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Linear and nonlinear phenomena play important role in applied mathematics,
physics and also in engineering problems in which any parameter may vary
depending on different factors. In recent years, the homotopy perturbation me-
thod (HPM) is constantly being developed and applied to solve various linear
and nonlinear problems. In this paper, static analysis of functionally graded
piezoelectric beams based on the first-order shear deformation theory under
thermal loads has been investigated. The beam with a functionally graded pie-
zoelectric material (FGPM) is graded in the thickness direction and a simple
power law index governs the piezoelectric material properties. The electric po-
tential is assumed linear across the beam thickness. The governing equations
are obtained using potential energy and Hamilton’s principle and may lead to
a system of differential equations. We suggest two methods to solve this pro-
blem, the homotopy perturbation and analytical solution obtained by the finite
Fourier transformation. The homotopy perturbation method and a proper al-
gorithm are suggested to solve simultaneous differential equations. The results
are presented for different power law indexes under uniform thermal gradient.
The results are compared with the analytical solution obtained by the finite
Fourier transformation for simply supported boundary conditions.

Key words: functionally graded piezoelectric material, thermal load, first-order
shear deformation theory, homotopy perturbation method
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1. Introduction

Since the piezoelectric phenomenon was first discovered, which is widely used
to manufacture smart structures, various piezoelectric sensors, actuators, con-
ductors and transducers are implemented to operate in structural design pro-
blems. Piezoelectric actuators and sensors have novel applications for micro-
electromechanical systems and smart material systems, especially in the medi-
cal and aerospace industries (Chen et al., 2004; Takagi et al., 2003). Since most
aerospace applications involve operations in changing thermal environments,
increased interests in piezothermoelasticity during recent years have addressed
the thermo- and electromechanical behaviour of such materials. Nowadays,
the use of functionally graded materials (FGM) has gained intensive atten-
tion especially in extreme high temperature environments and reduction high
thermal stresses. FGMs are inhomogeneous materials the material properties
of which vary continuously in one (or more) direction(s). This is achieved
usually by gradually changing the composition of constituent materials along
the thickness to obtain smooth variation of material properties and optimum
responses to externally applied thermo-mechanical loadings. FGMs are now
developed for the general use as structural components in high temperature
environments and being strongly considered as potential structural material
candidates for future high-speed spacecraft. Typical FGMs are made of a mi-
xture of ceramic and metal, or a combination of different metals or different
ceramics that are appropriate to achieve the desired objective. Another kind
of FGMs, called functionally graded piezoelectric materials (FGPM), obtained
even more attention in the recent years (Wu et al., 2002).

It is well known that piezoelectric materials have been widely used as
sensors and actuators in control systems. Smart structures or elements ma-
de of these so-called FGPMs are usually superior to conventional sensors and
actuators and are often made of the uni-morph, bi-morph and multimorph
materials. For a piezoelectric laminate with homogeneous material properties
in layers, large bending displacements, high stress concentrations, creep at
high temperature and failure from interfacial bonding are usually presented
at the layer interfaces under a mechanical or electric loading. These effects
may lead to lifetime limitations and reliability reduction. To reduce the draw-
backs, piezoelectric materials and structures with functionally graded material
properties along the layer-thickness direction have been introduced and fabri-
cated. The additional advantage of FGPM actuators is that no bonding agent
is needed to bond the piezoelectric ceramic plates, because the piezoelectric
layers and the inner electrode can be formed together by the sintering process.
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The functionally graded sensors and actuators play an important role in the
field of micro structural engineering (Pin et al., 2006; Liao, 1995).
This paper presents static analysis of an FGPM beam based on the first-

order shear deformation theory under thermal load. The analysis is based on
the homotopy perturbation method (HPM) proposed by Liao (1995, 1997).
The results are compared with the finite Fourier transformation for different
power law indexes. Using this method, one concludes that it is a proper method
to overcome FGPM’s difficulties in engineering problems.

2. Derivation of governing equations

Consider a functionally graded piezoelectric beam as shown in Fig. 1. The
material properties change functionally between the upper and lower surfaces
across the beam thickness.

Fig. 1. FGPM beam and coordinates

In the model that is used in this paper, the material properties are expres-
sed as

P (z) = Pul
(2z + h
2h

)n
+ Pl Pul = Pu − Pl (2.1)

where z is coordinate along the thickness direction of the beam, Pu, Pl are
properties of the upper surface and the lower surface, respectively; and h is the
thickness of the FGPM beam. The power n is the volume fraction exponent.
FGPMs are particularly effective in high-temperature environments. In

the present analysis, constant surface temperatures are imposed at the upper
and lower surfaces. The variation in temperature is assumed to occur along
the thickness direction only. Thus, the steady-state heat transfer equation is
reduced to a one-dimensional equation as

−
d

dz

(
K(z)

dT

dz

)
= 0 (2.2)
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with boundary conditions such that T = Tu at z = h/2 and T = Tl at
z = −h/2. Here, T is the temperature; Tu and Tl are the applied tempera-
tures on the upper and lower surfaces, respectively; z is the coordinate in the
thickness direction and K is the thermal conductivity which varies according
to the profile given by Eq. (2.2). The solution to Eq. (2.3) can be obtained by
means of the polynomial series (Lanhe et al., 2007)

T (z) = Tl +
∆T

Λ

[2z + h
2h

+
∑

i=1

(−1)iKi
ul

(ni+ 1)Ki
l

(2z + h
2h

)ni+1]
(2.3)

with

Λ = 1 +
∑

i=1

(−1)iKi
ul

(ni+ 1)Ki
l

(2.4)

Using the first-order shear deformation theory, the displacement components
are

u(x, z) = u0(x)− zψ(x) w(x) = w0(x) (2.5)

where u is the axial displacement, w is the transverse displacement in the z
direction and ψ is the rotation angle of the cross-section with respect to the
longitudinal axis. The subscript zero denotes the middle surface displacement.
In terms of the displacement components, the normal and shear strains are
given by

εx = u0,x − zψ,x γxz = w0,x − ψ (2.6)

where the comma in subscript denotes partial differentiation.
The constitutive relationships describing electrical and mechanical interac-

tions for piezoelectric materials are given as (Wang and Noda, 2001)

σij = cijklεkl − elijEl − βijθ Di = eiklεkl + ηilEl + piθ (2.7)

here, σij and εkl are the stress and strain tensors, respectively, Di is the
electrical displacement vector, El = −ϕ,l is the electrical field vector and
ϕ is the electrical potential, cijkl is the elasticity matrix, eikl – piezoelectric
constant matrix, ηil – dielectric permittivity coefficient matrix, βij = cijklαkl
with αkl being the thermal expansion coefficients, pi denotes the pyroelectric
constants and θ = T − T0, where T0 is the reference temperature.

For an FGPM beam with a small width, assume the plane state of stress
(σy = σyz = σxy = 0), neglect the transverse normal stress (σz ≈ 0) and assu-
me the axial and transverse displacements u, w and the electric potential ϕ
to be independent of y. The electric field Ex is considered non-zero, as it may
be induced by the piezoelectric coupling. With these assumptions, the general
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linear constitutive equations for the stresses and the electric displacements
reduce to (Kapuria et al., 2004)

σx = Ê(z)εx − e31(z)Ez − Ê(z)α(z)θ = Ê(z)(u0,x − zψ,x) + e31(z)ϕ,z +

−Ê(z)α(z)θ

σxz = Ĝ(z)γxz − e15(z)Ex = Ĝ(z)(w0,x − ψ) + e15(z)ϕ,x
(2.8)

Dx = e15(z)γxz + η11(z)Ex = e15(z)(w0,x − ψ)− η11(z)ϕ,x

Dz = e31(z)εx + η33(z)Ez + p3(z)θ = e31(z)(u0,x − zψ,x)− η33(z)ϕ,z +

+p3(z)θ

where Ê and Ĝ are Young’s modulus and shear modulus, respectively. For ma-
thematical simplification, the potential ϕ is assumed linear across the FGPM
beam thickness as (Trindade and Benjeddou, 2006)

ϕ(x, z) =
z

h
[ϕ+(x)− ϕ−(x)] +

1

2
[ϕ+(x) + ϕ−(x)] (2.9)

where ϕ+ and ϕ− are the electric potentials on the upper and lower surfaces
of the FGPM beam, respectively.
For static analysis of the beam, the variational formulation may be written

using the virtual work principle extended to piezoelectric media (Kapuria et
al., 2004)

δW − δH = 0 (2.10)

where δH and δW are the virtual works of electromechanical internal and
applied mechanical forces, respectively. The virtual work done by the electro-
mechanical internal forces in the FGPM beam is

δH =

∫

v

(σxδεx + σxzδγxz −DxδEx −DzδEz) dv (2.11)

Using constitutive relations Eq. (2.7) for the strain tensor, Eqs. (2.8) and
the electric field relations of Eq. (2.9), and substituting into Eq. (2.11) and
carrying the variational formulation, the governing equations are obtained as

δu0 : A
′

1u0,xx +A
′

2ψ,xx +A
′

3ϕ
+
,x +A

′

4ϕ
−

,x = 0

δψ : B′1u0,xx +B
′

2ψ +B
′

3ψ,xx +B
′

4w0,x +B
′

5ϕ
+
,x +B

′

6ϕ
−

,x = 0

δw0 : C
′

1ψ,x + C
′

2w0,xx + C
′

3ϕ
+
,xx + C

′

4ϕ
−

,xx = 0

δϕ+ : D′1u0,x +D
′

2ψ,x +D
′

3w0,xx +D
′

4ϕ
+ +D′5ϕ

− +D′6ϕ
+
,xx +D

′

7ϕ
−

,xx=D
′

8

δϕ− : E′1u0,x + E
′

2ψ,x + E
′

3w0,xx + E
′

4ϕ
+ +E′5ϕ

− + E′6ϕ
+
,xx + E

′

7ϕ
−

,xx = E
′

8

(2.12)
where A′, B′, C ′, D′, and E′ are given in Appendix A.
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3. Solution procedure

To solve the simultaneous governing equations, dimensionless values are defi-
ned as

u0 =
u0
l

w0 =
w0
l

x =
x

l

ϕ+ =
e31u

Êul
ϕ+ ϕ− =

e31u

Êul
ϕ−

(3.1)

where l is the length of the beam, Êu and e31u are Young’s modulus and
piezoelectric constant of the upper surface of the FGPM beam, respectively.
The sign (−) indicates the dimensionless value.
Using the dimensionless parameters, governing Eqs. (2.12) are given as

a′1u0,xx + a
′

2ψ,xx + a
′

3ϕ
+
,x + a

′

4ϕ
−

,x = 0

b′1u0,xx + b
′

2ψ + b
′

3ψ,xx + b
′

4w0,x + b
′

5ϕ
+
,x + b

′

6ϕ
−

,x = 0

c′1ψ,x + c
′

2w0,xx + c
′

3ϕ
+
,xx + c

′

4ϕ
−

,xx = 0 (3.2)

d′1u0,x + d
′

2ψ,x + d
′

3w0,xx + d
′

4ϕ
+ + d′5ϕ

− + d′6ϕ
+
,xx + d

′

7ϕ
−

,xx = d
′

8

e′1u0,x + e
′

2ψ,x + e
′

3w0,xx + e
′

4ϕ
+ + e′5ϕ

− + e′6ϕ
+
,xx + e

′

7ϕ
−

,xx = e
′

8

where a′i, b
′

i, c
′

i, d
′

i, and e
′

i are dimensionless constants.
In the present analysis, an analytical solution is obtained for the simply

supported FGPM beam with the following boundary conditions as

σx = 0 → u,x = ψ,x = 0 x = 0, 1

w0 = 0 x = 0, 1

ϕ = 0 → ϕ+ = ϕ− = 0 x = 0, 1

(3.3)

3.1. Finite Fourier transformation

To solve the system of equations (3.2), a finite Fourier transformation can
be used as

u0m =

1∫

0

u0(x) cos(mπx) dx ψm =

1∫

0

ψ0(x) cos(mπx) dx

w0m =

1∫

0

w0(x) sin(mπx) dx ϕ+m =

1∫

0

ϕ+m(x) sin(mπx) dx (3.4)

ϕ−m =

1∫

0

ϕ−m(x) sin(mπx) dx
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Formulas for the inverse of transformation of Eqs. (3.4) are obtained by using
a relationship from the theory of Fourier series

u0(x) = 2
∑

m

u0m cos(mπx) ψ(x) = 2
∑

m

ψm cos(mπx)

w0(x) = 2
∑

m

w0m sin(mπx) ϕ+(x) = 2
∑

m

ϕ+m sin(mπx) (3.5)

ϕ−(x) = 2
∑

m

ϕ−m sin(mπx) m = 1, 3, 5, . . . , r = mπ

Solution (3.5) automatically satisfies boundary conditions (3.3). Applying
transformation (3.4) to Eqs. (3.2) the following expressions are obtained

−r2a′1u0m − r
2a′2ψm + ra

′

3ϕ
+
m + ra

′

4ϕ
−

m = 0

b′1u0m + (b
′

2 − r
2b′3)ψm + rb

′

4w0m + rb
′

5ϕ
+
m + rb

′

6ϕ
−

m = 0

−rc′1ψm − r
2c′2w0m − r

2c′3ϕ
+
m − r

2c′4ϕ
−

m =
2

r
c′5 (3.6)

−rd′1u0m − rd
′

2ψm − r
2d′3w0m + (d

′

4 − r
2d′6)ϕ

+
m + (d

′

5 − r
2d′7)ϕ

−

m =
2

r
d′8

−re′1u0m − re
′

2ψm − r
2e′3w0m + (e

′

4 − r
2e′6)ϕ

+
m + (e

′

5 − r
2e′7)ϕ

−

m =
2

r
e′8

To find the mth Fourier components of u0m, ψm, w0m, ϕ
+
m andϕ

−

m, the system
of Eqs. (3.6) must be solved based on the choice of m. Using above Fourier
components and applying into Eqs. (3.5), the series solution is determined.

3.2. Homotopy perturbation method

Various perturbation methods have been widely applied to solve linear and
nonlinear problems. Unfortunately, the traditional perturbation techniques are
based on the assumption that a small parameter must exist, which is too over-
strict to find wide application (He, 2003). To illustrate the basic ideas of the
new method, we consider the following differential equation

A(u) + f(r) = 0 r ∈ Ω (3.7)

with boundary conditions

B
(
s,
∂s

∂q

)
= 0 r ∈ Γ (3.8)

where A is a general differential operator, B is a boundary operator; f(r) is
a known analytic function, Γ is the boundary of the domain Ω (He, 1999;
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Sajid et al., 2006). The operator A can, generally speaking, be divided into
two parts L and N , where L is linear, while N nonlinear, Eq. (3.7), therefore,
can be rewritten as follows

L(s) +N(s)− f(r) = 0 (3.9)

By the homotopy technique proposed by Liao (1995, 1997), we construct a
homotopy of Eq. (3.7) g(r,m): Ω × [0, 1]→ ℜ which satisfies

J(g,m) = (1−m)[L(g)− L(s0)] +m[A(g) − f(r)] = 0 m ∈ [0, 1], r ∈ Ω
(3.10)

or

J(g,m) = L(g)− L(s0) +mL(s0) +m[N(g) − f(r)] = 0 (3.11)

where m ∈ [0, 1] is an embedding parameter and s0 is the initial approxima-
tion which satisfies the boundary conditions. Here the embedding parameter
is introduced much more naturally, unaffected by artificial factors; further it
can be considered as a small parameter for 0 ¬ m ¬ 1.

So it is very natural to assume that the solution of Eq. (3.7) and Eq. (3.8)
can be expressed as

g = g0 +mg1 +m
2g2 + . . . (3.12)

The approximate solution to Eq. (3.7), therefore, can be readily obtained

s = lim
g→1

g = g0 + g1 + g2 + . . . (3.13)

The convergence of the series of Eq. (3.13) has been proved in Takagi et al.
(2003).

We construct a homotopy Ω × [0, 1]→ ℜ which satisfies

L1(g) − L1(s0) +mL1(s0) +m[N1(g)− f1(r)] = 0

L2(g) − L2(s0) +mL2(s0) +m[N2(g)− f2(r)] = 0

L3(g) − L3(s0) +mL3(s0) +m[N3(g)− f3(r)] = 0 (3.14)

L4(g) − L4(s0) +mL4(s0) +m[N4(g)− f4(r)] = 0

L5(g) − L5(s0) +mL5(s0) +m[N5(g)− f5(r)] = 0
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where

L1(g) = u0,xx f1(r) = 0

N1(g) =
a2
a1
ψ,xx +

a3
a1
ϕ+,x +

a4
a1
ϕ−,x

L2(g) = ψ,xx f2(r) = 0

N2(g) =
b1
b3
u0,xx +

b2
b3
ψ +

b4
b3
w,x +

b5
b3
ϕ+,x +

b6
b3
ϕ−,x

L3(g) = w0,xx f3(r) = 0 (3.15)

N3(g) =
c1
c2
ψ +

c3
c2
ϕ+,xx +

c4
c2
ϕ−,xx

L4(g) = ϕ
+
,xx f4(r) =

d8
d6

N4(g) =
d1
d6
u0,x +

d2
d6
ψ,x +

d2
d6
w,xx +

d4
d6
ϕ+ +

d5
d6
ϕ− +

d7
d6
ϕ−,xx

L5(g) = ϕ
−

,xx f5(r) =
e1
e7

N5(g) =
e1
e7
u0,x +

e2
e7
ψ,x +

e3
e7
w,xx +

e4
e7
ϕ+ +

e5
e7
ϕ− +

e6
e7
ϕ+,xx

The initial approximation of Eq. (3.2) based on boundary conditions is assu-
med as

u00 =
1

3
x3 −

1

2
x2 ψ

0
=
1

3
x3 −

1

2
x2

w00 = x
3 − x2 ϕ+0 = x3 − x2

ϕ−0 = x3 − x2

(3.16)

Suppose the solution to Eq. (3.14) has the form

g = g0 +mg1 +m
2g2 + . . . (3.17)

Substituting Eq. (3.17) into (3.14), and equating the terms identically

m0u0 : U0,xx = u
0
0,xx

m1u0 : U1,xx = −
(
u00,xx +

a2
a1
ψ
0

,xx +
a3
a1
ϕ+0,x +

a4
a1
ϕ−0,x

)

m2u0 : U2,xx = −
(a2
a1
ψ
1

,xx +
a3
a1
ϕ+1,x +

a4
a1
ϕ−1,x

)

m3u0 : U3,xx = −
(a2
a1
ψ
2

,xx +
a3
a1
ϕ+2,x +

a4
a1
ϕ−2,x

)

m0ψ : Ψ0,xx = ψ
0

,xx

m1ψ : Ψ1,xx = −
(
ψ
0

,xx +
b1
b3
u0,xx +

b2
b3
ψ
0
+
b4
b3
w0,x +

b5
b3
ϕ+0,x +

b6
b3
ϕ−0,x

)
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m2ψ : Ψ2,xx = −
(b1
b3
u1,xx +

b2
b3
ψ
1
+
b4
b3
w1,x +

b5
b3
ϕ+1,x +

b6
b3
ϕ−1,x

)

m3ψ : Ψ3,xx = −
(b1
b3
u2,xx +

b2
b3
ψ
2
+
b4
b3
w2,x +

b5
b3
ϕ+2,x +

b6
b3
ϕ−2,x

)

m0w0 : W0,xx = w
0
0,xx

m1w0 : W1,xx = −
(
w00,xx +

c1
c2
ψ
0

,x +
c3
c2
ϕ+0,xx +

c4
c2
ϕ−0,xx

)

m2w0 : W2,xx = −
(c1
c2
ψ
1

,x +
c3
c2
ϕ+1,xx +

c4
c2
ϕ−1,xx

)
(3.18)

m3w0 : W3,xx = −
(c1
c2
ψ
2

,x +
c3
c2
ϕ+2,xx +

c4
c2
ϕ−2,xx

)

m0ϕ+ : Φ+0,xx = ϕ
+0
,xx

m1ϕ+ : Φ+1,xx = −
(
ϕ+0,xx +

d1
d6
u0,x +

d2
d6
ψ
0

,x +
d3
d6
w0,xx +

d4
d6
ϕ+0 +

d5
d6
ϕ−0 +

+
d7
d6
ϕ−0,xx

)

m2ϕ+ : Φ+2,xx = −
(d1
d6
u1,x +

d2
d6
ψ
1

,x +
d3
d6
w1,xx +

d4
d6
ϕ+1 +

d5
d6
ϕ−1 +

d7
d6
ϕ−1,xx

)

m3ϕ+ : Φ+3,xx = −
(d1
d6
u2,x +

d2
d6
ψ
2

,x +
d3
d6
w2,xx +

d4
d6
ϕ+2 +

d5
d6
ϕ−2 +

d7
d6
ϕ−2,xx

)

m0ϕ− : Φ−0,xx = ϕ
−0
,xx

m1ϕ− : Φ−1,xx = −
(
ϕ−0,xx +

e1
e7
u0,x +

e2
e7
ψ
0

,x +
e3
e7
w0,xx +

e4
e7
ϕ+0 +

e5
e7
ϕ−0 +

+
e6
e7
ϕ+0,xx

)

m2ϕ− : Φ−2,xx = −
(e1
e7
u1,x +

e2
e7
ψ
1

,x +
e3
e7
w1,xx +

e4
e7
ϕ+1 +

e5
e7
ϕ−1 +

e6
e7
ϕ+1,xx

)

m3ϕ− : Φ−3,xx = −
(e1
e7
u2,x +

e2
e7
ψ
2

,x +
e3
e7
w2,xx +

e4
e7
ϕ+2 +

e5
e7
ϕ−2 +

e6
e7
ϕ+2,xx

)

Consequently, solving the above equations, the components of the homotopy
perturbation solution for the system of Eqs. (3.2) are derived.

4. Results

The numerical results are presented using the theory of Fourier series in this
paper. The present study considers functionally graded materials composed
of two piezo-electric constitutive materials. The bottom surface of the FGPM
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beam is Platinum whereas the top surface of the beam is PZT-4-rich. The
material properties of PZT-4 and Platinum are shown in Table 1.

Table 1. Material properties of PZT-4 and platinum

PZT-4 Platinum

Ê = 74GPa, K = 9W/(mK), Ê = 168GPa,
α = 4.4 · 10−6 1/K, e31 = −0.9C/m

2, K = 77.8W/(mK),
e15 = 4.6C/m

2, η11 = 8.26 · 10
−11 N/m2, α = 9 · 10−6 1/K, e31 = 0,

η33 = 9.03 · 10
−11 N/m2, e15 = 0C/m

2, η11 = 0N/m
2,

p3 = 3 · 10
−6 C/(Km2) η33 = 0N/m

2, p3 = 0C/(Km
2)

The FGPM beam of length of 0.2m and height 0.0025m with simply
supported conditions is assumed. The FGPM beam is studied under a thermal
gradient through its thickness direction. The temperature of the top PZT-4-
rich surface is fixed at 400K and that of bottom Platinum surface is kept
constant at 300K. It is assumed that the reference temperature is T0 = 295K.
The temperature field through the thickness of the beam is shown in Fig. 2.

Fig. 2. Distribution of temperature through dimensionless height of the FGPM beam

According to Eqs. (3.16) and (3.18), the first few components of the homo-
topy perturbation solution for the system of Eqs. (3.2), for n = 0, are derived
as

W0 = x
3 − x2

W1 = −0.28571x
4 − 0.812x3 + 0.833x2

W2 = 0.001241x
6 − 0.0148x5 + 0.2742x4 − 0.212x3 + 0.1971x2 (4.1)

W3 = 0.000051x
8 + 0.000034x7 − 0.001156x6 + 0.01791x5 + 0.008331x4 +

+0.0189x3 − 0.02493x2
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Thus we have a fourth order of approximation for the dimensionless lateral
deflection and the dimensionless electric potentials of Eqs. (3.2)

W =W0 +W1 +W2 +W3 + . . .

Φ = Φ+0 + Φ
+
1 + Φ

+
2 + Φ

+
3 + . . . (4.2)

Φ0 = Φ
−

0 + Φ
−

1 + Φ
−

2 + Φ
−

3 + . . .

And so on, in this manner the rest of components of the homotopy pertur-
bation solution for the system of Eqs. (3.2) can be obtained for n = 0. The
solution is given by

W = 5.1 · 10−5x8 + 3.4 · 10−5x7 − 8.5 · 10−5x6 + 3.111 · 10−3x5 +
(4.3)

−3.179 · 10−3x4 − 5.1 · 10−3x3 + 5.168 · 10−3x2

Table 2 is presented to show the effect of the power law index of the func-
tionally graded piezoelectric beam for distribution of dimensionless deflection
through the dimensionless length. The results obtained by the homotopy per-
turbation method are compared with the finite Fourier transformation for
different power law indexes. Table 2 shows that with the increase of n, when
the beam constituent materials change form the PZT-4-rich to the Platinum-
rich, the midpoint deflection of the FGPM beam decreases accordingly. It is
seen that for larger values of n, the deflection of the beam is changed and
decreased evidently. The top and bottom surfaces variation of dimensionless
electric potential through the dimensionless length of the FGPM beam caused
by thermal load for different power law indexes are shown in Figs. 3-7. The
figures show that for most Platinum-rich FGPM beam, (higher values of n),
the electric potential distribution decreases in value due to less piezoelectric
constants. Good agreements are observed between the homotopy perturbation
method and the finite Fourier transformation.

Table 2. Maximum deflection in simply-supported FGPM beam

n Finite Fourier method HPM method Error

0 5.762 · 10−4 5.521 · 10−4 4.18%

2 3.462 · 10−5 3.31 · 10−5 4.3%

5 1.01 · 10−6 0.96 · 10−6 4.98%

10 0.453 · 10−6 0.432 · 10−6 4.63%
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Fig. 3. Top surface variation of dimensionless electric potential through
dimensionless length of the FGPM beam caused by thermal load for n = 2

Fig. 4. Top surface variation of dimensionless electric potential through
dimensionless length of the FGPM beam caused by thermal load for n = 5

Fig. 5. Bottom surface variation of dimensionless electric potential through
dimensionless length of the FGPM beam caused by thermal load for n = 0



186 A. Armin et al.

Fig. 6. Bottom surface variation of dimensionless electric potential through
dimensionless length of the FGPM beam caused by thermal load for n = 2

Fig. 7. Bottom surface variation of dimensionless electric potential through
dimensionless length of the FGPM beam caused by thermal load for n = 5

5. Conclusions

In the present paper, the static analysis of an FGPM beam based on the first-
order shear deformation theory under thermal load is investigated. The beam
is subjected to constant surface temperatures on the upper and lower surfa-
ces. Boundary conditions of the beam are taken to be simply supported at the
ends of the beam. To solve the problem, the numerical homotopy perturba-
tion method is used. Moreover, the results are compared with the finite Fourier
transformation for different power law indexes. They show that for larger va-
lues of power law indexes which provide less PZT-4 rich FGPM, the lateral
deflection of the FGPM beam decreases constantly due to the applied thermal
load. By increasing the metal share in the FGPM beam, the maximum value
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of electric potential decreases on the top and bottom beam surfaces. Moreover,
the obtained results show the accuracy of this approach and reveal that the
proposed homotopy perturbation method is very effective and simple to the
problem like this. It can be predicted that HPM is a suitable method for other
FGPM problems in which exact solutions are not easily achieved.

Appendix A
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Porównanie rezultatów analizy statycznej belki FGPM otrzymanych

metodą HPM i za pomocą skończonej transformacji Fouriera

Streszczenie

Zjawiska liniowe i nieliniowe odgrywają ważną rolę w dziedzinie matematyki sto-
sowanej, fizyki, a także zagadnieniach inżynierskich, w których dowolny parametr
może ulegać zmianie pod wpływem różnych czynników. W ostatnich latach perturba-
cyjna metoda homotopii (HPM) ulegała ciągłemu rozwojowi i znalazła zastosowanie
w rozwiązywaniu różnorodnych liniowych i nieliniowych zadań. W tej pracy zaprezen-
towano wyniki analizy statycznej belki wykonanej z gradientowego materiału zawie-
rającego frakcję piezoelektryczną i obciążonej termicznie otrzymanych przy pomocy
teorii odkształceń postaciowych pierwszego rzędu. Belka z materiału funkcjonalne-
go (FGPM) ma strukturę gradientową, tj. posiada właściwości materiałowe zmienne
w sposób ciągły wzdłuż grubości tej belki, zgodnie z założonym rozkładem wykład-
niczym zawartości aktywnej frakcji piezoelektryka w całym materiale. Założono, że
potencjał elektryczny ma rozkład liniowy wzdłuż grubości belki. Różniczkowe równa-
nia ruchu układu otrzymano, używając wyrażenia na energię potencjalną i stosując
zasadę Hamiltona. Do ich rozwiązania zaproponowano dwie metody: perturbacyjną
homotopii i analityczną w drodze skończonej transformacji Fouriera. W metodzie ho-
motopii zasugerowano odpowiedni algorytm rozwiązywania układu równań różniczko-
wych. Wyniki przedstawiono dla różnych rozkładów aktywnej frakcji piezoelektrycznej
przy utrzymaniu jednorodnego gradientu temperatury. Wyniki porównano z rozwią-
zaniem analitycznym otrzymanym za pomocą skończonej transformacji Fouriera dla
warunków brzegowych belki odpowiadających swobodnemu podparciu.

Manuscript received April 6, 2009; accepted for print July 2, 2009


