Journal of Theoretical
and Applied Mechanics

39, 2, pp. 353-376, Warsaw 2001

Two-dimensional and dynamic method of visualization of the flow characteristics in a convection boundary layer using infrared thermography

Jacek A. Patorski, Günter S. Bauer, Sergei Dementjev
The paper presents a two-dimensional and dynamic (2DD) method of using infrared thermography (IRT) for visualization of the cooling efficiency of a heated wall, as this method was applied in an experimental investigation. The 2DD method allows the outer surface temperature measured by an IRT device to be worked out relative to the bulk coolant-fluid temperature. This way the 2DD method makes visible the qualitative and quantitative flow characteristics within the thin contact layer at the inner surface of the wall. These flow characteristics, and more specifically, the pattern of the flow (similar to streamlines useful for the detection of dead zones) and the distribution of the temperature differences between the temperature on the wall outer surface and the bulk temperature of the coolant, determine the cooling efficiency. Finally, animated IR thermogram sequences could be generated, allowing observation of the spatial and temporal behavior of the flow/cooling behind the wall, for an example see animations in internet page (Patorski, 2000). The study of the cooling of the proton beam entry window described in this paper is a part of the development program of neutron spallation sources with liquid metal targets. The basic idea of the experiments was to use the real interacting materials (mercury as the liquid metal and steel as the window wall) and observe the cooling effects of the mercury flow on the heated wall of the hemispherical shell of the mockup window. Different geometrical configurations of the inner flow guide tubes of the flow and different pumping velocities were examined in view of finding the optimal cooling solution.
Keywords: IR-thermography measurement; visualization of internal flow within convection boundary layer; heat transfer visualization