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Inverse analysis has become increasingly important for estimating coeffi-
cient values for heat and moisture transport in complex biological mate-
rials. With this approach, an improved accuracy of predicting transport
processes can be obtained as compared to simulations based on coeffi-
cients determined by experimental procedures only. Such improvement
is indispensable for successful analyzing, designing and managing most
technological processes in the agri-food and forest products industries. In
recent years, many optimization algorithms have been developed to solve
inverse problems. Performance of the following algorithms was analyzed
and compared in this paper: simulated annealing, tabu search, genetic
algorithm, variable metric algorithm and trust region algorithm. Results
demonstrated that although all the algorithms were able to estimate the
coefficients, there were differences in their performance and due to high
computational complexity of the problem only the trust region procedure
was acceptable.
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Notations

c [J/(kg·K)] – specific heat
Dm [m

2/s] – moisture transport coefficient
Dmt [m

2
·K/s] – moisture thermodiffusion coefficient
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hcm [m
2/s] – convective moisture transfer coefficient in boundary

layer of domain Ω
hct [W/(m

2
·K)] – convective heat transfer coefficient in boundary layer

of domain Ω
k [W/(m·K)] – thermal conductivity
M [kg/kg] – moisture content at point x ∈ Ω and time τ ∈ (0, τF ]

(dry basis)
M0 [kg/kg] – moisture content at point x ∈ Ω and time τ = 0 (dry

basis)
Me [kg/kg] – equilibrium moisture content determined either at po-

int x ∈ ∂Ω or at points outside boundary layer of
domain Ω at time τ ∈ (0, τF ] (dry basis)

n – unit vector normal to surface ∂Ω, directed outward
t [◦C] – temperature at point x ∈ Ω and time τ ∈ (0, τF ]
t0 [
◦C] – temperature at point x ∈ Ω and time τ = 0

t∞ [
◦C] – temperature at points outside boundary layer of Ω at

time τ ∈ (0, τF ]
ts [
◦C] – temperature at point x ∈ ∂Ω and time τ ∈ (0, τF ]

x [m] – coordinates of point in orthocartesian system of coor-
dinates

αv [K] – coefficient used in Eq. (2.1)
ρ [kg/m3] – density
τ [s] – time
τF [s] – instant limiting process time from right side
Ω [m3] – domain of body examined in three-dimensional eucli-

dean space
∂Ω [m2] – boundary of domain Ω (∂ΩI for essential boundary

condition, and ∂ΩIII for natural boundary conditions)
∇ – gradient operator.

1. Introduction

Biological materials are subject to intensive thermo-mechanical operations.
Better understanding of heat and mass transport in complex biomaterials is
an essential ingredient in the advancement of agri-food and wood processing
technologies. A substantial amount of research has been focused on the de-
velopment of heat and mass transport models for biological materials, and
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the finite element method has been the most common technique used for the
numerical analysis (Irudayaraj and Wu, 1999; Weres and Jayas, 1994; Weres,
1997). However, dubious or even unknown values of biomaterial properties
represented in mathematical model coefficients, often unavailable in physical
experiments, restrict the usability of mathematical models. The inverse mode-
ling approach, based on combining procedures for acquiring available experi-
mental data, solving direct problems, computing and minimizing an objective
function with the appropriate optimization algorithm, can be very efficient in
estimating coefficient values of acceptable accuracy.

The objective of this study was to develop a software module for assessing
performance of optimization algorithms as a part of an information system
developed by the authors for inverse finite element analysis, and to compare
selected algorithms with respect to bound constrained optimization for heat
and mass transport in biological materials.

2. Inverse finite element approach to heat and mass transport in

biomaterials

2.1. Formulation of the problem

The mathematical structural model of heat and mass transport in bioma-
terials, i.e. the mathematical model describing the structure of the investigated
process can be represented as the system of quasi-linear differential equations
of heat conduction and water transfer with initial and boundary conditions of
any kind (Pabis et al., 1998; Perré and Turner, 2007; Weres et al., 2000):

— for (x, τ) ∈ Ω× (0, τF ]

∂t

∂τ
−∇

( k

ρc
∇t
)

− αv
∂M

∂τ
= 0

(2.1)
∂M

∂τ
−∇(Dm∇M)−∇(Dmt∇t) = 0

— for (x) ∈ Ω

t(x, 0) = t0(x) M(x, 0) =M0(x) (2.2)



704 J. Weres et al.

— for (x, τ) ∈ ∂ΩI × (0, τF ]

t(x, τ) = ts(x) M(x, τ) =Me(x) (2.3)

— for (x, τ) ∈ ∂ΩIII × (0, τF ]

kn∇t+ hct(t− t∞) = 0 Dmn∇M + hcm(M −Me) = 0 (2.4)

The operational form of the model was developed by the finite element
approximation with the use of isoparametric, curvilinear, three-dimensional
elements and recurrence schemes (two-point and three-point algorithms) in
time, absolutely stable, with an iterative procedure to deal with the quasi-
linearity of equations. The finite element model was enhanced with procedures
controlling accuracy, stability, susceptibility to oscillations, and computatio-
nal efficiency (Weres et al., 2000; Weres and Olek, 2005). The final operational
model for solving direct problems was composed of the two- or three-point re-
currence scheme of algebraic equations, a set of data representing conditions of
the investigated process, and empirical equations to calculate the equilibrium
moisture content and the moisture diffusion coefficient for selected biomate-
rials. Numerical description of non-homogeneity and geometric irregularity of
the investigated products was taken from image analysis data (Weres et al.,
2007; Weres, 2008).

The inverse finite element modeling procedure was based on the inverse
problem approach (Isakov, 1998; Kirsch, 1996), optimization methods (Baza-
raa et al., 2006; Jongen et al., 2004; Nash and Sofer, 1996; Nocedal and Wright,
2006; Vanderplaats, 2001), and the operational finite element model for solving
direct problems described in the previous Section. Several optimization algo-
rithms were selected and analyzed to assess their performance in minimizing
the objective function with respect to the coefficients to be estimated. The
objective function was defined as the L2-norm of the weighted residuals of
the measured and predicted values of the quantities depicting behavior of a
given biological material investigated: the temperature, moisture content, and
additionally air pressure in the case of gas permeability determination (Weres
and Olek, 2005; Olek et al., 2003, 2005; Olek and Weres, 2005, 2007).

The developed procedure is capable of solving transient, three-dimensional,
quasi-linear, inverse problems of heat and mass transport in non-homogeneous
and anisotropic biomaterials of irregular geometry, with initial and boundary
conditions of any kind.
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2.2. Software supporting inverse finite element analysis

A software module for assessing performance of optimization algorithms
(Fig. 1) was designed and implemented in Visual Studio 2008 as a part of
the existing original computational and visualization software developed by
the authors for inverse and direct finite element analysis (Weres et al., 2007;
Weres, 2008).

2.3. Optimization in constructing empirical equations

Construction of empirical equations presented in Fig. 1 was necessary to
represent experimental data in a generalized form, as the input to the inverse
finite element procedure of estimating coefficients of the operational structural
model. Selected empirical equations were fitted to experimental data sets using
the developed software (Fig. 1). The coefficient estimation for the empirical

Fig. 1. An interface of the software module for assessing performance of
optimization algorithms

equations was carried out with the support of the following metaheuristics
designed and coded as a part of our software: simulated annealing (Privault
and Herault, 1998), tabu search (Caserta and Márquez Uribe, 2009; Glover
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and Laguna, 1997) and genetic algorithm (Chainate et al., 2007; Mousavi et
al., 2008), and the performance of the corresponding algorithms was compared.

To exemplify the procedure of constructing empirical equations, the water
transport in corn kernels dried in thin layers was analyzed, and the resulting
equations were the input to the estimation of the water diffusion coefficient,
dependent on temperature and moisture content, crucial for the operational
finite element model.

Details of the exemplary instance

Species: corn kernels – Clarica (FAO 280).
Drying air parameters: temperature 40◦C, relative humidity 50%.
Time of drying: 24 hours.
Initial moisture content: 0.4272 kgwater/kgd.m..

Number of estimated coefficients in the empirical equation: 3.

Optimization algorithm: simulated annealing

Total number of iterations: 1000.
Initial values of coefficients: A = 0.853368, B = 0.097342, K = 0.115924.
Corresponding value of the objective function: 1.592120.
Estimated values of coefficients: A = 0.838441, B = 0.095671, K = 0.165255.
Corresponding value of the objective function: 0.034515.

Optimization algorithm: tabu search

Total number of iterations: 1000.
Initial values of coefficients: A = 0.888234, B = 0.092406, K = 0.192038.
Corresponding value of the objective function: 1.289340.
Estimated values of coefficients: A = 0.836815, B = 0.098870, K = 0.161006.
Corresponding value of the objective function: 0.028985.

Optimization algorithm: genetic algorithm

Total number of iterations: 1000.
Initial values of coefficients: A = 0.904815, B = 0.035697, K = 0.168398.
Corresponding value of the objective function: 0.456995.
Estimated values of coefficients: A = 0.845696, B = 0.098815, K = 0.158820.
Corresponding value of the objective function: 0.027871.
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2.4. Optimization in estimating coefficients of the operational finite

element model

A large variety of optimization algorithms for bound constrained problems
were designed and tested for efficiency in searching the objective function mi-
nimum with respect to selected coefficients of the operational finite element
model. Several functions were analyzed to deal with constraints, and the bar-
rier function was slightly more advantageous than the exterior penalty func-
tion. As preliminary investigations showed, only two classes of optimization
algorithms were satisfactory with respect to computational performance, due
to the large scale of the problem investigated: the variable metric approach
(Bazaraa et al., 2006; Jongen et al., 2004; Nash and Sofer, 1996; Zhang et al.,
1999) and the trust region method (Bazaraa et al., 2006; Dennis et al., 1997;
Gay, 1984; Nocedal and Wright, 2006; Xiaojiao and Shuzi, 2003). Only the
two final algorithms were applied to estimate the coefficients. The trust region
algorithm was combined with the secant-updating quasi-Newton procedure to
approximate the Hessian (the BFGS update), and, in the case of a poor se-
lection of the starting point, the model/trust approach was used to promote
convergence.

To exemplify the procedure of estimating the coefficients of the operational
finite element model, the transient bound water diffusion in wood was ana-
lyzed, and the coefficients required to compute the diffusion coefficient were
estimated.

Details of the exemplary instance

Species: Scots pine wood.

Direction: radial.

Number of estimated parameters – 4:

σ – surface emission coefficient, [m/s]

D0 – constant in the empirical model for the diffusion coefficient, [m
2/s]

a – coefficient in the empirical model for the diffusion coefficient, [–]

me – mass at equilibrium, [kg].

The empirical model for the diffusion coefficient is a part of the operational
finite element model of the transient bound water diffusion in wood.
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Optimization method: variable metric

Total number of iterations: 59 excluding iterations for computing gradients.

Initial values of coefficients:

σ = 5 · 10−7 m/s

D0 = 2.2 · 10
−10 m2/s

a = 1.2

me = 20.6 g

Corresponding value of the objective function: 0.0825344.

Estimated values of coefficients:

σ = 5 · 10−7 m/s

D0 = 2.2 · 10
−10 m2/s

a = 1.2

me = 20.59 g

Corresponding value of the objective function: 0.0730615.

Optimization method: trust regions

Total number of iterations: 29 excluding iterations for computing gradients.

Initial values of coefficients:

σ = 5 · 10−7 m/s

D0 = 2.2 · 10
−10 m2/s

a = 1.2

me = 20.6 g

Corresponding value of the objective function: 0.0825344.

Estimated values of coefficients:

σ = 3.53276 · 10−7 m/s

D0 = 1.56868 · 10
−10 m2/s

a = −0.281408

me = 20.4969 g

Corresponding value of the objective function: 0.00157855.
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3. Comparison of algorithms and results

Validation of the empirical equations (Section 2.3) and the operational finite
element model (Section 2.4) filled with the estimated coefficient values was
performed by determining the similarity between experimental data and re-
sults predicted by the model: locally – the local relative error and globally over
the process duration – the global relative error (Weres and Jayas, 1994; Olek
et al., 2003). The global relative error was recognized as the main measure
of the coefficient estimation quality by a given optimization algorithm. Other
measures were also used to assess the algorithm performance, and the most
important were: the minimum value of the objective function and the number
of iterations to find the minimum of this function, excluding those for gradient
computation.

In the case of the 3-parameter empirical equation for the water transport in
corn kernels, the variations in the objective function values with the consecu-
tive iterations were exemplified in Figs. 2-4, respectively for the algorithms of
simulated annealing, tabu search and genetic algorithm. Additional informa-
tion characterizing the optimization procedures was given in Table 1. Short
running time of the algorithm corresponded only to proceeding the empiri-
cal equation, and not the mathematical structural model of the investigated
process.

Table 1. Comparison of optimization algorithms applied to estimate coeffi-
cients of 3-parameter empirical equation for water transport in corn kernels

Relative Min. value of Global Algorithm No. of
Optimization humidity the objective relative running iterations
algorithm of air function error time to find the

[%] [–] [%] [ms] minimum

Simulated
annealing

30 0.039478 3.01 160 389
40 0.039316 3.01 145 727
50 0.034515 2.66 184 29

30 0.037516 2.94 598 324
Tabu search 40 0.036630 2.91 596 358

50 0.028985 2.43 597 525

Genetic
algorithm

30 0.031588 2.70 2591 871
40 0.036467 2.90 2598 400
50 0.027871 2.39 2588 812
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Fig. 2. Objective function vs. iteration number – simulated annealing, 3-parameter
empirical equation for water transport in corn kernels, relative humidity 50%

Fig. 3. Objective function vs. iteration number – tabu search, 3-parameter empirical
equation for water transport in corn kernels, relative humidity 50%
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Fig. 4. Objective function vs. iteration number – genetic algorithm, 3-parameter
empirical equation for water transport in corn kernels, relative humidity 50%

For the coefficient estimation performed for the operational finite element
model corresponding to the transient bound water diffusion in wood, the exem-
plary values of the objective function varying with iterations were shown in
Fig. 5 (the variable metric algorithm) and Fig. 6 (the trust region algorithm).
Quality of the coefficient estimation was presented in Fig. 7. Satisfactory re-
sults for the trust region algorithm (the global relative error e2 = 0.63%) were
achieved for all the investigated instances, and the variable metric approach
was unsuccessful for several of them.

4. Conclusions

The analysis of optimization algorithms implemented to estimate coefficient
values of the operational finite element model of heat and mass transport in
biomaterials, with the use of the original inverse FEA software developed by
the authors, allowed us to compare the algorithms and formulate the following
conclusions:

1. All the analyzed optimization algorithms integrated with the inverse
FEA software were capable of solving the inverse finite element problems
investigated.
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Fig. 5. Objective function vs. iteration number – estimation of four coefficients by
the variable metric algorithm, the operational finite element model corresponds to

the transient bound water diffusion in Scots pine wood

Fig. 6. Objective function vs. iteration number – estimation of four coefficients by
the trust region algorithm, the operational finite element model corresponds to the

transient bound water diffusion in Scots pine wood
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Fig. 7. Similarity between experimental data and results predicted by the
operational finite element model with four coefficients estimated by the variable
metric (VM) and trust region (TR) algorithms. The relative errors are denoted
by e2 (global) and e1 (local). The model corresponds to the transient bound water

diffusion in Scots pine wood

2. At the stage of optimization in constructing empirical equations, the
most precise results were obtained by the genetic algorithm. However,
due to computational complexity of this approach, the algorithm run-
ning time for the coefficient estimation was definitely the highest. The
simulated annealing algorithm was the fastest in terms of the run-time
performance, but due to the estimated uncertainty of results it was unsa-
tisfactory. The tabu search algorithm was satisfactory both in the coef-
ficient estimation running time and in precision of the results.

3. At the stage of optimization for estimating the coefficients of the ope-
rational finite element model, the best performance for the large scale
computation was achieved by the trust region algorithm, and the estima-
ted uncertainty of results in all the instances investigated was the most
satisfactory for this algorithm.
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Porównanie algorytmów optymalizacji w analizie odwrotnej transportu

ciepła i masy w biomateriałach

Streszczenie

Znaczenie analizy odwrotnej w oszacowywaniuwartości współczynników transpor-
tu ciepła i wody w złożonych materiałach pochodzenia biologicznego stale wzrasta.
Dzięki zastosowaniu tej metody można zwiększyć dokładność prognozowania procesów
transportowych w porównaniu do symulacji opartych na współczynnikach, których
wartości są określane wyłącznie metodą eksperymentów naturalnych. Uzyskiwana po-
prawa dokładności jest niezmiernie przydatna w analizie, projektowaniu i zarządzaniu
większością procesów technologicznych w przemyśle rolno-spożywczym i drzewnym.
W ostatnich latach zostało opracowanych wiele algorytmów optymalizacji do rozwią-
zywania zagadnień odwrotnych. W niniejszej pracy poddano analizie i porównano
działanie następujących algorytmów: symulowane wyżarzanie, poszukiwanie z tabu,
algorytm genetyczny, algorytm zmiennej metryki oraz algorytm obszarów zaufania.
Wyniki wskazały, że chociaż wszystkie algorytmy potrafiły oszacować wartości współ-
czynników, pojawiły się różnice w ich działaniu i ze względu na dużą złożoność ob-
liczeniową rozpatrywanego problemu tylko procedura obszarów zaufania przynosiła
satysfakcjonujące wyniki.
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