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This study compares the capability of two different mathematical forms
of the so-called softening variable to describe strain-induced stress so-
ftening observed within cyclic uniaxial tension of the human thoracic
aorta. Specifically, the softening variable, which serves as the stress re-
duction factor, was considered to be tangent hyperbolic-based and error
function-based. The mechanical response of the aorta was assumed to be
pseudo-hyperelastic, incompressible and anisotropic. The strain energy
density function was employed in a classical exponential form and in a
not well-known limiting fiber extensibility model. This study revealed
that both the limiting fiber extensibility and exponential models of the
strain energy describe mechanical the response of the material with si-
milar results. It was found that it is not a matter which kind of the
softening variable is employed. It was concluded that such an approach
can fit the Mullins effect in the human aorta, however the question of
the best fitting model still remains.
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1. Introduction

Due to cardiac cycle, arteries are subjected to cyclic loading and unloading in
their physiological conditions. In vitro, the mechanical response of arteries is
mostly studied within the cyclic inflation-extension and the tensile test. One of
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the irreversible effects observed during these experiments is the Mullins effect.
This strain-induced softening phenomenon is well known in elastomer mecha-
nics. It is characterized by the following features: when a so-called virgin ma-
terial (previously undeformed) is loaded to a certain value of the deformation,
the stress-strain curve follows the so-called primary loading curve. Subsequ-
ent unloading exhibits the stress softening. Next reloading follows the former
unloading curve until the previous maximum strain is reached. At this mo-
ment, when the previous deformation maximum is exceeded, the stress-strain
path starts to trace the primary loading curve (Diani et al., 2009). This defi-
nition describes quite ideal material behavior. Within the real experiment the
unloading and the reloading may not match exactly due to the hysteresis. The
comparison between the ideal and true cyclic softening is depicted in Fig. 1.

Fig. 1. (a) Idealized Mullines effect, (b) true experimental data

The elastic response of blood vessel walls is significantly nonlinear, ani-
sotropic and requires large strains to be incorporated (Holzapfel et al., 2000;
Humphrey, 2003). Such behavior is usually modeled within the framework of
hyperelasticity which presumes existence of an elastic potential (strain energy
density function, SEDF), and constitutive equations are obtained by differen-
tiation of the elastic potential with respect to the strain tensor.
Although existence of the stress softening within in vitro cyclic loading

of blood vessels has been known for long time only few attempts have be-
en made to develop new theories. Fung et al. (1979) proposed to model the
mechanical response of arteries as pseudo-elastic. In this concept, an artery
wall is considered to be elastic, however loading and unloading responses are
defined with different constitutive equations. Nowadays, models capture the
Mullins effect using either the Continuum Damage Mechanics (CDM) or the
pseudo-elasticity theory.
Damage models describe the Mullins effect incorporating a damage para-

meter which serves as a reduction factor in the strain energy density func-
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tion. The damage parameter is considered as an internal variable (Simo, 1987)
and can be applied in a more general manner for an arbitrary irreversible
process (Holzapfel, 2000, chap. 6.9-11). The damage parameter can be full-
strain-history dependent (continuous damage) or maximum-value dependent
(discontinuous damage).

Another concept describing the Mullins effect is the theory of the pseudo-
elasticity developed by Ogden and Roxburgh (1999). They suggested the in-
troduction of the a variable (softening variable) into the strain energy function
which is thereafter called the pseudo-strain energy density function. The softe-
ning variable then governs the energy density and switch on and off between
the primary and softened response of a material. The particular model of the
pseudo-energy function suggested by Ogden and Roxburgh (1999) results in si-
milar symbolic form as in CDM. Successful application of the pseudo-elasticity
in rubber mechanics were reported by Dorfmann and Ogden (2003, 2004) and
Eĺıas-Zúñiga (2005). Peña and Doblaré (2009) proposed the application of this
theory for anisotropic biological materials considering different softening varia-
bles for an extracellular matrix and fibers. This model successfully described
the softening behavior of sheep vena cava.

The aim of this paper is to compare the pseudo-elastic models for the Mul-
lins effect using different forms of the SEDF. In the first case, the mechanical
response of the artery wall is described with the strain energy function adop-
ted in the exponential form (Holzapfel et al., 2000). In the second case, not
well-known the limiting fiber extensibility form of the SEDF is applied. The
comparison is shown by fitting the experimental data recorded within uniaxial
tension of human thoracic aorta. The artery is considered to be nonlinear,
incompressible and anisotropic continuum. Here we focus only on the strain-
induced softening. Temperature, heat and strain-rate effects are not concerned
as well as the active response (smooth muscle fibers) of arterial tissue.

2. Methods

2.1. Experiment – uniaxial tension

In order to illustrate the Mullins effect in human aorta, cyclic uniaxial
tension tests were performed on MTSMini Bionix testing machine (MTS, Eden
Prairie, USA). Samples of healthy human thoracic aorta were resected from
cadaveric donor (male, 47 years old) with the approval of the Ethic Committee
of the University Hospital Na Kralovskych Vinohradech in Prague. Respecting
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the anisotropy of an aorta, samples were resected in the circumferential and
longitudinal direction. The total number of samples was eight (five oriented
longitudinally, three oriented circumferentially).
Five levels of maximum stretch were performed during the tests: λm =

= 1.1, 1.2, 1.3, 1.4 and λm = 1.5, where λm is the maximum ratio between
the current length l and the referential length L. The representative of the
recorded data is shown in Fig. 1b. Each λm level was preformed as four-cycle
of the loading and unloading. Considering the incompressibility of the tissue,
the loading stress was obtained according to the following relation

σ =
F

s
=
Fl

LBH
(2.1)

Here F denotes the applied force and s the current cross-section. B and H
denote the width and the thickness of the sample in the reference (zero-stress)
configuration. Dimensions of the samples in the reference configurations were
determined within the analysis of digital photographs (thickness) and by a
caliper (length and width). Strain rate was 120mm/min.

2.2. Constitutive modeling – pseudo-elasticity

A deformation is considered as the homeomorphic mapping ϕ between
material particles embedded in the reference Cartesian coordinate system
{O;X1X2X3} and the same particles embedded in the spatial Cartesian coor-
dinate system {O;x1x2x3}. The reference position vector X is mapped onto
x according to x = ϕ(X). The deformation is then described with the de-
formation gradient F = ∂ϕ/∂X which generates right Cauchy-Green strain
tensor C = F⊤F. Within the modeling of the uniaxial tension we restrict the
attention only to pure homogenous strains xi = λiXi (i = 1, 2, 3). Thus the
deformation gradient is of the form F = diag [λ1, λ2, λ3].
The response of the artery during the primary loading by uniaxial tension

is modeled as incompressible, hyperelastic and anisotropic. The anisotropy
is generated with two preferred directions in continuum which are perfectly
aligned with β and −β angles. These angles lay in the X1X2-plane of the
sample. It is assumed that both preferred directions are mechanically equiva-
lent and hence the resulting degree of anisotropy is called local orthotropy (for
details see p. 272 in Holzapfel, 2000; or in Holzapfel et al., 2000). The hype-
relastic behavior of the material is determined by the strain energy density
function W0. Here index 0 denotes the primary loading response. The stored
energy is additively decoupled into isotropic and anisotropic part

W0 =W
ISO
0 (I1) +W

ANISO
0 (I4, I6) (2.2)
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I1, I4 and I6 denote the invariants of the Right Cauchy-Green deformation
tensor C. The first invariant of C can be expressed as I1 = λ

2
1 + λ

2
2 + λ

2
3.

The invariants I4 and I6 arise from material anisotropy. Due to the mecha-
nical equivalency between the preferred directions I4 = I6. Therefore W0 is
considered to be W0 =W0(I1) + 2W0(I4).

Two specific forms of strain energy (2.2) were incorporated. The first one
corresponds to the exponential function proposed by Holzapfel et al. (2000)

WHGO0 =
c

2
(I1 − 3) +

k1
k2

[

exp
(

k2(I4 − 1)
2
)

− 1
]

(2.3)

where c and k1 denote stress-like material parameters and k2 is the dimension-
less parameter. Such a model is invariant-based modification of the classical
Fung-type exponential model which was many times successfully applied in
soft tissue biomechanics. The second form of the SEDF was incorporated via
the limiting fiber extensibility model proposed by Horgan and Saccomandi
(2005), see equation (2.4)

WHS0 =
c

2
(I1 − 3)− µJf ln

(

1−
(I4 − 1)

2

J2f

)

(2.4)

Here c and µ are stress-like material parameters and Jf is the dimensionless,
so-called limiting extensibility parameter. Both WHGO0 and WHS0 include the
isotropic Neo-Hookean term linked with the matrix of biological composite.
The material nonlinearity, related to the presence of wavy collagen fibers in
the soft tissue is, however in (2.3) and (2.4), captured in significantly different
manners. Exponential function (2.3) reflects the famous result of Y.C. Fung
that the stiffness is proportional to the applied stress. In contrast to (2.3)
the limiting extensibility model restricts admissible deformation to a certa-
in maximum value under which the stored energy approaches infinity. The
deformation admissible in (2.4) has to satisfy condition

(I4 − 1)
2

J2f
< 1 (2.5)

which implies that I4 < Jf + 1. When the unit vector aligned with the pre-
ferred direction M = cos(β)E1 + sin(β)E2 is considered then the additio-
nal invariant I4 can be expressed as I4 = M(CM). Combining equations
F = diag [λ1, λ2, λ3]C = F

⊤
F, and I4 =M(CM) we arrive at

I4 = λ
2
1 cos

2 β + λ22 sin
2 β (2.6)
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Now it is clear that I4 can be considered as the square of the stretch in
the preferred direction that must be invariant under a change of the frame of
reference. Here introduced the limiting fiber extensibility model was proposed
by Horgan and Saccomandi (2005) and is adopted with minor modification
in the square of Jf . It may be regarded as the extension of the simple phe-
nomenological model originally proposed by Gent (1996) which is suitable to
capture large-strain stiffening behavior of isotropic materials. The applicabili-
ty of such a class of models in soft tissue mechanics was pointed out by Horgan
and Saccomandi (2003) and Ogden and Saccomandi (2007). It is worth noting
that limiting fiber extensibility model (2.4) offers some advantages. Incorpo-
rating SEDF in form (2.4) one can obtain closed analytical solutions of some
boundary-value problems important in blood vessel biomechanics like e.g. an
inflation-extension of a thick-walled tube (Horny et al., 2008). This is in con-
trast to classical (Fung-type) exponential models. Constitutive equations for
the primary response of the hyperelastic incompressible material are now ob-
tained as expressed in (2.7). Here the principal stresses are denoted by σ0i,
and p0 denotes a Lagrange multipiler associated with the incompressibility
constraint λ1λ2λ3 = 1

σ0i = λi
∂W0
∂λi
− p0 i = 1, 2, 3 (2.7)

In order to reproduce softened behavior during unloading and reloading,
we introduce the softening factors η into constitutive equations (2.7). Thus
the same form of the strain energy W0 still takes place here

σi = ηλi
∂W0
∂λi
− p i = 1, 2, 3 (2.8)

The stress is reduced by the factor η ∈ [0; 1]. In this study we only concern with
the idealized Mullins effect, thus unloading and reloading paths match exactly.
Now the softening factors must govern the constitutive equations into expres-
sion (2.7) for the primary loading and into (2.8) for the unloading/reloading.
Within uniaxial tension of the sample in the direction j, it is satisfied by
definition

η =

{

1 for λj = λj max

η(λ1, λ2, λ3) for λj < λj max
(2.9)

Definition (2.9) says that if the sustained stretch in the direction of the loading
is maximal then there is no softening. And when the sustained stretch in the
direction of the loading is smaller than the maximum value in the history of
the loading then the softening occurs.
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A particular form of the mathematical expression for η must be defined.
We adopt forms for softening factors as was originally introduced by Ogden
and Roxburgh (1999) and Dorfmann and Ogden (2003). Hence, let η be of the
form

η = 1−
1

r
f
(Wm −W0(λ1, λ2, λ3)

m

)

(2.10)

where f(t) is erf (t) or tanh(t). Wm denotes the maximum value of W0
reached within the loading history. r and m are real positive parameters. The
resulting model, regardless if erf (t) or tanh(t) is operative in (2.10), contains
six material parameters. It is explicitly c, µ, Jf , β, r and m when the limiting
fiber extensibility model WHS0 is applied, and c, k1, k2, β, r and m in the
case of the exponential model WHGO0 .

3. Results – fitting the model

The capability of the introduced models was tested within the regression ana-
lysis of uniaxial tension experimental data. The total number of tested samples
was eight and they exhibited similar results. Only one pair of sample (one strip
in the circumferential and one in the longitudinal direction of the artery) was
considered for the regression. The selected samples were obtained from one
donor and resected in the same region of the thoracic aorta.

With respect to anisotropy exhibited by human arteries, W0 has to be con-
sidered as a function of λ1, λ2 and λ3. Incorporating the incompressibility as-
sumption, the out-of-plane stretch λ3 is eliminated. However, our experimen-
tal equipment does not allow one to measure transversal stretches. In order to
overcome this drawback we employed the boundary condition σtransversal = 0
which is used to calculate transversal stretches upon the uniaxial state of
stress. The data from the circumferential and longitudinal experiment were
optimized simultaneously to find the minimum of objective function

Q =
1

Mean2(σEXPi,j )

2
∑

i,j=1

∑

k

(

σEXPi,j − σMODi,j

)2

k
(3.1)

Here upper indices EXP and MOD indicate the experimental observation
and the model prediction, respectively. The observed stresses were calculated
according to (2.1). Model predictions were based on equation (2.8) incorpo-
rating the definition of stress reduction factors (2.9) and (2.10). The lower
indices i and j are operative representing the direction of demanding stress
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and the direction of the uniaxial tensile test, respectively. It means that σi,j
denotes the stress in the direction i during the loading in the direction j.
Only the data from the first two cycle-levels were included in the regression
(λm = 1.1 and 1.2). The regression was performed with the optimization pac-
kage in Maple 13 (Maplesoft, Waterloo, Canada).
Both WHGO0 and WHS0 were used in order to compare their suita-

bility. The softening factor η was employed in both mathematical forms;
η = 1−r−1 tanh(t) and η = 1−r−1 erf (t). The estimated material parameters
are listed in Table 1. The model predictions are compared with the experiment
in Fig. 2. The regression results were also checked on the condition I4 > 1.
Because I4 models reinforcement with collagen fibers, they may contribute to
the stored energy only in tensile strains. It was found that this condition was
satisfied in all data points. Figure 3 shows the stress ratio σ0/σ computed
from the experimental data which can be considered as the observation of η.

Fig. 2. (a), (b) The Mullins effect – circumferential strip, (c), (d) the Mullins
effect – longitudinal strip

Fig. 3. The softening variable
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4. Discussion

This study presents the comparison between two (primary) strain energy den-
sity functions, WHS0 and WHGO0 , used in the pseudo-elastic model for the
Mullins effect observed within the periodic uniaxial tension of arterial tis-
sue. The strain-induced stress softening has been described by means of the
stress-reduction factors η which can be simply considered as the stress ra-
tio σ0i/σi, where σ0i takes place during the primary loading and σi corre-
sponds to the softened behavior. A particular mathematical form of η has
been adopted from the pseudo-elasticity theory introduced by Ogden and Ro-
xburgh (1999) and Dorfmann and Ogden (2003, 2004). These reduction fac-
tors, η = 1−r−1 tanh(t) and η = 1−r−1 erf (t) were reported to be successful
in the description of the Mullins effect observed in particle-reinforced rubber,
and herein were used for healthy human thoracic aorta. Based on the com-
parison in Fig. 2, one can conclude that the primary response of the aorta
can be successfully modeled by both WHS0 and WHGO0 strain energy func-
tions. But the results of predictions obtained for the softening behavior are
not quite satisfactory. The data suggests that it is not a matter if tanh(t) or
erf (t) is employed in the model for the softening variable (reduction factor).
Almost the same predictions are also obtained by incorporating WHS0 and
WHGO0 into the softening model. Nevertheless, the quality of the models is
controversial. They can mimic the softening behavior in principle, however
the character seems to be almost piecewise linear which is in contrast to the
experimental data. It was tried to find parameters with better approxima-
tion ability but the optimization procedure always converged to the presented
parameters.

Model parameters obtained within the minimization of objective function
(3.1) are listed in Table 1. Numeric values of parameters obtained for WHS0 and
WHGO0 are similar, which confirms the graphically displayed results in Fig. 2.
The shear modulus related with the Neo-Hookean term, which is usually linked
to the response of isotropic matrix, was found to be almost the same in every
model (∼ 110 kPa). This is slightly higher than usually reported values around
tens of kPa. Stress-like parameters in the nonlinear terms of WHS0 and WHGO0 ,
µ and k1, were obtained in hundreds of kPa, which is in accordance with some
values summarized in Holzapfel (2009).

There are only few papers reporting the limiting extensibility parame-
ter Jf . In our previous studies, values of Jf ranging from 0.1 up to 1.044
were found (Jf = 0.1202 for thoracic aorta in Horny et al. (2010); Jf = 1.044
for abdominal aorta in Horny et al. (2008); Jf = 0.7498 for saphenous vein
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coronary artery bypass graft after 35 months of remodeling in Horny et al.
(2009); and Jf ≈ 0.3 for human vena cava Horny et al. (2011)). Ogden and
Saccomandi used Jf = 0.422 in their simulation (Ogden and Saccomandi,
2007).

The parameter β is interpreted as the orientation of reinforcement fibers.
The estimated value is around 52◦. However, the artery wall is significan-
tly heterogeneous and fibers show dispersed alignment (Gasser et al., 2006).
Thus, this parameter without histological observation is rather phenomeno-
logical.

The softening parameter r (dimensionless) was reported to be 1.05 for
soft-bodied arthropod (Dorfmann et al., 2007) and 1.105 for vaginal tissue
and sheep vena cava (Peña et al., 2009). Our values are also of the order of
unity (approx. r = 2.6). The parameter m was obtained as m = 0.00725 for
WHGO0 and η = 1−r−1 tanh(t); m = 0.0082 for WHGO0 and η = 1−r−1 erf (t);
m = 0.735 for WHS0 and η = 1 − r−1 tanh(t); and m = 0.937 for WHS0 and
η = 1− r−1 erf (t). It can be compared with Ogden and Dorfmann (2003) who
found it to be 0.3 (for particle reinforced rubber), and Dorfmann et al. (2007)
whok reported 0.0038 (for muscle of soft-bodied arthropod).

For the sake of completeness, we have to note that the primary response
of the material was fitted at first (parameters c, k1, k2, β in W

HGO
0 ; and c, µ,

Jf , β in W
HS
0 ). Subsequently, the regression of r and m was performed with

fixed values of the parameters in W0. Such a way of the fitting procedure was
established due to still remaining lack of clear (physical) interpretation of the
softening parameters.

Finally, the employed model for the softening variable η was isotropic. It
means that the stress ratio σ0i/σi is independent of the direction in which the
tension was applied. There is no explicit dependence of r and m on the di-
rection of the stress. There is only implicit anisotropy generated with relation
η = η(W0) because W0 is naturally anisotropic. It was justified by the obse-
rvation presented in Fig. 3.

We conclude that the exponential and the limiting extensibility strain ener-
gy functions are both suitable for the description of the primary response
within uniaxial tension of the thoracic aorta. They can be coupled with the
pseudo-elastic softening variable η in order to capture the idealized Mullins
effect. Nevertheless, the model predictions suggested that specific forms of the
softening variable may not be quite appropriate.
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Porównanie modelu wykładniczego z pseudo-sprężystym modelem

o ograniczonej rozszerzalności włókien przy opisie efektu Mullinsa

w tkance tętniczej

Streszczenie

Praca zawiera analizę porównawczą poprawności dwóch różnych matematycznych
sformułowań tzw. zmiennej osłabienia przy opisie zjawiska osłabienia naprężeń in-
dukowanych odkształceniem obserwowanym podczas cyklicznego jednoosiowego roz-
ciągania aorty piersiowej. W szczególności, zmienną osłabienia jako czynnika redu-
kującego poziom naprężeń opisano funkcją typu tangens hiperboliczny oraz funkcją
błędu. Założono, że mechaniczne właściwości aorty odpowiadają modelowi pseudo-
hipersprężystemu, nieściśliwemu i anizotropowemu. Funkcję gęstości energii odkształ-
cenia przyjęto w klasycznej formie wykładniczej i mało rozpoznanej postaci, któ-
ra ogranicza zakres rozszerzalności włókien. Badania wykazały, że obydwa podejścia
opisują właściwości mechaniczne tkanki z podobnym skutkiem. Pokazano, że rodzaj
przyjętej zmiennej osłabienia nie ma wpływu na rezultaty badań. W konkluzji pod-
kreślono, że obydwa modele nadają się do analizy efektu Mullinsa w aorcie, jakkolwiek
nadal otwartą kwestią pozostaje problem znalezienia najlepiej dopasowanego modelu
do opisu tego zjawiska.
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