal pelvis cluster location, which can affect pelvis and hip rotations. Moreover, at
the present time, lack of relevant reference data for patients restricts the use of these methods
in clinical practice.
Nevertheless, the proposed marker set can minimize the required equipment and, thereby,

can enhance the availability of gait analysis in research and clinical applications.
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The study investigates the performance of a semi-active vehicle engine mount incorporating
an MR damper working in the squeeze mode (MRSQD), summarising its design, operating
principles and key characteristics. The mathematical model of the mount is formulated
based on the newly developed MRSQD. Two control algorithms are proposed for MRSQD
control. The first algorithm (ALG1) uses the inverse model of the engine-frame system, the
other is the sliding mode algorithm (ALG2). The effectiveness of the engine mount system
is demonstrated in computer simulation.
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1. Introduction

The main source of engine vibrations are unbalanced inertia forces in the assembly of a crank-
shaft, pistons and connecting rods, as well as forces associated with the combustion process
(Jędrzejowski, 1986; Kamiński and Pokorski, 1983). Car body vibrations are mostly attributed
to road unevenness. Car body-engine interactions cause the vibrations to be transmitted betwe-
en these two units. As these sources of vibration cannot be entirely eliminated, minimising the
dynamic components of the forces transmitted via engine mounts becomes the major issue.
Elastic vehicle engine mounts were first used in the 1930s, based on rubber components,

being small in size and relatively cheap (Yu et al., 2001). In the 1960s, the engine mounts were
introduced which used purpose-designed hydraulic elements to stabilise the engine (Flower,
1997; Graf and Shoureshi, 1988). In the years to come, these elements were further modified and
upgraded (Singh et al., 1992). They allow control of the mount stiffness and damping parameters
in a wide frequency range (Helber et al., 1990). However, parameters that are established at the
stage of design have to remain unchanged when the system is in operation.
In the recent years, research efforts have focused on active and semi-active elements to be

incorporated in engine mounts (Ivers and Dol, 1991). These elements enable more effective
reduction of negative interactions between the engine and the car body. Stiffness and damping
parameters can be adapted to the mount operating conditions providing the engine mounts with
active or semi-active elements, such as MR dampers (Kim, 2014).
The vehicle engine mount considered in this study is provided with an MR damper operating

in the squeeze mode (Sapiński and Krupa, 2013; Sapiński and Gołdasz, 2015; Sapiński, 2015). Its
design, operating principles and key characteristics are summarised and the mathematical model
is developed incorporating the MRSQD (Snamina and Sapiński, 2014). Two control algorithms
are proposed for damper control: the first algorithm (ALG1) uses the inverse model of the
engine-frame system, the other is the sliding mode algorithm (ALG2) (Imine et al., 2011). The
effectiveness of the ALG1 and ALG2 has been simulated in ideal conditions and during their
implementation with a semi-active element.
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2. MR squeeze-mode damper

The structure of the former version of the MRSQD was described in the notification of inventive
design (Sapiński and Krupa, 2015) and in the works (Sapiński and Gołdasz, 2015; Sapiński,
2015). The present version of the device is characterized by a modified magnetic circuit. The
objective of this device improvement was to achieve better characteristics taking into account
potential applications of the MRSQD. The structure of the MRSQD with the numeric symbols
indicating all key components (1-9) is shown in Fig. 1. The hardware features two concentric

Fig. 1. Structure of the MRSQD

cylinders (1, 2). The inner (non-magnetic) cylinder (2) houses the piston (3) with an integrated
non-magnetic ring (9), the core assembly (4), and the floating piston (5). The core assembly
incorporates the coil (6). The outer cylinder (1) material is ferromagnetic. The distance between
the lower surface of the piston and the upper surface of the core is referred to as the control gap
of time-variant height h. The distance between the piston and the core varies according to the
prescribed displacement (force) input. The floating piston below the core assembly separates the
MR fluid from the coil spring located in the compensating chamber below the floating piston (5).
The chamber incorporates a preloaded coil spring (not revealed in the diagram) for fluid volume
compensation. The current in the control coil (6) induces a magnetic field. The magnetic flux
generated by the current in the control coil travels through the core and into the control gap,
the outer cylinder, and back into the core through radially projected arms in the core base.
The inner cylinder of sufficient wall thickness is used to reduce the amount of magnetic flux
bypassing the working gap, i.e. magnetic short circuit. All of the components ensure an efficient
magnetic flux return path. The flux induced in the control gap upon the application of the coil
current effectively modifies the yield stress of the MR fluid and its resistance to flow. As the
piston moves downward, the distance between the core and the piston decreases. The excess of
the MR fluid is squeezed out of the control gap into the fluid volume between the inner cylinder
and the outer housing of the damper, and then into the compensating chamber. The additional
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MR fluid volume that enters the compensating chamber pushes the floating piston against the
coil spring. The structure incorporates a non-magnetic ring (7), whereas the base cap (8) is used
for fixing the assembly against the ground.
The control coil of the device is represented by the equivalent circuit (see Fig. 2). The circuit

consists of constant resistance R = 2.8Ω and inductance L(i, h) that depends on the applied
current i and working gap height h. Let us assume that the piston executes sinusoidal motion
with a frequency 9Hz around to the midpoint of the current gap height with the amplitude
0.7mm and recall the relationship L(i, h) determined in (Sapiński and Krupa, 2013). Then,
suplying the coil with the step voltage u = U · 1(t) we obtain plots of the current for U = 1.4V
and U = 2.8V and gap height h = 2.16mm as shown in Fig. 3. In the steady-state conditions,
the constant component of current in the coil is produced by electric input (voltage u) whilst the
variable component is induced by the mechanical input (piston displacement corresponding to
the change of the gap height). It can be seen that for the assumed values of U , the steady-state
current level is I = 0.5A and I = 1A.

Fig. 2. Equivalent circuit of the control coil

Fig. 3. Current in the control coil at frequency f = 9Hz

Fig. 4. Force vs. piston displacement for various current levels at frequency f = 9Hz

The force Fd produced by the MRSQD has the following components: force associated with
fluid viscosity, inertia force of fluid motion and the force associated with yield stress of the fluid
(Sapiński, 2015). In Figs. 4 and 5, we present plots between the force Fd and control gap height h
and time histories of the force Fd for various piston displacement frequencies and for the control
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coil being supplied with no current and the current I: 0.5A, 1A. The plots clearly indicate that
the applied current in the coil is the major determinant of the damper force whereas for the
given current level, the frequency of piston motion (piston velocity) plays a minor role.

Fig. 5. Time histories of force for various current levels at frequency f = 9Hz

3. Modeling of engine mount based on an MR squeeze-mode damper

Vibrations of the engine and frame linked to the car body are considered as a one process and are
investigated using a simplified 2 DOF model schematically shown in Fig. 6. The engine mount
system incorporates the MRSQD. The model embraces this part of the car body which includes
the engine.

Fig. 6. Schematic diagram of the system

Assuming the kinematic inputs simulating the road unevenness, the following equations are
derived

(M +m)ÿ +mlSφ̈+ 2bpẏ + 2kpy = 2kpz(t)

Jφ̈+mlS ÿ + kl2φ = −Fdl
(3.1)

where M is the frame mass, m – engine mass, J – inertia moment of the engine (incorporating
the crankshaft, pistons and rods assembly) with respect to the axis of revolution of the front
engine attachment, Fd – MRSQD force acting upon the engine block, l – lever arm of the
force Fd with respect to the axis of revolution, k – stiffness coefficient of a spring connected in
parallel to the MRSQD, lS – horizontal distance between the centre of engine mass S and the
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axis of rotation, ϕ – rotation angle of the engine block, y – co-ordinate of the frame position,
kp – stiffness coefficient of each spring in frame guides, bp – equivalent viscous damping in the
frame guides. The co-ordinates ϕ and y describe motion of the system in relation to the static
equilibrium position.
The term on the right-hand side of the first equation in system (3.1) is expressed in the

physical unit of the force. Designating F = 2kpz(t), we are able to obtain the equivalent diagram
of the investigated system (see Fig. 7) in which the kinematic input z is replaced by the applied
force input F (preferred in the construction of the laboratory stand).

Fig. 7. Modified diagram of the system

The equations governing the system vibrations become

(M +m)ÿ +mlSφ̈+ 2bpẏ + 2kpy = F (t)

Jφ̈+mlS ÿ + kl2φ = −Fdl
(3.2)

The MRSQD force acting upon the vibrating object can be approximated with the formula

Fd = β1(µ,Dp)
1
h3
ḣ+ β2(Dp)τ0(i)

1
h
sgn (ḣ) + β3(ρ,Dp)

1
h
ḧ− β4(ρ,Dp)

1
h2
ḣ2 (3.3)

where Dp is the piston diameter in the damper, µ – dynamic viscosity of MR fluid, ρ – density
of MR fluid, τ0 – yield stress of MR fluid, β1, . . . , β4 – coefficients whose values are obtained
from measurements.
In the static equilibrium position, the height h of the gap equals h0. In this piston position,

the co-ordinates ϕ and y are equal to zero. Recalling the MRSQD structure, h0 – corresponds to
the maximum amplitude of piston displacement with respect to the housing, when the piston is
on the same level as the upper surface of the core. Components of the force given by Eq. (3.3) have
their physical interpretation: the first one is associated with fluid viscosity, the second one with
those properties of MR fluids that are associated with magnetic field induction, and the other
two terms are due to MR fluid inertia during the flow between the gap and the compensating
chamber. Of major importance is the second term associated with magnetic field induction.

4. Control algorithms for the MR squeeze-mode damper

The forces of mount and engine interactions are resultants of static force components compen-
sating for the engine gravity force and dynamic force components associated with the system
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motion. These dynamic forces can be treated as those disturbing the state of equilibrium. The
MRSQD force ought to minimise the impacts of forces disturbing the system equilibrium.
The active and semi-active vibration reduction systems use usually sky-hook or LQ algo-

rithms as well as algorithms which employ suitable designed filters. This study presents two
special algorithms, designated as ALG1 and ALG2 that allow separation of the sub-system from
the rest of the system. Algorithm ALG1 bases on the inverse model of the engine-frame system,
and algorithm ALG2 is the sliding mode algorithm.
The main objective of the control in the mount system is to minimise the vibration amplitude

of a selected point of the engine. In accordance with algorithm ALG1, the MRSQD interaction
force is obtained such as to compensate for the dynamic components of the frame-engine inte-
raction force and to eliminate vibration of the point C of the engine. The algorithm is selected
such that the vibrations of the point C should be decaying. The damping decrement expressing
the effectiveness of control is dependent on actual parameters of the algorithm. The proposed
algorithm can be governed by a force as a function of variables ϕ and y and their derivatives

Fd = ky −
(
m
lS
l
− J

l2

)
ÿ − β(ẏ + lφ̇) (4.1)

The frame, engine and the control system with the control algorithm are shown in the block
diagram (Fig. 8).

Fig. 8. Block diagram of the investigated system

The coordinates y and ϕ needed to determine the control signal are designated as output
signals from the frame and engine blocks. As the damper interacts not only with the engine but
with the frame as well, the force Fd is given as the input signal to the frame and engine blocks.
F is an external force acting upon the frame and disturbing the system equilibrium. Taking
into account formula (4.1), in the system of equations (3.2) we obtain equations governing the
system motion with feedback

[
M +m

(
1− lS

l

)]
ÿ +m

lS
l
ẅ + 2bpẏ + 2kpy = F (t)

J

l2
ẅ + βẇ + kw = 0

(4.2)

where: w = y + lϕ.
Recalling the inverse model, the force Fd is chosen such that the second equation in system

(4.2) is not coupleted to the first equation, and that it involves vibration damping. Solution to
the second equation determines the solution of the first equation because the force is transmitted
onto the frame at the point where the engine is attached.
In accordance with principles of the sliding mode control (Shtessel et al., 2014; Utkin and

Chang, 2002), the algorithm contains a sliding variable σ being a linear combination of the
position and velocity co-ordinates

σ = ẇ + cw (4.3)
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When the sliding variable is equal to zero (σ = 0), Eq. (4.3) implicates a sliding surface in a
two-dimensional state space. The measure of the distance between the actual trajectory and the
sliding surface can be expressed by a function of the sliding variable σ

V =
1
2
σ2 (4.4)

This is a Lyapunov function. The control is determined basing on the inequality which limits the
Lyapunov function derivatives with respect to time, along the trajectory of motion. Assuming
that the dynamic component of the force of mount and engine interaction is bounded by Smax,
the Lyapunov function derivative along the trajectory satisfies the following inequality

dV

dt
<

M +m
(
1− lS

l

)

(M +m) Jl2 −m2
(
lS
l

)2 |σ|(Smax − χ) < 0 (4.5)

which is the basis for determining the control signal

Fd = χ sgn (ẇ + cw) +
(M +m) Jl2 −m2

(
lS
l

)2

M +m
(
1− lS

l

) cẇ (4.6)

where the coefficient χ is given by the formula

χ = Smax +
(M +m) Jl2 −m2

(
lS
l

)2

M +m
(
1− lS

l

) α√
2

(4.7)

In order to make the control signal derived from Eqs. (4.6) and (4.7) be implemented, it is
required that the parameter Smax [N] should be first determined as it imposes a limit on force
disturbing the system equilibrium. Besides, the parameters c [1/s] and α [m/s2] should be assu-
med, expressing the inclination of the sliding surface. The value of the parameter Smax can be
estimated through investigating the system vibrations or from measurements.
The investigated vibration reduction system incorporating the MRSQD is a semi-active sys-

tem. In accordance with the fundamental principle of semi-active systems, it is assumed that
the system is capable of reproducing the force implicated by the suggested algorithms as long
as the power resulting from damper-object interactions should be negative. When this power is
positive, the semi-active system interaction force is equal to zero and the power delivered by the
semi-active system will be zero, too. This condition can be written as follows

Fd(ef) =

{
Fd if Fd(ẏ − ẇ) < 0
0 if Fd(ẏ − ẇ)  0

(4.8)

where Fd is the force implicated by the control algorithm, Fd(ef) effective semi-active damper
force. The relative velocity is the difference between velocity of the point the damper is attached
to the engine (point C, see Fig. 6) and the velocity of the point where the MRSQD is attached
to the frame.

5. Simulation of engine mount based on MR squeeze-mode damper

Recalling the mathematical model outlined in Section 4 and using algorithms ALG1 and ALG2,
simulations have been performed on the system vibration in the open loop and closed loop



384 B. Sapiński, J. Snamina

configuration. Parameters in the simulation procedure were: frame mass M = 60 kg, engine
mass m = 80 kg, inertia moment of the engine J = 40 kgm2, horizontal distance between the
engine centre of gravity and the axis of rotation lS = 0.5m, distance between the damper
attachment point and the axis of rotation l = 0.85m, stiffness coefficients kp = 6.6 ·103 N/m and
k = 4·104 N/m, coefficient of equivalent viscous damping bp = 100Ns/m. A sinusoidal excitation
F (t) = F0 sin(2πft); F0 = 166N, f = 9Hz has been assumed.
In the first stage, simulations were performed to determine the following parameters: di-

splacement w of the point C and displacement y of the frame in the open-loop configuration.
Simulation results obtained for the current level I = 0.5A in the MRSQD control coil are shown
in Fig. 9.

Fig. 9. Time histories of the engine point C and frame displacements (open-loop configuration)

Simulation results obtained using the ideally reproduced control signal in accordance with
the algorithm ALG1 are summarized in Fig. 10, the value of the parameter is β = 200Ns/m. In
accordance with the algorithm ALG1, the vibration amplitude of point C of the engine decreases
and its position asymptotically tends to the static equilibrium position. At the same time the
amplitude of frame vibration remains almost unchanged.
Simulation results obtained using the ideally reproduced control signal in accordance with

the control algorithm ALG2 are summarised in Fig. 11, the value of the parameters c = 200 1/s,
α = 10m/s2, Smax = 200N. When the sliding variable σ and the associated sliding surface are
introduced, motion of the point C is now governed by a decreasing exponential function corre-
sponding to the movement along the sliding surface. The position of the point C asymptotically
tends to the static equilibrium position whilst the amplitude of frame vibration remains almost
unchanged.
The assumption made during the second phase of simulations was that the algorithms ALG1

and ALG2 were to be implemented using a semiactive damper. The simulation procedure uses
condition (4.8) which yields the effective force value Fd(ef). Simulation data are summarised in
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Fig. 10. Time histories of the engine point C and frame displacements (algorithm ALG1)

Fig. 11. Time histories of the engine point C and frame displacements (algorithm ALG2)

Figs. 12 and 13, for ALG1 and ALG, respectively. The results show that vibration reduction ef-
fectiveness deteriorates in relation to that achievable in the first stage of simulations, particularly
in the case of ALG1.
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Fig. 12. Time histories of the engine point C and frame displacements (algorithm ALG1, semi-active
implementation)

Fig. 13. Time histories of the engine point C and frame displacements (algorithm ALG2, semi-active
implementation)
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When comparing the simulation results for the proposed algorithms, the quantitative diffe-
rence in motion of the subsytem to be vibroisolated can be observed. In the case of the ALG1,
motion of the vibroisolated subsytem is typical vibration motion with a decreasing amplitude.
This is similar to a great deal of such subsystem motion. The ALG2 is more effective and mo-
tion of the vibroisolated subsystem is characterized by a combination of both the oscillating and
exponential motion.

6. Summary

This study investigates the potential application of a prototype MRSQD in a vehicle engine
mount. Two algorithms for MRSQD control are proposed: one based on the inverse model of
the engine-frame system (ALG1) and a sliding mode control algorithm (ALG2). In the ideal
case, both algorithms ALG1 and ALG2 are effective, and the selected point of the engine can
be returned to the position arbitrarily close to the static equilibrium position. In the case of
semi-active implementation of ALG1 and ALG2, their effectiveness is significantly reduced.
That applies particularly to ALG1, because semi-active actuators have a limited capability of
reproducing the predetermined control force patterns. Despite this limitation, algorithms ALG1
and ALG2 can be the base for control of semi-active systems for vibration reduction.
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