and Applied Mechanics
0, 0, pp. , Warsaw 0
Effects of X-ray on Fibroblast Mechanical Properties
References
Ayub, S., 2016. Biological Effects of X-rays on X-ray 18512–18516. https://doi.org/10.15680/IJIRSET.2016.0510056
Bao, G., Suresh, S., 2003. Cell and molecular mechanics of biological materials. Nature 2, 715–725.
Beaujean, F., Caldwell, A., Kollár, D., Kröninger, K., 2011. P-values for model evaluation. Phys. Rev. D - Part. Fields, Gravit. Cosmol. 83. https://doi.org/10.1103/PhysRevD.83.012004
Boeddinghaus, R., Whyte, A., 2008. Current concepts in maxillofacial imaging. Eur. J. Radiol. 66, 396–418. https://doi.org/10.1016/j.ejrad.2007.11.019
Cerqueira, E.D.M.M., Meireles, J.R.C., Lopes, M.A., Junqueira, V.C., Gomes-Filho, I.S., Trindade, S., Machado-Santelli, G.M., 2008. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography. Dentomaxillofacial Radiol. 37, 398–403. https://doi.org/10.1259/dmfr/56848097
Desprat, N., Richert, A., Simeon, J., Asnacios, A., 2005. Creep function of a single living cell. Biophys. J. 88, 2224–2233. https://doi.org/10.1529/biophysj.104.050278
Dobson, J., n.d. Remote control of cellular behaviour with magnetic nanoparticles 139–143.
Du, Y.T., Zhang, J., Zheng, Q., Li, M.X., Liu, Y., Zhang, B.P., Liu, B., Zhang, H., Miao, G.Y., 2014. Heavy ion and X-ray irradiation alter the cytoskeleton and cytomechanics of cortical neurons. Neural Regen. Res. 9, 1129–1137. https://doi.org/10.4103/1673-5374.135315
Health and Physics : A Grade 12 Manitoba Physics Resource for Health and Radiation Physics, 2009. . Canadian Cancer Society.
Ingber, D.E., 2002. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887. https://doi.org/10.1161/01.RES.0000039537.73816.E5
Kalinin, A.E., Kajava, A. V, Steinert, P.M., 2002. Epithelial barrier function : assembly and structural features of the cornified cell envelope 789–800. https://doi.org/10.1002/bies.10144
Kanger, J.S., Subramaniam, V., Van Driel, R., 2008. Intracellular manipulation of chromatin using magnetic nanoparticles. Chromosom. Res. https://doi.org/10.1007/s10577-008-1239-1
Kollmannsberger, P., Fabry, B., 2007. High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum. 78, 1–7. https://doi.org/10.1063/1.2804771
Overby, D.R., Matthews, B.D., Alsberg, E., Ingber, D.E., 2005. Novel dynamic rheological behavior of individual focal adhesions measured within single cells using electromagnetic pulling cytometry. Acta Biomater. https://doi.org/10.1016/j.actbio.2005.02.003
Pan, Y., Du, X., Zhao, F., Xu, B., 2012. Magnetic nanoparticles for the manipulation of proteins and cells. Chem. Soc. Rev. 41, 2912. https://doi.org/10.1039/c2cs15315g
Panzetta, V., Musellav, I., Pugliese, M., Piccolo, C., Pasqua, G., Netti, P.A., Fusco, S., 2017. Effects of high energy X-rays on cell morphology and functions. ENBENG 2017 - 5th Port. Meet. Bioeng. Proc. https://doi.org/10.1109/ENBENG.2017.7889448
Po, J.M.C., Kieser, J.A., Gallo, L.M., Tésenyi, A.J., Herbison, P., Farella, M., 2011. Time-frequency analysis of chewing activity in the natural environment. J. Dent. Res. 90, 1206–1210. https://doi.org/10.1177/0022034511416669
Preethi, N., Chikkanarasaiah, N., Bethur, S.S., 2016. Genotoxic effects of X-rays in buccal mucosal cells in children subjected to dental radiographs. BDJ Open 2, 16001. https://doi.org/10.1038/bdjopen.2016.1
Rianna, C., Radmacher, M., 2016. Cell mechanics as a marker for diseases: Biomedical applications of AFM. AIP Conf. Proc. 1760. https://doi.org/10.1063/1.4960276
Risi, R., Manti, L., Perna, G., Lasalvia, M., Capozzi, V., Delfino, I., Lepore, M., 2012. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy. SPIE Photonics Eur. 84272E--84272E--10. https://doi.org/10.1117/12.921389
Rosenbluth, M.J., Lam, W.A., Fletcher, D.A., 2008. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8, 1062. https://doi.org/10.1039/b802931h
Sabanero, M., Azorín-Vega, J.C., Flores-Villavicencio, L.L., Pedro Castruita-Dominguez, J., Vallejo, M.A., Barbosa-Sabanero, G., Cordova-Fraga, T., Sosa-Aquino, M., 2016. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects. Appl. Radiat. Isot. 108, 12–15. https://doi.org/10.1016/j.apradiso.2015.11.064
Schmid, J. a, 2011. Methods in Cell Biology. Methods Cell Biol. 106, 1–154. https://doi.org/10.1016/S0091-679X(08)60298-8
Selvaggi, L., Salemme, M., Vaccaro, C., Pesce, G., Rusciano, G., Sasso, A., Campanella, C., Carotenuto, R., 2010. Multiple-Particle-Tracking to investigate viscoelastic properties in living cells. Methods. https://doi.org/10.1016/j.ymeth.2009.12.008
Thomas, S., Bolch, W., Kao, K.J., Bova, F., Tran-Son-Tay, R., 2003. Effects of X-ray radiation on the rheologic properties of platelets and lymphocytes. Transfusion 43, 502–508. https://doi.org/10.1046/j.1537-2995.2003.00360.x
Truong, K., Bradley, S., Baginski, B., Wilson, J.R., Medlin, D., Zheng, L., Wilson, R.K., Rusin, M., Takacs, E., Dean, D., 2018. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PLoS One 13, e0190330. https://doi.org/10.1371/journal.pone.0190330
Valentin, J. (Jack), International Commission on Radiological Protection., 2007. The 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 37, 332.
Zhang, B., Liu, B., Zhang, H., Wang, J., 2014. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One 9. https://doi.org/10.1371/journal.pone.0112624
Zheng, Q., Liu, Y., Zhou, H.J., Du, Y.T., Zhang, B.P., Zhang, J., Miao, G.Y., Liu, B., Zhang, H., 2015. X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties. Hum. Exp. Toxicol. 34, 894–903. https://doi.org/10.1177/0960327114561664