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The quality of the current collection of high-speed trains is dependent on the compatibility
of the catenary and pantograph dynamics and on its implications on the contact force.
The design and analysis of these systems using proper computational procedures allows
capturing all the relevant features of their dynamic behavior. This work proposes an approach
to the dynamics of the energy collection system based on the finite elements method, for
the catenary, and on multibody dynamics methods, for the pantograph, integrated via a
co-simulation procedure. A contact model based on a penalty formulation is selected to
represent the pantograph-catenary interaction. The methodology is applied to the study of
high speed train operations with multiple pantographs, as this environment constitutes one
of the limiting scenarios for the increase of the operation speed.
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1. Introduction

A limitation on the velocity of high-speed trains concerns the ability to supply the proper amount
of energy required to run the engines, through the catenary-pantograph interface (Collina and
Bruni, 2002). Due to the loss of contact not only the energy supply is interrupted but also arcing
between the collector bow of the pantograph and the contact wire of the catenary is observed,
leading to deterioration of the functional conditions of the two systems. Higher contact forces
would lead to less incidents of loss of contact but would also lead to higher friction forces and,
consequently, to higher wear of the catenary contact wire and pantograph registration strip
(Bucca and Collina, 2009). A balance between contact force characteristics and wear of the
energy collection system is the objective of improving contact quality.

The quest for higher speeds for train operations requires changes in the catenaries and
pantographs in which the increase of the wave travelling speed on the contact wire plays the
central role, being this achieved by decreasing the weight per unit of length of the contact wire
and increasing its tension (Collina and Bruni, 2002). For instance, to achieve the world record
of 574.8 km/h by a French high-speed train, the contact wire used was made of copper with a
cross-section of 150mm2 and subjected to an axial tension of 40000N, while the voltage in the
line was increased from 25 kV to 31 kV (Pupke, 2010). In order for the Sinkansen to operate at
360 km/h, in lines that were designed for an operation up to 240 km/h not only the tension of
the contact wire is increased from 14600 N to 19600N but the tension on the messenger and
auxiliary wires also changed in order to maintain the total tension at 53900 N (Ikeda, 2008).

Another important aspect of the catenary design is to maintain as constant as possible the
stiffness of the contact wire to transversal loading by the pantograph registration strip (Men-
tel, 2008; Poetsch et al., 1997). Different types of catenaries exist with alternative topological
arrangements. The compound catenary, commonly used in the Japanese Sinkansen, guarantees
an almost uniform stiffness while maintaining the contact wire at a constant height, without
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requiring pre-sag. The stitch wire catenaries, such as the French LN1 and the German Re330,
use the stitch wire to improve the uniformity of stiffness around the steady-arms while in the
simple catenaries, such as the French LN2 or Italian C270, the stiffness is controlled via the
dropper distance around the steady-arms. For both stitch and simple catenary types there is a
pre-sag of 1/1000 to further improve the uniformity of the stiffness (Poetsch et al., 1997).

The overhead catenary system is a very lightly damped structure in which the damping cha-
racterization is important, in particular when the trains are equipped with multiple pantographs
(Poetsch et al., 1997). Different studies show that the evaluation of the pantograph-catenary con-
tact quality is highly dependent on the amount of structural damping considered for the catenary
structural elements (Ambrósio et al., 2010). However, it is also recognized that the estimation of
the structural damping of the catenary is still a challenge. The catenary system dynamics exhi-
bits small displacements about the static equilibrium position being the slacking of the droppers
the only nonlinearities. Therefore, the linear finite element method has all features necessary to
the modeling of this type of systems, provided that the nonlinear effects are suitably modeled
as nonlinear forces, in this case, the dropper slacking can be handled by adding corrective terms
to the system force vector.

The aerodynamic forces due to the direct effect of the wind on the overhead contact line,
direct effect on the pantograph components and indirect effect due to the additional motion of
the carbody imparted to the base of the pantograph influence the dynamics of the pantograph
and catenary (Kiessllng et al., 2002; Poetsch et al., 1997; Pombo and Ambrósio, 2012; Pombo
et al., 2009). Any dynamic analysis methodology that aims at addressing a realistic modeling
of the pantograph must allow handling these aerodynamic loads. In any case, the problem
of characterizing and controlling the pantograph aerodynamics, although addressed in several
technological projects, is still an open issue for research (EUROPAC, 2008; Pombo et al., 2009).

Different pantographs are currently used in train vehicles around the world. With the excep-
tion of the Sinkansen 500 series telescopic pantograph, all high-speed railway pantographs are
of the two-stage type. The topology of a pantograph must address three phases of its opera-
tion: lift the pan head to contact wire height and compensation for spans with lower catenary
heights; handle the displacements and frequencies associated to steady-arms passage; deal with
the displacements and frequency excitations due to the dropper passage and to higher frequency
excitations (Poetsch et al., 1997). Typically, the pantograph head with its suspension is respon-
sible for handling the high-frequency excitations up to 20Hz, while the lower stage, including
the pneumatic bellow, deal with the low frequency excitations, below 5Hz. Some other effects
such as the pantograph bow flexibility and aerodynamics may result in the contact force to
exhibit frequency contents over 20Hz (Collina et al., 2009). Due to the range of motion of the
pantograph mechanical components and to the nonlinear elements present on its construction,
multibody methods are well suited to handle the pantograph dynamics (Ambrósio et al., 2012;
Pombo et al., 2009). Special models based on the use of lumped masses can still be used in
the framework of linear finite element methods (Collina and Bruni, 2002), however, the use of
multibody methods ensure that both lumped mass and detailed nonlinear pantograph models
can still be used in the analysis of the pantograph-catenary interaction problem. Hybrid metho-
dologies in which the catenary dynamics is evaluated using a linear finite element model and the
pantograph dynamics is obtained using a real prototype in a test bench are hardware-in-the-loop
alternatives to fully computational oriented approaches (Facchinetti and Bruni, 2012).

The interaction of the pantograph and catenary is achieved through the contact of the
pantograph registration strip on the catenary contact wire. The modeling of contact between
the registration strip and the contact wire can be done using unilateral kinematic constraints (Seo
et al., 2005), which does not require the estimation of any contact law parameter but prevents
the occurrence of the loss of contact. Alternatively, penalty formulations can be used (Poetsch et
al., 1997; Rauter et al., 2007) with no limitations on how contact may develop but requiring that
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the penalty terms of the contact law are estimated. In any case, the use of different methods to
handle the dynamics of the catenary and pantograph requires that either a single code in which
both methods are implemented is developed or that a co-simulation strategy between the two
codes is implemented (Ambrósio et al., 2008; Schaub and Simon, 2001). The contact modeling
plays a central role in the establishment of the co-simulation strategies (Ambrósio et al., 2008).

The quality of the pantograph-catenary contact required for high-speed train operations is
quantified in current regulations (EN50317, 2012; EN50367, 2006). The norm EN50367 specifies
the following thresholds for pantograph acceptance (EN50367, 2006)
• Mean contact force (Fm) Fm = 0.00097v

2 + 70N
• Standard deviation (σmax) σmax < 0.3Fm
• Maximum contact force (Fmax) Fmax < 350N
• Maximum CW uplift at steady-arm (dup) dup ¬ 120mm
• Maximum pantograph vertical amplitude (∆z) ∆z ¬ 80mm
• Percentage of real arcing (NQ) NQ ¬ 0.2%

A limitation of the operational speed of trains is the wave propagation velocity on the contact
wire C, which is given by (Dahlberg, 2007)

C =

√
π2EI

ρL2
+
F

ρ
(1.1)

where F is the tension of the contact wire, ρ is the contact wire mass per length unit, EI is the
beam bending stiffness and L is the beam length. For high-speed catenaries, the second term of
Equation (1.1) dominates the critical speed being the first term negligible. For instance, for the
catenary considered in Table 1, the term π2EI/(ρL2) ≈ 1.3 while F/ρ = 15038, for which the
critical speed is 441 km/h. When the train speeds approach the wave propagation velocity of the
contact wire, the contact between the pantograph and the catenary is harder to maintain due
to increase in the amplitude of catenary oscillations and bending effects. In order to avoid the
deterioration of the contact quality, the current regulation imposes a limit to the train speed of
V = 0.7C.

The methods proposed in this work are demonstrated in the framework of the application
of the regulation EN50367 to the operation of multiple pantographs in high-speed trains. This
application addresses one of the limiting factors in high-speed railway operation that is the
need to use more than a single pantograph for current collection and the disturbance that the
pantographs cause on each other dynamics that worsens the quality of the pantograph-catenary
contact.

2. Catenary dynamics

High-speed railway catenaries are periodic structures that ensure the availability of electrical
energy for train vehicles. Typical constructions, such as those presented in Fig. 1, include masts,
serving as the support for the registration arms and messenger wire, the steady arms, which
not only support the contact wire but also ensure the correct stagger, the messenger wire, the
droppers, the contact wire and, eventually, the stitch wire. Both messenger and contact wires
are tensioned with high axial forces to limit the sag, to guarantee the appropriate smoothness
of the pantograph contact by controlling the wave traveling speed and to ensure the stagger of
the contact and messenger wires.

The motion of the catenary is characterized by small rotations and small deformations, in
which the only nonlinear effect is the slacking of the droppers. The axial tension on the contact,
stitch and messenger wire is constant and cannot be neglected in the analysis. All catenary
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Fig. 1. Different type of high-speed catenaries implemented in the world: (a) stitch wire catenary;
(b) simple catenary; (c) sinkansen catenary

elements, contact and messenger wires are modeled by using Euler-Bernoulli beam elements
(Poetsch et al., 1997). Due to the need to represent the high axial tension forces, the beam finite
element used for the messenger, stitch and contact wire, designated as element i, is written as

Kei = K
e
L + FK

e
G (2.1)

in which KeL is the linear Euler-Bernoulli beam element, F is the axial tension and K
e
G is the

element geometric matrix. The droppers and the registration and steady arms are also modeled
with the same beam element but disregarding the geometric stiffening. The mass of the gramps
that attach the droppers to the wires are modeled as lumped masses. To ensure the correct
representation of the wave propagation 4 to 6 elements are used in between the droppers of the
finite element models.
Using the finite element method, the equilibrium equations for the catenary structural system

are assembled as

Ma+Cv+Kx = f (2.2)

where M, C and K are the finite element global mass, damping and stiffness matrices. Propor-
tional damping is used to evaluate the global damping matrix, i.e, C = αK+βM with α and β
being suitable proportionality factors (Hughes, 1987), or by assembling the individual damping
matrices of each finite element, i.e, Ce = αeKe + βeMe with αe and βe being proportionality
factors associated with each type of the catenary element, such as the dropper, messenger wire,
stitch wire, etc. The nodal displacements vector is x while v is the vector of nodal velocities,
a is the vector of nodal accelerations and f is the force vector given by

f = f(c) + f(a) + f(d) (2.3)

being f(c) the pantograph contact forces, f(a) the aerodynamic forces, and f(d) the dropper
slacking compensating terms.
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For typical catenary finite element models, the Newmark family of integration algorithms
provide suitable methods for the integration of the equations of motion (Newmark, 1959). The
contact forces are evaluated for t+∆t based on the position and velocity predictions. The finite
element mesh accelerations are calculated by

(M+ γ∆tC+ β∆t2K)at+∆t = ft+∆t −Cṽt+∆t −Kd̃t+∆t (2.4)

Predictions for new positions and velocities of the nodal coordinates of the linear finite element
model of the catenary are found as

d̃t+∆t = dt +∆tvt +
∆t2

2
(1− 2β)at ṽt+∆t = vt +∆t(1− γ)at (2.5)

Then, with the acceleration at+∆t, the positions and velocities of the finite elements at the time
t+∆t are corrected by

dt+∆t = d̃t+∆t + β∆t
2at+∆t vt+∆t = ṽt+∆t + γ∆tat+∆t (2.6)

The droppers slacking is also corrected in each time step, if necessary. Although the droppers
perform as bars during extension, their stiffness during compression is either null or about 1/100
of the extension stiffness, to represent a residual resistance in buckling at high speeds. As the
droppers stiffness is included in the stiffness matrix K as a bar element anytime one of them
is compressed, such contribution for the catenary stiffness has to be removed, or modified. In
order to keep the dynamic analysis linear the strategy is to compensate the contribution to the
stiffness matrix by adding a force to the vector f equal to the bar compression force

f(d)t+∆t = K
e
dropperBd̃t+∆t (2.7)

where the Boolean matrix B simply maps the dropper element coordinates into the global nodal
coordinates.
The correction procedure expressed by using Equations (2.5)1 through (2.7), followed by the

solution of Equation (2.4), is repeated until convergence is reached for a given time step, i.e.,
until |dt+∆t − d̃t+∆t| < εd and |vt+∆t − ṽt+∆t| < εd. εd and εv are user defined tolerances.
Note that the criteria of convergence of the nodal displacements must imply convergence of the
force vector also, i.e, the balance of the equilibrium equation right-hand side contribution of the
dropper slacking compensation force with the left-hand-side product of the dropper stiffness by
the nodal displacements in Equation (2.2). In practice, 6 or more iterations must be allowed in
the correction process outlined.

3. Pantograph dynamics

The roof pantographs used in high-speed railway applications are characterized as mechanisms
with three loops that ensure that the trajectory of the head is in a straight line, perpendicular
to the plane of the base, while the pantograph heads are maintained leveled. The pantographs
are always mounted in the train in a perfect vertical alignment with the center of the boggies of
the vehicle in order to ensure that during curving the center of the bow does not deviate from
the center of the railroad. The mechanical system that guarantees the required characteristics of
the trajectory of the pantograph head during rising is generally made up by a four-bar linkage
for the lower stage and another four-bar linkage for the upper stage. Another linkage between
the head and the upper stage of the pantograph ensures that the bow is always leveled. In order
to control the raise of the pantograph one bar of the lower four-bar linkage is actuated upon by
a pneumatic actuator.
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Let the configuration of the multibody system be described by n Cartesian coordinates q,
and a set of m algebraic kinematic independent holonomic constraints Φ be written in a compact
form as (Nikravesh, 1988)

Φ(q, t) = 0 (3.1)

Differentiating Equation (3.1) with respect to time yields the velocity constraint equation. After
second differentiation with respect to time the acceleration constraint equation is obtained

Φqq̇ = υ Φqq̈ = γ (3.2)

where Φq is the Jacobian matrix of the constraint equations, υ is the right side of velocity
equations, and γ is the right side of acceleration equations, which contains terms that are
exclusively functions of velocity, position and time.
The equations of motion for a constrained multibody system (MBS) of rigid bodies, such as

a pantograph, are written as

Mq̈ = g + g(c) (3.3)

where M is the system mass matrix, q̈ is the vector that contains the state accelerations, g is
the generalized force vector, which contains all external forces and moments, and g(c) is the
vector of constraint reaction equations. The joint reaction forces can be expressed in terms of
the Jacobian matrix of the constraint equations and the vector of Lagrange multipliers

g(c) = −ΦTq λ (3.4)

where λ is the vector that contains m unknown Lagrange multipliers associated with m holo-
nomic constraints. Substitution of Equation (3.4) in Equation (3.3) yields

Mq̈+ΦTq λ = g (3.5)

In dynamic analysis, a unique solution is obtained when the constraint equations are consi-
dered simultaneously with the differential equations of motion with the proper set of initial con-
ditions, i.e., a set of initial conditions that fulfils the position and velocity constraint equations,
described by Equations (3.1) and (3.2)1, respectively. Therefore, Equation (3.2)2 is appended to
Equation (3.5), yielding a system of differential algebraic equations that are solved for q̈ and λ.
This system is given by
[
M ΦTq
Φq 0

] [
q̈r
λ

]
=

[
g

γ

]
(3.6)

In each integration time step, the accelerations vector, q̈, together with the vector of velocities,
q̇, are integrated in order to obtain the system velocities and positions at the next time step.
This procedure is repeated up to final time will be reached.
The solution of the multibody equations of motion and their integration in time is depicted

in Fig. 2. The set of differential algebraic equations of motion, Equation (3.6)does not use expli-
citly the position and velocity equations associated to the kinematic constraints, Equations (3.1)
and (3.2)1, respectively. Thus, in order to stabilize or keep under control the constraints viola-
tion, Equation (3.6) is solved by using the Baumgarte Stabilization Method or the augmented
Lagrangean formulation and the integration process is performed using a predictor–corrector
algorithm with variable step and order. Due to the long simulations time typically required
for pantograph-catenary interaction analysis, it is also necessary to implement constraint viola-
tions correction methods, or even the use of the coordinate partition method for such a purpose
(Nikravesh, 1988).
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Fig. 2. Flowchart with the forward dynamic analysis of a multibody system

4. Pantograph-catenary interaction

The efficiency of the electrical current transmission and the wear of the registration strip and
contact wire are highly dependent in the quality of the contact, which implies that the treatment
of its contact mechanics is crucial for its correct and efficient evaluation. The contact between
the registration strip of the pantograph and the contact wire of the catenary, from the contact
mechanics point of view, consists in the contact of a cylinder made of copper with a flat surface
made of carbon. The contact problem can be treated either by a kinematic constraint between
the registration strip and the contact wire or by a penalty formulation. In the first procedure, the
contact force is simply the joint reaction force of the kinematic constraint (Seo et al., 2005). With
the second procedure, the contact force is defined in function of the relative penetration between
the two cylinders (Flores et al., 2011; Pereira et al., 2011). The use of the kinematic constraint
between the contact wire and registration strip forces these elements to be in permanent contact.
Consequently, this approach is only valid if no contact losses occur. The use of the penalty
formulation allows for the loss of contact and it is the method of choice for what follows.
In this work, the Hertzian type of the contact force including internal damping is used. A

suitable representation of the contact model is written as (Lankarani and Nikravesh, 1994)

FN = Kδ
n
[
1 +
3(1− e2)

4

δ̇

δ̇(−)

]
(4.1)

where the penalty term K is the generalized contact stiffness, e is the restitution coefficient,
δ̇ is the relative penetration velocity and δ̇(−) is the relative impact velocity. The proportionality
factor K is obtained from the Hertz contact theory as the external contact between two cylinders
having their axis perpendicular to each other. Note that the contact force model depicted by
Equation (4.1) is one of the different models that can be applied. Other continuous contact force
models are presented by Djerassi (2012), Flores et al. (2011), Lee (2011). Note that the treatment
of the friction forces, required for the wear predictive models, is also done with the pantograph-
catenary interaction using the methodologies described by Flores et al. (2011). However, because
these friction forces are very low, they do not influence the pantograph or catenary dynamics
and, therefore, are not discussed here in further detail.
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When using the same code to simulate both catenary and pantograph models the type of
dynamic analysis must be the same for both, i.e., if the catenary is modeled with linear finite
elements, the pantograph dynamics must also be linear. This is not compatible with the use of
more general, and realistic, multibody pantograph models for which large rotations may exist or
that may follow curved tracks (Pombo and Ambrósio, 2003). In order to take advantage of the
more adequate type of dynamic formulations to be used for the catenary and for pantograph, a
co-simulation between finite elements and multibody approaches is used here (Ambrósio et al.,
2008).

In a general modeling environment, in which the pantograph motion is not limited to a
straight line, the analysis of the pantograph uses a multibody code while the catenary code is a
finite element software. The multibody code provides the finite element code with the positions
and velocities of the pantographs registration strips. The finite element code calculates the
contact force, using the contact model represented by Equation (4.1), and the location of the
application points in the pantographs and catenary, using geometric interference functions. The
contact forces are applied to the catenary, in the finite element code, and to the pantograph
model, in the multibody code, as implied in Fig. 3. Each code handles separately the equations
of motion of each sub-system based on the shared force information (Ambrósio et al., 2008).

Fig. 3. Co-simulation between a finite element and a multibody code

Several strategies can be envisaged to tackle this co-simulation problem (Spiryagin et al.,
2012). The key of the synchronization procedure between the multibody and finite element
codes is the time integration step that not only ensures the correct dynamic analysis of the
pantograph-catenary system but also handles the loss and regain of contact. Let it be assumed
that the finite element integration code is of the Newmark family and has a constant time step
that is small enough not only to assure the stability of the integration of the catenary but also to
capture the initiation of the contact between the pantograph registration strip and the contact
wire of the catenary. The only restriction that is imposed in the integration algorithm of the
multibody code is that its time step cannot exceed the time step of the finite element code. For a
detailed description of the co-simulation procedure, the interested reader is referred to Ambrósio
et al. (2011).

5. Pantograph-catenary case study

The numerical procedure for the dynamic analysis of the pantograph-catenary interaction is
demonstrated in this work using generic, but realistic, models for the catenary and pantographs.
The typical data required to build a finite element model of a simple catenary, such as that
presented in Fig. 1b, is presented in Table 1.

Using the data contained in Table 1, a finite element model of the generic simple catenary is
obtained. Different views of the catenary model are shown in Fig. 4. Note that in the initial and
terminal spans of the catenary there is no possibility for the contact between pantograph and
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Table 1. Geometric and material properties of a generic simple catenary

General

Catenary height [m] 1.4 Contact wire height [m] 5.08

Number of spans 25 Number of droppers/span 8

N◦ spans at C.W. height 20 Inter-dropper distance [m] 6.75

Span length [m] 50-54 Stagger [m] 0.20

Damping α 0.0027-0.027 Damping β 0

Contact wire Messenger wire Droppers Steady arms

Material Cu Bz II (braided) Bz II (braided) –

Section [mm2] 150 66 12 120

Mass [kg/m] 1.33 0.605 0.11 1.07

Tension [N] 20000 14000 – –

Claw with dropper dropper – C.W.

Claw mass [kg] 0.195 0.165 – 0.200

Length [m] – – 1.25-1.075 1.24

Angle w/horiz. – – 90◦ −10◦

Fig. 4. Finite element model of a generic catenary with the sag highlighted

catenary to develop because in these spans the contact wire is taken away and raised from the
normal position towards the tensioner devices that are used to keep the wire tension. However,
the correct modeling and length of these spans is fundamental in the dynamic calculations due to
the wave reflection and how it affects the pantograph-catenary interaction. Furthermore, several
models of the same catenary are developed with different proportional damping factors to allow
studying the variation of the pantograph-catenary contact quality in face of the structural energy
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dissipation of the catenary. Note that the prediction of the catenary damping in the design phase
is difficult, and only after being built, it is possible to measure it experimentally (Stickland et
al., 2003).

The pantograph is mounted in the roof of the vehicle as illustrated in Fig. 5. In order to
establish the kinematics of the pantograph base two strategies can be used. In the first strategy,
depicted by Fig. 5b the train wheelsets kinematics is guided, either by path following constraints
or by the dynamics of the wheel-rail contact (Pombo and Ambrósio, 2012). The second strategy
has the base of the pantograph directly guided by a path following constraint that must reflect
the motion of the vehicle underneath, as seen in Fig. 5c. In what follows, the second strategy
is used to guide the pantograph along a tangent track for which the catenary model has been
developed.

Fig. 5. (a) Pantograph model; (b) roof mounted pantograph on the vehicle guided on the track;
(c) pantograph with prescribed base motion

Fig. 6. The pantograph system: (a) complete pantograph; (b) base; (c) lower arm; (d) upper arm;
(e) lower link; (f) upper link; (g) head support; (h) bow
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The rigid bodies that compose the generic pantograph system are presented in Fig. 6. The
data required for the multibody model of the pantograph concerns the mass, inertia, initial
positions and initial orientations of all bodies in the system, as shown in Table 2. Note that,
in this work, the data provided for the pantograph model is indicative of the configuration
and properties of a particular type of generic pantograph but does not, necessarily, reflect any
existing pantograph. Mechanical and constructive details such as clearance and bushing joints
(Ambrósio and Verissimo, 2009; Flores et al., 2011) or flexible components (Collina et al., 2009)
are not considered in the models presented here. However, the data gathered ensures that the
dynamic performance of the model is realistic.

Table 2. Rigid body data of the pantograph multibody model

ID
Rigid Mass Inertia [Kgm2] Init. position [m] Init. orientation
body [Kg] Iξξ/Iηη/Iζζ x0/y0/z0 e1/e2/e3

1 Panto. base 32.65 2.76/4.87/2.31 0.000/0.000/0.000 0.00/0.00/0.00

2 Lower arm 32.18 0.31/10.43/10.65 –0.571/0.000/0.412 0.00/0.17/0.00

3 Upper arm 15.60 0.15/7.76/7.86 –0.394/0.000/1.055 0.00/–0.18/0.00

4 Lower link 3.10 0.05/0.46/0.46 –0.887/0.000/0.283 0.00/0.21/0.00

5 Upper link 4.51 0.08/1.50/1.50 –0.357/0.000/1.003 0.00/–0.16/0.00

6 Stab. arm 4.67 0.34/0.01/0.50 0.553/0.000/1.418 0.00/0.00/0.00

7 Panto. head 7.80 6.62/0.23/6.87 0.553/0.000/1.498 0.00/0.00/0.00

The type and location of all kinematic joints that connect different bodies of the system, as
depicted by Table 3, and the force elements characteristics, i.e., springs, dampers and actuators,
must also be specified, as in Table 4. The limits of motion in the pantograph mechanical joints
as well as some of the nonlinear mechanical behavior of some of the spring and damper elements
are neglected in this model.

Table 3. Kinematic joints used in the pantograph multibody model

ID
Kinematic Connec- Bodies Attachm. points Local coordin. [m]
joint ted i j Body i (ξi/ηi/ζi) Body j (ξj/ηj/ζj)

1 Revolute joint 1 2 (0.020/0.000/0.132)P (0.820/0.000/0.000)P
(0.020/1.000/0.132)Q (0.820/1.000/0.000)Q

2 Revolute joint 2 3 (–0.820/0.000/0.000)P (–1.014/0.000/0.000)P
(–0.820/1.000/0.000)Q (–1.014/1.000/0.000)Q

3 Revolute joint 3 6 (1.014/0.000/0.000)P (0.000/0.000/0.000)P
(1.014/1.000/0.000)Q (0.000/1.000/0.000)Q

4 Spherical joint 1 4 (–0.259/0.000/0.000)P (0.688/0.000/0.000)P
(–/–/–)Q (–/–/–)Q

5 Spherical joint 3 4 (–1.187/0.000/–0.126)P (–0.615/0.000/–0.025)P
(–/–/–)Q (–/–/–)Q

6 Spherical joint 2 5 (–0.780/0.000/0.000)P (–1.000/0.000/0.000)P
(–/–/–)Q (–/–/–)Q

7 Spherical joint 5 6 (0.962/0.000/0.000)P (0.000/0.000/-0.105)P
(–/–/–)Q (–/–/–)Q

8 Revolute-pris- 6 7 (0.000/0.000/0.010)P (0.000/0.000/0.000)P
matic joint (1.000/0.000/0.010)Q (0.000/0.000/-1.000)Q

A limiting factor in the current collection is the need to operate with multiple pantographs
to allow for the collection of enough energy to run all the engines. However, the contact quality
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Table 4. Linear force elements data used in the pantograph multibody model

Force Stiff- Undef. Damp.
Force

Bo- Attach pts. Local coord [m]
ID ele- ness length coeff. dies Body i Body j

ment [N/m] [m] [N s/m] [N] i j (ξi/ηi/ζi) (ξj/ηj/ζj)

1 Sp-damp 2 0.459 60 0 1 2 (0.259/0.000/0.000) (0.870/0.000/–0.136)

2 Actuator 0 0 0 920 1 2 (0.483/0.000/0.125) (0.870/0.000/–0.136)

3 Sp-damp 3000 0.103 13 0 6 7 (0.000/0.335/0.000) (0.000/0.335/0.010)

4 Sp-damp 3000 0.103 13 0 6 7 (0.000/–0.335/0.000) (0.000/–0.335/0.010)

of the pantograph-catenary interaction is perturbed due to the mutual influence of the leading
and trailing pantographs on each other. In this work, the operation of multiple pantographs in
catenaries with low and moderate damping is considered. Different vehicles of high-speed trains
have different lengths and, consequently, the separation distance may change accordingly. The
typical separations between pantographs shown in Fig. 7 reflect how multiple train units operate
and constitute the scenarios studied here.

Fig. 7. Multiple pantograph operations of high-speed trains with typical distances between the
pantographs

In all scenarios, the pantographs move along the catenary in a tangent track at 300 km/h.
In the initial part of the analysis the pantographs are raised until their bows touch the contact
wire. In order to disregard this transient part of the dynamic response, only the contact forces
that develop in the pantograph between 400 and 800m, and the droppers and steady arms that
exist in this range are used in the analysis of results. The contact forces are filtered with a cut-
off frequency of 20Hz before being post-processed, as specified by the appropriate regulation
(EN50317, 2012; EN50367, 2006). Figure 8 depicts the characteristics of the contact forces that
develop between the pantographs and catenaries, with different proportional damping.

The results show that the amplitude of the contact forces in the trailing pantographs is
always larger than what the leading pantographs exhibit, being that difference higher for lightly
damped catenaries. The contact force results, as shown in Fig. 8, must be treated statistically
in order to emphasize important quantities used in design and for pantograph homologation.
In Fig. 9 the statistic values of the contact force are overviewed for the different pantograph
separations, running in the two catenaries considered before.

The first important observation of statistical quantities depicted in Fig. 9 is that the standard
deviation of the contact force for all pantographs, running on the lightly damped catenary, is
always larger than 30% of the mean contact force. These values imply that the trains using these
pantographs would not be allowed to run at a speed of 300 km/h in the catenary system. However,
the pantographs can be used, with the current operational setup, in the catenary with normal
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Fig. 8. Pantograph-catenary contact force for several pantograph separations in catenaries with different
proportional damping: (a) α = 0.00275; (b) α = 0.0275

Fig. 9. Statistical quantities of the pantograph-catenary contact force in catenaries with different
proportional damping: (a) α = 0.00275; (b) α = 0.0275
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damping. In both cases, the multiple pantograph operation with a separation of 200m shows
the worst contact force characteristics for the trailing pantograph, i.e., the trailing pantograph
exhibits larger maximum forces, lower minimum forces and larger standard deviations. None of
the pantographs exhibits any contact loss.

Another characteristic of the contact force that is worth being analysed is its histogram.
Figure 10 presents the histograms of all pantographs for all separations considered in this work.
The histograms show that for a lighly damped catenary, the contact forces not only have large
variations, as observed also in Fig. 8, but also that the number of occurrences of contact forces
in each range considered is high, i.e., even away from the mean contact force the existence of
higher or lower contact forces is not sporadic. For a catenary with average damping the contact
force magnitude is closer to the mean contact force. In all cases considered, the mean contact
force is always 150N, which satisfies the regulations.

Fig. 10. Histograms of the pantograph-catenary contact force in catenaries with different proportional
damping: (a) α = 0.00275; (b) α = 0.0275

One of the reasons why the contact force characteristics has to stay inside a limited range
concerns the potential interference between the pantograph head and the catenary mechanical
components. The steady-arm uplift, shown in Fig. 11, and the dropper axial force, depicted in
Fig. 12, are measures of the catenary performance and of its compatibility with the running
pantographs.

The steady-arm uplift is lower than 7 cm in all cases depicted in Fig. 11. Although not
represented, the maximum uplift of all steady arms of the catenary is also lower than the 12 cm
limit allowed for the type of catenary used. The droppers exhibit slacking for the lightly damped
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Fig. 11. Typical steady-arm uplift in catenaries with different proportional damping for two different
separations of pantographs: (a) α = 0.00275; (b) α = 0.0275

Fig. 12. Typical mid-span dropper forces in catenaries with different proportional damping for two
different separations of pantographs: (a) α = 0.00275; (b) α = 0.0275

catenary, as seen for the axial forces shown in Fig. 12. For the catenary with average damping,
only the passage of the trailing pantograph, when the separation is 200m, has some slacking. It is
interesting to notice that the position of the contact wire of the catenary is disturbed even before
the pantograph bow passes. This is because the traveling wave speed is higher than the train
speed. For lightly damped catenaries, this disturbance is higher. For longer catenary sections, it
is expected that the trailing pantograph may affect the contact of the leading pantograph due
to the wave traveling speed of the contact wire.

The mutual influence of the pantographs in each other’s contact quality is better understood
when displaying the contact force characteristics as shown in Fig. 13, for the lightly damped
catenary and Fig. 14, for the average damped one. In both cases, the statistical values of the
contact force of a single pantograph operation are also presented to better understand the
problem.
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Fig. 13. Statistical quantities associated to the contact force for a catenary with low damping
(α = 0.00275): (a) leading pantographs; (b) trailing pantographs

Fig. 14. Statistical quantities associated to the contact force for a catenary with average damping
(α = 0.0275): (a) leading pantographs; (b) trailing pantographs

For a lightly damped catenary, perturbations of the trailing pantograph over the leading
pantograph exist but are low. However, the trailing pantograph contact forces are clearly affec-
ted by the leading pantograph, being the influence enhanced by the decrease of the catenary
damping. For the lightly damped catenary with a pantograph separation of 31m, the tendency
is that the leading pantograph contact quality suffers, slightly, from the existence of a trailing
pantograph. This is due to the wave traveling speed in the contact wire that is higher than the
pantograph speed. For a pantograph separation of 200m the trailing pantograph contact quality
is clearly affected in both lightly and average damped catenaries. The results suggest that the
critical distance between pantographs, at least for the catenary design considered in this work,
is 200m. These results are in agreement with the findings of Ikeda who studied the multiple
pantograph operation for the Japanese Sinkansen pantograph-catenary interaction and found
the same critical separation (Ikeda, 2008). Thus, it is suggested that regardless of the type of
construction of the catenary, a critical separation distance between the pantographs exists and
that the distance is close to 200m.

6. Conclusions

A computational approach based on the co-simulation of a linear finite element and general
multibody codes is presented and demonstrated in the framework of the pantograph-catenary
interaction of multiple pantograph operations in high-speed trains. It was shown that linear
finite elements are enough to allow the correct representation of the catenary provided that the
wire tension forces are accounted for in the stiffness formulation and that the droppers slacking
is properly represented via the force vector. Minimal requirements for the catenary finite element
modeling include the use of Euler-Bernoulli beam elements with axial tensioning for the catenary
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messenger and the contact wire with a discretization enough to capture the deformation wave
traveling on the contact wire. It was also shown that the use of multibody dynamics methods
allows capturing all of the important dynamic features of the pantographs. The used penalty
continuous contact force model served as the vehicle for the co-simulation procedure applied.
The application of the procedures to multiple pantograph operations, in high-speed railway

vehicles, allowed the identification of the important quantities of the dynamic response that
are required for the pantograph homologation and for the operational decisions. The catenary
damping plays a fundamental role in the pantograph-catenary contact quality. Catenary damping
leads to higher maximum contact forces, lower minimum contact forces, eventually to contact
losses, and to higher standard deviations of the contact forces. All these characteristics of the
contact force lead to the rejection of the operation of multiple pantograph units at the required
speed of 300 km/h in lightly damped catenaries. It is also concluded, from the results of the
analysis, that for operations in average damped catenaries all standard separations between
the pantographs lead to acceptable contact forces. As a general tendency, it was observed that
for smaller pantograph separations the trailing pantograph affects the quality of the leading
pantograph contact due to the wave travelling speed of the contact wire. For larger pantograph
separations, it is the leading pantograph that affects adversely the contact quality of the trailing
pantograph. In any case, all results show that the critical separation between the leading and
trailing pantographs is 200m, i.e., at this separation, the leading pantograph has a greater
influence on the contact quality of the trailing pantograph.
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Procedura obliczeniowa w analizie dynamiki układu sieci trakcyjnej i pantografu

szybkobieżnego pociągu

Streszczenie

Sprawność obecnie eksploatowanych pociągów wysokich prędkości zależy od dynamicznej kompatybil-
ności układu pantografów z siecią trakcyjną i wynikającymi siłami kontaktu pomiędzy tymi elementami.
Projektowanie i analiza tego układu z wykorzystaniem odpowiednich procedur obliczeniowych pozwala
uchwycić najważniejsze cechy dynamiczne obiektu badań. W pracy zaproponowano zastosowanie metody
elementów skończonych do analizy dynamiki sieci energetycznej oraz równania ruchu wieloelementowego
układu brył sztywnych do opisu zachowania się pantografu. Do tego celu użyto odpowiedniej procedury
współsymulacyjnej. Do reprezentacji interakcji pomiędzy siecią a pantografem, wybrano sformułowanie
oparte na funkcji kary. Metodologię przetestowano dla przypadku pociągów wysokich prędkości z wieloma
pantografami. Ich jakość oraz jakość współpracy z siecią trakcyjną stanowi jeden z czynników ogranicza-
jących osiąganie coraz większych prędkości maksymalnych pociągów.
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