Journal of Theoretical
and Applied Mechanics

0, 0, pp. , Warsaw 0

Numerical modelling of the ratchetting effect under uniaxial and multiaxial loading conditions

Mohammed Abbadi
The main objective of the present work is to numerically test the ability of a micromechanical model under stress-controlled cyclic loading conditions. This simplified non-incremental model has the peculiarity to take into account the grain shape effect and introduces an isotropic hardening variable for each slip system. The model shows an ability to predict accommodation, uni- and multiaxial ratchetting phenomena for complex loading paths. The uniaxial ratchetting is more pronounced for relatively higher mean stresses. Moreover, the evolution of the intragranular isotropic hardening, mainly in path 1, is found to be dependent on both the sliding nature and the increase of the ACSS number in the case of multiaxial ratchetting. Finally, the main advantage of the explored multiscale approach is in its capability to describe the local heterogeneities.
Keywords: Uni and Multiaxial ratchetting; Elasto-inelastic; Non-incremental interaction law


Ruggles MB, Krempl E. The Influence of Test Temperature on the Ratchetting Behavior of Type304 Stainles Steel. ASME, J. Eng. Mat. Tech. 1989; 113: 378-383.

Yoshida F, Kondo J, Kikuchi Y. Visco-plastic Behavior of Stainless Steel SU304 under Cyclic Loading at Room Temperature. Trans. JSME 1988; A54: 1151-1157.

Chaboche JL, Nouailhas D. Constitutive Modeling of Ratchetting Effects. ASME, J. Eng. Mat. Tech. 1989; 111: 384-392, 409-416.

Chaboche JL, Rousselier G. On the Plastic and Viscoplastic Constitutive Equations. ASME, J. Pressure Vessel Tech. 1983; 105: 153-164.

Krempl E, Yao D. The Viscoplasticity Theory Based on Overstress Applied to Ratchetting and Cyclic Hardening. in Low-Cycle Fatigue and Elastoplastic Behavior of Materials, K.T. RIE, Ed. Elsevier, London, 1987; 35-48.

Abdul-Latif A, Radi M. Modeling of the grain shape effect on the elastic-inelastic behavior of polycrystals with self-consistent scheme. ASME, J. Eng. Mat. Tech. 2010; 132 (1): 011008.

Goodman AM. Development of constitutive equations for computer analysis of stainless steel components. 4th int. Seminar on inelastic analysis and life prediction in high temperature environment, 1983, Chicago.

Chaboche JL, Nouailhas D, Pacou D, Paulmier P. Modeling of the Cyclic Response and Ratchetting Effects on Inconel-718 Alloy. Eur. J. Mech. Tech., A/Solids 1991; 10: 101-121.

Portier L, Calloch S, Marquis D, Geyer P. Ratchetting under tension-torsion loadings: experiments and modelling. International Journal of Plasticity, 2000; 16, 3-4: 303-335.

Chaboche JL. Viscoplastic Constitutive Equations for Description of Cyclic and Anisotropic Behavior of Metals. Bull. de l'Acad. Polonaise des Sciences, Serie Sc. et Tech. 1977; 25: 33.

Burlet H, Cailletaud G. Modeling of Cyclic Plasticity in Finite Element Codes. in Proc. of the 2nd Int. Conf. on Constitutive Laws for Engineering Materials; theory and Application, Tucson AZ., C.S. DESAI et al, Eds, Elsevier, New York 1987; 1157-1164.

Ohno N, Wang JD. Kinematic Hardening Rules with Critical State of Dynamic Recovery: part I : Formulation and basic features for ratcheting behaviour. Int. J. of plasticity, 1993; 15: 375-390.

Vincent L, Calloch S, Kurtyka T, Marquis D. An Improvement of Multiaxial ratchetting via Yield Surface Distorsion. ASME J. Eng. Mat. and Mech. 2002; 124 (4): 402-411.

Bari S, Hassan T. Anatomy of coupled constitutive models for ratcheting simulation. Int. J. Plast. 2000; 16: 381-409.

Bari S, Hassan T. Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation. Int. J. Plast. 2001; 17: 885-905.

Bari S, Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation, Int. J. Plast. 2002; 18: 873-894.

Chache, M. Etude de l'écrouissage cyclique des matériaux métalliques et des phénomènes de rochet, Thèse de doctorat, Université J. Fourier, Grenoble-I, France, 2004.

Aubin V, Degallaix S. Ratchetting modeling of a duplex stainless steel: model based on yield surface distortion. Proc. 7th Int. Conf. on Biaxial/Multiaxial Fatigue & Fracture 2004; 273-278.

Kang G, Kan Q, Zhang J, Sun Y. Time-dependant ratchetting experiments of SS304 stainless steel. Int. J. Plast. 2006; 22: 858-894.

Hassan T, Taleb L, Krishna S. Influence of non-proportionnal loading on ratcheting responses and simulations by two recent cyclic plasticity models, Int. J. Plast. 2008; 24:1863-1889.

Corona E, Hassan T, Kyriakides S. On the performance of kinematic hardening rules in predicting a class of biaxial ratchetting histories. Int. J. Plast. 1996; 12: 117-145.

Hassan T, Kyriakides S. Ratcheting in cyclic plasticity - Part I: uniaxial behavior, Int. J. Plast. 1992; 8: 91-116.

Hassan T, Corna E, Kyriakides S. Ratchetting in cyclic plasticity - Part II : multiaxial behavior, Int. J. Plast. 1992; 8: 117-146.

Delobelle P, Robinet P, Bocher L. Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel. Int. J. Plast. 1995; 11: 295-330.

Bocher L, Delobelle P. Robinet P, Feaugas X. Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension torsion-internal and external pressure. Int. J. Plast. 2001; 17: 1491-1530.

Abdul-Latif A. A comparison of two self-consistent models to predict the cyclic behavior of polycrystals. ASME, J. Eng. Mater. Tech. 2004; 126: 62.

Abdul-Latif A. Pertinence of the grains aggregate type on the self-consistent model responses. Int. J. Solid and structures 2004; 41: 305-322.

Kerkour-El Miad A. Modélisation micromécanique du comportement cyclique des polycristaux sous chargements multiaxiaux à déformation et à contrainte imposées avec l’effet de la forme du grain, Thèse de doctorat, Université Pierre et Marie Curie, Paris, France, 2011