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The paper presents an approximate method of solving direct and inverse problems which
are described by a non-homogenous plate vibration equation. The key idea of the presented
approach is to use solving polynomials that satisfy the considered homogenous differential
equation identically. Inhomogeneity is expanded into the Taylor series and then, for each
monomial, the inverse operator is calculated. In the paper, the properties of solving functions
are investigated – a theorem concerning their linear independence is formulated and proved.
The method of identification of the load (source) is described. It belongs to the group of
inverse problems. The paper includes examples which illustrate the usefulness of the method.
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1. Introduction

The term Trefftz methods means a wide class of approaches of solving partial differential equ-
ations. The solution is approximated by a linear combination of functions satisfying the equ-
ation identically. In general, we can distinguish two classes of Trefftz functions. The first one
are F-functions called fundamental solutions. These functions have singularity in certain points.
Usually, these points are chosen outside the domain. The second one are H-functions (Herrera
functions). Good example are here harmonic or heat polynomials. Plate polynomials (Trefftz
functions for plate vibration equations) presented in this paper can be classified as H-functions.
The method originates from the paper by Trefftz (1926) and were developed by various authors,
including: Herrera, Sabina, Kupradze, Jirousek, Leon, Zieliński and Zienkiewicz, who considered
mostly stationary problems. Non-stationary problems were solved usually by time discretization.
The time as a continuous variable, first appeared in Rosenbloom and Widde (1956) (1D heat
polynomials). Next this aspect of the method was developed for the wave equation and ther-
moelasticity problems in Grysa and Maciąg (2011), Maciąg (2004, 2005, 2007, 2011a), Maciąg
and Wauer (2005a,b). The Trefftz functions for the equation of beam vibration are presented
in Al-Khatib et al. (2008). Also comprehensive monographs exist concerning the Trefftz func-
tions method (Ciałkowski and Frąckowiak, 2000; Grysa, 2010, Kołodziej and Zieliński, 2009; Li
et al., 2008; Maciąg, 2009; Qin, 2000). Problems of plates vibrations can be solved by means
of the Trefftz method. For example, F-functions were used in Reutskiy and Yu (2007), Wu et
al. (2011). H-functions were used in Blanc et al. (2007), Vanmaele et al. (2007). Each method
has advantages and disadvantages. For example, in four papers mentioned above, the authors
assumed harmonic form of the vibrations. This approach is very effective for analyzing natural
frequencies and solving direct problems. Trefftz functions with time as a continuous variable se-
ems to be more effective for solving inverse problems. Plate polynomials used here are described
in Maciąg (2011b).
The presented article can be considered as a remarkable step forward in comparison with

the work by Maciąg (2011b). Firstly, the properties of the plate polynomials are considered
here. Secondly, the method of source identification (inverse problem) is described. As a rule,
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inverse problems are difficult to solve. Moreover, the solution can be sensitive to disturbances in
input data. The examples presented in this paper show high effectiveness of the Trefftz functions
method for solving direct and inverse problems.

2. Stating the problem

Let us consider the inhomogeneous equation of vibrations of a plate in the dimensionless coor-
dinates

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
= Q(x, y, t) (x, y) ∈ (0, 1) × (0, 1) t > 0 (2.1)

where Q(x, y, t) is the load of the plate. In the case of a direct problem, equation (2.1) should be
completed by suitable initial and boundary conditions. Initial conditions describe the deflection
and velocity at the time t = 0. Boundary conditions indicate the support of the plate. In the
case of identification of the load, we additionally assume that deflections of the plate in chosen
internal points are known (internal responses).

3. Linear independence of the Trefftz functions

Trefftz functions for the equation of plate vibration(plate polynomials) are presented in Maciąg
(2011b). In this work, recurrent formulas for the plate polynomials and their derivatives are
described. Table 1 includes the solving polynomials from degree 0 to 4.

Table 1. The solving polynomials from degree 0 to 4

Degree
Number of

Polynomialspolynomials

0 1 1

1 3 x, y, t

2 5 x2

2 , xy,
y2

2 , tx, yt

3 7 x2t
2 , xyt,

y2t
2 ,
x3

6 ,
x2y
2 ,
xy2

2 ,
y3

6

4 9 x3t
6 ,
x2yt
2 ,
xy2t
2 ,
y3t
6 ,
x4

24 −
t2

2
yx3

6 ,
x2y2

4 − t
2, xy

3

6 ,
y4

24 −
t2

2

According to Table 1, we can infer that exactly 2n+1 plate polynomials of degree n (n ­ 0)
exist. A particularly important property of them is their linear independence, which is the content
of Theorem 1.

Theorem 1. Accurate to the polynomial of third degree, 2n + 1 linearly independent plate po-
lynomials of degree n, n ­ 0 exist.

Proof

Let us denote un as a linear combination of the monomials of degree n

un = αn00x
n + (α(n−1)10y + α(n−1)01t)x

n−1 + (α(n−2)20y
2 + α(n−2)11yt+ α(n−2)02t

2)xn−2

+ . . .+ (α1(n−1)0y
n−1 + α1(n−2)1y

n−2t+ . . .+ α10(n−1)t
n−1)x

+ α0n0y
n + α0(n−1)1y

n−1t+ . . . + α00nt
n +R

(3.1)
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where αpqr – coefficients, R – polynomial of three variables of degree less than n. Obviously,
coefficients αpqr might be expressed in the form

αpqr =
1

p!q!r!

∂nun
∂xp∂yq∂tr

(3.2)

We will show that if un is a linear combination of plate polynomials, the coefficients αpqr for
r ­ 2 equal zero. Using formula (3.2) and the equation of homogenous plate vibration we obtain

αpqr =
1

p!q!r!

∂n−2

∂xp∂yq∂tr−2
∂2un
∂t2
=
1

p!q!r!

∂n−2

∂xp∂yq∂tr−2

(
−
∂4un
∂x4
− 2
∂4un
∂x2∂y2

−
∂4un
∂y4

)

= −
1

p!q!r!

( ∂n+2un
∂xp+4∂yq∂tr−2

− 2
∂n+2un

∂xp+2∂yq+2∂tr−2
−

∂n+2un
∂xp∂yq+4∂tr−2

)
= 0

(3.3)

Basing on equality (3.3) the linear combination takes the form

un = αn00x
n + (α(n−1)10y + α(n−1)01t)x

n−1 + (α(n−2)20y
2 + α(n−2)11yt)x

n−2

+ . . .+ (α1(n−1)0y
n−1 + α1(n−2)1y

n−2t)x+ α0n0y
n + α0(n−1)1y

n−1t+R
(3.4)

where R is a properly chosen polynomial. It is worth mentioning that in formula (3.4) there
occur only coefficients of the type αpq0, αpq1, in the number correspondingly to n + 1 and n.
To simplify the notation, we denote

w = un −R

In order to obtain the polynomial R, the operator

L =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+
∂4

∂y4
+
∂2

∂t2
(3.5)

should be applied to equation (3.4). Then we get: L(w)+L(R) = 0, hence L(R) = −L(w), and
finally R = L−1(−L(w)) +L−1(0). It follows that there are exactly 2n+1 linearly independent
plate polynomials of degree n.

4. The Trefftz function method

The solution to equation (2.1) with suitable initial and boundary conditions is approximated
by the linear combination: u(x, y, t) ≈ w(x, y, t) =

∑N
n=1 cnVn + wp, where cn are coefficients,

Vn – Trefftz functions, wp – particular solution. In order to obtain cn, we minimize the functional
describing the fitting of the approximate solution to the given initial and boundary conditions.
The approximation of the particular solution wp is determined by the inverse operator L

−1(Q).
To obtain approximation of the inverse operator for the function Q(x, y, t), the function should
be expanded into the Taylor series. Then we calculate inverse operators for monomials by using
recurrent formulas presented in Maciąg (2011b).

5. Examples

The plate polynomials will be used for solving a direct and an inverse problem for plate vibra-
tions. In both cases, the exact solution will be known. It allows one to check the quality of the
approximation. Two kinds of the load are considered. The first has a form of a polynomial. The
second is a trigonometric function. The approximation will be calculated for the two dimension-
less time intervals: (0, 1/16) and (0, 1/4). Additionally, the sensitivity of the method according
to the noisy data is checked.
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5.1. The solution of a direct problem

As the first example let us consider the non-homogeneous equation of plate vibrations in
dimensionless coordinates:

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
=
24t2(y4 − 2y3 + y) + 2t2(12x2 − 12x)(12y2 − 12y)

5

+
24t2(x4 − 2x3 + x) + 2(x4 − 2x3 + x)(y4 − 2y3 + y)

5

(x, y) ∈ (0, 1) × (0, 1)
t > 0

(5.1)

Equation (5.1) has been completed by initial and boundary conditions

u(x, y, 0) =
sin(πx) sin(πy)

1000

∂u(x, y, 0)

∂t
= 0

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0

∂2u(0, y, t)

∂x2
=
∂2u(1, y, t)

∂x2
=
∂2u(x, 0, t)

∂y2
=
∂2u(x, 1, t)

∂y2
= 0

(5.2)

The exact solution to problem (5.1) and (5.2) is given by the following formula

u(x, y, t) =
sin(πx) sin(πy) cos(2π2t)

1000
+
t2(x4 − 2x3 + x)(y4 − 2y3 + y)

5

In order to determine the approximation of the solution, a linear combination of polynomials
was used, together with the function being a particular solution to (5.1), i.e.

u(x, y, t) ≈ w(x, y, t) =
N∑

n=1

cnVn +
t2(x4 − 2x3 + x)(y4 − 2y3 + y)

5
(5.3)

The approximate solution is calculated in the time interval (0,∆t). The coefficients cn are
chosen so that the functional described by formula (5.4) is minimized

I =

1∫

0

dx

1∫

0

(
w(x, y, 0) −

sin(πx) sin(πy)

1000

)2
dy

︸ ︷︷ ︸
condition (5.2)1

+

1∫

0

dx

1∫

0

(∂w(x, y, 0)
∂t

)2
dy

︸ ︷︷ ︸
condition (5.2)1

+

∆t∫

0

dt

1∫

0

(
[w(0, y, t)]2 + [w(1, y, t)]2 +

(∂2w(0, y, t)
∂x2

)2
+
(∂2w(1, y, t)

∂x2

)2)
dy

︸ ︷︷ ︸
conditions (5.2)2,3

+

∆t∫

0

dt

1∫

0

(
[w(x, 0, t)]2 + [w(x, 1, t)]2 +

(∂2w(x, 0, t)
∂y2

)2
+
(∂2w(x, 1, t)

∂y2

)2)
dx

︸ ︷︷ ︸
conditions (5.2)2,3

(5.4)

The necessary condition to minimize functional (5.4) has a form: ∂I/∂c1 = . . . = ∂I/∂cN = 0.
Figure 1 shows the exact solution for the point x = y = 0.5 and its approximation by

polynomials from the order 0 to: (a) – 9, (b) – 11, (c) – 13 in the time interval t ∈ (0, 1/16).
In order to check the quality of the approximation, two kinds of errors can be calculated.

The first, given by formula:

ε =

√√√√√√√√

∆t∫
0

[
w
(
1
2 ,
1
2 , t
)
− u
(
1
2 ,
1
2 , t
)]2
dt

∆t∫
0

[
u
(
1
2 ,
1
2 , t
)]2
dt

· 100% (5.5)
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describes the error in the point x = y = 0.5. The second

δ =

√√√√√√√√

∆t∫
0
dt
1∫
0
dy
1∫
0
[w(x, y, t) − u(x, y, t)]2dx

∆t∫
0
dt
1∫
0
dy
1∫
0
[u(x, y, t)]2dx

· 100% (5.6)

describes the error in the entire time-space domain.

Fig. 1. Exact solution and their approximation by polynomials from order 0 to: (a) – 9, (b) – 11, (c) – 13

Table 2 shows values of errors (5.5) and (5.6) depending on the degree and the number of
polynomials. For instance, if the approximation contains all polynomials from the order 0 to 9,
we take 100 polynomials and so on. It is seen that the error decreases if the approximation
contains more Trefftz functions. The error at the level of 0.0374% is remarkably low. Comparing
errors (5.5) and (5.6), we can see that the error in the entire domain is bigger than in the
particular point. However, this error remains at a low level.

Table 2. Error (5.5) and (5.6) of the approximation in dependance of the degree of the polyno-
mials and the number of polynomials

Degree 9 10 11 12 13
(No. of polynomials) (100) (121) (144) (169) (196)

ε [%] 3.48 0.286 0.253 0.0683 0.0374

δ [%] 5.10 0.376 0.328 0.118 0.0667

The Trefftz functions can be used as base functions in the Finite Elements Method (see
Maciąg, 2009, 2011a). When considering inverse problems, a particularly important question is
how big the time-space element should be. Therefore, we examine the influence of the length of
the time interval on the error. In the calculations presented above, the time interval (0, 1/16)
has been used. Now we take into consideration the time interval (0, 1/4). Figure 2 shows the
exact solution for the point x = y = 0.5 and its approximations by polynomials from the order 0
to: (a) – 9, (b) – 11, (c) – 13.

The errors according to formulas (5.5) and (5.6) have been calculated to check the quality
of the approximation in the time interval (0, 1/4). The values of both errors are presented in
Table 3.

Comparing Tables 2 and 3, it is seen that we get a better approximation in a shorter time
interval. In a longer interval, the solution has more oscillations – this result has been expected.
All tables show that more polynomials lead to better results. It means that if we want to obtain a
better approximation in a longer time interval, more polynomials have to be taken. For example
for 225 polynomials, the error (5.5) is at the level of 3.59% for time interval (1, 1/4).
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Fig. 2. The exact solution for the point x = y = 0.5 and its approximations by polynomials from
order 0 to: (a) – 9, (b) – 11, (c) – 13

Table 3. Error (5.5) and (5.6) of approximation depending on the degree of polynomials and
the number of polynomials

Degree 9 10 11 12 13
(No. of polynomials) (100) (121) (144) (169) (196)

ε [%] 64.3 58.3 30.7 21.4 7.67

δ [%] 65.8 56.7 28.4 19.5 7.09

In the second example let us consider the problem which is described by the non-homogeneous
equation for (x, y) ∈ (0, 1) × (0, 1), t > 0

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
=
2t2π4 sin(πx) sin(πy) + sin(πx) sin(πy)

50
(5.7)

and conditions (5.2). The exact solution has the form

u(x, y, t) =
sin(πx) sin(πy) cos(2π2t)

1000
+
t2 sin(πx) sin(πy)

100

As an approximate solution we take a linear combination of polynomials completed by the
particular solution

u(x, y, t) ≈ w(x, y, t) =
N∑

n=1

cnVn +
t2 sin(πx) sin(πy)

100
(5.8)

The approximate solution will be calculated in the time interval (0, 1/16). The coefficients cn of
inear combination (5.8) are calculated by minimizing functional (5.4). The errors of the appro-
ximation have been calculated according to formulas (5.5) and (5.6). The results are presented
in Table 4.

Table 4. Error (5.5) and (5.6) of the approximation depending on the degree of polynomials
and number of polynomials

Degree 9 10 11 12 13
(No. of polynomials) (100) (121) (144) (169) (196)

ε [%] 3.52 0.289 0.256 0.0691 0.0379

δ [%] 5.16 0.381 0.332 0.120 0.0675

Similarly as before, it is seen that the error decreases if the approximation contains more
Trefftz functions. The error remains at a low level and is bigger for the entire domain. Comparing
Tables 2 and 4, it is seen that the error in both kinds of the non-homogeneity stays at the same
level.
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5.2. The identification of the load imposed to the plate – an inverse problem

Nowadays, there exist a lot of methods that can be applied to solving linear problems with
partial differential equations. Unfortunately, most of them cannot be used for solving inverse
problems. The Trefftz Functions Method seems to be a very convenient approach to solving such
problems, which is its most important advantage. In general, different types of inverse problems
exist, including a boundary inverse problem (identification of the boundary condition), geometric
inverse problems (identification of the shape of the body) and many others. One of the kinds
of inverse problems is also the source identification (identification of the load). In this paper,
we propose to apply Trefftz functions for the identification of the load Q(x, y, t) applied to the
plate. Let us consider the non-homogeneous equation in dimensionless coordinates

L(u) = Q(x, y, t), (x, y) ∈ (0, 1) × (0, 1) t > 0 (5.9)

where function Q(x, y, t) is an unknown load and the operator L has the form in (3.5). Equation
(5.9) is completed by initial and boundary conditions (5.2). Additionally, we assume that the
values of deflection of the plate in the internal points are known (internal responses)

uijk = u
( i
10
,
j

10
,
k∆t

50

)
i, j = 1, . . . , 9 k = 1, . . . , 50 (5.10)

For numerical simulation, we take the known function Q. Next, we calculate the internal re-
sponses and then identify the load. Because we know the function Q, we can calculate the error
of the solution. We assume that the approximation of the solution u(x, y, t) has the form

u(x, y, t) ≈ w(x, y, t) =
N∑

n=1

cnVn +
K∑

k=1

αkvk (5.11)

where Vn are plate polynomials, vk are values of the inverse operator L
−1 for monomials

{1, x, y, t, x2, t2, y2, xt, ty, xy, t3, t2y, t2x, ty2, xyt, tx2, y3, xy2, x2y, x3, t4, t3y,

t3x, t2y2, t2xy, t2x2, ty3, txy2, tyx2, tx3, y4, xy3, x2y2, yx3, x4, . . .}
(5.12)

In means that

Q(x, y, t) ≈ L

( K∑

k=1

αkvk

)
(5.13)

The recurrent formulas for the inverse operator L−1 for monomials are presented in Maciąg
(2011b). In order to determine the coefficients cn and αk, a functional similar to (5.4) should
be build.
As the first example of an inverse problem, let us consider the problem described by equations

(5.1) and (5.2). However, now we assume that the load

Q(x, y, t) =
24t2(y4 − 2y3 + y) + 2t2(12x2 − 12x)(12y2 − 12y)

5

+
24t2(x4 − 2x3 + x) + 2(x4 − 2x3 + x)(y4 − 2y3 + y)

5

(5.14)

is unknown (we use the exact solution only for numerical simulation). Let us denote Q̃(x, y, t)
as the approximation of the exact load Q(x, y, t). Similarly as before, we can define two kinds
of the error. The first describes the error in the point x = y = 0.5

ε =

√√√√√√√√

∆t∫
0

[
Q̃
(
1
2 ,
1
2 , t
)
−Q
(
1
2 ,
1
2 , t
)]2
dt

∆t∫
0

[
Q
(
1
2 ,
1
2 , t
)]2
dt

· 100% (5.15)
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the second describes the error in the entire time space domain

δ =

√√√√√√√√

∆t∫
0
dt
1∫
0
dy
1∫
0
[Q̃(x, y, t)−Q(x, y, t)]2dx

∆t∫
0
dt
1∫
0
dy
1∫
0
[Q(x, y, t)]2dx

· 100% (5.16)

The values of errors (5.15) and (5.16) for ∆t = 1/16 are shown in Table 5.

Table 5. Error (5.15) and (5.16) depending on the degree of polynomials and the number of
polynomials (∆t = 1/16)

Degree 10 11 12 13
(No. of polynomials) (121) (144) (169) (196)

ε [%] 2.97 2.18 0.635 0.447

δ [%] 6.86 3.00 2.47 2.66

Table 5 shows that more polynomials in the approximation decreases the error. Obviously,
the error is bigger in the entire time-space domain than in a particular point. However, the error
at the level of 2.66% is very small, considering that the problem is inverse. The values of errors
(5.15) and (5.16) for the bigger time interval (∆t = 1/4) are shown in Table 6.

Table 6. Error (5.15) depending on the degree of polynomials and the number of polynomials
(∆t = 1/4)

Degree 10 11 12 13
(No. of polynomials) (121) (144) (169) (196)

ε [%] 20.9 14.5 3.87 5.65

δ [%] 43.6 23.8 11.4 12.6

Obviously, the approximation in a bigger time interval is worse. Moreover, we observe a slight
increase of the error in the last column. This may be caused by the Runge effect (waving of the
polynomials of the high degree). It means that if we intend to solve an inverse problem, the time
interval cannot be too long.
The second example of an inverse problem is described by equations (5.7) and conditions

(5.2). Similarly as before we assume that the exact load is unknown (the exact solution is used
to generate internal responses in numerical simulation).
As before, in this case the exact load is known. Therefore, we can calculate the errors (5.15)

and (5.16). The results for ∆t = 1/16 and for ∆t = 1/4 are presented in Tables 7 and 8
correspondingly.

Table 7. The error (5.15) and (5.16) depending on the degree of polynomials and the number
of polynomials (∆t = 1/16)

Degree 10 11 12 13
(No. of polynomials) (121) (144) (169) (196)

ε [%] 5.66 4.33 1.45 0.999

δ [%] 14.4 6.79 4.81 5.48

Also in this case, more polynomials in the approximation decrease the error, and the error
is bigger in the entire time-space domain than in a particular point. The approximation in a
bigger time interval is worse also for the second kind of the load. It confirms the conclusion that
if we solve an inverse problem, the time interval cannot be too long.
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Table 8. Error (5.15) and (5.16) depending on the degree of polynomials and the number of
polynomials (∆t = 1/4)

Degree 10 11 12 13
(No. of polynomials) (121) (144) (169) (196)

ε [%] 36.1 26.3 7.73 10.4

δ [%] 88,7 48,3 25,4 28,1

5.2.1. Noisy data

The solution of the inverse problem can be very sensitive to disturbances of the input data.
Therefore, it is very important to examine each new method according to sensitivity to noisy
data. To this end, the internal responses have been randomly disturbed according to the formula

udisijk = uijk(1 + δijk) i, j = 1, . . . , 9 k = 1, . . . , 50 (5.17)

where δijk has a normal distribution with the mean equal to 0 and standard deviation 0.02. The
disturbed internal responses have been used to calculate the approximation of the load Q(x, y, t).
Table 9 shows error (5.15) of the approximation of the load in polynomial form (5.14).

Table 9. Error (5.15) of the identification of the load in polynomial form for disturbed data
(∆t = 1/4)

Degree 10 11 12 13
(No. of polynomials) (121) (144) (169) (196)

ε [%] 20.8 14.2 3.94 5.18

We expect that the error for the noisy data should be bigger. However, comparing the results
presented in Tables 6 and 9, we can observe that the noisy data does not cause any considerable
increase in the error. It means that the presented approach is resistant to disturbance of the
internal responses. This is a key quality of the method in terms of solving inverse problems.

6. Concluding remarks

In the paper, a method of solving problems described by an inhomogeneous equation of plate
vibration is presented. The approach is relatively simple and suitable for solving both direct and
inverse problems. The theorem of linear independence of the plate polynomials has been proved.
The greatest advantage of the method is its usability for solving the ill-posed inverse problems.
In the paper, the way of identification of the load (non-homogeneity) has been presented. The
results described in the paper show a remarkable efficiency of the method for solving inverse
problems. Moreover, the approach proposed here is relatively invulnerable to disturbance of the
input data.
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