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The Lattice Boltzmann method (LBM) has been applied for flow and heat
transfer computations. The simulations have been performed with the single-
relaxation time model and an advanced formulation of boundary conditions
for LBM. For non-isothermal cases, a second distribution function has been
used. First, validation tests are reported for heated flow past a single obstacle
as well as over a set of regularly and randomly arranged obstacles (grains)
that make up a simplified model of a porous medium. The Nusselt number for
heat transfer in flow past a single obstacle has been computed. Next, novel si-
mulations of non-isothermal flow in a porous medium of temperature-affected
geometry have been undertaken. For the purpose, the thermal dilatation of
grains has been accounted for. Results are presented for the pressure head loss
and time-varying temperature profiles in the medium. Qualitative computa-
tions accomplished to date constitute an encouraging first step to proceed
further towards the impact of temperature-affected geometry in such flows, in
particular for the coking process.

Key words: Lattice Boltzmann Method, porous media flow and heat transfer,
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1. Introduction

The coking plants are widely used to provide chemically cleaner coal (coke),
coke-oven gas and other products. A detailed analysis of the coking process

1Presented at the XIX Polish Fluid Mechanics Conference, Poznań, September 5-9, 2010.
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has gained a renewed interest nowadays (cf. Nomura and Arima, 2000; Guo
and Tang, 2005), since ecological trends impose regulations to build industrial
objects with Best Available Technology. Apart from fluid flow and heat trans-
fer, changing shape and volume of coal grains is observed during the process;
at the same time, production of the coking gas takes place as a consequence
of chemical reactions occurring with growing temperature. The complexity of
physico-chemical phenomena and complication of geometry imply that the use
of more traditional tools and software of computational fluid dynamics (CFD)
becomes prohibitively expensive. Hence the idea of a multiscale approach for
detailed simulation purposes. In that approach, a microscopic (single-pore le-
vel) computation of the representative element of volume (REV) is followed
by a macroscopic CFD (system-level) computation (unsteady 1D/2D).

Numerical simulations of the coking process in the macroscale need, as an
input, several closure relationships that will provide variables describing geo-
metrical properties of the domain that change during simulation. Only limited
experimental data exist, along with a few examples of CFD investigations,
cf. Guo and Tang (2005). We find it useful to provide the necessary input
from detailed simulations in the microscale. As a numerical approach at the
single-pore level, we have chosen the lattice Boltzmann method (LBM).

The LBM, based on the Boltzmann equation (He and Luo, 1997), has been
developed in early 1980s as a method designed originally to be an extension
of cellular automaton (Rothman and Zaleski, 1997) for eliminating large nu-
merical noise. The LBM has proven to be suitable for simulations of viscous
and nearly incompressible fluid flows (Succi, 2001; Chen and Doolen, 1998) as
well as heat transfer (He et al., 1998) in simple (Yu and Girimaji, 2005) and
complex geometries (Pan et al., 2006). The present authors have successfully
applied the LBM to flow past obstacles and also to thermal problems (Grucel-
ski and Pozorski, 2009, 2011). The phenomenon of changing volume and shape
of grains in function of temperature can be dealt with more advanced boundary
schemes for LB method. In our approach, the internal energy density distribu-
tion function (IEDDF) solves for a temperature field, separately from velocity
and pressure fields (Wang et al., 2007); the on-site interpolation-free (OSIF)
boundary scheme accounts for the change of grains shape with temperature
(Kao and Yang, 1998).

LBM simulations in variable geometry are still under development. Some
disadvantage of such calculation is a higher numerical cost caused by appli-
cation of more complicated boundary schemes. An interesting case of flow
simulation with moving boundaries is reported by Krafczyk et al. (2001) whe-
re authors present LBM results of fluid flow through a heart valve. Yet, we
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are unaware of any publication where the heat transfer problem has been
implemented for flow modelling in variable geometry.

In the present paper, we build on our experience to date and further develop
the LBM approach. We briefly recall the main idea of the method and describe
our current implementation of LBM to compute heat transfer coefficients in a
flow past a single obstacle. Then, we address the issue of flow and heat transfer
in a generic (computer-generated) porous medium and present some results for
the pressure loss and temperature fields. The main novel point of the present
work is the accounting for variable geometry effects related to displacements
of solid-fluid interfaces due to temperature increase in the porous medium.

2. Lattice Boltzmann Method

2.1. Governing equations

The numerical tool used in our simulations stands between molecular dy-
namics (where we track position of every molecule and its velocity, like in
simulations of fracture propagation) and computational fluid dynamics (whe-
re we concentrate on macroscopic conservation laws, i.e., the Navier-Stokes
equations). LBM is based on the Boltzmann equation (Succi, 2001) governing
the evolution of density distribution function f that describes the probability
density of finding particles with velocity u, at some infinitesimal volume with
the centre at r

[∂t + u ·∇r + F ·∇u]f(r,u, t) =

∫

σ(∆u12, Ψ)(f1′2′ − f12) dΨ (2.1)

where σ = σ(∆u12, Ψ) in the RHS collision term describes the number of
particles with relative speed ∆u12 in a solid angle Ψ ; symbols f12 and f1′2′

stand for two-particle distribution functions before and after collision, respec-
tively. The LHS of Eq. (2.1) describes the Newtonian mechanics of a set of
molecules; the RHS stands for the interaction term describing the number of
particles lost from and coming into an element of the phase space as a result
of collisions. The crucial feature of LBM (Rothman and Zaleski, 1997; Succi,
2001) is discretisation of the microscopic velocity vectors, both in direction
and magnitude, cf. Fig. 1 for some schemes used in 2D or 3D flows (9 or 15
velocities, respectively). A lot of algebra is needed to discretise the above equ-
ation (He and Luo, 1997), also we have to use the H-theorem (Succi, 2001) to
simplify its RHS.
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Fig. 1. Examples of LBM discretisation of velocity space in 2D and 3D

Subsequently, the RHS of Eq. (2.1) is modelled by a relaxation term (cf.
below). The equation is discretised in time (by the time step δt), in space
(by the lattice size δx), and in velocity space by distinction of admissible
directions ei (i subscript, cf. Fig. 1) of the particles velocity on a regular
square lattice. After these steps, the Lattice Boltzmann equation (suitably
non-dimensionalised with δt as the time scale and δx as the length scale)
takes the form (cf. Chen and Doolen, 1998)

fi(r + eiδt, t+ δt) = fi(r, t)− τ
−1
ν (fi − f

eq
i ) (2.2)

where f eqi describes the equilibrium state of density fi(r, t) that for fluid flow
problems has the following form

f eqi = ρΩi
[

1 + 3eiv +
9

2
(eiv)

2 −
3

2
v
2
]

(2.3)

In Eq. (2.3), ρ and v are the local fluid density and velocity, respectively, the
weight coefficients Ωi depend only on the discretisation model of the veloci-
ty space. For two presented sets of lattice velocity discretisation (D2Q9 and
D3Q15), the coefficients of velocity expansion are constant. In Eq. (2.2), the
relaxation time τν has the following non-dimensional form

τν =
1

2
+ 3ν+ (2.4)

In the above equation, ν+ = νδt/δx2 is the non-dimensional kinematic visco-
sity of the fluid.
Historically, two closely related schemes for LBM have been proposed. The

first is the single relaxation time (SRT) approach used here, Eq. (2.2), known as
Bhatnagar-Gross-Krook (BGK, Bhatnagar et al., 1954), where the microscopic
relaxation time is related to the macroscopic variable describing fluid viscosity,
Eq. (2.4). Another approach developed by d’Humières et al. (2002) uses the
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matrix of relaxation times; some additional cost and complexity are balanced
by better stability properties and precision.

The single relaxation time (SRT) approximation in the presented form is
not appropriate for simulating heat transfer phenomena (He et al., 1998), inte-
resting from the practical point of view. The main reason is constant Prandtl
number Pr = 1 and occurrence of instabilities in the course of computations.
A possibility to overcome these difficulties while dealing with heat transfer
problems in the BGK approximations is to extend the formulation with two
distribution functions (He et al., 1998), namely the mass density fi and an
additional, internal energy density distribution function (IEDDF) gi with its
own relaxation time. Thus the BGK LBM with an additional equation for
solving heat transfer becomes a double relaxation time approach. The scheme
appears to be very stable when compared to other work for solving heat trans-
fer problems with LBM (Peng et al., 2003b). Yet, the method reveals to be
complex, mainly because of gradient terms in the evolution equation (Wang
et al., 2007).

In the present work, we apply a simplified variant of the IEDDF, elaborated
by Peng et al. (2003b). It is widely used and developed also to implement source
terms due, e.g., to chemical reactions (Wang et al., 2007). The thermal lattice
Boltzmann equation can be written as

gi(r + eiδt, t+ δt) = gi(r, t)− τ
−1
θ (gi − g

eq
i ) (2.5)

where geqi stands for the internal energy density equilibrium distribution func-
tion in (r, t) and has the following form

geqi = θΩi[ai + bieiv + ci(eiv)
2 + div

2] (2.6)

where Ωi is the weight coefficient, θ is the local temperature (cf. below); the
coefficients ai through di depend on the chosen model of velocity discretisation
and also on the direction i, unlike those in Eq. (2.3). A full description of given
equations, with exact arrays of coefficients for Eq. (2.6), can be found in Wang
et al. (2007) for D2Q9 model and Peng et al. (2003a) for D3Q15 and D3Q19
models. The thermal relaxation time in phase m has the following form

τθ =
1

2
+
3

2

λm
ρcpm

δt

δx2
=
1

2
+
3

2
α+m (2.7)

written both for the fluid f (gases) and solid s (coal grains) in the computa-
tional domain, so m ∈ {s, f}. The heat diffusivity αm is expressed in terms
of the heat conductivity λm and the specific heat cpm. The relaxation times
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τν and τθ depend on flow parameters (viscosity and thermal diffusivity). We
note that both must be chosen within the range where the solution remains
stable, for example τν ∈ (0.5, 2).

On the basis of the mesoscopic formulation, we use the following summa-
tion expressions (discretised integrals) to obtain local macroscopic flow varia-
bles (Wang et al., 2007), i.e., the fluid density, velocity and temperature

ρ =
∑

i

fi v =
1

ρ

∑

i

fiei θ =
∑

i

gi (2.8)

Equations (2.2) and (2.5) with appropriate equilibrium distributions are
presented in a non-dimensional form and are valid with the assumption of
a low Mach number (M = vx/c ≪ 1) where vx is a flow velocity scale and
c = δx/δt is the lattice sound speed. This assumption is controlled in two ways
in the performed computation. First, the maximum flow velocity is checked to
be a fraction (less than 10%, say) of the sound speed. Second, the maximum
variation of the density field is also checked to be smaller than several per-
cent. Our experience has shown that larger variations in density may lead to
numerical instabilities. In that case, computation is repeated on a finer mesh
with a shorter time step.

The LBM simulation is divided into three following steps for every lattice
node at each time instant. First is a simple propagation of the distribution
functions in discrete directions, cf. the LHS of Eqs. (2.2) and (2.5). In the
second step we apply boundary conditions and collision (relaxation) terms for
density and internal energy distribution functions. In the last step we perform
gathering and calculating of macroscopic data from Eqs. (2.8).

2.2. Domain construction

In our first LBM simulations for a single obstacle we considered the case
of heat transfer in a hot fluid flow over a cold circular cylinder (cf. Sec. 3.2),
originally used to calculate the Strouhal number of unsteady vortex shedding,
cf. Grucelski and Pozorski (2009, 2011).

As far as the construction of porous media is concerned, the domain con-
sists of several REVs. A single REV is created by randomization of radii with
uniform distribution within the prescribed range (rmin, rmax); centres of the
obstacles are uniformly distributed in the computational area. The diameter of
obstacles is much smaller than the domain size. In our simulation, the obstac-
les can penetrate each other and also intersect the boundary of the domain;
the algorithm next will periodically shift them (Fig. 2). In the modelling of
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flow and heat transfer in temperature-affected geometry, we start with a re-
gular array of cylinders in a staggered arrangement (with centres located at
vertices of equilateral triangles), followed by simulations in a random array of
obstacles.

Fig. 2. Construction of a simple porous medium for flow simulation with zoom of a
single REV (gray scale represents the fluid velocity magnitude)

In the case of flow in fixed geometry, the obstacles are represented as
follows: every LBM node inside the circular cylinder with a given radius is
given a “solid” identifier; outside nodes lying close (0.3δx, say) to the cylinder
surface are also identified as solid. Next, every solid node which has at least
one neighbouring fluid node is labelled as “interface”. For the case of changing
shape, the nodes nearest to the real surface of the obstacle are next processed
for more complicated boundary schemes.

2.3. Inlet/outlet boundary condtion

The inlet condition is applied by simple calculation of fi in unknown direc-
tions from known distribution functions within the flow domain, the imposed
inlet velocity and density. The following relationships are used for appropriate
indices i ∈ {0, 1, 2, 4, 5, 8}, cf. Fig. 1a

fneqi = fneq
−i or fi = f−i − (f

eq
−i − f

eq
i ) (2.9)

where f
−i corresponds to the direction e−i = −ei; the non-equilibrium distri-

bution function is defined as fneqi = fi−f
eq
i . The imposed (macroscopic) fluid

velocity and density at the flow inlet enter the distribution function f eqi thro-
ugh Eq. (2.3). In the case of heat transfer computations, we additionally im-
pose the inlet temparature. Again, it is used in the equilibrium distribution of
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IEDDF, Eq. (2.6), at the flow inlet. In terms of the distribution function gneqi ,
we apply the following equation (cf. Wang et al., 2007)

gneqi − e
2
i fi = −g

neq
−i + e

2
−if−i

with gneqi = gi − g
eq
i .

To implement the boundary condition at the outlet (where neither velo-
city nor pressure is imposed), we use the extrapolation of known distribution
functions for i ∈ {3, 6, 7}

fi(r, t) =
1

2
[fi(r − e−iδt, t) + fi(r − 2e−iδt, t)] (2.10)

To fix the Reynolds number as a given parameter in the flow cases consi-
dered, we set the inlet velocity vx, v = [vx, 0]. Then, Re = d

+v+x /ν
+ where

d+ is the number of lattice nodes per typical obstacle diameter.

2.4. Wall boundary schemes in LBM

For flow and heat transfer simulations we apply periodic conditions on the
longer side of the domain (parallel to the main flow direction), cf. Fig. 5. At
the inlet we impose a uniform velocity profile on every fluid node with con-
stant density and temperature. For the outlet nodes we use the extrapolation
condition, based on nodes inside the domain.
For fluid flow past fixed geometry we use the non-equilibrium (NEq)

bounce-back scheme for boundary conditions at the solid-fluid interface. The
scheme shows second-order accuracy and better stability than the original
bounce-back scheme (Zou and He, 1997), acceptable implementation comple-
xity and computational cost, with the following condition for unknown values
of distribution function

x+ eiδt = S ⇒ fneq
−i (x, t+ 2δt) = f

neq
i (x, t) (2.11)

where S stands for a solid node. These boundary conditions are a developed
form of the no-slip bounce-back method (Derksen, 2006) and show good accor-
dance with results obtained with more advanced boundary schemes (Grucelski
and Pozorski, 2011).
Basically, phenomena of flow in variable geometry cannot be simulated in

LBM with the NEq method; for such computations, instabilities occur after
changing the identifier of a single node (closer than 0.1δx from the interface,
say) from fluid to solid one. To simulate phenomena of the shape change
in function of growing temperature, we have to implement a more complex
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boundary condition, allowing for reconstruction of the real interface. One of
such methods is the on-site interpolation-free scheme (OSIF), described in
details by Kao and Yang (1998). Aside of possibility of simulating moving
boundaries, this method is free from interpolation that may cause a non-zero
mass flux through the solid-fluid interface.
The OSIF scheme is based on weighting the relaxation time at nodes near

the interface. As shown in Fig. 3, we define the weight coefficient q (0 < q ¬ 1)

q =
|rf − rs|

δx
(2.12)

where rs and rf describe the positions of the solid node and real interface of
the obstacle, respectively. The weighted (body-fitted) relaxation time τ (bf) is
introduced as

1

τ (bf)
=

2q

q − 1 + 2τ (mf)
(2.13)

where the mesh-fitted relaxation time τ (mf) is equal to τν .

Fig. 3. A sketch of the weight coefficient q for the OSIF boundary scheme

With known relaxation time, we calculate the distribution function

f
(bf)
i (r, t) in the direction into a solid node (using the discrete set of directions,
cf. Fig. 1) from the formula

f
(bf)
i = f eqi + [f

(mf)
i − f eqi ]q

τ (bf) − 1

τ (mf) − 1
(2.14)

The OSIF simulation has the following algorithm. First, the weighted di-

stribution function f
(bf)
i is calculated with Eq. (2.14) in a chosen direction.

Next, the distribution function is moved (advection) into an interface node.
According to the bounce-back scheme, we revert the distribution function on
interface nodes at the third step (collision). The distribution is next moved
into a fluid node (advection). For a full description of the OSIF scheme, see
Grucelski and Pozorski (2011).
For the present computations, we still applied the non-equilibrium bounce-

back boundary condition for gi at the solid-fluid interface (mainly for the
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sake of simplicity at the time being), cf. Peng et al. (2003). The unmodified
condition can be rewritten

gneqi − e
2
i f
neq
i = −gneq

−i + e
2
−if
neq
−i (2.15)

3. Results for validation cases

3.1. Fluid flow

The LBM approach described above was validated in a few tests for fluid
flow phenomena in simulated porous media. We checked the results against
the macroscopic, empirical laws for porous media flows: the Darcy law for low
inlet velocity, and the extended formula, with the additional Forchheimer term
(Vafai and Amiri, 1998), for higher inlet velocity

∇〈p〉 = −
εν

K
〈u〉 − ε2ρβ|〈u〉|〈u〉 (3.1)

where 〈·〉 stands for volume averaging, ε = Vf/V is porosity, K is permeability
(the first-order term describing viscous resistance) and β is the Forchheimer
coefficient (the second-order term describing inertial effects in porous media
flow).

The above-mentioned law is described in detail in Scheidegger (1957) with
an exhaustive discussion of the permeability coefficient. It is well known that
the Darcy equation was first obtained as an empirical law. As it is presen-
ted by Vafai and Amiri (1998), the law describing flow over porous media in
the macroscale could be retrieved with usage of the Navier-Stokes equations
averaged over fluid volume

ρ(∂t〈u〉+ 〈u〉 · ∇〈u〉) = −∇〈p〉+D + F (3.2)

D = −εν〈u〉/K is known as the Darcy term (viscous effects); F =
= −ε2ρβ|〈u〉|〈u〉 is known as the Forchheimer term (inertial effects) with
β depending only on geometrical properties of a domain. The Brinkman term
(Kim and Ghiaasian, 2009) is omitted from Eq. (3.2) for simplicity. The coef-
ficients K and β have a complex integral form (cf. Kim and Ghiaasian, 2009)
over a surface of grains in the domain. It is possible to obtain the permeability
in an analytical way only for very simple cases as flow over a regular array
of spheres with constant radius. In the case of more complex geometries, we
obtain both coefficients from the LBM simulations at the single grain level.
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Simulations of this kind are hard to manage, especially for geometry varying
with time.

Figure 4 shows a comparison of the average pressure loss per single REV
(symbols) with the Darcy-Forchheimer law, Eq. (3.1), and the Darcy law. The

Fig. 4. The average pressure loss vs. the inlet velocity for a few lengths of the
numerical domain (n periodically copied REVs). The symbols denote LBM results,

lines – empirical laws

pressure losses are obtained from the LBM flow simulations for a selection of
bulk velocity values in the medium: u0 = 〈vx〉. First, the permeability coef-
ficient (describing viscous resistance of domain geometry) is obtained for low
inlet velocities from the Darcy equation: K = −εν〈vx〉/∇〈p〉 where ∇〈p〉 is
taken from simulation points. The results have been gathered for a few lengths
of the computational domain that consisted of n periodically copied REVs.
Next, we obtained the quadratic coefficient β (describing inertial resistance of
the porous domain) for Eq. (3.1) by the least-square fit to the LBM results.
Influence of β coefficient can be observed as a small difference between the
Darcy and Darcy-Forchheimer curves describing the pressure loss. The flow
computations in random porous media are performed with fairly low Rey-
nolds numbers; for growing Re, simulations start to loose stability (too high
local velocity between pores). For such flows, a finer grid has to be used in-
stead. Yet, flow simulations at higher Reynolds numbers (Re > 20) are still
possible in regular porous media where local magnitude of velocity is much
smaller than the lattice speed of sound.

With usage of the bounce-back scheme for single-relaxation-time (SRT)
variant of LBM, it is known that the permeability shows some dependence on
viscosity, more important than for the multiple relaxation time (MRT) variant
(Pan et al., 2006). We want to point out that Pan et al. (2006) compare the
simple bounce-back scheme with a few schemes for SRT LBM. More work is
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still needed in matter of testing other boundary conditions for SRT LBM, also
for the NEq and OSIF schemes used here for both fixed and temperature-
dependent geometry.

3.2. Heat transfer

To validate the LBM for non-isothermal flows, we considered the classical
problem of cooled flow past a single obstacle, cf. Fig. 5. The Nusselt number,
Nu = Nu(Re,Pr), was determined for a couple of Re and Pr = ν/α. The local
and global Nusselt numbers are obtained from

Nu(φ) =
d

θw(φ)− θin

∂θ

∂n

∣

∣

∣

∣

φ

Nu =
1

2π

∫

φ

Nu(φ) dφ

where n is the unit vector normal to the solid-fluid interface, d is the cylinder
diameter, θw is the wall temperature, θin is the flow inlet temperature, and
φ is the polar angle measured w.r.t. to the inflow direction. The integral is
calculated over the solid-fluid interface.

Fig. 5. An example of flow past a circular cylinder at Re = 150; (a) stream lines
with velocity vectors and the temperature field coded with a scale of gray;
(b) isolines of temperature (also with flow velocity vectors) superposed on the

grayscale map of velocity magnitude

The angular distribution of the Nusselt number Nu(φ) for a single obstacle
is presented in Fig. 6. Because of coarse and square mesh (not a body-fitted
one), the observed values of Nu show unphysical, local oscillations. They are
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caused by the stair-shape character of the interface. In the next step, the
collected values are averaged (typically, over δ = π/9) to obtain a smoother
result according to

Nu(φo) =
1

2δ

φo+δ
∫

φo−δ

Nu(φ) dφ (3.3)

For such averaged values we calculate best-fitted, low-level polynomials, cf.
Fig. 6. There, the LBM results with the OSIF boundary scheme are obtained
on the 500×250 lattice and compared with those reported by Jie and Huiming
(2006). In the approximating polynomial we omit the first-order term because
of the symmetry constraints: ∂φNu(φ)|φ=0,π = 0 (i.e., at the upstream and
downstream stagnation points). The resulting distributions (points from LBM
simulation) still show some variation, not present in the results of Jie and
Huiming (2006). Those authors solved the flow with the LBM, and a more
traditional CFD approach was used to solve the energy equation on the O-
type body-fitted grid what greatly improved smoothness of their results. From
the present simulation, the best-fitted curve is in a qualitative agreement with
the one reported by Jie and Huiming. For a quantitative comparison, the
experimental data of Acrivos et al. (1965) have been added in Fig. 6. The
present results seem to be quite satisfactory.

Fig. 6. Local Nusselt numbers Nu in function of the polar angle φ for a few Re.
Lines represent the best nonlinear fit to LBM simulation points:

Nu(φ) = a0 + a1 cosφ+ a2 cos
2 φ

We want to point here that the OSIF scheme assumes weighting of the
mass density distribution function only, while the IEDDF still sees a stair-
shaped solid-fluid interface. An improved boundary scheme for non-isothermal
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flows remains an open issue. This brings us to conclude that for a simple
rectangular lattice used in the present paper, the curve fitting (smoothing) is
necessary. With growing Re we observe that local Nu grow for angles close
to the downstream separation point (φ = π) because of vortex shedding. To
the best knowledge of the authors, the results for angular distribution of the
Nusselt number, where heat transfer is solved by the LBM, are reported for
the first time here.

In LBM computation, we first simulate isothermal fluid flow at the inlet
temperature θin past the obstacle (initially, of temperature θo). When the vor-
tex shedding becomes regular, the global Nusselt number has been calculated
(Grucelski and Pozorski, 2009). The obtained values are presented in Fig. 7.
As we can see, the results show good conformity with empirical laws, like for
example Daloglu and Unal (2000). Here, for approximation (lines) we use the
relationship for the Nusselt number basing on the Ranz-Marshall correlation
Nu = 2+ 0.572Re0.5Pr0.3, where we fit its coefficients. For flow past a circular
cylinder another empirical correlation is Nu = 0.3609Re0.5749, cf. Daloglu and
Unal (2000). In the case of Re→ 0, for which LBM simulations loose stability,
we add the point Nu(Re = 0,Pr) = 2.

Fig. 7. Global Nusselt number Nu as a function of Re for a few Pr numbers.
Solid lines represent the best nonlinear fit to simulation points

with Nu = a+ bRecPrd

Then, we have performed LBM simulations of convective heat transfer in
a porous medium of fixed geometry. Figure 8 illustrates the heating of the
medium. The temperature evolution in two selected cross-sections is shown in
Fig. 9. Currently, work is underway to retrieve a macroscopic law describing
heat transfer in the porous medium.
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Fig. 8. Evolution of the temperature field in a computer-created porous medium
(the main flow direction is upwards). White circles represent the boundary of the

obstacles; (a) tvx/d = 0.45, (b) tvx/d = 2.25, (c) tvx/d = 5.25

Fig. 9. Averaged temperature profile over lattice nodes at different downstream
stations of REV

4. Variable geometry

As mentioned in the Introduction, an essential part of the coking process is
the thermal expansion and plastic deformation of coal grains. Therefore, we
develop LBM simulations for the case of temperature-affected geometry of
the porous medium. Here we assume that there is a maximum radius of each
obstacle, and we simplify the model by imposing no mechanical interactions
of the fluid-solid and solid-solid type (growing grains would overlap each other
eventually).

For simulation of variable geometry with the NEq scheme, one will en-
counter stability problems that may occur even for a change of only a few
fluid nodes into solid ones. With the OSIF scheme, simulations of flow in
temperature-affected geometry remain stable. In the case of overlapping inter-
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faces of the obstacles, one will be faced with stability issues connected with
the thin layer (of one node width) of the fluid. To cope with those problems,
in the case where there are two obstacles with interfaces in distance of a single
lattice step, for the fluid node we choose the obstacle whose interface is clo-
ser; for that particular value of q, cf. Eq. (2.12), we weight every distribution
function pointing at the obstacle interface.

Fig. 10. LBM simulations of the volume change with growing temperature of
obstacles in regular geometry; four time instants. Lines represent constant

temperature and gray-scale map codes the magnitude of velocity (the main flow
direction is upwards); (a) t = 500, (b) t = 1500, (c) t = 3000, (d) t = 4500

First, we considered a regular arrangement of N obstacles (cylinders) with
a finite thermal conductivity and a temperature-dependent size, according to

dn(t) = do[1 + β(θn(t)− θo)] (4.1)

where θo is the initial temperature of the set of obstacles (simulated poro-
us medium) and dn(t), θn(t) are the (time-varying) diameter and average
temperature of obstacle n (n = 1, . . . , N), respectively. Figure 10 shows first
simulations with changing size of the obstacles (temperature-affected geome-
try). Analogously to results discussed in Secs. 2 and 3, we have computed some
integral characteristics of a simulated, variable-geometry porous medium. Fi-
gures 11 and 12 show the time evolution of porosity, the total pressure loss
in the system and its average temperature, respectively. The two simulation
variants are compared: fixed geometry and changing size of the obstacle accor-
ding to Eq. (4.1). It is seen that, with the increasing temperature, the pressure
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loss exhibits a rapid growth, mainly due to the first upstream row of obstacles
(already heated) that expand. Consequently, the viscous resistance will con-
siderably increase. During flow evolution, where the porosity asymptotically
attains a constant value, we also perceive much smaller change of pressure
loss than the one observed at the start of flow. Time records of the averaged
temperature profile are also different from those observed for flow past a fixed
geometry. Figure 12 seems to agree with intuition that for flow with a larger
pressure loss, the heat transfer through the array of obstacles is much slower,
due to a smaller mass flow rate. This also causes the fluid to cool down faster.

Fig. 11. Time evolution of: (a) porosity and (b) pressure difference between the inlet
and outlet for flow through computer-created, variable porous media compared with

results for flow in fixed geometry

Fig. 12. Time record of the averaged (over fluid and solid nodes) temperature profile
at two different downstream stations of the porous medium. Results for flow in

variable geometry are compared with results for fixed geometry

Next achievement for the variable-geometry case is an implementation of
LBM for a simulation with obstacles that can cross each others interface. For
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the time being, however, we do not consider a true mechanical interaction of
individual obstacles. Solution of the thermal deformation (which represents a
problem in itself) is left for a subsequent work, along with the implementa-
tion of plastic interactions between obstacles and next (if reasonable) fluid-
structure interaction.

An example of such a simulation is presented in Fig. 13. There, plots (a)
show a part of the domain where cold fluid flow is present (the gray maps
represent the velocity magnitude and temperature). Plots (b) present the same
flow region (partially with changed geometry) with a partially heated fluid. In
plots (c), we observe stopping of flow due to overlapping of growing obstacles.
We note that shortly before the flow becomes blocked due to neighbouring
obstacles getting close to each other, the local fluid velocity in a narrow gap
between them can become quite high, occasionally causing numerical stability
problems.

Fig. 13. LBM simulations of volume change with growing temperature and
intersections of obstacles in random arrangement. Upper plots: color-coded flow
velocity magnitude (upwards mean flow); lower plots: temperature map;

(a) t = 2000, (b) t = 10000, (c) t = 18000

5. Discussion and conclusions

In the present work, we have developed LBM into simulation of fluid flow and
heat transfer in porous media to retrieve macroscopic variables describing both
phenomena at the REV level. We have shown a comparison of the results from
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simulation of fluid flow and heat transfer with empirical laws. The pressure
loss in function of the inlet velocity allows us to calculate the permeability
from LBM simulation data. The permeability obtained in that way shows good
conformity with the Darcy-Forchheimer law where the second-order coefficient
has been fitted to data points. As we show, the pressure loss on a single REV
for different lengths of a domain may vary, but can still be described by the
Darcy equation. Using the Forchheimer term (for the inertial effects occurring
in faster flow past a porous medium) we can describe the change of pressure
loss also for faster (less viscous) flows. During our work, also a change of the
permeability with Re was observed. A wider discussion can be found elsewhere
(Pan et al., 2006; Grucelski and Pozorski, 2011).

Heat transfer in flow over a single obstacle has been checked also by compa-
rison with empirical laws. Local values of Nu(φ) show some oscillations due to
a coarse interface, occurring in the heat transfer problem for both body-fitted
(OSIF) and mesh-fitted (NEq) schemes. Yet, the best-fit polynomials show a
good agreement with the experimental data; also, they have been compared
to other results connected with LB method (Jie and Huiming, 2006). Global
Nusselt numbers for such a flow can also be well correlated by the best-fit
curves of the presumed type. Still more work is needed to obtain a better
agreement of this type of results, as the local Nusselt numbers, with other
numerical schemes (reference data are available).

Because Eq. (2.2) does not have any source term, the distribution function
does not depend on temperature. (Later we are going to add sources due
to chemical reactions.) Consequently, the applied model is not yet ready to
simulate the coking process. At the moment, we can compute heat and fluid
flow phenomena in temperature-affected, complicated geometry (of regular
or random placement of obstacles). The presented results (change of pressure
loss with changing porosity) are consistent with the physical expectation about
flow past a porous media; basing on the mentioned results, we also conclude
that the changes of averaged temperature for fixed and variable geometry are
qualitatively correct. Still, there is a need for quantitative results from LBM
simulations of flow and heat transfer phenomena in variable geometry.

Next, we plan to focus on two subsequent developments. First is an ap-
propriate treatment of the situation where the topology changes due to, e.g.,
nearby solid grains coming in contact (solid-solid interaction). Secondly, we in-
tend to implement the OSIF boundary scheme for the heat transfer problem.
As the ultimate objective, we intend to develop an efficient and accurate me-
thod to model the coking of coal. We will use the obtained coefficients as
closures in a physically-sound, one-dimensional simulation of the process.
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Symulacje przepływu metodą siatkową Boltzmanna w ośrodku
porowatym o geometrii zależnej od temperatury

Streszczenie

Metoda siatkowa Boltzmanna (LBM) została zastosowana do obliczeń przepły-
wu i wymiany ciepła. Symulacje zostały przeprowadzone dla modelu z pojedynczym
czasem relaksacji oraz zaawansowanego schematu warunków brzegowych metody LB.
Dla przepływów nieizotermicznych, użyto dwóch funkcji rozkładu. Przedstawiono ob-
liczenia testowe nieizotermicznego opływu pojedynczej przeszkody, jak również opły-
wu regularnie oraz losowo rozmieszczonych przeszkód (ziaren), które tworzą uprosz-
czony model ośrodka porowatego. Wyznaczono liczbę Nusselta dla przepływu ciepła
w opływie pojedynczej przeszkody. Podjęto symulacje połączonych zjawisk (przepływ
i wymiana ciepła) dla ośrodka porowatego o zmiennej geometrii przeszkód. W tym
przypadku uwzględniono rozszerzalność termiczną ziaren. Zaprezentowano wyniki dla
straty ciśnienia oraz zmienne w czasie profile temperatury dla przepływu przez ośro-
dek. Uzyskane dotąd jakościowe wyniki stanowią pierwszy krok do dalszych badań
wpływu zależnej od temperatury geometrii ziaren ośrodka na przebieg takich prze-
pływów, a w szczególności na proces koksowania.
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