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A problem of steady-state incompressible fluid flow through a fibrous cylindrical filter is
considered. The pressure field is obtained by applying the method of fundamental solutions
which gives continuous function in the filter region. The components of filtration velocity
are calculated from the appropriate derivatives. In numerical examples, various types of the
filter are considered and some computational issues are discussed. A simple algorithm for
achieving the optimal pseudo-boundary location is used, within the framework of the method
of fundamental solutions, by minimizing the maximum absolute boundary error. Optimiza-
tion results for various numbers of source points and collocation points are compared. The
variation of total discharge with the inlet size is shown.
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1. Introduction

Fibrous filters are one of the cost-effective means used to remove particulate matter suspended
in gas stream. Most works on the filtration flow and collection efficiency have involved a single-
fiber or microscopic point of view. This paper, by contrast, attempts to consider a filter as a
whole. In order to calculate the collection efficiency, detailed information about a flow field in
the filter is necessary. From the mathematical point of view, when modelling a filter as a porous
medium, the pressure field or pressure squared field satisfies Laplace equation in the domain
and mixed boundary conditions. Now, there are many numerical methods for solution of such a
boundary value problem, e.g. FDM, FEM, FVM. However, these ones are mesh-based methods
which means that the solution is given only at certain discrete points or is approximated by
low-degree polynomials. In some cases, derivatives of the solution are most desirable.

During the last two decades, plenty of meshless methods have been developed and effectively
applied to solve many problems in science and engineering. One of the techniques is the method
of fundamental solutions (MFS), which provides an approximated solution being a continuous
function with continuous derivatives. As yet, the MFS has been successfully applied to solve
boundary value problems in a wide variety of disciplines. Most of authors consider planar doma-
ins which lead to particularly easy implementation of the meshless technique. However, in some
cases spacial problems can be reduced to the two-dimensional ones. For instance, Karageorghis
and Fairweather (1998, 1999, 2000) used the MFS to solve many axisymmetric problems in
heat transfer, elasticity and acoustics. Also Ramachandran and Gunjal (2009) presented some
axisymmetric heat transfer problems to compare various boundary collocation methods. As it
was shown, the fundamental solution of the axisymmetric Laplace equation can be expressed in
terms of complete elliptic integrals.

In our work, a problem of steady-state incompressible flow through a cylindrical filter is
considered. As in many practical applications, it is assumed that the filter is filled with a fi-
brous porous medium and Darcy’s law is employed to describe the phenomenon. The Laplace
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type governing equation is solved by means of the MFS, which provides an approximation of
the pressure field. Hence, it is easy to obtain velocity of the fluid flow and evaluate the total
discharge. The knowledge of the filtration velocity field can be used for calculation of transport
of contaminant particles, and their possible removal by the fibers can be investigated (e.g. see
Dunnett and Clement, 2006). However, in this paper we restrict our study to determination of
the velocity field only.

In this paper, the Darcy filtration equation is assumed to be the governing one. It is well
known that this equation is justified for low Reynolds numbers. This condition is fulfilled in
many cases of the filtration flow, because of low average flow velocity as well as small pore
size. An extended discussion on applicability of Darcy’s law can be found e.g. in the paper of
Zeng and Grigg (2006). The authors revised two types of criteria, the Reynolds number and the
Forchheimer number, and gave their critical values which relate to the situation when the so
called ‘non-Darcy effect’ appears and hence Darcy’s law stops being applicable.

An outline of this paper is as follows. In Section 2, we present mathematical description of
the axisymmetric problem. Section 3 is devoted to the MFS formulation. In Section 4, we de-
monstrate some numerical experiments and discuss the results. Finally, conclusions and remarks
are given in Section 5.

2. Mathematical formulation

2.1. Boundary value problem

Perhaps the simpliest type of a cylindrical fibrous filter comprises a central inlet and outlet
(see Fig. 1a). Let us consider the stationary fluid flow through such a filter whose internal
geometry forms a cylinder of radius c and height h. Size of the inlet and outlet is specified by
the radii a and b, respectively. Assume that the fluid is incompressible. It is exposed to the
pressure pin at the inlet and flows past the fibrous material within the filter. Finally, the outlet
pressure equals pout.

If we treat the fibrous material as an isotropic porous medium, then filtration velocity can
be specified according to Darcy’s law in terms of fluid pressure p

q = −
κ

µ
gradp (2.1)

where κ is the permeability of the medium and µ is the dynamic viscosity of the fluid. Conse-
quently, a continuity equation for the incompressible fluid reduces to Laplace’s equation

∇2p = 0 (2.2)

Due to axial symmetry of the problem, the potential p is independent of the angular co-
ordinate ϕ. Thus, the domain can be reduced to a rectangular region Ω with boundary Γ
whose revolution about the z-axis could form the original cylinder (see Fig. 1b). Now, governing
equation (2.2) takes the form

∂2p

∂r2
+
1

r

∂p

∂r
+
∂2p

∂z2
= 0 (2.3)

whereas the velocity vector has only two non-zero components

qr = −
κ

µ

∂p

∂r
qz = −

κ

µ

∂p

∂z
(2.4)
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Fig. 1. Geometry of the filter: (a) 3-D cylindrical domain; the housing is filled with a fibrous porous
medium, (b) the domain reduced to a rectangle

Fig. 2. Non-dimensional description of the domain and boundary conditions for the problem

Using c as a characteristic dimension, one can introduce the following non-dimensional va-
riables (see Fig. 2)

R =
r

c
Z =
z

c
A =
a

c
B =
b

c
H =

h

c

Moreover, the pressure p can be scaled according to the formula

P =
p− pout
pin − pout

so that Pin = 1 and Pout = 0. Now, for the dimensionless pressure field P (R,Z), the velocity
is given by

QR =
cµ

κ∆p
qr = −

∂P

∂R
QZ =

cµ

κ∆p
qz = −

∂P

∂Z
(2.5)

where ∆p = pin − pout. Equation (2.3), in turn, can be rewritten in the following form

∂2P

∂R2
+
1

R

∂P

∂R
+
∂2P

∂Z2
= 0 (2.6)

As it can be seen in Fig. 2, the boundary

Γ =
5
⋃

m=1

Γm
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and one can specify the boundary conditions as

P = f1(R,Z) on Γ1
∂P

∂Z
= g4(R,Z) on Γ4

∂P

∂Z
= g2(R,Z) on Γ2 P = f5(R,Z) on Γ5

∂P

∂R
= g3(R,Z) on Γ3

(2.7)

where f1, f5 and g2, g3, g4 are prescribed functions for Dirichlet and Neumann boundary
conditions, respectively. In the given case, we have f1 = 1, f5 = 0 and g2 = g3 = g4 = 0.
Additionally, the symmetry condition should be taken into consideration, that means zero deri-
vative on the axis

∂P

∂R
= 0 for R = 0 (2.8)

To sum up, in this axisymmetric problem we seek for the function P (R,Z) which satis-
fies partial differential equation (2.6) in the domain Ω, together with conditions (2.7) on the
boundary Γ and condition (2.8) on the axis.

2.2. Rate of fluid flow

After solving the problem, one can easily obtain the velocity field from Eq. (2.5) and evaluate
the total discharge in the next step. It is sufficient to calculate the flow rate at the filter inlet

w = 2π

a
∫

0

qzr dr (2.9)

Hence

w = 2πc
κ∆p

µ

A
∫

0

QZR dR = 2πc
κ∆p

µ
W

where W is dimensionless discharge, which may be specified as

W =

A
∫

0

QZR dR (2.10)

When dealing with non-dimensional problem (2.6)-(2.8), the permeability of the porous
medium is unimportant. However, its role is crucial in the calculation of dimensional velocity
field and discharge evaluation. The permeability usually is expressed as some function of porosity
of the fibrous medium times fibers diameter squared. Let us introduce the porosity term ε, which
means a void fraction in the material. In literature the cell models proposed by Happel (1959)
or Kuwabara (1959) and the improved ones by other authors (e.g. see Kołodziej et al., 1998),
are relatively popular. These models concern a two-dimensional arrangement of parallel fibers.
In real media, a three-dimensional arrangement of fibers exists. Assuming that the arrangement
of fibres is random and 0.4 ¬ ε ¬ 0.8, one can use the experimental formula provided by Rahli
et al. (1996)

κ = 0.0606d 2f
π

4

ε5.1

1− ε
(2.11)

where df denotes the average fiber diameter.



The method of fundamental solutions for stationary flow... 473

3. Numerical solution procedure

Let us consider boundary value problem (2.6)-(2.8). If P = (R,Z) is a point in Ω, whereas the
point Pj = (Rj , Zj) does not belong to Ω, and

D2 = (R+Rj)
2 + (Z − Zj)

2 k2 =
4RRj
D2

then the fundamental solution of axisymmetric Laplace equation (2.6) is given by

Φj(R,Z) =
4K(k)

D
(3.1)

and its partial derivatives are determined as

∂Φj
∂R
=
2{D2[E(k) − (1− k2)K(k)] − 2R(R+Rj)E(k)}

RD3(1− k2)

∂Φj
∂Z
= −
4(Z − Zj)E(k)

D3(1− k2)

(3.2)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively

K(k) =

π/2
∫

0

1
√

1− k2 sin2 θ
dθ E(k) =

π/2
∫

0

√

1− k2 sin2 θ dθ (3.3)

In the MFS, the solution to the problem is approximated by a linear combination of the
fundamental solutions Φj

P (R,Z) =
N
∑

j=1

cjΦj(R,Z) (3.4)

where cj are unknown coefficients. The points {Pj}
N
j=1 are singularities (or source points) located

outside the solution domain. In practice, they are usually placed on some contour which is similar
to the boundary Γ and lies at a distance S from Γ . Additionally, M collocation points Pi are
chosen on the boundary. Now, the coefficients cj are determined in such a way that the boundary
conditions are satisfied at the collocation points (Kolodziej and Zielinski, 2009, pp. 15-17).
Fundamental solution (3.1) ensures the fulfillment of symmetry condition (2.8), thus we use the
set of conditions (2.7) only

N
∑

j=1
cjΦj(Ri, Zi) = 1 for all (Ri, Zi) ∈ Γ1

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ2

N
∑

j=1
cj
∂

∂R
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ3

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ4

N
∑

j=1
cjΦj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ5

(3.5)

The number of the collocation points is given by

M =
5
∑

m=1

Mm
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where Mm denotes the number of points on Γm. When M = N , linear algebraic system (3.5) can
be solved with use of the Gauss elimination method. Otherwise, if M > N , the over-determined
system is solved by the least squares approach. As values of the unknown coefficients are found,
one can evaluate the pressure field from (3.4) and the velocity field according to (2.5) and (3.2).

4. Numerical experiments

4.1. Experiment 1

Now we turn to application of the presented solution procedure to a test problem. Consider a
flow of water through a filter whose dimensions are specified as follows: c = 40mm, h = 140mm,
a = b = 10mm. Assume the inlet and outlet pressure: pin = 400 kPa, pout = 200 kPa. Moreover,
for the porous material we take ε = 0.6 and df = 0.15mm. The supposed viscosity of water is
µ = 0.001 Pa·s.

Firstly, we focus on determining the optimal placement of the source points. As mentioned
above, they may lie on some pseudo-boundary, at the distance S from the boundary. In fact, the
distance affects the solution accuracy, and choosing right values of S plays a key role in the MFS.
According to the concept presented by Karageorghis (2009), we minimize the absolute maximum
error eMAX on Γ ; such a technique relies on the maximum principle for harmonic functions.
Thus, we choose a set of M∗ boundary points {(Rl, Zl)}

M∗
l=1, different from the collocation points.

Next, for consecutive values of S, we evaluate a difference between the solution (or its derivative)
and the assumed boundary values

el =











P (Rl, Zl)− f(Rl, Zl) for Dirichlet boundary conditions

∂P

∂n
(Rl, Zl)− g(Rl, Zl) for Neumann boundary conditions

where ∂/∂n denotes the outward normal derivative at the boundary point (Rl, Zl). Finally, the
maximum absolute error is given by

eMAX = max
l=1,...,M∗

|el| (4.1)

Thus, one can find the optimal distance Sopt by minimization of the function eMAX(S). As
can be seen in Fig. 3, in this problem, the objective function has a pseudo-random appearance
beyond the initial range. Consequently, we use a simple search algorithm for the optimization,
that means S is increased linearly to calculate the error.

Fig. 3. Variation of the error with distance of source points

The analyzed results were obtained for various numbers M and N . However, two other
symbols are used: MC and NC , which denote the numbers of collocation points and source
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points per unit length C. On each boundary segment, the points are distributed proportionally
and uniformly.

Figure 4 illustrates the maximum error when keeping MC fixed and varying NC . In each
case, we searched for Sopt in the interval 〈0.01, 0.7〉 with a step ∆S = 0.001. The graphs reveal
that the improvement of the accuracy for increasing NC is not so evident. Although the error
is relatively high, it seems to stabilize for greater values of MC within the approximate range
0.6 ¬ NC/MC ¬ 0.8. Doubtless, the extreme case, when NC =MC , should be omitted.

Fig. 4. Maximum error on the boundary

Fig. 5. Dimensionless total discharge

Actually, the key question is how the error impacts on values of the total discharge. The
next four graphs (Fig. 5) show the non-dimensional quantity W for the given MC and NC .
As with eMAX , we observe similar intervals of NC/MC where very small fluctuations of the
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discharge appear. It seems that the high error is local and does not disturb the velocity field
considerably.

Table 1. Selected results of the error minimization

MC NC M N Sopt eMAX eRMS W w [l/min] eW

16
13

89
72 0.051 3.56E-02 1.06E-02 6.21E-02 37.048 2.51E-02

14 78 0.075 2.90E-02 8.16E-03 6.02E-02 35.931 1.09E-02

20

14

111

78 0.074 4.20E-02 9.78E-03 6.05E-02 36.105 6.90E-03
15 83 0.129 4.79E-02 9.98E-03 5.89E-02 35.126 6.60E-03
16 89 0.393 5.28E-02 1.43E-02 5.95E-02 35.489 2.80E-03
17 94 0.039 3.33E-02 9.51E-03 6.32E-02 37.693 3.03E-02

30

22

166

122 0.043 3.98E-02 7.61E-03 6.29E-02 37.549 1.04E-02
23 127 0.065 3.93E-02 7.01E-03 6.18E-02 36.849 5.30E-03
24 133 0.078 4.80E-02 8.12E-03 6.11E-02 36.462 1.80E-03
25 138 0.026 3.32E-02 9.14E-03 6.39E-02 38.104 4.28E-02
26 144 0.026 2.30E-02 7.38E-03 6.39E-02 38.121 1.28E-02

40

30

221

166 0.031 4.46E-02 6.91E-03 6.39E-02 38.095 1.04E-02
31 171 0.040 3.07E-02 5.48E-03 6.31E-02 37.649 6.50E-03
32 177 0.055 3.68E-02 5.58E-03 6.24E-02 37.257 2.60E-03
33 182 0.019 3.95E-02 1.02E-02 6.42E-02 38.315 1.30E-03
34 188 0.020 3.26E-02 7.48E-03 6.44E-02 38.401 1.20E-02
35 193 0.035 2.70E-02 4.80E-03 6.33E-02 37.793 8.00E-03

Table 1 presents selected results of the discussed optimization. The examples show how
the numbers MC and NC correspond to the total number of collocation and source points
(M and N). Apart from the maximum absolute error, the root mean square one is given,
according to the formula

eRMS =

√

√

√

√

1

M∗

M∗
∑

l=1

e2l (4.2)

As it can be seen, the total discharge w, computed for the given dimensions and properties,
fluctuates slightly and its approximate value is 37-38 l/min. Additionally, the table includes
values of the relative error between the total inflow and outflow. If the former quantity is treated
as the reference one, the error can be expressed in the following way

eW =
|Wout −Win|

Win
(4.3)

where the subscripts “in” and “out” allow one to distinguish between the discharge at the filter
inlet and outlet. As the results indicate, eW does not exceed 5%, and in many cases is even less
than 1%.
Figure 6, in turn, illustrates the distribution of the non-dimensional pressure and velocity in

the Z direction obtained for MC = 40, NC = 35 and S = Sopt. Also, for the same parameters,
we examined variation of the discharge W with the radius A assuming that B is constant (see
Fig. 7). Obviously, the discharge value grows due to an increase of the inlet size.
As mentioned above, relatively high values of the boundary error seem to be a local effect.

Indeed, the root mean square error is one order of magnitude smaller than the maximum absolute
error (see Table 1). Presumably, the maximum values of the boundary error appear in the
neighborhood of the so called boundary singularities: where the boundary condition suddenly
changes from P = f to ∂P/∂n = g. For instance, Fig. 8 shows the error distribution on the
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Fig. 6. Field of pressure (left) and Z-velocity (right) for MC = 40, NC = 35 and S = Sopt = 0.035

Fig. 7. Total discharge as a function of radius A

Fig. 8. Absolute error e on the upper boundary: (a) for 0 ¬ R ¬ A; (b) for A ¬ R ¬ C

upper boundary (Z = H) of the filter: Γ1∪Γ2. The greatest values occur around the singularity
for R = A. Moreover, a high error arises near by the corner (R = C).

4.2. Experiment 2

Let us now consider another type of cylindrical filter: assume that there is a circumferential
outlet instead of the central one. We suppose that the filter housing, containing the fibrous
material, is constructed in such a way that it does not disturb the axial symmetry of the fluid
flow through the outlet.

The domain of such a problem is illustrated in Fig. 9. As can be seen, in this case, B denotes
the outlet half-width. Also, the system of equations (3.5) should be slightly reformulated due to
a change in boundary conditions (2.7)



478 J.A. Kołodziej, P. Fritzkowski

Fig. 9. The domain and boundary conditions for the filter with a circumferential outlet

N
∑

j=1
cjΦj(Ri, Zi) = 1 for all (Ri, Zi) ∈ Γ1

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ2

N
∑

j=1
cj
∂

∂R
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ3

N
∑

j=1
cjΦj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ4

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ5

For computations, assume the following dimensions: c = 45mm, h = 200mm, a = 15mm,
b = 20mm. Moreover, we take pin = 400 kPa, pout = 250 kPa and µ = 0.001 Pa·s. For the porous
material ε = 0.6 and df = 0.15mm.
Similarly to the first experiment, we applied the optimization algorithm for various values

of MC and NC , when S ∈ 〈0.01, 0.7〉 and ∆S = 0.001. Table 2 presents selected results. Accor-
dingly, the total discharge w is approximately equal to 48 l/min. Again, its fluctuations comes
from locally high boundary error, particularly near the singularity at R = A. The minimization
procedure allows one to reduce eMAX below 3%. The discharge error, eW in turn, reaches 1-2%;
only for the lowest MC the error is greater than 5%.

Table 2. Selected results of the error minimization

MC NC M N Sopt eMAX eRMS W w [l/min] eW

16
13

104
84 0.051 2.90E-02 8.01E-03 9.36E-02 47.125 1.68E-02

14 91 0.089 3.95E-02 7.46E-03 9.08E-02 45.712 5.49E-02

20
16

130
104 0.038 3.18E-02 9.55E-03 9.50E-02 47.811 2.10E-03

17 110 0.058 3.30E-02 6.82E-03 9.30E-02 46.823 1.85E-02

23 149 0.051 3.16E-02 5.06E-03 9.48E-02 47.698 9.10E-03
30 25 194 162 0.027 3.66E-02 7.24E-03 9.62E-02 48.434 5.80E-03

26 168 0.026 2.87E-02 6.95E-03 9.60E-02 48.303 1.19E-02

30 194 0.064 3.78E-02 4.05E-03 9.47E-02 47.678 1.52E-02
40 34 259 220 0.020 3.24E-02 6.64E-03 9.66E-02 48.619 5.10E-03

35 226 0.020 2.70E-02 6.11E-03 9.69E-02 48.777 1.87E-02

Figure 10 shows distribution of the non-dimensional pressure and axial velocity computed
for MC = 40, NC = 35 and S = Sopt. The change with the radius A in the discharge W has
the same character as before (see Fig. 11).
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Fig. 10. Field of pressure (left) and Z-velocity (right) for MC = 40, NC = 35 and S = Sopt = 0.02

Fig. 11. Total discharge as a function of radius A

4.3. Experiment 3

Finally, consider a filter with both circumferential inlet and outlet. Herein, one should also
assume that the structure of the filter housing does not disturb the radial flow through such an
inlet and outlet. The resulting domain of the filtration problem is presented in Fig. 12. Here,
B denotes the outlet half-width, whereas A is the inlet half-width. Because of the different
geometry, the system of equations (3.5) takes the form

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ1

N
∑

j=1
cjΦj(Ri, Zi) = 1 for all (Ri, Zi) ∈ Γ2

N
∑

j=1
cj
∂

∂R
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ3

N
∑

j=1
cjΦj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ4

N
∑

j=1
cj
∂

∂Z
Φj(Ri, Zi) = 0 for all (Ri, Zi) ∈ Γ5

What is more, the formulas related to the total discharge must be modified. For the circum-
ferential inlet we have
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w = 2πc

h
∫

h−2a

qr dz = 2πc
κ∆p

µ

H
∫

H−2A

QR dZ = 2πc
κ∆p

µ
W (4.4)

where the dimensionless discharge W is given by

W =

H
∫

H−2A

QR dZ (4.5)

Fig. 12. The domain and boundary conditions for the filter with a circumferential outlet

In this example, suppose the dimensions: c = 45mm, h = 200mm, a = 25mm, b = 20mm.
Moreover, assume that pin = 400 kPa, pout = 200 kPa, µ = 0.001 Pa·s, ε = 0.5 and
df = 0.15mm.

The making use of the optimization procedure (S ∈ 〈0.01, 0.7〉 and ∆S = 0.001) produced
the results shown in Table 3. As can be seen, the dimensional discharge w ≈ 35 l/min. In this
case, the highest values of the boundary error occur at two singular points: at Z = 0 and Z = H
as R = C. Taking S = Sopt can reduce the maximum error below 2%. Furthermore, it should
be noticed that the error eW reaches smaller values than in the two previous experiments.

Table 3. Selected results of the error minimization

MC NC M N Sopt eMAX eRMS W w [l/min] eW

16
13

105
84 0.493 1.96E-02 4.72E-03 1.64E-01 34.662 4.00E-03

14 91 0.477 1.87E-02 6.06E-03 1.66E-01 35.217 1.00E-04

20
14

130
91 0.443 1.87E-02 5.24E-03 1.64E-01 34.763 2.90E-03

15 97 0.466 1.72E-02 4.68E-03 1.65E-01 34.846 1.04E-02

22 142 0.321 1.70E-02 3.74E-03 1.66E-01 35.260 3.00E-04
30 23 195 149 0.275 1.49E-02 4.64E-03 1.66E-01 35.153 3.00E-03

24 155 0.306 1.64E-02 4.17E-03 1.66E-01 35.254 7.80E-03

31 200 0.207 1.75E-02 3.75E-03 1.66E-01 35.217 1.60E-03
40 32 259 207 0.200 1.74E-02 3.44E-03 1.65E-01 34.956 3.20E-03

34 220 0.201 1.52E-02 3.12E-03 1.66E-01 35.126 6.40E-03

The distribution of the pressure P and the velocity QZ is presented in Fig. 13. The W (A)
function, in turn, is shown in Fig. 14. One can observe that the dependency is of different nature
for the circumferential inlet and outlet.
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Fig. 13. Field of pressure (left) and Z-velocity (right) for MC = 40, NC = 32 and S = Sopt = 0.2

Fig. 14. Total discharge as a function of radius A

5. Final remarks

In this work, we have presented the application of the method of fundamental solutions to
steady-state fluid flow through a cylindrical filter. Due to axial symmetry of the domain and
boundary conditions, the problem has been reduced to a two-dimensional one. This formulation
has led to very easy implementation of the method, which should be emphasized.

In this paper, we assumed that the fluid is incompressible. For a gas flow through a filter, one
can take into account the compressibility. The continuity equation for a steady axisymmetric
compressible flow has the form

1

r

∂

∂r
(rρqr) +

∂

∂z
(ρqz) = 0 (5.1)

where ρ is density. According to the equation of state for the perfect gas ρ = p/(RT ) and
Darcy’s law for isothermal condition, the continuity equation takes the form

1

r

∂

∂r

(

rp
∂p

∂r

)

+
∂

∂z

(

p
∂p

∂z

)

= 0 (5.2)

or the equivalent form

1

r

∂

∂r

(

r
∂p2

∂r

)

+
∂

∂z

(∂p2

∂z

)

= 0 (5.3)
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The last equation has the same form as equation (2.3), if instead of pressure p, we have pres-
sure squared p2. This equation must be solved with the same boundary conditions as for the
incompressible flow (see e.g. Uściłowska and Kołodziej, 2006). In such a case, the methodology
of solution of the nondimensional problem is practically the same as for the incompressible case.
Differences essentially exist in calculation of dimensional parameters.

The presented numerical examples have been related to various types of the cylindrical filter:
diverse positions of the inlet and outlet have been considered. In all the cases, we used a simple
algorithm for achieving the optimal pseudo-boundary location by minimizing the maximum
absolute boundary error. The optimization results for various number of source points and
collocation points have been compared. In our experiments, the maximum error is relatively high,
however, it turns out that it does not significantly affect the pressure and velocity distribution. As
it has been shown, the maximum error appears in the neighborhood of the boundary singularities,
due to a sudden change in boundary conditions.

Since a non-zero difference between total inflow and outflow is a purely numerical effect, it
can be also treated as a measure of the solution quality. The obtained results indicate that in
most cases the discharge error is lower than 2% and has the smallest values as both the inlet
and outlet of the filter are circumferential.

Moreover, we examined the variation of total discharge with the inlet size. The function is
qualitatively different when dealing with the filter comprising a circumferential inlet and outlet.

All in all, with the typical advantages of the meshless methods (e.g. no discretization of the
domain), the method of fundamental solutions allows one to obtain reasonable results: the field
of pressure and velocity as well as the total discharge within acceptable tolerance.
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