Journal of Theoretical
and Applied Mechanics

46, 4, pp. 777-797, Warsaw 2008

Forecasting the global and partial system condition by means of multidimensional condition monitoring methods

Czesław Cempel
Machines have many faults which evolve during their operation. If one observes some number of symptoms during the machine operation, it is possible to capture fault oriented information. One of the methods to extract fault information from such a symptom observation matrix is to apply the Singular Value Decomposition (SVD), obtaining in this way the generalized fault symptoms. The problem of this paper is to find if the total damage symptom, being a sum of all generalized symptoms is the best way to infer on machine condition or is it better to use the first generalized symptom for the same purposes. There were some new software created for this purpose, and two cases of machine condition monitoring considered, but so far it is impossible to state that one of the inference methods is better. Moreover, it seems to the author that both inference methods are complimentary for each other, and should be used together to increase the reliability of diagnostic decision.
Keywords: condition monitoring; multidimensional observation; singular value decomposition; generalized fault symptoms; grey models; forecasting