
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

51, 2, pp. 349-362, Warsaw 2013

EXTENSION OF THE CONCEPT OF LIMIT LOADS FOR 3D CASES FOR
A CENTRALLY CRACKED PLATE IN TENSION

Marcin Graba

Kielce University of Technology, Faculty of Mechatronics and Machine Design, Kielce, Poland

e-mail: mgraba@tu.kielce.pl

In the paper, the verification of the limit load solutions for a centrally cracked plate under
tension (CC(T)) is presented using FEM calculations. Numerical calculations and analysis
of the obtained FEM results were used to recalculation of the existing limit load formulas
proposed by EPRI procedures for plane strain and plane stress. After verification of the EPRI
solutions, three dimensional FEM calculation was done to determine the limit loads for 3D
cases of CC(T) specimens. The measurable effect of the paper is a catalogue of numerical
solutions and their approximations, which may be useful in the engineering analysis.
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1. Introduction and basis for the engineering approach
(based on Kumar et al. (1981))

In the literature, three recent developments in the elastic-plastic fracture mechanics have made
the development of an engineering approach practical. The first of these is the identification of
J-integral or Crack Opening Displacement (COD) as suitably characterizing parameters for duc-
tile fracture, and the development of the resistance curve approach based on these parameters
for crack growth predictions. The second of these is the development of an elastic-plastic es-
timation procedure for cracked bodies, which were presented by Kumar et al. (1981) in EPRI
procedure. And the third of these is the development of an incompressible finite element suitable
for fully plastic calculations. The use of the J-integral (Rice, 1968a,b) for characterizing crack
initiation in ductile materials under large-scale yielding conditions was proposed by Begley and
Landes (1972). The suggestion that a relationship exists between the J-integral and the amount
of stable crack growth was made in studies by Rice et al. (1973), Paris et al. (1979), Hutchinson
and Paris (1979) and Shih et al. (1981).

The elastic-plastic estimation procedure is derived from the work by Shih (1976), Shih and
Hutchinson (1976), Bucci et al. (1972) and Rice et al. (1973). The presented by Kumar et al.
(1981) procedure was based on a quite simple idea. The idea is to estimate the elastic-plastic
solutions by interpolating in a suitable fashion between the fully plastic solutions and the elastic
solutions.

The characterization of stress and strain fields near the crack tip by the J-integral is ana-
logous to the use of the stress intensity factorK as the characterizing parameter in the linear
elastic fracture mechanics. The papers presented by Hutchinson (1968) and Rice and Rosengren
(1968) revealed that, for stationary cracks, the stresses in the vicinity of the crack tip under
yielding conditions varying from small-scale to fully plastic may be represented by following
formulas

σij = σ0
( J

ασ0ε0Inr

) 1

1+n

σ̃ij(θ, n) (1.1)
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where r and θ are polar coordinates of the coordinate system located at the crack tip, σij are
components of the stress tensor, J is the J-integral, n is R-O exponent, α is R-O constant,
σ0 is yield stress, ε0 is strain related to σ0 through ε0 = σ0/E. Functions σ̃ij(n, θ), In(n) must
be found by solving the fourth order non-linear homogenous differential equation independently
for the plane stress and plane strain (Hutchinson, 1968). The full algorithm and the compu-
ter program for evaluation of these functions are presented in Gałkiewicz and Graba (2006).
Equation (1.1) is commonly called the “HRR solution”.

The crack tip field equations (see Eq. (1.1)) can also be expressed in terms of the crack tip
opening displacement. If the crack tip opening displacement denoted as δT is defined as the
opening distance where 45◦ lines intercept the crack faces, the J-integral and crack tip opening
displacement δT are linked by the following relationship

δT = dn
J

σ0
(1.2)

where dn is a tabulated function of σ0/E work hardening exponent, and takes different values for
plane strain and plane stress (Shih, 1981). This function can be determined using the computer
program presented by Gałkiewicz and Graba (2006).

When the HRR field encompasses the fracture process zone, the parameters J-integral and
crack tip opening displacement are natural candidates to characterize fracture (Kumar et al.,
1981).

2. Engineering approach to the fracture mechanics – fully plastic solutions
(based on Kumar et al. (1981))

As indicated earlier (what was presented by Kumar et al. (1981), and (R5, 1998), (R6, 2001),
the key to develop the engineering approach rests in the ability to tabulate fully plastic crack
solutions for a broad range of representative structural configurations. Such tabulations are of
course already available for linear elasticity (Rooke and Cartwright, 1976; Tada et al., 1973).

In linear elasticity (Kumar et al., 1981), the crack parameters like the J-integral, the crack
or mouth opening displacement δ and the load line displacement ∆c (due to crack) can be
scaled with respect to load according to the following relationships
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where the superscript e denotes elastic quantities. In Eqs. (2.1), P is a generalized load per unit
thickness, a/W is crack length to width ratio, σ0 is yield stress, reference stress or, in some
applications, the flow stress, and ε0 is the corresponding strain (the connection σ0 = Eε0 can
always be made, but is not necessary). The quantities J , δ and ∆c are functions of a/W only.
P0 is the limit or reference load per unit thickness based on the stress σ0, defined as

P0 = Λbσ0 (2.2)

where Λ is the constraint factor which may depend on the ratios of relevant structure dimensions,
and b is the length of the uncracked ligament. The EPRI procedure (Kumar et al., 1981) presents
the limit loads formula only for the plane stress and plane strain separately.

Based on the HRR solution (Hutchinson, 1968; Rice and Rosengren, 1968), the analysis
presented by Ilyushin (1946) and considerations presented by Kumar et al. (1981), for a fully
plastic material, it can be noted that the simple functional dependence of the field quantities
on the applied load or displacement also means that quantities such as the J-integral, the crack
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opening displacement δ and other crack parameters have the following forms (Goldman and
Hutchinson, 1975)
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where the applied load appears explicitly in the manner shown, and the superscript p denotes
fully plastic quantities. The dimensionless quantities Ĵp, δ̂p and ∆̂pc are functions of only a/W
and n and are independent of the applied load (Kumar et al., 1981).
If the presented solution is to be used for elastic-plastic analysis, appropriate Eqs. (2.1) and

(2.3) must be added (Kumar et al., 1981). It can be noted, as presented by Kumar et al. (1981),
the elastic, fully plastic or elastic-plastic estimation procedure requires knowledge of the limit
load P0, which was presented by Eq. (2.2). In 1981, Kumar et al. (1981) presented some fully
plastic solutions and limit load equations for a centrally cracked plate – CC(T) for a compact
specimen – C(T), for a single edge notch specimen in bending – SEN(B) or in tension – SEN(T),
and for a double edge notch specimen in tension – DEN(T). All these elements were used to
idealize the complex structural components, what was presented in (SINTAP, 1999; FITNET,
2006).

Fig. 1. Centrally cracked plate in tension (CC(T) specimen)

The geometry under consideration is often a centrally cracked plate in tension (CC(T) speci-
men) – see Fig. 1. This geometry was used to determine the relationship between J-integral and
Q-stress defined by O’Dowd and Shih (1991, 1992), what was discussed by Graba (2012). The
CC(T) geometry was used by Sumpter and Forbes (1992) to determine the fracture toughness
in low temperature. This geometry was also used by Neimitz et al. (2004) to assess the fracture
toughness and fracture mechanism of construction steels. The presented by Kumar et al. (1981)
limit load analysis of this configuration leads to the following relationships for determination of
the limit load

P0 =






2bσ0 for plane stress

4√
3
bσ0 for plane strain

(2.4)

where b is the uncracked ligament of the specimen, b =W − a.
As we can see, this solution is only true for plane stress or plane strain. It can be noted that

this approach does not take into account the effect of thickness of the structural component. If
an engineer needs the limit load for a three-dimensional case, he uses a model for the plane stress
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assuming a unit thickness, and then multiplies the result by the corresponding thickness reference
value. Such behavior leads to achievement of a conservative result which may be different from
the real external load of the structural component.

Thus, the above presented relationships for plane stress and plane strain will be verified
numerically by using the Finite Element Method (FEM), and then three dimensional calculations
will be done based on the newly proposed formulas for finding the limit loads, which take into
consideration the specimen thickness, not included in Eqs. (2.4). A similar verification of the
limits load solutions for plane stress and plane strain for single edge notched specimen (SEN(T))
was presented in 2013 (Graba, 2013).

3. Details of the numerical analysis to verify the EPRI solutions for plane stress
and plane strain – 2D cases

In the numerical analysis, the centrally cracked plate in tension (CC(T)) was used (Fig. 1).
Dimensions of the specimens satisfy the standard requirement which is set up in FEM calculation
L ­ 2W , where W is the width of the specimen and L is the measuring length of the specimen.
Computations were performed for the plane strain and plane stress using a small strain option.
The relative crack length was a/W = {0.05, 0.20, 0.50, 0.70} where a is the crack length, and
the width of specimens W was equal to 40mm (in this case, the measuring length L ­ 80mm).
All geometrical dimensions of the CC(T) specimen are presented in Table 1.

Table 1. Geometrical dimensions of the CC(T) specimen used in numerical analysis

Width Measuring Total Relative crack Crack AA
W length length length length b =W − a
[mm] 4W [mm] 2L [mm] a/W a [mm] [mm]

40 160 176

0.05 2 38
0.20 8 32
0.50 20 20
0.70 28 12

AA – length of the non-cracked section of the specimen

The choice of the CC(T) specimen was intentional, because CC(T) specimens are used in
the FITNET procedures (FITNET, 2006) to model real structural elements. Also in FITNET
procedures (FITNET, 2006), the limit load and stress intensity factors solutions for CC(T)
specimens are presented. However, in the EPRI procedures (Kumar et al., 1981), the hybrid
method for calculation of the J-integral, crack opening displacement (COD) or crack opening
displacement (CTOD) is given, but the presented by EPRI (Kumar et al., 1981) limit load
solutions are different form the FEM results. Also some laboratory tests in order to determine
the critical values of the J-integral may be done using the CC(T) specimen (Neimitz et al.,
2004). The ASTM E 1820-05 standard requirements (ASTM 1820-05, 2005) dictate that the
plane strain fracture toughness is determined using the SEN(B) specimen – a single edge notch
specimen in bending.

Computations were performed using ADINA SYSTEM 8.7.3 (ADINA, 2008a,b). Due to the
symmetry, only a quarter of the specimen was modeled. The finite element mesh was filled with
the 9-node plane strain or plane stress elements. The size of the finite elements in the radial
direction was decreasing towards the crack tip, while in the angular direction the size of each
element was kept constant. The crack tip region was modeled using 36-50 semicircles. The first
of them, was at least 20 times smaller than the last one. It also means that the first finite
element behind the crack tip is smaller 2000 times than the width of the specimen. The crack
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tip was modeled as a quarter of the arc whose radius was equal to rw = 1 · 10−6-2.5 · 10−6m
(2.5·10−5-6.25·10−5)W ). The whole CC(T) specimen was modeled using 323 finite elements and
1353 nodes. The external load was applied to the bottom edge of the specimen. For the plane
strain condition in the numerical analysis, the assumed thickness was equal to B = 1m and for
the plane stress B = 1mm. The presented numerical model was built according to the literature,
given by Brocks et al. (2003), Brocks and Scheider (2003) and by Graba and Gałkiewicz (2007).

In the FEM simulation, the model of an elastic-perfectly plastic material was used to calculate
the limit load. The analysis was performed for four materials which were differed by the yield
stress. In all calculations, the same values of Young’s modulus and Poisson’s ratio were assumed.
The tensile properties for the elastic-perfectly plastic materials, which were used in the numerical
analysis, are presented below in Table 2.

Table 2. Mechanical properties of the materials used in numerical analysis (σ0 – yield stress,
E – Young’s modulus, ν – Poisson’s ratio, ε0 – strain corresponding the yield stress)

σ0 [MPa] E [MPa] ν ε0 = σ0/E

315

206000 0.3

0.00153
500 0.00243
1000 0.00485
1500 0.00728

In the numerical analysis, 32 CC(T) specimens were used which were differed by the crack
length (different a/W ), yield stress and dominations of the plane stress or plane strain.

Fig. 2. (a) The finite element model for the CC(T) specimen used in the numerical analysis for
2D cases; (b) the finite elements mesh near the crack tip using in the numerical analysis (2D cases)

4. Results of the numerical analysis for 2D cases and comparison with
the EPRI solutions

Evaluation of the achievements by the CC(T) specimen of full plasticity, and thereby with the
state of the load limit achieved, were performed on the basis of the evolving plastic zone near the
crack tip and a graph of the external force P as a function of the load line displacement vLL.
For all the analyzed specimens, graphs presenting the external load as a function of the load line
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displacement were made. Analysis of each graph was done with simultaneous evaluation of the
plastic zone. For the limit load the value of the external load is considered, which is read from a
graph of the external load P as a function of the load line displacement vLL, from the horizontal
segment of the P = f(vLL) curve (plateau on the graph P = f(vLL)), which corresponds to full
plasticity of the uncracked ligament of the specimen.
In Fig. 3, some graphs obtained in the numerical analysis of the external load as a function

of the load line displacement are presented. Based on these charts and schedules of the plastic
zone for each analyzed specimen, the limit load value was determined as a constant value of the
external load from the graph. The results of this analysis are presented in Table 3.

Fig. 3. Graphs of the external load P changes as a function of the load line displacement vLL for
CC(T) specimens (E = 206GPa, ν = 0.3, W = 40mm: (a) a/W = 0.05, dominated by plane stress –
specimen thickness in the numerical analysis was equal to B = 1mm; (b) a/W = 0.70, dominated by

plane strain – specimen thickness in the numerical analysis was equal to B = 1m

Table 3. Estimated numerically limit load values for CC(T) specimens for plane stress and
plane strain

σ0
[MPa]

Plane stress (B = 1mm) Plane strain (B = 1m)
a/W a/W

0.05 0.20 0.50 0.70 0.05 0.20 0.50 0.70
P0 [kN] P0 [kN]

315 24.23 20.22 12.54 7.47 28037.56 23377.87 14503.78 8664.88

500 38.45 32.09 19.90 11.85 44467.61 37086.82 23016.53 13750.97

1000 76.69 64.08 39.75 23.70 88108.58 73861.20 45931.68 27476.47

1500 115.22 96.21 59.67 35.48 133125.62 111126.04 69000.41 41061.70

In Fig. 4, the influence of the relative crack length and yield stress on the limit load are
presented. Analysis of the obtained numerical results indicates a few obvious, almost natural
conclusions:

• limit load values for the plane strain cases are greater than for plane stress cases, if the
same value of the specimen thickness is a reference value;

• for higher values of the yield stress, greater values of the limit load are observed;
• an increase in the crack length causes a decrease in the value of the limit load.

Analysis of the obtained numerical results indicates a proportional limit load dependence of
the yield stress and crack length, what may be observed in Fig. 4.
In Fig. 5, a comparison of the plastic zones for plane stress and plane strain was presented

for the normalized external load P/P0 = 1.00. It can be noted that for the same value of the
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Fig. 4. (a) Influence of the relative crack length a/W on the limit load P0 for CC(T) specimens
(E = 206GPa, ν = 0.30, W = 40mm) dominated by plane stress (B = 1mm); (b) influence of the yield
stress σ0 on the limit load P0 for CC(T) specimens (E = 206GPa, ν = 0.30, W = 40mm) dominated

by plane strain (B = 1m)

Fig. 5. Comparison of plastic zones for plane stress and plane strain for CC(T) specimen characterized
by a/W = 0.5, W = 40mm, σ0 = 315MPa, E = 206GPa, ν = 0.3: (a) P/P0 = 1.00, plane stress;

(b) P/P0 = 1.00, plane strain

Table 4. Limit loads for CC(T) specimens determined for plane stress and plane strain, using
EPRI solutions (Kumar et al., 1981)

σ0
[MPa]

Plane stress (B = 1mm) Plane strain (B = 1m)
a/W a/W

0.05 0.20 0.50 0.70 0.05 0.20 0.50 0.70
P0 [kN] P0 [kN]

315 23.94 20.16 12.60 7.56 27643.53 23278.76 14549.23 8729.54

500 38.00 32.00 20.00 12.00 43878.62 36950.42 23094.01 13856.41

1000 76.00 64.00 40.00 24.00 87757.24 73900.83 46188.02 27712.81

1500 114.00 96.00 60.00 36.00 131635.90 110851.30 69282.03 41569.22

external load normalized by the appropriate limit load, a larger plastic zone is observed for
the plane stress condition for the elastic-perfectly plastic material. Different plastic zones are
characterized for the plane stress and plane strain.

All obtained numerical results of the limit loads were compared with the values determined
by using Eqs. (2.4) for the plane stress and plane strain respectively (Kumar et al., 1981). Table 4
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presents the limit loads which were calculated using the EPRI solutions (Kumar et al., 1981).
In Table 5, differences between the numerical solutions and EPRI results (Kumar et al., 1981)
are presented, which were calculated as [(P0 EPRI − P0 FEM)/P0 EPRI ] · 100%, where P0 EPRI
is the limit load found from Eqs. (2.4) (for the plane stress or plane strain respectively), and
P0 FEM is the limit load value determined by the Finite Element Method (FEM).

Table 5. Difference between EPRI solutions (Kumar et al., 1981) and numerical results of the
limit loads for CC(T) specimens for plane stress and plane strain

σ0
[MPa]

Plane stress (B = 1mm) Plane strain (B = 1m)
a/W a/W

0.05 0.20 0.50 0.70 0.05 0.20 0.50 0.70
[(P0 EPRI − P0 FEM)/P0 EPRI ] · 100% [(P0 EPRI − P0 FEM)/P0 EPRI ] · 100%

315 1.21% 0.30% 0.48% 1.19% 1.43% 0.43% 0.31% 0.74%

500 1.18% 0.28% 0.50% 1.25% 1.34% 0.37% 0.34% 0.76%

1000 0.91% 0.12% 0.63% 1.25% 0.40% 0.05% 0.55% 0.85%

1500 1.07% 0.22% 0.55% 1.44% 1.13% 0.25% 0.41% 1.22%

As one can see, the presented above numerical results agree with the values determined
using Eqs. (2.4). The average error between the numerical results and values determined using
the EPRI (Kumaret al., 1981) solution is equal to 0.79% for the plane stress and 0.66% for the
plane strain.

5. Extension of the concept of limit loads to 3D cases

The presented in EPRI procedures (Kumar et al., 1981) Eqs. (2.4), which may be used to
calculate the limit loads, are given for the plane stress or plane strain only. The above presented
equations do not include the specimen thickness. In fact, it is rare that a structural element
was purely dominated by the plane stress or plane strain. Currently, in the engineering analysis,
one of the two formulas is used (valid for plane stress) with including an appropriate value of
the specimen thickness. However, the obtained result may actually understate the actual limit
load, which the structural component can carry on. Therefore, in this paper, an extension of
the limit load patterns to three-dimensional cases is presented (in the analysis, the specimen
thickness will be included – the 3D analysis). That analysis will be substantial in the following
subsections.

5.1. Details of the numerical analysis in 3D cases

In the three dimensional FEM analysis, the same computer program (ADINA, 2008a, 2008b),
material properties (Table 2) and dimension of the CC(T) specimens (Table 1) were used for
verification of the EPRI solutions (Kumar et al., 1981). The computations were performed for
three dimensional geometry using a small strain option. The relative crack length was a/W =
= {0.05, 0.20, 0.50, 0.70} where a is the crack length, and the width of specimens W was equal
to 40mm. In the analysis, six specimen thicknesses were tested: B = {2, 4, 8, 16, 25, 40}mm.
The selected range of the thickness specimens ensures the dominance of plane stress or plane
strain and the triaxial state of stress and strain near the crack tip.

The computations were performed using ADINA SYSTEM 8.7.3 (ADINA, 2008a, 2008b).
Due to the symmetry, only one eight-th part of the specimen was modeled. The finite element
mesh was filled with the 8-node three dimensional brick elements. ADINA (ADINA, 2008a,
2008b) recommends using a 8-node bricks finite elements, for the case of tension dominance.
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Fig. 6. (a) Finite element model for CC(T) specimen used in numerical analysis for 3D cases; (b) finite
elements mesh near the crack tip using in numerical analysis (3D cases)

The size of finite elements in the radial direction was decreasing towards the crack tip,
while in the angular direction the size of each element was kept constant. The crack tip region
was modeled using 36 semicircles. The first of them was 20 imes smaller than the last one.
It also means that the first finite element in front of the crack tip is 2000 times smaller than
the width of the specimen. The crack tip is modeled as a quarter of the arc whose radius is
equal to rw = 1 ·10−6-2.5 ·10−6 m (2.5 ·10−5-6.25 ·10−5)W ). The mesh consists of eight layers of
elements (through half the thickness of the SEN(B) specimen). The layer interfaces are located at
x3/B = {0, 0.119, 0.222, 0.309, 0.379, 0.434, 0.472, 0.494, 0.5}. It should be noted that the layers
become thinner as the free surface is approached. The layer in the middle of the specimen is
twenty to fifty times thicker than the one near the free surface. The whole CC(T) specimen
is modeled using 15552 finite elements and 18018 nodes. An examplary finite element model
for the CC(T) specimen for the 3D case is presented in Fig. 5. The presented numerical model
was built according to Brocks et al. (2003), Brocks and Scheider (2003), Graba and Gałkiewicz
(2007) and Graba (2009).

5.2. Numerical results for three dimensional cases

The evaluation of the achievement by the CC(T) specimen of full plasticity, and thereby
the state of the load limit, was performed on the basis of the evolving plastic zone near the
crack tip and the graph of the external force P as a function of the load line displacement vLL.
For all analyzed specimens, graphs presenting the external load as a function of the load line
displacement were made. Analysis of each graph was done with simultaneous evaluation of the
plastic zone.

For the limit load, the value of the external load is considered, which was read from a graph
of the external load P as a function of the load line displacement vLL from the horizontal
segment of the P = f(vLL) curve (plateau on the graph P = f(vLL)) corresponding to full
plasticity of the uncracked ligament of the specimen.

Figure 7 presents some graphs obtained in the numerical analysis of the external load P as
a function of the load line displacement vLL. Based on these and similar charts and sche-
dules of plastic zone for each analyzed specimen, the limit load was determined as a con-
stant value of the external load from the graph. Some results of this analysis are presented
in Table 6, which also include a comparison of the numerical results with the values obta-
ined using EPRI procedures (Kumar et al., 1981). In these Tables, the error values were cal-
culated as Er = [(P0 EPRI − P0 FEM)/P0 EPRI ] · 100%, where P0 FEM denotes the limit lo-
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ad calculated numerically for the 3D specimen and P0 EPRI denotes the limit load calcula-
ted using Eqs. (2.4) for the plane stress and plane strain, respectively, using EPRI solutions
(Kumar et al., 1981). All the obtained numerical analysis results are available on website:
http://www.tu.kielce.pl/∼mgraba/Limits loads/index.php.

Fig. 7. Graphs of the external load P changes as a function of the load line displacement vLL for
CC(T) specimens – 3D cases, E = 206GPa, ν = 0.30, W = 40mm: (a) a/W = 0.05, σ0 = 315MPa;

(b) a/W = 0.20, σ0 = 500MPa

Table 6. Selected results of numerical calculations – limit load values for three dimensional
CC(T) specimens characterized by different yield stress, crack length and specimen thickness

σ0
[MPa]

B
[m]

P0 for P0 for plane P0 for plane Er for Er for
a/W 3D case stress EPRI strain EPRI plane stress plane strain

[kN] [kN] [kN] [%] [%]

315 0.002 0.05 48.60 47.88 55.29 1.48 13.76

315 0.002 0.20 40.93 40.32 46.56 1.49 13.75

500 0.008 0.50 167.20 160.00 184.75 4.31 10.50

500 0.008 0.70 102.31 96.00 110.85 6.17 8.35

1000 0.016 0.05 1259.86 1216.00 1404.12 3.48 11.45

1000 0.016 0.20 1072.56 1024.00 1182.41 4.53 10.24

1500 0.025 0.50 1641.46 1500.00 1732.05 8.62 5.52

1500 0.025 0.70 1006.47 900.00 1039.23 10.58 3.25

In Fig. 8, the influence of yield stress and specimen thickness on the limit loads is presented.
Analysis of the obtained numerical results indicates a few obvious, almost natural conclusions:

• limit load values for the specimen characterized by a large thickness are greater than for
the specimen characterized by smaller thickness;

• for higher values of the yield stress, greater values of the limit load are observed;
• an increase in the crack length causes a decrease in the value of the limit load.
Analysis of the obtained numerical results indicates a proportional limit load dependence of

the yield stress, specimen thickness and crack length, which may be observed in Fig. 8. These
two facts will be used in the approximation of the numerical results, which will be discussed in
one of the next sections of this paper.

5.3. Approximation of numerical results for 3D cases – new limit loads solution

The presented in the paper and on website http://www.tu.kielce.pl/∼mgraba/Limits loads/
index.php numerical results, from the engineering point of view, can be quite useful when their
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Fig. 8. (a) Influence of the yield stress σ0 on the limit load P0 for 3D CC(T) specimens (E = 206GPa,
ν = 0.30, W = 40mm) characterized by B = 4mm; (b) influence of the specimen thickness B on the
limit load P0 for 3D CC(T) specimens (E = 206GPa, ν = 0.30, W = 40mm) characterized

by σ0 = 1000MPa

use is simple. This can be achieved by implementing the results of numerical approximations.
In a general form, the following formula for calculation of the limit load for three-dimensional
cases can be proposed

P0 = σ0f
( a
W

)
(5.1)

where f(B, a/W ) is a function which depends on the specimen thickness B and relative crack
length a/W , which may be expressed by the length of the uncracked ligament of the specimen
b =W − a. That is why Eq. (5.1) can be written as

P0 = σ0f(B, b) (5.2)

Using the presented in the paper figures and tables, the first stage of the approximation was
done. The function f(B, b) for the analyzed geometry may be written as

f(B, b) = FI + FIIB
FIII (5.3)

where functions FI , FII , FIII depend on the length of the uncracked ligament of the specimen
(relative crack length) b =W −a =W (1−a/W ). The results of the first stage of approximation
are presented in Table 7.

Table 7. Coefficients of the approximation in the first stage – Eq. (5.3)

a/W FI FII FIII R2

0.05 −0.00276 81.67896 1.007822 0.999995
0.20 0.01060 80.76869 1.046697 0.999946

0.50 0.003705 51.54051 1.045548 0.999989

0.70 −0.00091 30.28136 1.032773 0.999994

In the second stage of the approximation, the numerical results, reciprocal relationship be-
tween coefficients FI , FII , FIII and length of the uncracked ligament of the specimen (denoted
as b = W − a) were found. The results of the second stage of approximation are presented in
Table 8.
To take advantage of the presented approximate procedures, the yield stress should be in-

serted in MPa, and the thickness and the uncracked ligament of the specimen in meters. The
obtained result will express the limit load in kN.
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Table 8. Numerical results of the second stage of the approximation

a/W FI FII FIII

〈0.05, 0.20〉
FI = FIab+ FIb FII = FIIab+ FIIb FIII = FIIIab+ FIIIb
R2 = 1.000 R2 = 1.000 R2 = 1.000
FIa = −2.22645 FIIa = 151.71 FIIIa = −6.47926
FIb = 0.08185 FIIb = 75.914 FIIIb = 1.25403

〈0.20, 0.70〉
FI = FIab+ FIb FII =

(
FIIa + FIIb

ln b
b

)
−1

FIII = FIIIa[1− exp(−FIIIbb)]
R2 = 0.999999 R2 = 0.999991 R2 = 0.99935
FIa = 0.5752763 FIIa = 0.003844937 FIIIa = 1.0465205
FIb = −0.0078064 FIIb = −0.000079388 FIIIb = 360.9183229

For different material properties (yield stress σ0) and different geometrical dimensions (such
as the specimen thickness B, relative crack length a/W ) which were not included in the nu-
merical analysis, the coefficients FI , FII , FIII and FIa, FIb, FIIa, FIIb, FIIIa, FIIIb may be
evaluated using the linear or quadratic approximation.

6. Conclusions

In the paper, based on FEM calculations, a verification of the limit load solutions for the CC(T)
specimen, which are given in the EPRI procedures (Kumar et al., 1981) was carried out. During
calculating the cases of plane strain and plane stress, the limit load values were determined for
four elastic-perfectly plastic materials and four relative crack lengths. All numerical results were
presented in tabular and graphic forms. Assuming that the FEM model fulfills the requirements
presented in the scientific literature (Brocks et al., 2003; Brocks and Scheider, 2003; Graba and
Gałkiewicz, 2007; Graba, 2009), the numerically obtained results may be considered as correct.
In the next step of the analysis, during three-dimensional FEM analysis, a generalization of these
formulas (proposed by EPRI procedures (Kumar et al., 1981)) to three-dimensional cases was do-
ne. The proposed new formula of calculation of the limit loads for the CC(T) specimen takes into
account the thickness of the structural component (specimen), and yields a less conservative solu-
tion than formulas proposed by the EPRI procedures for plane strain or plane stress. For practical
applications to solving engineering problems, all the obtained results for the three dimensional
cases (which are available on the website) were approximated by mathematical formulas. The
integral part of the paper is website http://www.tu.kielce.pl/∼mgraba/Limits loads/index.php,
which presents all the numerical results obtained for three dimensional CC(T) specimens.

The performed numerical calculations and analysis of the obtained results lead to natural
conclusions:

• limit load values for the plane strain cases are greater than for the plane stress cases if the
same value of the specimen thickness is a reference value;

• for higher values of the yield stress, greater values of the limit load are observed;
• an increase in the crack length causes a decrease in the value of the limit load;
• limit load values for the specimen characterized by a large thickness are greater than for
the specimen characterized by a smaller thickness.

In conclusion, it should be noted that the measurable effect of this paper is a catalogue of
numerical and analytical solutions for determination of the limit loads for CC(T) specimens for
three dimensional cases, which takes into account the effect of the yield stress, crack length and
thickness of the structural element.
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Rozszerzenie koncepcji obciążeń granicznych na przypadki trójwymiarowe dla płyty
z centralną szczeliną poddanej rozciąganiu

Streszczenie

W pracy przedstawiono numeryczną weryfikację wzorów pozwalających wyznaczyć obciążenie gra-
niczne dla przypadku płyty z centralną szczeliną poddanej rozciąganiu (próbka CC(T)) dla przypadków
płaskiego stanu naprężenia i płaskiego stanu odkształcenia. W kolejnym kroku dokonano rozszerzenia
koncepcji wyznaczania obciążeń granicznych na przypadki trójwymiarowe, uwzględniając efekt grubości,
wykorzystując szereg trójwymiarowych obliczeń numerycznych. Uzyskane wyniki aproksymowano wzora-
mi analitycznymi. Efektem wymiernym pracy jest katalog rozwiązań numerycznych i ich aproksymacji,
pozwalający oszacować obciążenie graniczne dla trójwymiarowego elementu konstrukcyjnego (z uwzględ-
nieniem grubości), bez konieczności prowadzenia czasochłonnych obliczeń numerycznych. Zaprezentowane
w pracy wyniki mogą znaleźć zastosowanie w analizie inżynierskiej (np. analiza FAD lub analiza CDF).
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