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The static and dynamic problem of interaction of global buckling modes
in compressed columns with complex open and closed cross-sections was
considered in the paper. The columns made of laminate composites were
assumed to be simply supported at both loaded ends. A plate model
was adopted in the analysis. The equations of motion of individual pla-
tes (Schokker et al., 1996; Sridharan and Benito, 1984) were obtained
from Hamilton’s Principle, taking into account all components of iner-
tia forces (Teter and Kołakowski, 2005). Within the frame of the first
order nonlinear approximation, the dynamic problem of modal interac-
tive buckling was solved by the transition matrix using a perturbation
method. Distortions of cross-sections and the shear-lag phenomenon we-
re taken into consideration in the problem solution. A modification of
the quasi-bifurcation dynamic Kleiber-Kotula-Saran criterion (Kleiber et
al., 1987) was proposed. A comparison of the proposed modification to
the Budiansky-Hutchinson criterion (Budiansky and Hutchinson, 1966;
Hutchinson and Budiansky, 1966) was presented for a rectangular pulse
loading.

Key words: lamina, composite, buckling, pulse loading, interaction

1. Introduction

Thin-walled structures, composed of plate elements, have many different buc-
kling modes that vary in quantitative (e.g. the number of halfwaves) and quali-
tative (e.g. global and local buckling) aspects. In these cases, the postcritical
behaviour cannot be described any more by a single generalized displacement.
When the postcritical behaviour of each individual mode is stable, their inte-
raction can lead to unstable behaviour, and thus to an increase in the imper-
fection sensitivity (Byskov, 1987-8; Camotion and Prola, 1996; Kołakowski,
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1993; Kołakowski and Kowal-Michalska, 1999; Kołakowski and Teter, 2000;
Kołakowski, 1993; Kołakowski and Kowal-Michalska, 1999; Kołakowski and
Teter, 2000; Teter and Kołakowski, 2005). A nonlinear stability theory should
describe all modes of global, local, distortional and interactive buckling, taking
into consideration the structure imperfection.

The theory of interactive buckling of thin-walled structures subjected to
static and dynamic loading has been already widely developed for over forty
years. Although the problem of static coupled buckling can be treated as well
recognized, the analysis of dynamic interactive buckling is limited in practice
to columns (adopting their beam model), single plates and shells. In the world
literature, a substantial lack of the nonlinear analysis of dynamic stability of
thin-walled structures with complex cross-sections can be felt.

In this study, an analysis of static and dynamic stability of composite struc-
tures with complex cross-sections is presented. Special attention is focused on
coupled buckling of various global buckling modes.

1.1. Static interactive buckling

A plate model of the column has been adopted in the study to describe
global buckling, which leads to lowering the theoretical value of the limit lo-
ad. In this case, buckling characteristics for the independent global mode are
nonsymmetrical, and thus the equilibrium is unsteady (Kołakowski, 1993; Ko-
łakowski and Kowal-Michalska, 1999; Kołakowski and Teter, 2000; Teter and
Kołakowski, 2005). When components of the displacement state for the first
order approximation are taken in account, it can be followed by a decrease in
values of global loads. In the case, the critical values corresponding to global
buckling modes are significantly lower than local modes, then their interac-
tion can be considered within the first nonlinear approximation (Kołakowski,
1993; Kołakowski and Kowal-Michalska, 1999; Kołakowski and Teter, 2000;
Teter and Kołakowski, 2005). It is possible as the post-buckling coefficient for
uncoupled buckling is equal to zero for the second order global mode in the
Euler column model, and in the case of an exact solution it is very often of lit-
tle significance. The theoretical static load-carrying capacity, obtained within
the frame of the asymptotic theory of the nonlinear first order approximation,
is always lower than the minimum value of critical load for the linear problem.
The solution method assumed in this study allows for analysing interactions
of all buckling modes.

Dubina (1996) paid special attention to the interaction of global modes of
buckling (flexural, flexural-torsional, lateral) with a distortional and/or loca-
lized (Byskov, 1987-8) mode.
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1.2. Dynamic interactive buckling

The dynamic pulse load of thin-walled structures can be divided into three
categories, namely: impact with accompanying perturbation propagation (a
phenomenon that occurs with the sound wave propagation speed in the struc-
ture), dynamic load of a mean amplitude and a pulse duration comparable to
the fundamental flexural vibration period, and quasi-static load of a low am-
plitude and a load pulse duration approximately twice as long as the period of
fundamental natural vibrations. As for dynamic load, effects of damping can
be neglected in practice. This study is devoted to the stability problem of a
rectangular dynamic pulse load.

Dynamic buckling of a column can be treated as reinforcement of imperfec-
tions, initial displacements or stresses in the column through dynamic loading
in such a manner that the level of the dynamic response becomes very high.
When the load is low, the column vibrates around the static equilibrium po-
sition. On the other hand, when the load is sufficiently high, then the column
can vibrate very strongly or can move divergently, which is caused by dynamic
buckling.

In the literature on this problem, various criteria concerning dynamic sta-
bility have been adopted. One of the simplest is the criterion suggested by
Volmir (1972). The most widely used is the Budiansky-Hutchinson criterion
(Budiansky and Hutchinson, 1966; Hutchinson and Budiansky, 1966), in which
it is assumed that the loss of dynamic stability occurs when the velocity
with which displacements grow is the highest for a certain force amplitude.
Other criteria were discussed in papers Ari-Gur and Simonetta (1997), Cui
et al., 2000, 2001, 2002; Gantes et al., 2001; Hao et al., 2000; Huyan and Si-
mitses, 1997; Kleiber et al., 1987; Kowal-Michalska et al., 2004; Papazoglou
and Tsouvalis (1995), Petry and Fahlbusch, 2000; Schokker et al., 1996; Sri-
dharan and Benito, 1984; Weller et al., 1989; Zhang and Taheri, 2002), for
instance.

A diversity of dynamic stability loss criteria follows from a lack of a gene-
rally assumed, accurate, explicit mathematical definition. One of a few excep-
tions, known to the author [e.g. Budiansky and Hutchinson, 1966; Gantes et
al., 2001; Hutchinson and Budiansky, 1966), is the quasi-bifurcation criterion
of dynamic buckling for a step-like load (Heaviside’s function) and that one
concerning the critical pulse duration (Kleiber-Kotula-Saran criterion (Kleiber
et al., 1987)). This criterion is based on the condition that the tangent matrix
of the system stiffness is zero, that is to say, all the Jacobian matrices are
equal to zero. Eigenvalues of this matrix have to be computed.
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In this study, the following modification of the Kleiber-Kotula-Saran crite-
rion (Kleiber et al., 1987) as the criterion of dynamic stability loss for a pulse
loading of finite duration has been proposed:

Dynamic stability loss occurs when during the time (0, t0) of the
pulse load and in its vicinity 0 ¬ t ¬ 1.3t0, the minimum eigenva-
lue of the tangent stiffness matrix (Jacobian matrix) is lower than,
for example, ”− 1” (i.e. ρmin < −1).

A dynamic response to the rectangular pulse load with the duration time
corresponding to the fundamental period of flexural and flexural-distortional
free vibrations of the unloaded column (i.e. t0 = T1) and for t0 = T1/2 has
been analysed.

2. Formulation of the problem

Prismatic thin-walled columns with open and closed cross-sections, subjected
to axial compression, have been considered. Cross-sections of the elements
under analysis are built of rectangular plates interconnected along longitudinal
edges and simply supported at both ends. All component plates are made of
the same laminate composite subject to Hooke’s law.

The attention has been drawn to the necessity of considering the full strain
tensor and all the components of inertial forces in order to carry out a proper
dynamic analysis in the whole range of length of the structures.

For thin-walled structures with initial deflections, Lagrange’s equations of
motion for the case of interaction of N eigenmodes can be written as (Schokker
et al., 1996; Sridharan and Benito, 1984; Teter and Kołakowski, 2005)

1

ω2r
ζr,tt +

(

1−
σ

σr

)

ζr + aijrζiζj − ζ
∗

r

σ

σr
+ . . . = 0 (2.1)

for r = 1, . . . , N , where ζr is the dimensionless amplitude of the r-th buckling
mode (maximum deflection referred to the thickness of the first plate), σr, ωr,
ζ∗r – critical stress, circular frequency of free vibrations and dimensionless
amplitude of the initial deflection corresponding to the r-th buckling mode,
respectively.

The expressions for aijr are to be found in Byskov (1987-8), Byskov and
Hutchinson (1977), Kołakowski and Kowal-Michalska (1999), Teter and Koła-
kowski (2005). In equations of motion (2.1), inertia forces of the pre-buckling
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state and second order approximations have been neglected (Schokker et al.,
1996; Sridharan and Benito, 1984; Teter and Kołakowski, 2005). The initial
conditions have been assumed in the following form

ζr(t = 0) = 0 ζr,t(t = 0) = 0 (2.2)

The static problem of interactive buckling of thin-walled multilayer co-
lumns (i.e. for ζr,tt = 0 in (2.1)) has been solved with the method presented
in Kołakowski and Kowal-Michalska (1999), Teter and Kołakowski (2005), the
frequencies of free vibrations have been determined analogously as in Teter
and Kołakowski (2005), whereas the problem of interactive dynamic buckling
(2.1) have been solved by means of the Runge-Kutta numerical method mo-
dified by Hairer and Wanner (with differentiation formulas of a variable order
and automatic time stepping).

3. Analysis of the calculation results

3.1. Open section columns

3.1.1. Static buckling

A detailed analysis of the calculations was conducted for compressed co-
lumns with the following dimensions of open cross-sections (Fig. 1)

b1 = 100mm b2 = 50mm b3 = 15mm

bS = 15mm h1 = h2 = h3 = 12hlay = 1.5mm

Fig. 1. Open cross-sections of columns with a central intermediate stiffener:
(a) outer omega, (b) inner omega

Each plate is made of a twelve-layer composite with the symmetric ply
alignment [45/ − 45/0/0/0/0]S . Each layer of the thickness hlay = 0.125mm
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is characterized by the following mechanical properties (Teter and Kołakowski,
2005)

E1 = 140GPa E2 = 10.3GPa G = 5.15GPa

ν12 = 0.29 ρ = 1600 kg/m3

The geometrical dimensions of intermediate stiffeners and the ply align-
ment were selected in such a way that the critical values of local loads were
considerably higher than the critical values of global loads within the variabi-
lity range of the column length ℓ under consideration.
For global buckling modes, the imposing of the symmetry conditions of the

buckling mode corresponds to flexural or flexural-distortional buckling, where-
as the antisymmetry conditions entail flexural-torsional or flexural-torsional-
distortional buckling (Camotion and Prola, 1996; Dubina, 1996; Kołakowski
and Kowal-Michalska, 1999). Local buckling modes correspond to short co-
lumns.
The interactive buckling of the columns with open cross-sections shown

in Fig. 1 was analysed within the first order approximation for global buc-
kling modes and five various lengths ℓ = 2500, 2000, 1500 and 1000mm.
The interaction of buckling modes can occur among several buckling modes
symmetric with respect to the symmetry axis of the cross-section and also be-
tween a symmetric mode and pairs of antisymmetric modes (Byskov, 1987-8;
Kołakowski, 1993; Kołakowski and Kowal-Michalska, 1999; Kołakowski and
Teter, 2000; Teter and Kołakowski, 2005). In order to consider a possible ef-
fect of the localized buckling (Byskov, 1987-8; Dubina, 1996; Kołakowski and
Kowal-Michalska, 1999) for the assumed length ℓ, a global flexural-distortional
mode (m = 1), a flexural-torsional-distortional mode (m = 1) and higher
global modes: flexural-distortional and flexural-torsional-distortional modes,
respectively, with the halfwave number m = 3, were analysed. The following
index symbols were introduced: 1 – flexural-distortional mode for m = 1;
2 – flexural-torsional-distortional mode for m = 1; 3 – flexural-distortional
mode for m = 3; 4 – flexural-torsional-distortional mode for m = 3.
Buckling modes of the open section columns (Fig. 1) for two lengths

ℓ = 2500 and 1000mm are shown in Figs. 2 and 3, respectively. The adop-
tion of the plate model allowed us to account for all buckling modes for co-
lumns of different shapes and flexural rigidities. This can help in their rational
designing.
Detailed results of the interactive buckling analysis are presented in

Table 1 for the columns with the cross-section shown in Fig. 1a and
Fig. 1b. The following imperfections were assumed: ζ∗1 = ζ

∗

2 = |ℓ/(1000h)|,
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Fig. 2. Buckling modes of open section columns (Fig. 1a) for two lengths:
(a) ℓ = 2500mm, (b) ℓ = 1000mm

Fig. 3. Buckling modes of open section columns (Fig. 1b) for two lengths:
(a) ℓ = 2500mm, (b) ℓ = 1000mm

ζ∗3 = ζ
∗

4 = |ℓ/(2000h)|. In each case, the signs of the imperfection ζ
∗

i (where
i = 1, . . . , 4) were selected in the most unfavourable way, that is to say, as to
obtain the lowest theoretical limit load-carrying capability σS for the given
level of imperfection when the interaction of buckling modes is accounted for.
The modes under consideration can be identified according to the adopted
index symbols. It was demonstrated in each case under analysis that the most
dangerous interaction of buckling modes occurred between global modes for
m = 1 and m = 3. A decrease in the limit load capacity σS/σmin (where
σmin = min(σi); i = 1, . . . , 4) did not exceed 30% practically (see Table 1).

Owing to the above-mentioned reasons, the further analysis was limited
to the interaction of four global buckling modes. The signs of imperfections,
defined in the static analysis, were next employed in the dynamic stability
analysis.
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Table 1. Critical loads and theoretical limit load-carrying capacity for the
columns shown in Fig. 1

ℓ
σ1 σ2 σ3 σ1 σS/σmin(m = 1) (m = 1) (m = 3) (m = 3)

[mm] [MPa] [MPa] [MPa] [MPa] [–]

Fig. 1a (outer omega)

2500 52.2 29.3 131.9 119.0 0.699

2000 79.5 42.1 127.0 112.8 0.708

1500 129.0 66.9 138.7 136.7 0.719

1000 143.9 109.2 208.1 210.2 0.785

Fig. 1b (inner omega)

2500 50.9 42.2 106.3 189.1 0.768

2000 74.5 62.5 112.2 175.7 0.701

1500 104.9 103.5 135.7 174.2 0.685

1000 107.7 180.4 219.3 242.1 0.765

3.1.2. Linear dynamic analysis

Values of the natural frequencies of vibrations corresponding to the global
buckling modes under analysis for different column lengths ℓ are presented in
Table 2. The same index symbols were adopted as for the interactive static
buckling. Vibration frequencies were determined, taking into account all com-
ponents of inertia forces (Teter and Kołakowski, 2005) (in-plane ρu,tt, ρv,tt
and out-of-plane ρw,tt).

Table 2. Natural frequency of the columns shown in Fig. 1

ℓ
Fig. 1a (outer omega) Fig. 1b (inner omega)
ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

[mm] [1/s] [1/s] [1/s] [1/s] [1/s] [1/s] [1/s] [1/s]

2500 227 170 1082 1027 224 204 971 1295

2000 350 254 1327 1305 339 310 1247 1561

1500 594 428 1849 1835 536 532 1828 2072

1000 942 820 3396 3412 814 1054 3485 3662

3.1.3. Dynamic stability

Further on, an analysis of dynamic interactive buckling of the columns
under consideration was conducted. Identically as in the static analysis, the
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interaction of the same global buckling modes was considered. A detailed ana-
lysis was conducted for a rectangular load pulse

σ(t) =

{

σD for 0 ¬ t ¬ t0

0 for t0 < t
(3.1)

and two cases of its duration. The first case corresponds to the duration equal
to the fundamental period of flexural free vibrations t0 = T1 = 2π/ω1, whereas
the second one refers to the duration equal to t0 = T1/2.
In the dynamic stability analysis, the level of imperfections was assumed

to be three times lower than that one for the static load, i.e. ζ∗1 = ζ
∗

2 =
|ℓ/(3000h)|, ζ∗3 = ζ

∗

4 = |ℓ/(6000h)|. The pulse duration T1 assumed in the
analysis corresponds to the quasi-static load of columns for higher global buc-
kling modes (i.e. for m = 3). The time of tracking eigenvalues of the tangent
stiffness matrix (Jacobian matrix) was assumed to be 1.3t0.

Table 3. Results of dynamic calculations for the columns shown in Fig. 1

ℓ
[mm]

Fig. 1a (outer omega) Fig. 1b (inner omega)
t0 = T1 t0 = T1/2 t0 = T1 t0 = T1/2

σBH
D

σmin

σK
D

σmin

σBH
D

σmin

σK
D

σmin

σBH
D

σmin

σK
D

σmin

σBH
D

σmin

σK
D

σmin

2500 1.69 1.51 2.82 1.97 1.27 1.22 2.14 1.88

2000 1.59 1.51 2.50 2.06 1.19 1.18 1.65 1.59

1500 1.42 1.37 1.93 1.70 1.06 1.04 1.35 1.30

1000 1.52 1.43 2.46 1.80 1.48 1.38 2.00 1.84

In Table 3, values of the dynamic load factors σBHD /σmin and σ
K
D /σmin

for two rectangular pulse load durations and for various column lengths ℓ,
for two column cross-sections under analysis (Fig. 1), respectively, are given.
The following notations are applied in the tables: σBHD denotes the value of
dynamic stress determined from the Budiansky-Hutchinson criterion, whereas
σKD refers to the modification of the Kleiber-Kotula-Saran criterion (Kleiber
et al., 1987) for ρmin < −1, postulated in this study. The values of σ

BH
D

presented in Table 3 correspond with some accuracy to the maximum valu-
es of deflections ζrmax within the applicability of the assumed theory (i.e.
the total maximum deflection of the column is at least fifty times as high
as the cross-section wall thickness) (Byskov, 1987-8; Byskov and Hutchinson,
1977; Kołakowski, 1993; Kołakowski and Kowal-Michalska, 1999; Kołakowski
and Teter, 2000; Kowal-Michalska et al., 2004; Teter and Kołakowski, 2003,
2005), and not to asymptotic values (Budinsky and Kutchinson, 1966). The
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main limitation that results from the adopted theory is the assumption of
a linear dependence between curvatures and second order derivatives of the
displacement w, i.e. κx = −w,xx, κy = −w,yy, κxy = −w,xy (cf. Opoka and
Pietraszkiewicz, 2004; Pietraszkiewicz, 1989).

The values obtained on the basis of the postulated criterion modification
are lower than the values obtained from the Budiansky-Hutchinson criterion,
and these differences grow for the shorter pulse duration t0 = T1/2. Therefore,
results for the shorter pulse duration, that is for t0 = T1/2, are shown in Ta-
ble 4, but for two minimum values of eigenvalues of the tangent stiffness matrix
(Jacobian matrix) are equal to: ρmin < −1 and ρmin < −2, respectively. The
second value was assumed arbitrarily.

Table 4. Results of dynamic calculations for t0 = T1/2 and for the columns
shown in Fig. 1

ℓ
[mm]

Fig. 1a (outer omega) Fig. 1b (inner omega)

σKD /σmin
ρmin < −1 ρmin < −2 ρmin < −1 ρmin < −2

2500 1.97 2.64 1.88 2.18

2000 2.06 2.41 1.59 1.69

1500 1.70 1.88 1.30 1.31

1000 1.80 2.38 1.84 1.99

For the cases corresponding to the lowest eigenvalue of the Jacobian matrix,
i.e. for ρmin < −2, the differences between the Budiansky-Hutchinson criterion
and the postulated modification of the Kleiber-Kotula-Saran criterion (Kleiber
et al., 1987) become smaller. While comparing the results for the two cases of
the pulse duration, it seems that a further thorough analysis of the proposed
Kleiber-Kotula-Saran criterion modification so that it will assume |ρmin|t0 =
const is advisable.

3.2. Closed column

3.2.1. Static buckling

Subsequently, a compressed column of the following geometrical dimen-
sions (Fig. 4): b1 = 100mm, b2 = b3 = 50mm, h1 = h2 = 12hlay = 1.5mm,
bS = 15mm, h3 = h4 = 24hlay = 3.0mm, was analysed.

The plates, whose thickness was h1 = h2 = 1.5mm, were made of the iden-
tical material as the open cross-sections, i.e. a twelve-layer composite with the
symmetric ply alignment [45/ − 45/0/0/0/0]S , whereas plates, whose thick-
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Fig. 4. Closed cross-sections of columns with a central intermediate stiffener

ness is h3 = h4 = 3.0mm, were made of the same material but with a 24-layer
composite with the symmetric ply alignment [452/ − 452/02/02/02/02]S =
[452/− 452/08]S . Each layer of the thickness hlay = 0.125mm was characteri-
zed by the mechanical properties, identical as in the open section columns.
In the case of the closed cross-section, only static interactive buckling of

the column of the length ℓ = 5000mm within the first order approximation
was considered. The following index notations were introduced: 1 – symmetric
buckling mode for m = 1, 2 – antisymmetric mode for m = 1, 3 – symmetric
mode for m = 3. Figure 5 presents three buckling modes for the closed column.

Fig. 5. Buckling modes for the closed column

In Table 5, values of global critical stresses and the dimensionless the-
oretical limit load carrying capacity for the first order of approximation,
on the assumption of the imperfection ζ∗1 = ζ

∗

2 = |ℓ/(1000h1)| = |3.333|,
ζ∗3 = |ℓ/(2000h1)| = |1.666|, have been listed.
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Table 5. Critical stresses, theoretical load-carrying capacity and frequencies
for the closed column

ℓ
σ1 σ2 σ3 σS/σ1 σS/σ2 ω1 ω2 ω3(m = 1) (m = 1) (m = 3)

[mm] [MPa] [MPa] [MPa] [–] [–] [1/s] [1/s] [1/s]

500 55.3 47.2 405 0.953 0.963
116 108 946
(175) (144) (1339)

In the case of the column with a closed cross-section with one axis of
symmetry, the nonlinear coefficients aijk for the symmetric mode of global
buckling with respect to the axis of symmetry are low and considerably lower
than for open cross-sections, whereas they are equal to zero for the antisym-
mteric buckling mode.

The above-mentioned issues have resulted in a slight lowering of the the-
oretical load carrying capacity of the column if compared to the critical load
(by approximately 5%).

3.2.2. Dynamic stability

In Table 5, values of the natural frequencies, taking into account all compo-
nents of inertia forces (Teter and Kołakowski, 2005), are listed as well, whereas
in brackets there are values of the frequencies when the in-plane terms of in-
ertia forces are equal to zero.

In the dynamic stability analysis, the level of imperfections was assumed
to be three times lower that the one for the static load identical as for open
columns.

Table 6 presents values of the dynamic load factors σBHD /σ1 and σ
K
D /σ1

for two rectangular pulse load durations (t0 = T1 and t0 = T1/2), taking into
account the interactions of two global modes of buckling and, respectively,
σBHD /σ2 and σ

K
D/σ2 for the antisymmetric mode of buckling, including only

one global mode of buckling. For t0 = T1 and t0 = T1/2, the critical values of
σKD have been determined for two values: ρmin < −1 and ρmin < −2.

The values obtained on the basis of the proposed criterion modification in
comparison with the values obtained from the Budiansky-Hutchinson criterion
are higher for t0 = T1 and comparable for t0 = T1/2 and ρmin < −2.

The columns with closed cross-sections are less sensitive to interactions
of global modes of buckling (i.e., interactive buckling) than the columns with
open cross-sections.
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Table 6. Results of dynamic calculations for the columns shown in Fig. 2

ℓ
[mm]

t0 = T1

σBHD /σ1
σKD/σ1 σBHD /σ2

σKD /σ2
ρmin < −1 ρmin < −1

5000 1.311 1.872 1.316 2.017

ℓ
[mm]

t0 = T1/2

σBHD /σ1
σKD/σ1 σBHD /σ2

σKD/σ2
ρmin < −1 ρmin < −2 ρmin < −1 ρmin < −2

5000 2.81 2.105 2.996 3.46 2.105 3.026

4. Conclusion

Amodification of the Kleiber-Kotula-Saran criterion of dynamic stability (Kle-
iber et al., 1987) is postulated for the case of the finite duration of a pulse load.
As far as dynamic stability of bar structures is concerned, we obtain lower va-
lues than with the Budiansky-Hutchinson criterion. The criterion modification
proposed allows for an explicit evaluation of the dynamic stability loss.
According to the author’s opinion, a further analysis of the postulated

criterion modification should tackle the following issues: the minimum eige-
nvalue of the tangent stiffness matrix, the tracking time of eigenvalues, and
the dependence between the minimum eigenvalue of the Jacobian matrix and
the pulse duration. Therefore, the postulated criterion modification should be
further analysed and comprehensively and thoroughly discussed.
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Statyczne i dynamiczne interakcyjne wyboczenie słupów kompozytowych

Streszczenie

W pracy rozpatrzono zagadnienie statycznej i dynamicznej interakcji globalnych
postaci wyboczenia ściskanych słupów o złożonych otwartych i zamkniętych prze-
krojach poprzecznych. Założono, że cienkościenne słupy wykonane z kompozytów są
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przegubowo podparte na obu końcach. Przyjęto płytowy model słupa. Równania ru-
chu pojedynczej płyty (Schokker et al., 1996; Sridharan i Benito, 1984) otrzymano
z zasady Hamiltona, uwzględniając wszystkie składowe sił bezwładności (Teter i Koła-
kowski, 2005). Zagadnienie dynamicznego modalnego interakcyjnego wyboczenia roz-
wiązano metodą macierzy przejścia, wykorzystując metodę perturbacyjną w ramach
pierwszego rzędu nieliniowego przybliżenia. W rozwiązaniu uwzględniono dystorsje
przekrojów poprzecznych słupów oraz zjawisko shear lag. Zastosowano zmodyfiko-
wane quasi-bifurkacyjne dynamiczne kryterium Kleibera-Kotuli-Sarana (Kleiber et
al., 1987). Przeprowadzono porównanie wyników otrzymanych w ramach proponowa-
nego zmodyfikowanego kryterium z kryterium Budiansky’ego-Hutchinsona (Budian-
sky i Hutchinson, 1966; Hutchinson i Budiansky, 1966) dla impulsowego obciążenia
o kształcie prostokątnym.
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