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The paper presents a mathematical model of a triaxial gyroscopic plat-
form on a moving platform base (motor vehicle). Control software plat-
forms are designated with the inverse dynamics of the duties, while the
control correction – using the LQR method. The considered platform can
be used as an independent observation base for systems, cameras, parcels
or gun machines. In the present study, it is shown in its application to
stabilization of anti-aircraft missile launchers.
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1. A physical model of a launcher in a self-propelled anti-aircraft
missile system

Military vehicles require versatile equipment to perform numerous tasks, for
instance, observation devices including television and infrared cameras and we-
apon such as guns, missile launchers, etc. It is essential that reliable reference
systems be used to maintain the equipment and weapon constant orientation
and effective operation, irrespective of external disturbances such as the ve-
hicle motion.

In this study, we consider a three-axis gyroscope platform employed to
angularly stabilize a launcher in a self-propelled missile system.

The launcher mounted on a vehicle consists of two main parts (Dziopa,
2004-2008). One is a pedestal placed directly on the vehicle. The basic mo-
tion of the pedestal is very much dependent on that of the carrier. The other
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element is a turret mounted on the pedestal. Therefore, the turret basic mo-
tion is a combination of the basic motion of the vehicle and the motion of
the turret resulting from target detection and tracking processes. There is a
thermovision camera fixed on the turret which sends images to the operator’s
control desk. Sitting in the vehicle in front of a monitor screen, he determines
the motion of the turret. The turret consists of two main elements: a platform
and a system of four guide rails to launch four missiles. The guide rails are
fixed on the platform, symmetrically in relation to a vertical plane passing
through the centre of the turret mass. On each side of this plane, there are
two guide rails, one above the other. The platform can rotate in relation to the
pedestal in accordance with the angle of azimuth ψpv, where ψpv is an angle
of the platform deviation. The guide rail system is mounted on the platform
and together they form a kinematic rather than rotary pair. The guide rail
system, therefore, can rotate in relation to the base in accordance with the
elevation angle ϑpv. This angle, ϑpv, is the angle of pitch of the guide rail
system. After the platform and the guide rail system move to the position of
target interception, the launcher does not change its configuration. The ana-
lysis of the system performance commences on target interception, therefore,
in the assumed model the basic motion of the launcher is reduced to the ba-
sic motion of the carrier. This means that the basic motion of the launcher
is closely related to the basic motion of the vehicle. The turret is an object
with inertial characteristic dependent on the target position with respect to
the anti-aircraft system. The turret mass remains stable, yet the moments of
inertia and the moment of deviation change. Once the target is locked on, the
turret characteristic remains unchanged.

The launcher was modelled as two basic masses and eight deformable ele-
ments (Fig. 1).

To improve the legibility of the diagram in Fig. 1, the launcher does not
include the guide rail system. Figure 2, then, is a supplement of Fig. 1.

The pedestal is a perfectly stiff body with mass mw and moments of inertia
Iwx and Iwz. The pedestal is mounted to the vehicle body by means of four
passive elastic-damping elements with linear parameters kw11 and cw11, kw12
and cw12, kw13 and cw13, and kw14 and cw14, respectively. The turret is a
perfectly stiff body with mass mv, moments of inertia Ivx and Ivz and moment
of deviation Ivxz. It is mounted to the pedestal by means of four passive elastic-
damping elements with linear parameters kw21 and cw21, kw22 and cw22, kw23
and cw23, and kw24 and cw24, respectively. The inertial characteristic of the
turret is dependent on the actual position of its component objects, i.e. the
platform and the guide rail system. The platform is a perfectly stiff body
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Fig. 1. A physical model of the launcher

Fig. 2. A physical model of the guide rails

with mass mpl and main central moments of inertia Iplξ′v , Iplη′v , Iplζ′v . The
four-guide-rail system is also a perfectly stiff body with mass mpr and main
central moments of inertia Iprξpv , Iprηpv , Iprζpv .
The positions of the body of the pedestal with mass mw and moments

of inertia Iwx and Iwz and those of the body of the turret with mass mv,
moments of inertia Ivx and Ivz and moment of deviation Ivxz, at any moment
are determined in right-handed Cartesian orthogonal coordinate systems. The
reference systems are as follows:

a) Coordinate systems determining motion of the pedestal:

0wxwywzw – the coordinate system moving in the basic motion with respect
to the ground-fixed coordinate system 0xyz. The condition that the cor-
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responding axes 0wxw‖0x, 0wyw‖0y and 0wzw‖0z are parallel is always
satisfied. If the basic motion of the pedestal is not disturbed, then the
point 0w coincides with the centre of pedestal mass at any moment.

Swxwywzw – the coordinate system moving, in a general case, in translatory
motion with respect to the 0wxwywzw coordinate system. The origin of
the coordinate system Sw coincides with the centre of pedestal mass at
any moment. The condition that the corresponding axes Swxw‖0wxw,
Swyw‖0wyw and Swzw‖0wzw are parallel is always satified. Disturbances
to the basic motion cause that the centre of pedestal mass Sw moves
along the 0wyw axis, which means that the translatory motion in the
assumed model is reduced to a straight-line motion.

Swξwηwζw – the coordinate system moving, in a general case, in rotary motion
about a fixed point with respect to the Swxwywzw coordinate system.
The axes Swξw, Swηw and Swζw are rigidly connected with the pedestal
body as they are its main central axes of inertia. Disturbances to the
basic motion cause that the pedestal body rotates about the Swzw axis
in accordance with a change in the pitch angle ϑw and about the Swxw
axis in accordance with a change in the tilt angle ϕw, which means that
the rotary motion about a fixed point in the assumed model is reduced
to two rotary motions.

If there are no disturbances to the basic motion of the pedestal, then the
coordinate systems 0wxwywzw, Swxwywzw and Swξwηwζw coincide at any mo-
ment. In the model, the pedestal is an element of a 3D vibrating system, which
perfoms complex motion in relation to the 0wxwywzw coordinate system. This
motion is a combination of a straight-line motion of the centre of mass Sw
in accordnace with a change in the yw coordinate, rotary motion about the
Swzw axis in accordance with a change in the pitch angle ϑw and rotary mo-
tion about the Swxw axis in accordance with a change in the tilt angle ϕw.

b) Coordinate systems determining motion of the turret:

0vxvyvzv – the coordinate system performing the basic motion in relation
to the ground-fixed coordinate system 0xyz. The condition that the
corresponding axes 0vxv‖0x, 0vyv‖0y and 0vzv‖0z are parallel is always
satisfied. If there are no disturbances to the basic motion of the pedestal,
then the point 0v coincides with the centre of pedestal mass at any
moment.

Svxvyvzv – the coordinate system performing, in a general case, translatory
motion in relation to the 0vxvyvzv coordinate system. The origin of
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the coordinate system Sv coincides with the centre of the turret mass
at any moment. The condition that the corresponding axes Svxv‖0vxv,
Svyv‖0vyv and Svzv‖0vzv are parallel is always satified. Disturbances to
the basic motion cause that the mass centre of the turret Sv moves along
the 0vyv axis, which means that in the assumed model, the translatory
motion is reduced to a straight line motion.

Svξvηvζv – the coordinate system moving, in a general case, in rotary motion
about a fixed point in relation to the Svxvyvzv coordinate system. The
Svξv, Svηv and Svζv axes are rigidly connected with the turret body as
they are the main central axes of inertia if the following conditions are
met: ψpv = 0 and ϑpv = 0. Disturbances to the basic motion cause that
the turret body rotates about the Svzv axis in accordance with a change
in the pitch angle ϑv and about the Svxv axis in accordance with a
change in the tilt angle ϕv , which means that, in the assumed model,
the rotary motion about a fixed point is reduced to two rotary motions.

If there are no disturbances to the basic motion of the turret, the coordinate
systems 0vxvyvzv , Svxvyvzv and Svξvηvζv coincide at any moment. In the
model, the turret is an element of a 3D vibrating system, which performs
complex motion in relation to the 0vxvyvzv reference system consisting of a
straightline motion of the mass centre Sv in accordance with a change in the
yv coordinate, rotary motion about the Svzv axis in accordance with a change
in the pitch angle ϑv and rotary motion about the Svxv axis in accordance
with a change in the tilt angle vpv.
In the general case, the position of the Swξwηwζw coordinate system in re-

lation to the Swxwywzw coordinate system is determined by the Bryant angles
ϑw and ϕw. The application of these angles leads to an isometric sequential
transformation Rϑwϕw , which is a combination of two consecutive revolutions
ϑw and ϕw. The transformation Rϑwϕw has the following form

Rϑwϕw =







cos ϑw sinϑw 0
− sinϑw cosϕw cos ϑw cosϕw sinϕw
sinϑw sinϕw − cos ϑw sinϕw cosϕw






(1.1)

We consider low values of angular vibrations of the launcher pedestal, thus, if
there is such a degree of approximation, we can assume that

sinϑw = ϑw cos ϑw = 1
sinϕw = ϕw cosϕw = 1

and neglect the ratios of these angles.
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The transformation Rϑwϕw as a matrix has the following form

Rϑwϕw =







1 ϑw 0
−ϑw 1 ϕw
0 −ϕw 1






(1.2)

Generally, the position of the Svξvηvζv coordinate system in relation to the
Svxvyvzv coordinate system is determined by the Bryant angles ϑv and ϕv.
The application of these angles leads to an isometric sequential transforma-
tion Rϑvϕv , which is a combination of two consecutive revolutions ϑv and ϕv.
The transformation Rϑvϕv has the following form

Rϑvϕv =







cos ϑv sinϑv 0
− sinϑv cosϕv cos ϑv cosϕv sinϕv
sinϑv sinϕv − cos ϑv sinϕv cosϕv






(1.3)

We consider low values of angular vibrations of the launcher turret, thus, if
there is such a degree of approximation, we can assume that

sinϑv = ϑv cos ϑv = 1
sinϕv = ϕv cosϕv = 1

and neglect the ratios of these angles.
The transformation Rϑvϕv has the following matrix form

Rϑvϕv =







1 ϑv 0
−ϑv 1 ϕv
0 −ϕv 1






(1.4)

The turret inertia characteristic is dependent on the actual position of
its component objects at the moment the target is intercepted. The turret
configuration is determined basing on positions of the platform and the guide
rail system. The position of the platform body with mass mpl and moments of
inertia Iplξ′v , Iplη′v , Iplζ′v and the position of the body of the guide rail system
with mass mpr and moments of inertia Iprξpv , Iprηpv , Iprζpv are determined in
right-handed Cartesian orthogonal coordinate systems. The reference systems
are the following coordinate systems:

a) Coordinate systems defining position of the platform:

Svξ
′
vη
′
vζ
′
v – the coordinate system rotated about the angle ψpv in relation
to the Svξvηvζv coordinate system. The Svξ

′
v, Svη

′
v and Svζ

′
v axes are

rigidly connected with the platform body so that they are the main
central axes of inertia. The operator rotates the platform by the tilt
angle ψpv in relation to the target position.
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b) Coordinate systems defining position of the guide rail system:

Svξpvηpvζpv – the coordinate system rotated by ϑpv in relation to the Svξ
′
vη
′
vζ
′
v

coordinate system. The Svξpv, Svηpv and Svζpv axes are rigidly connec-
ted with the body of the system of guide rails so that they are the main
central axes of inertia. The operator rotates the platform by the pitch
angle ϑpv in relation to the target position.

The mutual position of the coordinate systems discussed above is determi-
ned by the Bryant angles ψpv and ϑpv. The application of these angles leads
to a transformation in form of a transformation matrix.

The transformation Rψpv from the Svξvηvζv coordinate system to the
Svξ
′
vη
′
vζ
′
v coordinate system has the following form (Fig. 3)

Rψpv =







cosψpv 0 − sinψpv
0 1 0

sinψpv 0 cosψpv






(1.5)

Fig. 3. Transformation of the Svξ
′

v
η′
v
ζ′
v
coordinate system in relation to the

Svξvηvζv coordinate system

The transformation Rϑpv from the Svξ
′
vη
′
vζ
′
v coordinate system to the

Svξpvηpvζpv coordinate system has the following form (Fig. 4)

Rϑpv =







cos ϑpv sinϑpv 0
− sinϑpv cosϑpv 0
0 0 1






(1.6)

The position of the Svξpvηpvζpv coordinate system in relation to the
Svξvηvζv coordinate system is determined by the Bryant angles ψpv and ϑpv,
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Fig. 4. Transformation of the Svξpvηpvζpv coordinate system in relation to the
Svξ
′

v
η′
v
ζ′
v
coordinate system

as shown in Fig. 5. The application of these angles lead to an isometric se-
quential transformation Rψpvϑpv , which is a combination of two consecutive
revolutions ψpv and ϑpv. The transformation Rψpvϑpv has the following form

Rψpvϑpv =







cosψpv cosϑpv sinϑpv − sinψpv cos ϑpv
− cosψpv sinϑpv cosϑpv sinψpv sinϑpv
sinψpv 0 cosψpv






(1.7)

Fig. 5. Transformation of the Svξpvηpvζpv coordinate system in relation to the
Svξvηvζv coordinate system

2. A mathematical model of the launcher of the self-propelled
anti-aircraft missile system

There are six degrees of freedom resulting from the structure of the model
describing disturbances to the launcher basic motion in space.
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Three independent generalized coordinates were assumed to determine po-
sitions of the pedestal with mass mw and moments of inertia Iwx, Iwz at any
moment:

yw – vertical displacement of the centre of the launcher pedestal mass Sw,

ϕw – angle of rotation of the launcher pedestal about the Swxw axis,

ϑw – angle of rotation of the launcher pedestal about the Swzw axis.

Three independent generalized coordinates were assumed to determine po-
sitions of the turret with mass mv, moments of inertia Ivx, Ivz and moment
of deviation Ivxz at any moment:

yv – vertical displacement of the centre of the launcher mass Sv,

ϕv – angle of rotation of the launcher about the Svxv axis,

ϑv – angle of rotation of the launcher pedestal about the Svzv axis.

For the launcher, the equations of motion are

mwÿw + fyw = 0 Iwzϑ̈w + fϑw = 0 Iwxϕ̈w + fϕw = 0 (2.1)

and

(mv +mp1 +mp2 +mp3 +mp4)ÿv + fyv = 0
(2.2)

Iϑvϑ̈v + fϑv = 0 Iϕvϕ̈v + fϕv = 0

where

fyw – function of coordinates yw, ϑw, ϕw, yv, ϑv, ϕv , yn, ϑn, ϕn and their deri-
vatives with respect to time, specifying the analytical form of restitution,
dissipative and gravity forces, including the generalized static displace-
ment,

fϑw, fϕw – function of coordinates yw, ϑw, ϕw, yv, ϑv, ϕv , yn, ϑn, ϕn and their
derivatives with respect to time, specifying the analytical form of resti-
tution and dissipative forces moments acting in the direction of ϑw and
vpw coordinate, respectively, with the static generalized displacement,

fyv – function of coordinates yw, ϑw, ϕw, yv, ϑv, ϕv , ξp1, ξp2, ξp3, ξp4 and their
derivatives with respect to time, specifying the analytical form of re-
stitution, dissipative, gravity, inertia and gyroscopic forces, taking into
account the static generalized displacement,

fϑv – function of coordinates yw, ϑw, ϕw, yv, ϑv, ϕv , ξp1, ξp2, ξp3, ξp4 and their
derivatives with respect to time, specifying the analytical form of mo-
ments of forces restitution, dissipative, gravity, inertia and gyroscopic
forces moments, taking into account the static generalized displacements,
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fϕv – function of coordinates yw, ϑw, ϕw, yv, ϑv, ϕv , ξp1, ξp2, ξp3, ξp4 and their
derivatives with respect to time, specifying the analytical form of mo-
ments of forces restitution, dissipative, gravity, inertia and gyroscopic,
including the static generalized displacement,

Iϑv, Iϕv – reduced moment of inertia resulting from the movement pursuant
to the coordinate ϑv and ϕv, respectively.

Functions fyw, fϑw, fϕw, fyv, fϑv, fϕv and reduced moments of inertia Iϑv,
Iϕv need to be written in long mathematical expressions, the analytical form
of which is presented in the monograph by Dziopa (2008).
Some of the physical quantities are included in Fig. 1 and Fig. 2.

3. Numerical simulation of the launcher motion

The launcher is directly subjected to disturbances generated during the launch.
Excitations caused by the launch of each of the four missiles are passed on-
to the pedestal through the turret. The launcher vibrations result also from
the excitation generated by the vehicle moving across a battlefield. The pe-
destal mounted on the vehicle passes the disturbances to the turret and the
missiles being launched. Examples of the angular acceleration variations for
the pedestal and the turret in the pitch and tilt motions are shown in Figs. 6
and 7.

Fig. 6. Angular acceleration of the pedestal: (a) in pitch motion, (b) in tilt motion

The standard deviation of the pedestal angular acceleration in the pitch
motion ϑ̈w is σϑ̈w = 11.5348 rad/s

2. The standard deviation of the pedestal

angular acceleration ϕ̈w in the tilt motion is σϕ̈w = 7.9355 rad/s
2.

The standard deviation of the turret angular acceleration ϑ̈v in the pitch
motion is σ

ϑ̈v
= 28.0760 rad/s2.
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Fig. 7. Angular acceleration of the turret: (a) in tilt motion, (b) in pitch motion

The standard deviation of the turret angular acceleration ϕ̈v in the tilt
motion is: σϕ̈v = 53.9298 rad/s

2.

The paper presents the concept of application of a three-axis gyroscope
platform mounted on the pedestal of a self-propelled anti-aircraft system with
the aim of stabilizing the launcher, i.e. eliminating the undesired angular mo-
tions of the vehicle and the missiles being launched. The principle of operation
of the system is presented in a schematic diagram in Fig. 8.

It is predicted that, except for the launcher, there may be another
gyroscope-stabilized system fixed on the platform. This system, responsible
for the space scanning and target tracking, is able to detect the target au-
tomatically while the vehicle moves. The target is then tracked until it is
destroyed by one of the missiles in the anti-aircraft missile system.

4. A simplified model of motion of the three-degree gyroscope
platform (TGP)

Figure 9 shows a schematic diagram of a three-axis platform equipped with two
three-degree gyroscopes (Pavlov, 1954; Pavlovskǐı, 1986). It is required that
there are at least two frames of the platform: inner and outer. The platform and
the frames are equipped with angular displacement sensors and transmitters of
control moments (Pavlov, 1954; Pavlovskǐı, 1986). The gyroscopes are mounted
inside the platform in such a way that the measurement axes of the gyroscope
are parallel to the corresponding axes of the platform frames. One gyroscope
has the main axis parallel to the Oxp axis of the platform, therefore, it is able
to measure the platform rotations about the other two axes, Oyp and Ozp.
The main axis of the other gyroscope, however, is parallel to the Oyp axis of
the platform and, therefore, it is able to measure the platform rotations about
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Fig. 8. Schematic diagram of the principle of operation of the self-propelled
anti-aircraft missile system with a three-axis gyroscope-stabilized platform
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axes Oxp and Ozp. In the three-axis platform, the motions about the three
axes of suspension interact. The two stabilization systems affect each other,
which means that if there are any disturbances to one axis, they are passed to
the other two axes.

Fig. 9. General view of the three-axis gyroscope-stabilized platform mounted on a
wheeled vehicle

In addition, since the platform is subjected to vibrations and other external
disturbances, it is necessary that the control parameters be optimally selected
both at the design stage and under operational conditions.

The model presented below describes the gyroscope platform control in
a closed-loop system, where the control parameters are optimized using the
LQR method (Koruba, 2001).

Due to limited space, the model is a linearized model. Let us consider a
case when the angular displacements of the gyroscope axes and the platform
elements from the initial positions are small. If we neglect the ratios of velo-
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cities as low order quantities and assume that the gyroscopes are astatic and
the inertia of their frames is negligible, we have:
— equations describing motion of the gyroscopes:

Jgk(ϑ̈g1 − ψ̈p − ṙ
∗) + Jgong1(ψ̇g1 + ϑ̇p + q

∗) =Mkg12 −Mr2g1

Jgk(ϑ̈g2 + φ̈p + ṗ
∗) + Jgong2(ψ̇g2 − ψ̇p − r

∗) =Mkg22 −Mr2g2
(4.1)

Jgk(ψ̈g1 + ϑ̈p + q̇
∗) + Jgong1(ψ̇p − ϑ̇g1 + r

∗) =Mkg11 −Mr1g1

Jgk(ψ̈g2 − ψ̈p − ṙ
∗) + Jgong2(φ̇p − ϑ̇g2 + p

∗) =Mkg21 −Mr1g2

— equations describing motion of the platform elements (platform, inner fra-
me, outer frame)

[Jxp + Jgk +mpl
2
p + l

2
g1p(m1g1 +m2g1 +m3g1) + l

2
g2p(m1g2 +m2g2 +

+m3g2)](φ̈p + ṗ
∗) + Jgkϑ̈g2 − Jgong2(ψ̇p + ψ̇g2 + r

∗) + Vpmplp(ψ̇p + r
∗) +

+Vp(m1g1 +m2g1 +m3g1)lg1p(ψ̇g1 + ϑ̇p + q
∗) +

−Vp(m1g2 +m2g2 +m3g2)lg2p(ϑ̇p + q
∗) =Mkp3 −Mrp

(Jyrw + Jyp + Jgk +mpl
2
p)(ϑ̈p + q̇

∗) + Jgkψ̈g1 + Jgong1(ψ̇p − ϑ̇g1 + r
∗) +

+mplpV̇p + Vp[−2(m1g1 +m2g1 +m3g1)lg1p(φ̇p + p
∗) + (4.2)

+(m1g2 +m2g2 +m3g2)lg2pφ̇p] =Mkp2 −Mrrw

[Jzrz + Jzrw + Jzp + 2Jgk + l
2
g1p(m1g1 +m2g1 +m3g1) + l

2
g2p(m1g2 +m2g2 +

+m3g2)](ψ̈p + ṙ
∗)− Jgkϑ̈g1 − Jgkψ̈g2 − Jgong1(ϑ̇p + ψ̇g1 + q

∗) +

+Jgong2(φ̇p + ϑ̇g2 + p
∗) + [lg1p(m1g1 +m2g1 +m3g1) +

−lg2p(m1g2 +m2g2 +m3g2)]V̇p + Vpmplp(ϑ̇p − φ̇p) =Mkp1 −Mrrz

where Jgo, Jgk are moments of inertia of the gyroscope rotors;
Jxp , Jyp , Jzp , Jyrw , Jzrz – moments of inertia of the platform elements;
m1gi ,m2gi ,m3gi , i = 1, 2 – masses of the rotor and the inner and outer frames
of gyroscopes 1 and 2, respectively; lp, lg2p, lg2p – distances between the
centres of gravity of the platform, gyroscope 1, gyroscope 2 and the geometric
center of platform rotation, respectively; ϑg1, ψg1, ϑg2, ψg2, φp, ϑp, ψp – angles
determining the position of particular axes of rotation of the gyroscope and
platform elements; ng1, ng2 – angular velocities of the rotors of gyroscopes
1 and 2, respectively; Vp – linear velocity of the vehicle; p

∗, q∗, r∗ – angular
velocities of the vehicle; Mri – moments of friction forces in the bearings of the
axis of rotation of particular gyroscopes and platform elements; Mkgi,Mkpi –
stabilization moments generated by the correction motors of the gyroscope
and platform elements; respectively.
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5. Optimal selection of the control parameters for the three-axis
gyroscope platform on a movable base

Let us write the equations of motion of the controlled platform in the vector-
matrix form

ẋ = Ax+ Bup (5.1)

The vector up shows a pre-programmed open-loop control (Dziopa, 2006a),
the schematic diagram of which is presented in Fig. 10.

Fig. 10. Schematic diagram of control of the gyroscope platform in the open-loop
system

To assure the platform stability, it is necessary to apply an additional
corrective control uk to the closed-loop system. Then, the equations describing
motion of the controlled platform will become

ẋ
∗ = Ax∗ + Buk (5.2)

where: x∗ = x−xp is the deviation between the real and desired motions; xp
is the desired vector of state of the analyzed gyroscope platform.

The law of stabilization control uk is determined by using the linear-square
optimization LQR method (Koruba, 2001) with a functional in the form

J =

∞
∫

0

[(x∗)⊤Qx∗ + u⊤k Ruk] dt (5.3)

The law is presented in the following form

uk = −Kx
∗ (5.4)
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Fig. 11. Schematic diagram of control of the gyroscope platform in the closed-loop
system

where

u = [Mk1,Mki+1,Mkk]
⊤

x = [ψg1, ψ̇g1, ϑg1, ϑ̇g1, ψg2, ψ̇g2, ϑg2, ϑ̇g2, Φ̇p, ϑ̇p, ψ̇p]
⊤

xp = [ψg1z, ψ̇g1z , ϑg1z, ϑ̇g1z, ψg2z , ψ̇g2z , ϑg2z, ϑ̇g2z, Φ̇pz, ϑ̇pz, ψ̇pz]
⊤

The coupling matrix K found in Eq. (5.4) is derived from the following
relationship

K = R−1B⊤P (5.5)

The matrix P is a solution to the algebraic Riccati equation

A⊤P+ PA− 2PBR−1B⊤P+Q = 0 (5.6)

In Eqs. (5.5) and (5.6), the matrices of weights R and Q reduced to the
diagonal form are matched experimentally; the search begins at equal values

qii =
1

2ximax
rii =

1

2uimax
i = 1, 2, . . . , n (5.7)

where ximax is the maximum range of changes in the i-th value of the state
variable, uimax – maximum range of changes in the i-th value of the control
variable.
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Figure 12 presents a simplified schematic diagram of the control and cor-
rection of the three-axis gyroscope platform.

Fig. 12. Schematic diagram of control of a TGP in the open-loop system

6. Results

Figures 13-20 show the performance of the stabilization platform. There is a
clear difference in the system operation resulting from the parameter selection.

Figures 17 and 18 show the performance of the platform affected by ki-
nematic excitations of the pedestal. The dynamics is illustrated in Figs. 6
and 7. Corrective controls clearly protect the platform from the influence of
the pedestal.

When a disturbance occurs, the platform remains in the transitional pro-
cess for a relatively long period of time, if the selection of the regulator pa-
rameters is not optimal. However, if the regulator parameters are optimized
with the LQR method, the platform returns to the initial position immediate-
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Fig. 13. Displacements of the platform for the initially selected parameters of
regulators, (a) time-dependent angular displacements, (b) time-dependent changes

in angular velocities

Fig. 14. Angular displacements of the platform for the optimized parameters of
regulators, (a) time-dependent angular displacements, (b) time-dependent changes

in angular velocities

Fig. 15. Angular displacements of gyroscope 1 (a) for the initially selected
parameters of regulators, (b) for the optimized parameters of regulators
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Fig. 16. Optimized correction moments of (a) the platform, (b) gyroscope 1

Fig. 17. Time-dependent angular displacements due to kinematic motion of the
pedestal, (a) without corrective controls, (b) with corrective controls

Fig. 18. Time-dependent changes in angular velocities resulting from kinematic
motion of the pedestal (a) without corrective controls, (b) with corrective controls



24 Z. Koruba et al.

Fig. 19. Pre-programmed motion of the platform around a circular cone (a) for the
initially selected parameters of regulators, (b) for the optimized parameters of

regulators

Fig. 20. Optimized correction moments in pre-programmed motion of (a) the
platform, (b) gyroscope 1

ly (Fig. 14). Similar variations of the angular quantities and their derivatives
in function of time can be observed for the platform gyroscopes (Fig. 15). It
should be emphasized that the values of the optimized correction moments of
the platform and one of the gyroscopes are relatively small (Fig. 16).

As can be seen in Figs. 19 and 20, the platform moves in a pre-programmed
motion around a circular cone. Figure 19 shows the pre-determined and real
trajectories in the coordinates ψp and ϑp. If the parameters of regulators are
optimized, only the initial phase of the platform operation does not coincide
with the pre-determined one, which is due to external disturbances. After a
short period of time, the platform performs a pre-programmed motion. Figu-
re 20 shows a diagram of correction moments generated by the stabilization
motors of the platform and gyroscope 1, so that the platform can perform the
pre-programmed motion.
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Dynamika i sterowanie platformy giroskopowej s samobieżnym zestawie
przeciwlotniczym

Streszczenie

W pracy przedstawiony jest model matematyczny trzyosiowej platformy girosko-
powej na ruchomej podstawie (pojeździe samochodowym). Sterowania programowe
platformy wyznaczone są z zadnia odwrotnego dynamiki, natomiast sterowania ko-
rekcyjne – za pomocą metody LQR. Rozpatrywana platforma może znaleźć zastoso-
wanie jako niezależna pdstawa dla układów obserwacyjnych, kamer, działek czy też
karabinie maszynowych. W niniejszym opracowaniu pokazane jest jej zastosowanie do
stabilizacji wyrzutni przeciwlotniczych pocisków rakietowych.
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