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An axially-symmetric problem of a penny-shaped crack situated in a
position parallel to the boundary of a semi-infinite transversely isotropic
solid is formulated with due regard for the presence of an ideal gas in
the crack. The method of the Hankel integral transforms is used to solve
this problem. The dual integral equations obtained are reduced to a set
of integral equations which are solved numerically. The graphs presented
illustrate the influence of the gas on the stress intensity factors of Mode I
and Mode II.
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1. Introduction

The class of problems for solids with cracks and cavities, provided that the
defects are filled with some substance, has wide applications in many areas,
namely, in geomechanics, the petroleum industry, gas-producing industry, mi-
ning geotechnical engineering and others. Such problems are arisen during in-
vestigation of hydraulic fracture of rocks, gas-filtration into cavities appearing
during coal excavation, spalling of concrete at high temperature, etc. There
is a considerable amount of literature on the topic. A great deal of interest is
focused on the modelling of liquid or gas-filled cracks (see, for example, Abe et
al., 1976; Zazovskii, 1979; Bui and Parnes, 1982; Advani et al., 1997; Feraille-
Fresnet and Ehrlacher, 2000; Savitski and Detournay, 2002; Feraille-Fresnet et
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al., 2003). Comprehensive accounts of developments pertaining to fluid-filled
crack problems can be found in Chapter 8 of Bui’s book (2006). A simplified
analysis of these problems, which retains the description of fracture phenome-
na, can be carried out using the concepts of linear elastic fracture mechanics.
This approach was oriented mainly to the construction of appropriate strain-
stress solutions for idealized situations with some assumptions involving fluid
crack interaction. In this respect, we can mention the research results obtained
by Evtushenko and Sulim (1981) for a plane problem involving a crack filled
with a compressible barotropic liquid, by Balueva and Dashevskii (1995) and
Dashevskii (2007) who studied the growth of gas-filled cracks, by Kit et al.
(2003) and Machyshyn and Nagórko (2003) for systems with gas-filled contact
gaps. Attention should also be paid to an article by Matczyński et al. (1999) in
which the combined thermal and mechanical influence of the heat-conducting
ideal gas filling the crack on stresses is analysed in the case of plane strain.

In the present paper, we continue the investigations originated by the au-
thors (Kaczyński and Monastyrskyy, 2004, 2007), and study an axisymmetric
elastostatic problem of determination of disturbances of stresses due to the pre-
sence of a gas-filled penny-shaped crack positioned parallel to the boundary of
the semi-infinity body treated as a transversely isotropic medium (modelling,
for example, a rock layered horizontally (Gil, 1991) or stratified rock mass (Sa-
lamon, 1968)). Our goal is to examine the integrated effect of the crack filler
on the stress distribution around the crack, essentially on the stress intensity
factors.

2. Statement of the problem

2.1. Formulation

Suppose that a penny-shaped crack of radius a is embedded in a trans-
versely isotropic half-space with the axis of elastic symmetry normal to the
crack plane as shown in Fig. 1. We refer to a system of cylindrical coor-
dinates (r, θ, z) with the origin placed at the centre of the crack and the
z-axis in the transverse direction such that the crack occupies the region
S = {(r, θ, z = 0) : 0 ¬ r ¬ a ∧ 0 < θ ¬ 2π} and z = h defines the
boundary of the solid. Here, h is the distance of the crack away from the
half-space surface.

Keeping in mind the presence of a gas in this crack, we touch upon a
problem which has two interrelated components regarding the external loading
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Fig. 1. A half-space with a gas-filled penny-shaped crack

and the behaviour of the filler. For formulation of this problem, some simplified
assumptions will be made. It allows effective examination of the stressed-strain
state of the half space and determination of pressure of the gas in the crack.

In what follows, we assume that the body is subjected at infinity and
the boundary to a constant tensile or compressive load p. The crack is filled
with an ideal and compressible gas whose state is described by the well-known
Boyle-Clayperon-Mendeleyev equation, written in the simple form

PgasV = g0 = const (2.1)

where Pgas and V stand for the pressure and volume of the gas, and g0 is a
constant on the assumption that the mass of the gas and temperature remain
constant. The mechanical action of the gas filled the crack is simulated by
the internal pressure Pgas , so only uniformly distributed normal forces −Pgas
act on the surfaces of the crack. It is noteworthy that Pgas is unknown and
according to Eq. (2.1) is a function of gas properties and the volume V which
is equal to the volume of the crack depending, in turn, on the external load p.
Hence, the gas pressure is an additional unknown parameter of the problem
to be determined in the course of its solution.

Thus the problem under study lies in the determination of the stress-and-
strain state of the body, paying much attention to the distribution of stresses
in the neighbourhood of the crack. In particular, the stress intensity factors
as the local important parameters controlling the fracture instability are of
prime interest.
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2.2. Governing equations

The above-mentioned problem may be treated as axially-symmetric (inde-
pendent of the angle θ) with the only non-vanishing displacements in the radial
and axial directions ur(r, z), uz(r, z) and components of the stress tensor σzz,
σrz, σrr, σθθ. In this case, the linear constitutive relations of a transversely
isotropic medium characterised by the five elastic moduli c33, c13, c44, c11, c12
are (Lekhnitskii, 1963)

σzz(r, z) = c33
∂uz(r, z)

∂z
+ c13

1

r

∂[rur(r, z)]

∂r

σrz(r, z) = c44
(∂ur(r, z)
∂z

+
∂uz(r, z)

∂r

)

(2.2)

σrr(r, z) = c11
∂ur(r, z)

∂r
+ c12

ur(r, z)

r
+ c13

∂uz(r, z)

∂z

σθθ(r, z) = c12
∂ur(r, z)

∂r
+ c11

ur(r, z)

r
+ c13

∂uz(r, z)

∂z

The equilibrium equations for the unknown displacements ur(r, z) and
uz(r, z), in the absence of body forces, are given by

c11
∂

∂r

(1
r

∂[rur(r, z)]

∂r

)
+ (c13 + c44)

∂2uz(r, z)

∂r∂z
+ c44

∂2ur(r, z)

∂z2
= 0

(2.3)

c44
1

r

∂

∂r

(
r
∂uz(r, z)

∂r

)
+ (c13 + c44)

1

r

∂2[rur(r, z)]

∂r∂z
+ c33

∂2uz(r, z)

∂z2
= 0

3. The boundary-value problem and its solution

Following the classical approach in crack problems based on the superposition
principle, we separate the problem under study into two parts: the first relating
to the body with no crack subjected to the given exterior load p and the second,
corrective part involving local perturbations caused by the gas-filling penny-
shaped crack. Since the first part is trivial, we will draw attention to finding
the corrective solution. To formulate the perturbed problem with the crack
located on the plane z = 0, it is convenient to treat the considered solid as a
layer of thickness h, described by 0 ¬ z ¬ h joined to the half-space z ¬ 0
of the same transversely isotropic material (see Fig. 1). Bearing in mind all
aforementioned assumptions, we arrive at the following boundary conditions:
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– on the crack

σ
(1)
zz (r, 0) = σ

(2)
zz (r, 0) = −Pgas − p 0 ¬ r ¬ a

σ
(1)
rz (r, 0) = σ

(2)
rz (r, 0) = 0 0 ¬ r ¬ a

(3.1)

– outside the crack (continuity of stresses and displacements)

σ
(1)
zz (r, 0) = σ

(2)
zz (r, 0) σ

(1)
rz (r, 0) = σ

(2)
rz (r, 0) a < r <∞

u
(1)
z (r, 0) = u

(2)
z (r, 0) u

(1)
r (r, 0) = u

(2)
r (r, 0) a ¬ r <∞

(3.2)
– on the boundary

σ(2)zz (r, h) = σ
(2)
rz (r, h) = 0 (3.3)

– at infinity (regularity conditions)

σ(1)zz (r,−∞) = σ(1)rz (r,−∞) = 0 (3.4)

where superscripts (1) and (2) refer to quantities associated with the region
z ¬ 0 and 0 ¬ z ¬ h, respectively.
Besides, recall that the unknown gas pressure Pgas is found during solving

the problem by using Eq. (2.1), in which

V =

∫∫

S

(u(2)z − u(1)z ) dS = 2π
a∫

0

r[u(2)z (r, 0) − u(1)z (r, 0)] dr (3.5)

The solution to the non-trivial perturbed problem is grounded on the jump
displacement method. It lies in reducing this problem to a set of simultaneous
integral equations the solution to which can be obtained only in a numerical
fashion. The use of the Hankel integral transforms (see Sneddon and Lowen-
grub, 1969) is a mathematical tool.
At the first stage, we solve an auxiliary problem described by Eqs. (3.3)

and (3.4), and the following boundary conditions on the whole plane z = 0

σ
(1)
zz (r, 0) = σ

(2)
zz (r, 0) σ

(1)
rz (r, 0) = σ

(2)
rz (r, 0)

u
(2)
z (r, 0) − u(1)z (r, 0) = ∆uz(r) u

(2)
r (r, 0) − u(1)r (r, 0) = ∆ur(r)

(3.6)
where ∆uz(r) and ∆ur(r) stand for the jumps of normal and tangential di-
splacements, respectively, unknown beforehand.
A commonly employed method of obtaining the solution is based on the

theory of Hankel’s transforms. Only some relevant results will be given. We
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apply Hankel’s transforms of the first order for Eq. (2.3)1 and the zero order
for Eq. (2.3)2, with the aid of the definitions

f̃n(ξ, z) ≡ Hn[f(r, z); r → ξ] ≡
∞∫

0

rf(r, z)Jn(rξ) dξ n = 0, 1 (3.7)

where Jn stands for the Bessel function of the first kind of the order n, and
ξ is the transform parameter. Using some properties of Hankel’s transform, we
arrive at two-coupled ordinary differential equations for the Hankel transforms
of displacements (ũz)0 and (ũr)1. Solving the set of these equations separately
for the half-space z ¬ 0 (bearing Eq. (3.4) in mind) and the layer 0 ¬ z ¬ h,
we get the following expressions:
— for z ¬ 0

(ũ(1)z )0 = S1(ξ) exp(k1ξz) + S2(ξ) exp(k2ξz)
(3.8)

(ũ(1)r )1 =
c44 − k21c33
(c13 + c44)k1

S1(ξ) exp(k1ξz) +
c44 − k22c33
(c13 + c44)k2

S2(ξ) exp(k2ξz)

— for 0 ¬ z ¬ h

(ũ(1)z )0 = X1(ξ) cosh(k1ξz) +X2(ξ) sinh(k1ξz) +X3(ξ) cosh(k2ξz) +

+X4(ξ) sinh(k2ξz)
(3.9)

(ũ(1)r )1 =
c44 − k21c33
(c13 + c44)k1

[X2(ξ) cosh(k1ξz) +X1(ξ) sinh(k1ξz)] +

+
c44 − k22c33
(c13 + c44)k1

[X4(ξ) cosh(k2ξz) +X3(ξ) sinh(k2ξz)]

in which the functions S1, S2 and X1, X2, X3, X4 are unknown and remain
to be found. Moreover, k2i (i = 1, 2) are the roots of the equation

c33c44k
4 + (c213 + 2c13c44 − c11c33)k2 + c44c11 = 0 (3.10)

Here we have confined to the case of distinct positive roots given explicitly by
Ding et al. (2006)

k1 =

√
(
√
c11c33 − c13)(

√
c11c33 + c13 + 2c44)

4c33c44
+

−
√
(
√
c11c33 + c13)(

√
c11c33 − c13 − 2c44)

4c33c44
(3.11)
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k2 =

√
(
√
c11c33 − c13)(

√
c11c33 + c13 + 2c44)

4c33c44
+

+

√
(
√
c11c33 + c13)(

√
c11c33 − c13 − 2c44)

4c33c44

Note that there are no principal difficulties to solve the problem in the special
case of equal roots, but in the present paper it is omitted.

With the help of Eqs. (3.8) and (3.9), the Hankel transforms of stresses
σzz and σrz are found from Eqs. (2.2)1,2 to be:

— for z ¬ 0

(σ̃(1)zz )0 =
c44

(c13 + c44)
ξ ·

·
[c13 + c33k21

k1
S1(ξ) exp(k1ξz) +

c13 + c33k
2
2

k2
S2(ξ) exp(k2ξz)

]

(3.12)
(σ̃(1)rz )1 = −

c44
c13 + c44

ξ ·

·
[
(c13 + c33k

2
1)S1(ξ) exp(k1ξz) + (c13 + c33k

2
2)S2(ξ) exp(k2ξz)

]

— for 0 ¬ z ¬ h

(σ̃2zz)0 =
c44

(c13 + c44)
ξ
(c13 + c33k21

k1
[X2(ξ) cosh(k1ξz) +X1(ξ) sinh(k1ξz)] +

+
c13 + c33k

2
2

k2
[X4(ξ) cosh(k2ξz) +X3(ξ) sinh(k2ξz)]

)

(3.13)
(σ̃(1)rz )1 = −

c44
c13 + c44

ξ
(
(c13 + c33k

2
1)[X1(ξ) cosh(k1ξz) +X2(ξ) sinh(k1ξz)] +

+(c13 + c33k
2
2)[X3(ξ) cosh(k2ξz) +X4(ξ) sinh(k2ξz)]

)

The next step in the solution is to express the above transforms in terms of
the Hankel transforms of two functions given in the region of the crack, namely,
the jumps of normal and tangential displacements: ∆uz(r) and ∆ur(r). To
this end, we apply the Hankel transformation to boundary conditions (3.3)
and (3.6), and with the aid of Eqs. (3.8), (3.9), (3.12), (3.13), we see that
these conditions are satisfied if the six unknown functions S1, S2 and X1, X2,
X3, X4 fulfil the following set of linear equations
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c13 + c33k
2
1

k1
[X2(ξ) cosh(k1ξh) +X1(ξ) sinh(k1ξh)] +

+
c13 + c33k

2
2

k2
[X4(ξ) cosh(k2ξh) +X3(ξ) sinh(k2ξh)] = 0

(c13 + c33k
2
1)[X1(ξ) cosh(k1ξh) +X2(ξ) sinh(k1ξh)] +

+(c13 + c33k
2
2)[X3(ξ) cosh(k2ξh) +X4 sinh(k2ξh)] = 0

(c13 + c33k
2
1)

k1
[X2(ξ)− S1(ξ)] +

(c13 + c33k
2
2)

k2
[X4(ξ)− S2(ξ)] = 0 (3.14)

(c13 + c33k
2
1)[X1(ξ)− S1(ξ)] + (c13 + c33k22)[X3(ξ)− S2(ξ)] = 0

X1(ξ)− S1(ξ) +X3(ξ)− S2(ξ) =
(
∆̃uz(ξ)

)
0

c44 − c33k21
(c13 + c44)k1

[X2(ξ)− S1(ξ)] +
c44 − c33k22
(c13 + c44)k2

[X4(ξ)− S2(ξ)] =
(
∆̃ur(ξ)

)
1

Its solution is written in the form

X1(ξ) = S1(ξ)−
c13 + c33k

2
2

c33(k
2
1 − k22)

(
∆̃uz(ξ)

)
0

X2(ξ) = S1(ξ)−
(c13 + c33k

2
2)k1

c33(k21 − k22)
(
∆̃ur(ξ)

)
1

(3.15)

X3(ξ) = S2(ξ) +
c13 + c33k

2
1

c33(k
2
1 − k22)

(
∆̃uz(ξ)

)
0

X4(ξ) = S2(ξ) +
(c13 + c33k

2
1)k2

c33(k
2
1 − k22)

(
∆̃ur(ξ)

)
1

provided that

S1(ξ) =
c13 + c33k

2
2

c33(k21 − k22)
[D1z(ξ)

(
∆̃uz(ξ)

)
0
+D1r(ξ)

(
∆̃ur(ξ)

)
1
]

(3.16)

S2(ξ) =
c13 + c33k

2
1

c33(k
2
1 − k22)

[D2z(ξ)
(
∆̃uz(ξ)

)
0
+D2r(ξ)

(
∆̃ur(ξ)

)
1
]

where (i = 1, 2)

Diz(ξ) =
1

2

(
(−1)3−i + k1 + k2

k1 − k2
exp(−2kiξh)−

2ki
k1 − k2

exp[−(k1 + k2)ξh]
)

(3.17)

Dir(ξ) =
ki
2

(
(−1)3−i − k1 + k2

k1 − k2
exp(−2kiξh) +

2k3−i
k1 − k2

exp[−(k1 + k2)ξh]
)
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Thus, we can establish the representations of the Hankel transforms of di-
splacements (3.8), (3.9) and stresses (3.12), (3.13) through the transforms(
∆̃uz(ξ)

)
0
and

(
∆̃ur(ξ)

)
1
with the help of Eqs. (3.15)-(3.17). It can be obse-

rved that these representations satisfy all the boundary conditions of the posed
principal problem, except conditions (3.1) and (3.2)2. Applying the Hankel in-
version to Eqs. (3.8), (3.9) and (3.12), (3.13), we find that conditions (3.1)
and (3.2)2 yield the system of simultaneous dual integral equations for the
functions

(
∆̃uz(ξ)

)
0
and

(
∆̃ur(ξ)

)
1
:

— for 0 ¬ r ¬ a
∞∫

0

[( 1

k1k2(k1 + k2)
− U1z(ξh)

)(
∆̃uz(ξ)

)
0
− U1r(ξh)

(
∆̃ur(ξ)

)
1

]
ξ2J0(ξr) dξ =

=
2c33(c13 + c44)(Pgas + p)

(c13 + c33k21)(c13 + c33k
2
2)c44

(3.18)
∞∫

0

[( 1

k1 + k2)
− U2r(ξh)

)(
∆̃ur(ξ)

)
1
− U2z(ξh)

(
∆̃uz(ξ)

)
0

]
ξ2J1(ξr) dξ = 0

— for r > a

∞∫

0

ξ
(
∆̃uz(ξ)

)
0
J0(ξr) dξ = 0

(3.19)
∞∫

0

ξ
(
∆̃ur(ξ)

)
1
J1(ξr) dξ = 0

In the above, the quantities Uiz(ξh), Uir(ξh), i = 1, 2 stand for

U1z(ξh) =
1

(k1 − k2)2
2∑

i,j=1

(−1)i+j 2 exp[−(ki + kj)ξh]
ki + kj

U1r(ξh) = U2r(ξh) = −
1

(k1 − k2)2
[exp(−k2ξh)− exp(−k1ξh)]2 (3.20)

U2z(ξh) =
1

(k1 − k2)2
2∑

i,j=1

(−1)i+j 2kikj exp[−(ki + kj)ξh]
ki + kj

Following Sneddon (1996), if the unknown transforms are taken to be of the
form
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(
∆̃uz(ξ)

)
0
= ξ−1

a∫

0

ϕz(t) sin(ξt) dt

(3.21)
(
∆̃ur(ξ)

)
1
= ξ−1

a∫

0

ϕr(t)
( sin(ξt)
ξ
− cos(ξt)

)
dt

then Eqs. (3.19) are identically satisfied, and the inserting of Eqs. (3.21) into
(3.19) yields two equations for the new auxiliary functions ϕz and ϕr defined
in [0, a]

1

k1k2(k1 + k2)r

∂

∂r

r∫

0

tϕz(t) dt√
r2 − t2

−
a∫

0

ϕz(t) dt

∞∫

0

ξU1z(ξh) sin(ξt)J0(ξr) dξ +

−
a∫

0

ϕr(t) dt

∞∫

0

ξU1r(ξh)
( sin(ξt)
ξ
− cos(ξt)

)
J0(ξr) dξ =

=
2c33(c13 + c44)(Pgas + p)

(c13 + c33k
2
1)(c13 + c33k

2
2)c44

(3.22)
1

k1 + k2

( ∂
∂r
+
1

r

) r∫

0

ϕr(t) dt√
r2 − t2

−
a∫

0

ϕz(t) dt

∞∫

0

ξU2z(ξh) sin(ξt)J1(ξr) dξ +

−
a∫

0

ϕr(t) dt

∞∫

0

ξU2r(ξh)
( sin(ξt)
ξ
− cos(ξt)

)
J1(ξr) dξ = 0

Finally, Eqs. (3.22) may be inverted to give

π

2

1

k1k2(k1 + k2)
ϕz(r)−

a∫

0

ϕz(t)K1z(r, t) dt−
a∫

0

ϕr(t)K1r(r, t) dt =

=
2c33(c13 + c44)(Pgas + p)

(c13 + c33k21)(c13 + c33k
2
2)c44

(3.23)
π

2

1

k1 + k2

(
ϕr(r) +

r∫

0

ϕr(t) dt

t

)
−
a∫

0

ϕz(t)K2z(r, t) dt +

−
a∫

0

ϕr(t)K2r(r, t) dt = 0
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Here, the following notations for the kernels have been employed

K1z(r, t) =
1

(k1 − k2)2
2∑

i,j=1

(−1)i+j 2

ki + kj
I1(h, ki + kj , r, t)

K1r(r, t) = −
1

(k1 − k2)2
2∑

i,j=1

(−1)i+j [I5(h, ki + kj , r, t)− I2(h, ki + kj , r, t)]

(3.24)

K2z(r, t) = −
1

(k1 − k2)2
2∑

i,j=1

(−1)i+jI3(h, ki + kj , r, t)

K2r(r, t) =
1

(k1 − k2)2
2∑

i,j=1

(−1)i+j 2kikj
ki + kj

·

·[I6(h, ki + kj , r, t) − I4((h, ki + kj , r, t)]

in which

I1(h, k, r, t) =

∞∫

0

exp(−hξk) sin(ξt) sin(ξr) dξ =

=
2hkrt

[h2k2 + (r − t)2][h2k2 + (r + t)2]

I2(h, k, r, t) =

∞∫

0

exp(−hξk) cos(ξt) sin(ξr) dξ =

=
r(h2k2 + r2 − t2)

[h2k2 + (r − t)2][h2k2 + (r + t)2]

I3(h, k, r, t) =

∞∫

0

exp(−hξk) sin(ξt)[1 − cos(ξr)] dξ =

=
r2t(3h2k2 + r2 − t2)

[h2k2 + (r − t)2](h2k2 + t2)[h2k2 + (r + t)2] (3.25)

I4(h, k, r, t) =

∞∫

0

exp(−hξk) cos(ξt)[1− cos(ξr)] dξ =

=
r2hk(h2k2 + r2 − 3t2)

[h2k2 + (r − t)2](h2k2 + t2)[h2k2 + (r + t)2]

I5(h, k, r, t) =

∞∫

0

exp(−hξk)sin(ξt)
ξt
sin(ξr) dξ =

1

4t
ln
h2k2 + (r + t)2

h2k2 + (r − t)2
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I6(h, k, r, t) =

∞∫

0

exp(−hξk)sin(ξt)
ξt
[1− cos(ξr)] dξ =

=
1

2t

(
arctan

r − t
hk
+ 2arctan

t

hk
− arctan r + t

hk

)

Note that Eqs. (3.23) contain the unknown pressure of the gas Pgas . To
determine this quantity, we use governing state equation (2.1) and, in view of
Eqs. (3.5) and (3.21)1, we can obtain the following formula

Pgas =
g0

2π
a∫
0
rϕz(r) dr

(3.26)

Thus, the original problem is reduced to the solution of the system of
simultaneous integral equations (3.23) supplemented with Eq. (3.26). Once
the functions ϕz(r) and ϕr(r) are known, the displacements and stresses in
the half-space can be find by applying Hankel’s inversion theorem to Eqs.
(3.8), (3.9) and (3.12), (3.13) with the known functions given by Eqs. (3.15),
(3.16) and (3.21).

From the viewpoint of linear fracture mechanics (see Kassir and Sih, 1975),
it is of great importance to investigate highly intensified normal and tangen-
tial stresses around the crack edge resulting in fracture initiation under the
environment of a given external load and the presence of the gas in the crack.
The most widely used fracture criterions in Mode I and II of crack propaga-
tion are based on the knowledge of the stress intensity factors (SIFs) KI, KII
describing the asymptotic behaviour of stresses in the immediate vicinity of
the crack border r > a, i.e.

σzz(r, θ, 0) =
KI√
2π(r − a)

+O(1) σrz(r, θ, 0) =
KII√
2π(r − a)

+O(1)

(3.27)
It turns out that in our case these factors are given in terms of the solution to
governing integral equations (3.23) as

KI =

√
π

a

c44(c13 + c33k
2
1)(c13 + c33k

2
2)

2(c13 + c44)c33k1k2(k1 + k2)
ϕz(a)

(3.28)

KII =

√
π

a

c44(c13 + c33k
2
1)(c13 + c33k

2
2)

2(c13 + c44)c33(k1 + k2)
ϕr(a)
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4. Numerical analysis

4.1. Numerical procedure

The complicated system of coupled integral equations (3.23) can be so-
lved only by recourse to numerical techniques. A certain numerical procedure,
briefly outlined below, was used.
We shall proceed on the well-known fact that any continuous function in

a bounded domain can be uniformly approximated up to any accuracy by a
polynomial. By some arguments resulting from the structure of kernels and
geometry of the problem in hand, we represent the approximated solutions to
governing equations (3.23) as

ϕz(r) ≈ ϕzN (r) = cz1r + cz2r3 + . . . + czNr2N−1
(4.1)

ϕr(r) ≈ ϕrM (r) = cr1r2 + cr2r4 + . . .+ crMr2M

where czn (n = 1, 2, . . . , N) and crm (m = 1, 2, . . . ,M) stand for the unknown
coefficients to be determined. Substituting the above-assumed expressions into
Eqs. (3.23) and (3.26), and then satisfying them in the set of chosen collocation
points (Eq. (4.1)1 at the points rn = na/N and Eq. (4.1)2 at the points
rm = ma/M , we arrive at a set of non-linear algebraic equations (the discrete
analogue of Equations (3.23), (3.26)) for the unknown coefficients czn, crm
and parameter Pgas . Its solution is found by Newton’s method. The desired
accuracy is achieved by increasing the power of approximating polynomials in
Eqs. (4.1).

4.2. Numerical results

The numerical analysis was carried out for the following dimensional pa-
rameters

P gas = 10
3Pgas
c44

p = 103
p

c44

c11 =
c11
c44
= 3.88 c33 =

c33
c44
= 3.15 c13 =

c13
c44
= 1.31

h =
h

a
g0 =

g0
c44a3

= 10−5

KI = 10
3KI
√
a

c44
KII = 10

4KII
√
a

c44

(4.2)

In Fig. 2 a graph of the internal gas pressure is plotted against the external
load. As the load increases, the pressure of the gas decreases. The high slope
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of the curve is observed for the compressive load. While the external load
becomes tensile, the slope decreases and P gas tends to zero.

Fig. 2. Dependence of the gas pressure on the external load

Fig. 3. Variations of SIF of Mode I (a) and Mode II (b) with the external load

A graphical representation of the SIF of Mode I and II is given in Fig. 3a
and Fig. 3b, respectively. As in the case presented in Fig. 2, the dependences of
the SIFs on the external load are nonlinear. It should be remarked here that we
obtain physically reasonable values of the SIFs within the range of compressive
external load. This directly indicates the effect of the crack filler. Moreover,
it can be seen that KI and |KII| increase in magnitude as the boundary is
approached, i.e. for decreasing values of h = h/a. This tendency has also been
observed in Fig. 4 for p = 0. Unlike that, Fig. 5 shows that the pressure of the
gas in this case slowly decreases as the crack surface approaches the half-space
boundary.

5. Conclusions

The presented research was carried out with the aim of demonstrating the role
of the gas filling a penny-shaped crack situated parallel to the boundary of
a semi-infinite transversely isotropic space on the limiting equilibrium stress
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Fig. 4. SIF of Mode I (a) and Mode II (b) versus h = h/a

Fig. 5. Boundary effect on the gas pressure

state. As can be seen from the numerical solution to complex integral equations
(3.23), a change in the mechanical behaviour has been noted in comparison
to the case of the non-filled crack. The main result of the paper is the non-
linearity of the relations between the external load and the internal pressure
of the gas as well as the stress intensity factors. This phenomenon is due to
the non-linear response of the filler on the change of its volume, governed by
the state equation.
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O zagadnieniu poprzecznie izotropowej półprzestrzeni osłabionej

szczeliną kołową wypełnioną gazem

Streszczenie

W pracy rozważono osiowo-symetryczne zagadnienie kołowej szczeliny wypełnio-
nej idealnym gazem i położonej równolegle do brzegu półprzestrzeni sprężystej po-
przecznie izotropowej. Używając techniki transformacji całkowej Hankela, rozpatry-
wany problem został sprowadzony do złożonego układu równań całkowych. Na pod-
stawie procedury numerycznej zbadano i zilustrowano wpływ gazu na współczynniki
intensywności naprężeń.
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