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The differential equation governing the transverse motion of an elastic rectangular plate of
non-linear thickness variation with thermal gradient has been analyzed on the basis of classi-
cal plate theory. Following Levy’s approach, i.e. the two parallel edges are simply supported,
the fourth-order differential equation governing the motion of such plates of non-linear vary-
ing thickness in one direction with exponentially temperature distribution has been solved by
using the quintic splines interpolation technique for two different combinations of clamped
and simply supported boundary conditions at the other two edges. An algorithm for com-
puting the solution of this differential equation is presented for the case of equal intervals.
The effect of thermal gradient together with taper constants on the natural frequencies of
vibration is illustrated for the first three modes of vibration.
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1. Introduction

In this era of science and technology, plates of various shapes and variable thickness may be
regarded as a first approximation to wings and blades and occur as panels in many forms of
engineering structures. Thus knowledge of their natural frequencies is of considerable importance
at the design stage in order to avoid resonances excited by internal or external forces. Therefore,
their design requires an accurate determination of their natural frequencies and mode shapes.

With the advancement of technology, plates of variable thickness are being extensively used
in civil, electronic, mechanical, aerospace and marine engineering applications. Nowadays, it
becomes very necessary to study the vibration behavior of plates to avoid resonance excited by
internal or external forces. Modern engineering structures are based on different types of design,
which involve various types of anisotropic and non-homogeneous materials in the form of their
structure components. Depending upon the requirement, durability and reliability, materials are
being developed so that they can be used to give better strength and efficiency. In the recent
past, there has been a phenomenal increase in the development of elastic materials due to high
demand for lightweight, high strength, corrosion resistance and high-temperature performance
requirements in modern technology. Plates of composite materials are widely used in many
engineering structures and machines.

A number of researchers have worked on free vibration analysis of plates of different shapes
and variable thickness. Rectangular plates of non-linear varying thickness are widely used in
various structures; however, they have been poorly studied, unlike linearly varying thickness.
Rectangular plates of non-linear varying thickness with thermal gradient find various applica-
tions in the construction of modern high speed air craft. The vibration characteristics of such
plates are of interest to the designer.
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An extensive review of the work up to 1985 on linear vibration of isotropic/anisotropic plates
of various geometries was given by Leissa (1969). The studies on vibration of rectangular plates
with uniform/non-uniform thickness with various edge conditions after 1985 were carried out by
a number of researchers and were reported by Leissa (1977, 1978, 1981, 1987).

Here, a quintic splines procedure is developed for obtaining the natural frequencies of a rec-
tangular plate of nonlinear varying thickness with the thermal gradient effect. The consideration
of the present type of thickness variation was taken earlier by Gupta et al. (2006) for a circular
plate. The plate type structural components in aircraft and rockets have to operate under ele-
vated temperatures which causes non-homogeneity in the plate material, i.e. elastic constants
of the material become functions of the space variables. In an up-to-date survey of literature,
authors have come across various models to account for non-homogeneity of plate materials
proposed by researchers dealing with vibration.

Gupta et al. (2010a) studied the thermal gradient effect on vibration of a non-homogeneous
orthotropic rectangular plate having bi-direction linearly thickness variation. Gupta et al.
(2011a) did the vibration analysis of a visco-elastic orthotropic parallelogram plate with linear-
ly thickness variation in both directions. Lal et al. (1997) studied the transverse vibrations of
non-uniform orthotropic rectangular plates by Quintic splines method. Gupta and Kaur (2008)
studied the effect of thermal gradient on free vibration of clamped visco-elastic rectangular pla-
tes with linearly thickness variation in both directions. Gupta and Khanna (2007) studied the
vibration of a visco-elastic rectangular plate with linearly thickness variations in both directions.
Gupta et al. (2007) observed the thermal effect on vibration of a non-homogeneous orthotropic
rectangular plate having bi-directional parabolically varying thickness. Tomar and Gupta (1983,
1985) studied the effect of thermal gradient on frequencies of an orthotropic rectangular plate of
variable thickness in one and two directions. Gupta et al. (2010c, 2011b) studied the thermal ef-
fect on vibration of a parallelogram plate of linearly varying thickness and bi-directional linearly
varying thickness. Gupta et al. (2010b) did the vibration study of a visco-elastic parallelogram
plate of linearly varying thickness.

As the thickness variation is not perfectly linear and the same for quadratic, therefore non-
linear variation in thickness is very useful for scientists and engineers to study vibration of the
plate and find modes of vibrations.

Since there is no work available on the non-linear thickness variation on thermally induced
vibration of rectangular plates, in this paper, the thermal effect on vibration of a rectangular
plate with non-linear varying thickness is studied. Here, vibration of a rectangular plate with
non-linear varying thickness under a steady exponential temperature distribution is examined.
The effect of temperature on the modulus of elasticity is assumed to vary exponentially along
the z-axis. The non-linear thickness variation is taken as a combination of linear and parabo-
lical variation factor. The differential equation of motion has been solved by the quintic spline
interpolation technique. The two edges parallel to the z-axis (y = 0 and y = b) are assumed
to be simply supported. Different sets of boundary conditions have been imposed at the other
two edges. The frequency parameters for the first three modes of vibrations for C-S-C-S- and
S-S-S-S- boundary conditions and for various values of taper constants, thermal constant and a
fixed value of length-to-breadth ratio, are obtained. The results are presented in tabular form.

2. Analysis and equation of motion

Let us consider a rectangular plate which is subjected to an exponential temperature distribution
along the length, i.e. in the z-direction

e—eX

T =T,
Oe—l

(2.1)
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where T denotes the temperature excess above the reference temperature at any point at the
distance X = x/a and Tj denotes the temperature excess above the reference temperature at
the end, i.e. z =aor X = 1.

The temperature dependence of the modulus of elasticity for most of engineering materials
is given by Nowacki (1962)

E(T) = Eo(1 —T) (2.2)

where Fj is the value of Young’s modulus at the reference temperature, i.e. T' = 0, and ~ is
the slope of the variation of E with T.

Taking as the reference temperature, the temperature at the end of the plate, i.e. at X =1,
the modulus variation in view of (2.1) and (2.2) becomes

X

E(X) = Eo(1- aee__el ) (2.3)

where o =~Tp (0 < a < 1) is a constant known as the temperature constant.
The differential equation governing the free transverse motion of an elastic rectangular plate
of the length a, breadth b, thickness h and density p is
oD 0 oD 0
DViw + 2——V?w + 2— —V?w + V?DV?w
Jx Ox dy Oy
0?D 0w 0?’D 0*w  0*°D 0*w 0w
-1 -2 h—s =0
+0=1)(52 02 "oy 0zdy | 0y 022 )+ php

where w is the transverse displacement.

Assume now that the two opposite edges of the plate y=0 and y=Db are simply supported.
Further, let thickness vary non-linearly in the z-direction only. Thus, the thickness h and flexural
rigidity D of the plate become a function of x only. For harmonic vibration, w can be expressed
as

mm

w(z,y,t) = Wi (z) sin(Ty)eipt (2.5)

where p is the circular frequency and m is a positive integer.
Substitution of equation (2.5) into (2.4) gives

272 2m2 72

2m
DWl,a}ma}a} + 2D,mW1,zwa: + (_TD + D,wz) Wl,zz + (_TD,J?)WLJ? )
(2.6
m47r4 I/m27T2
+ ( ba D — b2 D,:m:) Wy = PhP2W1

A comma followed by a suffix denotes partial differentiation with respect to that variable.
Thus equation (2.6) reduces to a form independent of y and on introducing the non-
dimensional variables

h W D
H=" W=t x=2 D= (2.7)
a a a a
differential equation (2.6) reduces to
DiWxxxx +2D1 xW xxx + (D1xx — 2rD1)W xx — 2r’Dy xW x (2.8)

+ r2(r2D1 —vDy xx)W = pHa*p* W

where r? = (mma/b)?.
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Since the thickness varies non-linearly in the z-direction only, therefore, one can assume
H = Hy(1+ /X + (X7 (2.9)

where [ and (2 are taper constants such that |51| <1, |F2| < 1 and p; + B2 > —1, Hy is the
thickness at X = 0.

Considering equation (2.3) and (2.9) with the help of (2.7), the expression for rigidity D;
comes out as

X
)L+ BX A+ X (2.10)

D, :Do(l—ae

where Dy = EqH3/[12(1 — v?)].
Using equations (2.8) to (2.10), one obtains the equation of motion as

o oX X
(1 - —— )(1 + 51X + B X)W xxxx + Q{Ozm(l + 81X + B X?)?
e—eX )
+3(1—a — )(1+ﬁ1X+52X )(51+252X)}W,XXX
X X

+ [Oéee_—l(l + 51X + B X?)? + 60466_—1(1 + 81X + 52X%)(B1 + 262 X)

_ X Y ¢
+6(1 - a7 ) (51 + 26X +6(1 — a7 ) (14 A1X + X7
2 e—e¥ 22
_ o (1—ae_1)(1+ﬁlx+52X)}WXX (2.11)
eX e—eX
= 2% a2 (1AL X +5X7) 4 3(1— am— ) (151X + B2X7) (81 + 262X) | W x
2[2(1 02"V (1 4 BX + BoX?)? (14 BX + X2
+r [T< —a _1)( + 01X + 5o X5)" —va——=(1+ /X + (X7)
X _
+6a="— (14 BX + BX2) (81 +28:X) +6(1 - ") (81 + 26,X)?
e—eX
+6<1—a — )(1+51X+ﬂ2X2)ﬂ2}W:A2W
where
yo = Za 120 %) (2.12)

~ Ey/p  Hj

is a frequency parameter.

3. Method of solution

Let f(X) be a function with continuous derivatives in the range (0,!). Choose (n + 1) points
X, X1, Xo,...,X,,,intherange 0 < X <[suchthat 0 =Xy < X1 < Xo< X3<...< X, =1
Let the approximating function W (X) for f(X) be a quintic spline with the following
properties:
(a) W(X) is a quintic polynomial in each interval (Xj, Xp11),
(b) W(Xy) = f(Xk), k=0(1)n,
(c) W/(X), W"(X), W"(X) and W' (X) are continuous.
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By definition, the quintic spline takes the form

4 n—1
W(X)=ao+ Y a;i(X — Xo)' + > bj(X — X;)%. (3.1)
i=1 =0
where
0 if X <Xy
(X~ X5)4 = . (3.2)
X — XJ if X > XJ

It is also assumed, for simplicity, that the knots X; are equally spaced in (0,[) with the spacing
interval AX, so that
l , .

AX:E X; =iAX 1=0,1,2,...,n (3.3)
The number of unknown constants in equation (3.1) is (n+5). Satisfaction of differential equation
(2.11) by collocation at the (n + 1) knots in the interval (0,1) together with the boundary
conditions (to be explained in the next section) gives precisely the requisite number of equations
for the determination of unknown constants.

Substitution of W (X) from equation (3.1) into equation (2.11), for satisfaction at the m-th
knot, gives

Byag + [Ba(Xy — Xo) + Bsla1 + [Ba(X, — Xo)? + 2B3(X, — Xo) + 2Baas
+[B4(X, — X0)® + 3B3(X, — Xo)* + 6B2(X, — Xo) + 6B1]as
+[Ba(X, — Xo)* + 4B3(X, — Xo)® 4+ 12By(X, — Xo)? + 24B; (X, — Xo) + 24B0]a4( N
3.

n—1

+ > [Ba(Xy — Xi)° +5B3(Xg — Xi)* + 20B2 (X, — X;)® + 60B1 (X, — X;)°
=0

+120B0(Xq — Xz)]bz =0

where

e—qu

1 )(1 + 51Xy + B2 X])?

Boz(l—a

X

e 2\2 *
Bi=2ja—(1+ 41X, + }X))° +3(1 - a

e—ed

1 )(1 + 81X+ B X])(B + 2/82Xq)}

X X

ed ed
(§] —qu e—eX‘Z
+6(1 = a=—) (B + 28X, +6(1 — a"—— ) (1 + BiX, + X2

Xq

) (U Xy + X))

—27“2(1 —a—
Xq

=) (LHBLX + B2 Xo2) (B + 26:X,)]

e—e

of e 212
B3y = —2r [am(lJrﬁqujLﬁqu) +3(1—a o

X x X
20201 e—ea 22 e N9 e
By=r [7“ (1 a——3 )(1+51Xq+52Xq) y(a—e_l(l—i-ﬁqu—i—ﬁqu) +6ae—1)
2 e — e’ )
(1 B Xy + 52X0) (01 4 26:X0) +6(1 — o) (81 +262X,)

eXa
1 )(1 + 01Xy + ﬁgXS)ﬁg} -\

—|—6(1—ae
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Thus, one obtains a homogeneous set of equations in terms of the unknown constants
ap,ay,as,as,as, by, b1, ...,b,_1, which, when written in matrix notation, takes the form

BC =0 (3.5)

where B is an (n+ 1) x (n+ 5) matrix and Cis an (n +5) x 1 matrix.

4. Boundary conditions and frequency equations

The frequency equations for clamped (C) and simply supported (S) rectangular plates have been
obtained by employing the appropriate boundary conditions.
4.1. C-S-C-S-plates

For a rectangular plate clamped at both the edges X = 0 and X = 1 (and simply supported

at the remaining two edges)

_ oW _0 (4.1)
x=0,1 O0X X=01

Applying boundary conditions (4.1), to deflection function (3.1), at the two edges X = 0 and
X =1, one obtains a set of four homogeneous equations in terms of the unknown constants,
which can be written as

AC=0 (4.2)

where Aj isan 4 X (n +5) matrix and Cis an (n+ 5) x 1 matrix.
Equation (4.2) taken together with equation (3.5) gives a complete set of (n + 5) equations
for a C-S-C-S-plate. These can be written as

[B/A;]C=0 (4.3)
For a non-trivial solution of equation (4.3), the characteristic determinant must vanish
IB/A{| =0 (4.4)

This is the frequency equation for a C-S-C-S-plate.

4.2. S-S-S-S-plates

For a rectangular plate simply supported at both the edges X =0 and X =1 (and simply
supported at the remaining two edges), the following holds

W

- -0 (4.5)
x=01  0X?%|y_ o,

Employing boundary conditions (4.5) to deflection function (3.1) at the two edges X = 0 and
X =1, one gets the boundary equations for a S-S-S-S-plate as
AyC=0 (4.6)

where Ajp isan 4 X (n +5) matrix and C is an (n+ 5) x 1 matrix.
Hence the frequency equation comes out for S-S-S-S-plate as

B/As| =0 (4.7)
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5. Results and discussion

Frequency equations (4.4) and (4.7) are transcendental equations in A? from which infinitely
many roots can be obtained. The frequency parameter A corresponding to the first three modes
of vibration of C-S-C-S- and S-S-S-S-rectangular plates have been computed for m = 1 and
various values of aspect ratio (a/b), thermal constant («) and taper constants (01, 2). The
value of Poisson’s ratio v has been taken as 0.3.

To choose the appropriate interpolation interval AX, a computer program has been deve-
loped for the evaluation of the frequency parameter A and run for n = 10(5)60. The numerical
values show consistent improvement with the increase of the number of knots. In the compu-
tation, the authors have fixed n = 50, since further increase in n does not improve the results
except for the fifth or sixth decimal places. These results are presented in Tables 1 to 3.

Table 1 shows the variation of the frequency parameter (\) with the thermal constant («)
for different combinations of taper constants ((i,2) and the fixed aspect ratio (a/b = 1.5)
corresponding to the first three modes of vibration for C-S-C-S- and S-S-S-S-plates. The value
of the frequency parameter decreases with the increase of the thermal constant for both boundary
conditions considered here. Furthermore, it can be seen that the frequency parameter, for both
boundary conditions, decreases gradually in the third mode of vibrations in comparison to the
first two modes of vibration.

Table 1. Values of the frequency parameter () for different thermal constants («) with different
combinations of the taper constant (f1,2) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S-
and S-S-S-S-plates for the first three modes of vibrations

C-S-C-S-plate S-S-S-S-plate
0B1, Bo «@ First Second Third First Second Third
mode mode mode mode mode mode
61 =-—0.51]0.0 ] 29.3011 | 63.0984 | 111.0257 | 21.4941 | 53.0078 | 91.1043
Bo=—0.5] 0.1 28.3908 | 61.1005 | 107.6504 | 20.4906 | 50.7688 | 87.9017
0.2 | 27.4901 | 58.8310 | 102.9045 | 19.4041 | 48.4050 | 84.8101
0.3 | 26.4212 | 56.8112 | 99.4052 | 18.3100 | 46.1205 | 81.7032
0.4 | 25.3101 | 54.7283 | 95.3142 | 17.1794 | 43.9503 | 78.6021
0.5 | 24.2465 | 52.4450 | 91.1528 | 15.8906 | 41.9390 | 75.2167
61 =-—0.51]0.0 | 36.0132 | 72.5490 | 127.4781 | 27.3761 | 63.7524 | 108.1562
Bo=0.5 | 0.1 | 35.1001 | 70.2441 | 122.8791 | 26.2001 | 61.1533 | 104.7054
0.2 | 34.0002 | 68.1961 | 118.7376 | 25.3550 | 58.9641 | 101.1645
0.3 | 32.9982 | 66.0348 | 114.7082 | 24.2611 | 56.8300 | 97.9410
0.4 | 31.8908 | 63.8503 | 110.5314 | 23.1530 | 54.6306 | 94.7502
0.5 | 30.7983 | 61.7406 | 106.5164 | 22.0029 | 52.3858 | 91.4213
61 =0.5 | 0.0 | 49.4210 | 106.8851 | 191.4330 | 39.7562 | 97.2203 | 171.4612
Bo=0.5 | 0.1 | 48.4301 | 104.4254 | 187.3517 | 38.5401 | 94.8203 | 169.7908
0.2 | 47.4209 | 102.1481 | 184.3200 | 37.5304 | 92.8103 | 164.7800
0.3 | 46.3211 | 99.8605 | 181.0769 | 36.5041 | 90.6234 | 161.5073
0.4 | 45.1899 | 97.6103 | 177.0027 | 35.4801 | 88.5328 | 158.4087
0.5 | 44.0277 | 95.6025 | 172.6536 | 34.4327 | 86.3658 | 155.1998

The results presented in Table 2 show a marked effect of variation of the taper constant
(A1) on the frequency parameter for the taper constant (f2 = 0.5), two values of the thermal
constant (o = 0.0,0.4) and a fixed aspect ratio (a/b = 1.5) corresponding to the first three
modes of vibration. It is observed that the frequency parameter increases with the increase of
the taper constant for both boundary conditions considered here.
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Table 2. Values of the frequency parameter () for different taper constants (1) with different
combinations of the thermal constant («) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S- and

S-S-S-S-plates for the first three modes of vibrations; By = 0.5

C-S-C-S-plate S-S-S-S-plate
« 01 First Second Third First Second Third
mode mode mode mode mode mode
0.0 | —0.5 | 36.0132 | 72.5490 | 127.4781 | 27.3761 | 63.7524 | 108.1562
—0.3 | 38.3782 | 78.1352 | 137.9481 | 29.4861 | 69.2189 | 118.7010
—0.1 | 40.5601 | 83.7103 | 148.5275 | 31.5908 | 74.7902 | 129.0211
0.0 | 42.5324 | 89.0914 | 158.7945 | 33.3920 | 79.8053 | 138.8386
0.1 | 44.8210 | 94.5601 | 169.4642 | 35.3904 | 85.2100 | 149.0842
0.3 | 47.0572 | 100.4805 | 180.3443 | 37.3026 | 91.0409 | 160.0490
0.5 | 49.4210 | 106.8851 | 191.4330 | 39.7562 | 97.2203 | 171.4612
0.4 | —0.5 | 31.8908 | 63.8503 | 110.5314 | 23.1530 | 54.6306 | 94.7502
—0.3 | 34.1304 | 69.5461 | 122.0372 | 25.4328 | 60.4220 | 105.6032
—0.1 | 36.3308 | 75.3196 | 133.0619 | 27.5038 | 65.6027 | 116.1181
0.0 | 38.1510 | 80.1950 | 143.6991 | 29.1401 | 70.7212 | 125.8526
0.1 | 40.4302 | 86.1491 | 156.8407 | 31.1999 | 76.1082 | 136.4291
0.3 | 42.8410 | 91.9428 | 165.8413 | 33.2632 | 82.2734 | 147.4841
0.5 | 45.1899 | 97.6103 | 177.0027 | 35.4801 | 88.5328 | 158.4087

In Table 3, the effect of the taper constant (f2) on the frequency parameter for the taper
constant (1 = 0.5), two values of the thermal constant (o = 0.0,0.4) and a fixed aspect ratio
(a/b = 1.5) corresponding to the first three modes of vibration for C-S-C-S- and S-S-S-S-plates
is shown. From this table, one can observe that the frequency parameter in the first three modes
of vibration increases with the increase of the taper constant for C-S-C-S- and S-S-S-S-plates.

Table 3. Values of the frequency parameter () for different taper constants (f2) with different
combinations of the thermal constant («) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S- and
S-S-S-S-plates for the first three modes of vibrations; 81 = 0.5

C-S-C-S-plate S-S-S-S-plate
«@ o First Second Third First Second Third
mode mode mode mode mode mode
0.0 | —0.5 | 37.5320 | 77.7213 | 142.9941 | 27.8301 | 65.7224 | 116.9956
—0.3 | 39.4712 | 82.2052 | 151.0998 | 29.7861 | 70.8189 | 126.0010
—0.1 | 41.4011 | 86.9910 | 159.2275 | 31.7408 | 75.9702 | 135.1221
0.0 | 43.1534 | 91.1293 | 167.0042 | 33.4221 | 80.7053 | 143.6186
0.1 | 45.1210 | 96.0601 | 175.1864 | 35.3090 | 86.0030 | 152.7484
0.3 | 47.1572 | 101.2805 | 183.2443 | 37.3026 | 91.3409 | 162.0060
0.5 | 49.4210 | 106.8851 | 191.4330 | 39.7562 | 97.2203 | 171.4612
0.4 | —0.5 ] 33.2720 | 76.0091 | 126.9418 | 23.6881 | 60.1602 | 105.0480
—0.3 | 35.1142 | 79.7146 | 135.5856 | 25.6627 | 64.9400 | 114.0071
—0.1 | 37.2008 | 83.5046 | 143.9999 | 27.7293 | 69.7901 | 122.9085
0.0 | 38.8180 | 86.8696 | 152.1187 | 29.4711 | 74.2420 | 131.2102
0.1 | 40.8802 | 90.5247 | 160.9991 | 31.4209 | 78.9999 | 140.3121
0.3 | 43.1101 | 94.3131 | 169.1411 | 33.4382 | 83.6312 | 149.3722
0.5 | 45.1899 | 97.6103 | 177.0027 | 35.4801 | 88.5328 | 158.4087
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Moreover, it can be seen in Tables 2 and 3 that the frequency parameter, for both boundary
conditions, increases gradually in the third mode of vibrations in comparison to the first two
modes of vibration.

Also, one can observe from Tables 1 to 3, that the frequency parameter of the C-S-C-S-plate
is higher than that of the S-S-S-S-plate.
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