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Fabrication of functionally graded materials (FGM) can be obtained by
layered mixing of two materials of different thermo-mechanical properties
with different volume ratios gradually changing from layer to layer such
that the first layer has only a few particles of the second phase and the
last has the maximum volume ratio of the first phase.

Consider a simple model of the functionally graded materials as a multi-
layered beam bonded to planes having shear modulus G; and Poisson’s
ratio vy, respectively, subjected to bending. The behaviour of cracks de-
pends on cracks configuration, size, orientation, material properties, and
loading characteristic. The fracture mechanics problem will be appro-
ached by making use of photoelastic visualisation of fracture events in
the model structure.
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1. Introduction

AN FGM material has functionally graded thermal and stress barriers. Be-
tween the 100% ceramic layer and 100% metallic bond layer there exist a
functionally graded layer 2 that contains some volume ratio of the bond (me-
tallic) phase V,(y), as a function of the distance y from the bond layer and the
rest volume ratio of the ceramic phase V.(y), also as a function of distance y
from the bond layer, such that Vj(y) + Ve(y) = 1, where h is the thickness of
the functionally graded layer.

Fabrication of the FGM can be obtained similarly by layered mixing of two
photoelastic materials of different thermo-mechanical properties with different
volume ratios gradually changing from layer to layer such that the first layer
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has only a few particles of the other phase and the last has the maximum
volume ratio of the first phase.

The development of the failure criterion for a particular application is also
very important for predictions of the crack path and critical loads.

Recently, there has been a successful attempt in formulation of problems
of multiple cracks without any limitation. This attempt was concluded with
a series of papers summarising the undertaken research for isotropic (Cook
and Erdogan, 1972), anisotropic (Gupta, 1973) and non-homogeneous class of
problems, see Hilton and Sin (1971), Gupta (1973).

Crack propagation in multi-layered composites of finite thickness is espe-
cially challenging and still remains an open field for investigation. Some results
have been recently reported in Hilton and Sin (1971). The numerical calcu-
lations were carried out using the finite element programs ANSYS 9 and 10
(User’s..., 2006). Two different methods were used: solid modelling and direct
generation.

2. Material properties

Material properties influence the stress distribution and concentration, damage
process and load carrying capacity of elements. In the case of elastic-plastic
materials, a region of plastic strains originates in most heavily loaded cross-
sections. In order to visualise the state of strains and stresses, some tests have
been performed on samples made of the ”araldite”-type optically active epoxy
resin (Ep-53) modified with softening agents in such a way that an elastic
material has been obtained. Properties of the components of the experimental
model are given in Table 1.

Table 1. Mechanical properties of components of the experimental model

Young’s | Poisson’s | Photoelastic Photoelastic
Layer modulus ratio constants in constants in
E; Vi terms of stress | terms of strain
[MPa] [ ks [MPa/fr] fe [1/fr]

1 3450.0 0.35 1.68 6.572-107*

2 1705.0 0.36 1.18 9.412-10~%

3 821.0 0.38 0.855 14.31-107%

4 683.0 0.40 0.819 16.79 - 1074
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3. Experimental results

Dimensions of a typical model used in the experiment and artificially initiated
small cracks in the tension zone are given in Fig. la.

Photoelastic models before test (under initial loading) in a circular pola-
riscope and in a monochromatic sodium light are presented in Fig. 1b, from
which we get isochromatics in the layer in the initial phase.

Isochromatics are the locus of points along which the difference in the first
and second principal stress (o7 — 02) remains the same.

Further, as the load was increased, the isochromatics ran parallel to the
beam axis Figure lc gives a picture of stress distribution even around abrupt
discontinuities in the material (in the neighbourhood of the crack).

(a) 100mm

Fig. 1. (a) Four-layer beam with cracks. Photoelastic model under four point
bending, isochromatic patterns (o7 — o2) distribution. (b) Initial loading
(P =20.0N); (¢) P=50.0N — tension of layers 2, 3 and 4

The stress distribution was determined by making use of two methods:
Shear Stress Difference Procedure (SDP — evaluation of the complete stress
state by means of the isochromatics and angles of isoclines along the cuts)
(Frocht, 1960).
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The photoelastic model of a four layer beam with cracks under four point
bending, the isochromatic patterns (o1 —o39) distribution corresponding to ini-
tiation of the vertical cracks and tension of overcoat (layer 4), and compression
of the substrate (layer 1) are presented in Fig. 2.

Fig. 2. Experimentally obtained isochromatic patterns (o1 — o3) according to the
initiation of crack propagation

The stress distribution corresponding to initiation of the vertical cracks was
evaluated from measurement results of the isochromatic and isoclinic patterns
according to Frocht (1960).

By means of the angles of isoclinics of isochromatics along the cuts y et
y + Ay and by employing the equations of equilibrium, the complete stress
state was determined.

The stress distribution o, in cross sections A-A and B-B determined using
the shear stress difference procedure, by means of the angles of isoclinics, is
shown in Fig. 3.

Method of characteristics (stress distribution was determined using iso-
chromatics only and equations of equilibrium (Szczepinski, 1961).

In a general case (Sanford and Dally, 1979), the Cartesian components of
stress: o0, oy and 7., in the neighbourhood of the crack tip are

1
Op= \/Q—w—rBigl[KI cos% (1 —sin% sin?) — K1 sin% (2+c0s§ cos?)} +0os
1

e . 6 . 30 . 6 e 36
{KI cos 5(1 + sin B sin 7) + Krsin 3 COS — COS —} (3.1)

g, =
Y\ 2nr 2 2
1 e e 36 e e 260
_ = [gsn2 =4 °Y K S _snZen2
Try \/ﬁ[ 7 S1n 5 CcOS 5 COS 5 -+ K7 COSs 5 ( sin 5 sin 5 )}
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Fig. 3. Distribution of stresses in cross sections A-A and B-B (0.5 mm) with respect
to the crack according to experiment and SDP evaluation

From which

(0'1—0'2)2 = [(K[Sin@+2K[[COS@)2+(K[[Sin@)2]+

27

(3.2)
279 in g[KI sin @(1 + 2cos O) + Kr7(1 + 2cos? @ 4 cos O)] + o2

\ 2mr

where Kjand K7 are the stress-intensity factors, 7 and © are coordinates in
the polar coordinate system. By inserting the values k,m; = o1 — o3 into (3.2),
we obtain isochromatic curves in polar coordinates (r,©). For each isochro-
matic loop, the position of maximum angle ©,, corresponds to the maximum
radius 7,,. This principle can also be used in the mixed mode analysis (Sanford
and Dally, 1979) by employing information from two loops in the near field
of the crack, if the far field stress component o, (@) = const. Differentiating
Eq. (3.2) with respect to O, setting © = 6,,, and r = ry,, and substituting
that 07,,/00,, =0, gives

T

1
9(K1,K1,004) = %(K? sin 20 + 4K K 1 cos 20 — 3K 7, sin 20) +

Oox

—2

sin Q{[K}(COS O +2c0s20) — K77(2sin 20 + sin O)] +
2rrr 2

1
—1-5 Ccos %[Kl(sin@ + sin20) + Kj7(2 + cos 20 + cos (9)]}

f(KlyKllao'om) = (01 - 02)2 — (k’gm)z =0

and
(9(01 — 0‘2)2

9(Kr1,Kr1,008) = 70

=0 (3.3)
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Substitution of the radii r,, and the angles ©,, from these two loops into a
pair of equations of the form given in Eq. (3.3) gives two independent relations
for the parameters K, K;; and o,,. The third equation is obtained by using
Egs. (3.2). The three equations obtained that way have the form

9i(K1, K11,002) = 0 9i(K1, Kr1,00:) =0

(3.4)
fk(Kla KID Jow) =0

In order to determine Ky, Kjr and o0,;, it is sufficient to select two arbitrary
points r;, ©; and apply the Newton-Raphson method to the solution of three
simultaneous non-linear equations (3.4). The values K¢ according to mixed
mode of the fracture were obtained from

Ko =\/K?+ K% (3.5)

Below are exemplary numerical results obtained from (3.4)

m=12.5
r1 = 0.6 mm O = 1.484
ro = 10.45 mm Oy = 1.416

KW =0.14MPaym
Gow = 0.039 MPa

K'Y =1.05MPay/m
K = 1.05MPay/m

By inserting 7;, ©; in the three selected arbitrary points into (3.2), we obtain
three non-linear equations (i = 1,2,3)

fi(K1, K11,000) =0 (3.6)

and applying the Newton-Raphson method to the solution, we have Ky, Kjr
and o,;. Exemplary numerical results (shown in Fig.3) obtained from (3.6)

are as follows

my = 12.5 r1 = 0.72mm ©; =1.484
mo = 8.0 To = 1.15mm @2 =1.37
ms3 = 5.5 rg = 1.85 mm O3 =1.315

and
KW = 0.702 MPay/m

0oz = 0.152 MPa

K =1.043MPay/m
K& = 1.257MPay/m
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4. Stress analysis from complex potentials

In the present paper, the elastic and plastic deformation has been approxima-
tely analysed using Muskhelishvili’s complex potentials method

Oaz + oy = ARe[t'(2)] Oyy = Oua + 2Tay = 229" (2) + X" (2)]
2G(u+1iv) = KkY(z) — z@l(i) -X'(2)
2G(u + 1) = k'(2) = 20 () — 20" (2) - X'(2)

where k = 3 — 4v for the plain strain and x = (3 — v)/(1 4+ v) for the plain
stress

Ora + 0yy = 4Re[)) (2))] Oyy — Ozz = Re2[Z¢" (2) + x"(2)]
Toy = Im[Z¢" (2) + X" (2)]

The elastostatic stress field is required to satisfy the well-known equilibrium
equations (Cherepanov, 1979) using two analytical functions (z) and x(z)

Our = Re20/(2) =20 (2) = X"(2)] oy = Re[20/(2) +79(2) + X ()]
Ty = [z (2) + X (2)] '(2) = =4 (2) (4.1)
26 (u + i) = Kib(z) — 28 (2) - X' ()

Using these two analytical functions v (z) and x(z)

V' (2) = 1(2) +¥5(2) X"'(2) = 2[1 (2) — 5 (2)]

The stresses are assumed as follows

or = Re[2¢) — 2z4]] — yIm2¢) oy = Re[2¢) + 2z)]] + yIm2¢y
(4.2)

Ty = 2Im2¢)) — yRe2¢y
The stress-intensity factors are related by

K; = lim oy(z,0)/27(z — a) K= iilgmy(a;, 0)\/27(z —a) (4.3)

r—a

By inserting (4.2) into (4.3), we obtain
K = lim {Re[2y'0)(2)] + 220" D) (2)}/2n( — a)

Kf = lim {eTm[200) (2)]}y 2 (@ — a)
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The complex stress potentials are assumed as follows

27 (2 g( n/z(z_")”% dz)

(4.4)

as

N . N I
=Y {Re[(C), +iC,) f1(2)]} o = {Re[(C), +iC;) f1(2)]}
n=1 n=1
(4.5)
N
i = {aIm[(@ +iC)) f5(2)]}
n=1
where
1 /1 [z—a az — (n —2)(2% — a®
76) = s () T - T
z z\z+a (z+a)Vz? —a
ZS—n
Fa(z) = 2 _ 42
_ 2 n(B-n)(z" —d?) + 2
fg(Z) =z (22 — CL2)3/2
1 /1 Jz—a az — (n —2)(2% — a?)
f4(z)_zn_1(; z—|—a+$ (Z+a) ,72;2_&2 )
1 az(n—2)(2%—a?
fo(e) = L B0 =2 — @)
z (z+a)Vz2—a
and .
C! = ReC! +ilmC}, C: = ReC!
= ReD}, +ilmD}, C, =ImC},
The boundary conditions can be expressed as
olP) — 5(0) 4 2i7(%) = 2iy - 29(2)
' o (4.7)
O’ZJJ:EJ'M:UZO o =0

p



EXPERIMENTAL MODEL OF FRACTURE... 79
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u/za_“ W = it i = it

x
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al 7 Cj z—a az — (n —2)(2% — a?)

I dr = R/ £ dry =0
7y do =2 ) el \/z+a+"”” tave @ )] drj

baim der + M =

S z—a az — (n — 2)(22 — a2

(4.9)
_i{ [C] ( z—a+$a2—(n—2)(z —az))”
— zn—1 z+a (z + a)Vz% —a?
(l‘o B :El)p oo
ag/ =FE; 7,0 =0,
For each isochromatic loop o1 — 09 = k,m and
Oyy — Oz = kom cos 2 (4.10)
in other hand o1 + 02 = 04y + 0y and
N
_ D (3—n)
Oue + 0y =Y 2Re [an@—m . (4.11)

n=1 v - a?

This principle can be used in the analysis of stresses. By inserting values of
m;, «; in arbitraily selected points P(r;, ©;), we obtain equations

N _ _
Z {Re[(Ch, +iCh)(f4(2) — f1(2))] + 2yIm[(D,, +1D,,) f3(2)] } = kymi cos 2a;

n=1

(4.12)
from which

Oyy — Oza = Re2[z¢" (2) + X" (2)]
()]

Toy = Im[2¢" (2) + X" (2)
= Re[z¢"(2) + X" ()] + Im[z9"(2) + X" (2)]?
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and

N
= (3" {aRe[Cuf5(2)] + yIm[an3(Z)]}>2 +
n=1

N (4.13)
2
+( > {2Tm[Cr f5(2)] — yRe[Dufa(2)]} )
n=1
For each isochromatic loop
e (4.14)

2G' Z {Re[(Cr +1C0)(f4(2) = f1(2))] + 2yIm[(Dy, + 1Dn) f3(2)]}

in other hand
Eyy — Exz = fe(m)m cos 2« (4.15)

and

N N . —j 7 i
% S {Re[(@, +100)(fa(2) — fi(2)] + 2yIm[(D, + D)) f5(2)]} =

= (4.16)
= fem(xy) cos 2 .

By inserting the principal stress difference m; = (01 —02);, the values of «; in
n arbitrarily selected points P;(r;, ©;) into (4.16), we obtain n-linear equations
(1 =1,2,...,n) from which we obtain values of C1,Cy,...,C,, Dy, Ds,..., D,
and from (4.7) and (4.8) Cartesian components of the stress o, o, and 74,
By inserting C,,, D,, into (4.13), we obtain isochromatic curves in the polar
coordinates (r,O).

The distribution of isochromatic patterns (o7 — o2) obtained experimen-
tally according to crack propagation is shown in Fig. 4a and the isochromatics
calculated from (4.13) according to C, and D, in the analysis of complex
potentials are presented in Fig. 4b.

The stress-intensity factors from (9) are related by

- C, /1 |z—a az—(n_Q)(Z _a2) Dnz?,—n
KI_;@Z{RG{Zn 1( \/Z+a+x EEN )—i— z2—a2].

27(x — a)}

N o 02— a?) (4.17)
KH:%ig}Lg{wlm[znfl (z+a)m} 271'(3)—&)}
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Fig. 4. Experimentally found isochromatic patterns (o1 — o2) according to crack
propagation used in analysis of complex potentials

where in the polar coordinates (r,©)

,/j;j [ @1+92+@z)+lsm(@1+@2+@z)]

61+ 6
= fes(r- 2Oy

(4.18)
61+ 6
1 ;— 2)}

sin (O1 -

5. Numerical determination of stress distribution

The distribution of stresses and displacements has been calculated using the
finite element method (FEM) (User’s..., 2006; Zienkiewicz, 1971). Finite ele-
ment calculations were performed in order to verify the experimentally obse-
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rved isochromatic distribution during cracks propagation. The geometry and
materials of models were chosen to correspond with specimens used at pre-
sent experiments. The numerical calculations were carried out using the finite
element program ANSYS9 and by applying the substructure technique.
A finite element mesh of the model (used for numerical simulation) are
presented in Fig. 5.
|
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Fig. 5. Finite element mesh of the model (for numerical simulation)

The numerical (from FEM) distribution of isochromatic fringes (o1 — 02)
is shown in Fig.6 and the distribution of stress o, obtained numerically is
given in Fig. 7.
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Fig. 6. Numerically obtained distribution of isochromatic patterns (o1 — o3)
according to crack propagation

For comparison, the distribution of isochromatic fringes (o1 —0o2) obtained
experimentally according to the initiation of crack propagation is shown in
Fig. 8.
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Fig. 7. Numerical determination of stress distribution (Ansys9). Distribution of
stresses o, along the crack

Fig. 8. Experimentall obtained distribution of isochromatic patterns (o1 — o2)
according to crack propagation

Table 2. Experimental and numerical results. Critical values K}Ag and Kﬁ)c
according to crack propagation

Crack | Critical B ) 1 | Numerical
length | force xperimental results results
7 ! ! !
a | Po [ K] K [ KD | ow | KC)
[mm] [N] [MPay/m] [MPa] | [MPay/m]
6.0 265.0 | 1.177 | 0.8793 | 1.419 | 2.58 1.45

9.0 205.0 | 0.702 | 1.043 | 1.257 | 0.152 1.28
9.8 185.0 0.14 1.05 1.05 | 0.039 1.16
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6. Conclusions

Formulation of the model of an FGM can be obtained similarly as the func-
tionally graded materials themselves by layered mixing of two photoelastic
materials of different thermo-mechanical properties with different volume ra-
tios gradually changing from one layer to another such that the first layer
has only a few particles of the second one and the second has the maximum
volume ratio of first layer.

Photoelasticity has been shown to be promising in stress analysis of beams
with various numbers and orientation of cracks.

In the present paper, the stresses and displacements have been approxima-
tely analysed using the Muskhelishvili complex potential method. Using two
analytical functions, we obtained equations for the isochromatic loop.

It is possible to create a model using various photoelastic materials to
model a multi-layered structure.

Finite element calculations (FEM) were performed in order to verify the
experimentally observed branching phenomenon and the isochromatic distri-
bution observed during crack propagation. The agreement between the di-
stributions of isochromatic fringe patterns found numerically by FEM and
determined photoelastically was found to be within 5-8 percent.

Having used the stress-intensity-factor criterion, the critical value of stress
and deformation fields characterises the fracture toughness.
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Eksperymentalny model pekania materialu funkcjonalnie zmiennego

Streszczenie

Sposoéb wykonania materialéw funkcyjnie zmiennych — FGM, polega na naklada-
niu (lub napylaniu) kolejnych (mozliwie cienkich) warstw. Warstwy te skladaja sie
zazwyczaj z dwoch skladnikéw o réznych wlasnosciach (mechanicznych, termicznych
itp.) np. ciekly metal (plazma) i ceramika. Technologia wykonania jest nastepujaca:
najpierw naklada si¢ warstwe czystego cieklego metalu, nastepnie warstwe cieklego
metalu z niewielka domieszka ceramiki, nastepne warstwy to ciekly metal ze zwigk-
szajaca sie ilodcia ceramiki, az do ostatniej warstwy sktadajacej sig z czystej ceramiki.
W ten sposéb (po zastygnieciu) otrzymuje sie powloki izolacyjne stosowane do komér
spalania silnikéw, warstwy termoizolacyjne proméw i kapsut kosmicznych itp.

W pracy podano metode doswiadczalno-obliczeniowa stanu naprezen i odksztal-
cen dla kompozytow warstwowych zbudowanych z materialéw gradientowych. Podano
takze dla takich kompozytéw ze szczelinami kryterium zniszczenia. Opracowana me-
toda jest metoda hybrydowa — opierajac si¢ na wynikach badan doswiadczalnych,
opisano stan naprezenia i odksztalcenia, stosujac metode potencjatéw zespolonych.
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Na podstawie wynikéw badan do$wiadczalnych opisano stan naprezen i odksztal-
cen dla materiatow liniowo-sprezystych i sprezysto-plastycznych w formie funkcji po-
tencjalow zespolonych. Zastosowanie metody potencjalow zespolonych w postaci sze-
regow do analizy pol naprezen umozliwia analize wynikéw badan doswiadczalnych
modeli kompozytéow, z uwagi na budowe réwnan, ktére w kompleksowy sposéb opisu-
ja stan naprezenia w formie sumy i réznicy naprezen normalnych.

Przeprowadzone obliczenia i badania maja na celu weryfikacje modelu, ktory moz-
na zastosowac¢ do obliczen kompozytéow warstwowych.

Manuscript received March 13, 2009; accepted for print April 20, 2009



