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The stability analysis method is developed for distributed dynamic pro-
blems with relaxed ssumptions imposed on solutions. The problem is mo-
tivated by structural vibrations with external time-dependent parame-
tric excitations which are controlled using surfacemounted or embedded
actuators and sensors. The strong form of equations involves irregulari-
ties which lead to computational difficulties for estimation and control
problems. In order to avoid irregular terms resulting from differentiation
of force and moment terms, dynamical equations are written in a weak
form. The weak form of dynamical equations of linear mechanical struc-
tures is obtained using Hamilton’s principle. The study of stability of a
stochastic weak system is based on examining properties of the Liapunov
functional along a weak solution. Solving the problem is not dependent
on assumed boundary conditions.
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1. Introduction

The strong form of plate equations involves irregularities which lead to com-
putational difficulties for estimation and control problems. In order to avoid
irregular terms resulting from differentiation of force and moment terms, dy-
namical equations are written in a weak form. The weak form of systems
is useful for development of identification methods and general computational
methods (Banks et al., 1993). We consider dynamical systems with parametric
excitations, e.g. plates with in-plane time dependent forces. The plate motion
is described by partial differential equations that include time dependent co-
efficients implying parametric vibrations. The response of such systems can
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lead to a new increasing mode of oscillations and the structure dynamically
buckles. The classical Liapunov technique for stability analysis of continuous
elements is based on choosing or generating of a functional which is positive
definite in the class of functions satisfying structure boundary conditions. The
time-derivative of the Liapunov functional has to be negative in some defined
sense. Almost sure stability of the beam equilibrium state in the strong for-
mulation was examined by Kozin (1972). The technique of stability analysis
was extended to plates and shells with in-plane or membrane time-dependent
forces (Tylikowski, 1978). Uniform stochastic stability analysis of laminated
beams and plates described by partial differential equations with time and
space dependent variables was presented in Tylikowski and Hetnarski (1996).
The weak form of a distributed controller in an active system consisting of
electroded piezoelectric sensors/actuators with suitable polarization profiles
(Tylikowski, 2005) is useful for the feedback theoretical developments.

For the purpose of active vibration and noise control, piezoelectric devi-
ces have shown great potential as elements of passive absorbers and active
control systems as they are light-weight, inexpensive, small, and can be bon-
ded to main structures. They can not be modeled as point force excitations,
and partial differential equations should be used to describe the response of
the structures driven by them. Active damping in composite structures with
collocated sensors/actuators were studied by Tylikowski (2005), Tylikowski
and Hetnarski (1996). Electrodes on sensors/actuators are spatially shaped
to reduce the spillover between circumferential modes. In order to avoid irre-
gular terms resulting from the modelling, the action of piezoelements as the
Dirac delta function concentrated on their edges and dynamical equations are
written in a weak form.

2. Weak formulation of plate dynamic equations

Consider an elastic rectangular plate of the length @, width b, thickness h,
mass density p and bending stiffness D subjected to the in-plane time-
dependent forces F'x(t) and Fy (t) acting in the X and Y direction, respecti-
vely. Therefore, the onset of parametric vibrations is possible. In order to avoid
developing modes of plate motion, viscous damping with the proportionality
coefficient « is introduced. The strong form of plate dynamical equation in
the transverse displacement w is given in the following form

phij + awrr + DA*w + Fx (T)U),XX + Fy(T)U),yy =0 (2.1)
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where (X,Y) € {0,a} x {0,b}. Introducing dimensionless variables

X Y ; T
xr= — - — —_ —
=% ks

equation (2.1) becomes

W tt + 2ﬂw,t + Azw + [foz + fx(t)]w,zz + [foy + fy(t)]w,yy =0 (2'2)

where (z,y) € {0,7} x {0,1}, r = a/b is the plate aspect ratio

1 ak
2 _ 1 .0 _ QR
ki = Dphb b 2ph
1 1
fou + alt) = SV Ex(kat) fou + (t) = SV Fy ()

and the solution should be fourth time partially differentiated with respect to
x and y. If the plate is simply supported at the end, the transverse displa-
cement and bending moment equal zero. For clamped edges, the transverse
displacement and the slope equal zero.

Similarly, we can anlyse other combinations of simple boundary conditions,
i.e. a simply supported — clamped plate. We write the action integral of the
plate without damping in the form

ta r 1
Alu] = ] 162 = aa + w3 = 20 = )0, — ) +
noo (2.3)
+ forW?y + foyw?,] da dy dt
where v is Poisson’s ratio, and applying Hamilton’s principle
d
d_sA[w + e 0 0 (2.4)

where ¢ is a real number. Adding the viscous damping and the time-dependent
components of the in-plane forces as external works, the dynamical equation
can be written in the weak form as follows for all @

r 1
//{(w,tt + 20w, )P + (W z0 + VW 4y )P 2o + (Wyy + VW 32) Dy +
00 (2.5)
F2(1 = )Wy P ay — [for + fo(B)]waPa — [foy + fy(t)]w,yds,y} dx dy =0
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where @ is a sufficiently smooth test function satisfying essential boundary
conditions. There is no demand on the existence of higher derivatives than the
second order. As detailed in Banks et al. (1993), usual integration by parts
the terms containing derivatives of the test function @ with respect to the
in-plane variables x and y and the assumption of sufficient smoothness of the
plate displacement leads to strong formulation (2.2).

3. Almost sure stability definition

Dynamical equations (2.2) and (2.5) contain terms explicitely dependent on
time. The time dependency of the axial forces f,(t) and f,(t) parametrically
excites the plate and an increasing form of vibrations can occur. In determi-
nistic parametric vibrations, the stability properties are determined from the
Mathieu equation together with the corresponding Ince-Strutt diagram. If the
excitation is narrow-banded or has one latent periodicity, a series of wedges on
the amplitude-frequency plane can be expected, analogously to the determini-
stic parametric resonance. The task is much more complex when the stochastic
excitation is wide-band and continuous systems with an infinite number of na-
tural fequencies are analysed. Due to the fact that the norms and metrics in
infinite-dimensional spaces are not equivalent, the stability holds for just the
norm or the metric used in the analysis. If the parametric excitation becomes
random, the stability criteria depend on the statistical characteristics of the
excitation and the systems parameters. The present paper examines dynamic
stability due to an action of in-plane forces in the form of stochastic physically
realizable time-dependent processes with given statistical properties. Equation
(2.5) with zero initial conditions posseses the trivial solution

w=w;=0 (3-1)

The trivial solution to Eq. (2.2) or (2.5) is almost sure stable if with probabi-
lity 1 if the measure of distance between the perturbed solution with nonzero
initial conditions and the trivial one tends to zero as time tends to infinity (Ko-
zin, 1972). Usually, the measure of distance is defined by a positive-definite
functional. The trivial solution is called almost sure asymptotically stable if

P{lim u(- 1) =0} =1 (3.2)

where [Jw(-,t)] is a measure of the disturbed solution w with nontrivial initial
conditions from the equilibrium state, and P is the probability measure. The
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almost sure stability is equivalent to the clasical Liapunov stability in linear
systems.

4. Stability analysis in weak formulation

In order to examine the almost sure stability of the plate equilibrium (the
trivial solution), the Liapunov functional is chosen in the form

r 1
1
V=3 // {w%: +20ww,s + 26%0° + (w,zp + w,yy)* +
00 (4.1)
+2(1 — u)(w?xy — w,mmw,yy) - foa:w?z - foyw?y} dx dy

The functional is positive-definite if the constant components of the in-
plane forces f,; and f,, fullfil the static buckling condition, i.e. are sufficiently
small. Therefore, the measure of disturbed solutions is chosen as a square root
of the functional V'

lw(-t)|| = vV (4.2)
As trajectories of the solution to equations (2.5) are physically realizable,

classical calculus is applied to find the time-derivative of functional (4.1). Its
time-derivative is given by

r 1
av
o // {(w,t + Bw)w e + fw?; + 26%ww, +
00

FW 22 W gt + Wy W gyt + 2(1 — V)W 2y W gyt + (4.3)
FV(W W gyt + Wy W zat) — forl zW zt — fvyw,yw,yt} dz dy

Substituting fw and w; as the test functions in Eq.(2.5), we have two
identities, respectively

r 1
// {(w,tt + 2ﬂw,t)ﬂw + (w,:m: + Vw,yy)ﬁw,zz + (w,yy + Vw,zz)ﬂw,yy +
00

121~ 0)Buhy — (fo + Folt) B0, — (foy + Fy(0))Bu?)] dody =0

r 1

// {(w,tt + 2w )Wt + (W o + VW4 )W gt + (W gy + VW 22)W gyt +
00

(4.4)

+2(1 - V)w,myw,a:yt - (fox + fz(t))w,a:w,zt - (foy + fy(t))w,yw,yt} drdy =0
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Subtracting identities (4.4), from the time-derivative of functional (4.3),
we obtain the following form

%

o= /{—ﬂw?t — ﬁ[w?m + w?yy + 2w g Wy + 2(1 — Z/)(U}?my — W W yy)] +
0 (4.5)

+ﬂf0xw,2x + ﬂfoyw?y + fz(t)(w,zt + ﬂw,x)w,z + fy(t)(w,yt + ﬁw,y)w,y} dx dy

After some algebra, we rewrite the time-derivative of functional as

av
—r =2V 2 (4.6)

where U is an auxiliary functional given by

1
U= %/[252ww7t +283w? +
’ (4.7)
Lo (8 (Wt + Bop)w e + Fy(8) (W + By )w, | dedy
Now we attempt to construct a bound
AV >U (4.8)

where the stochastic function A is to be determined. In an explicite notation,
the function A has to satisfy the following equation for arbitrary functions w
and w satisfying suitable boundary conditions

r 1
//{)\[w% + 2Bww + 20%0% + (W gy + W) +
00

+2(1 - V)(w?zy — W W yy) — fozw?z - nyw?y] + (4.9)

—[2ﬂ3w2 + 2ﬂ2ww7t + fo(t) (W zt + Bw g )w 5 + fy(t)(wye + ﬂw@)w,y]} dz> 0

It should be noticed that the way to obtain estimation (4.8) is purely alge-
braic contrary to systems described by strong equations, where the derivation
of stability conditions is based on integrations by parts and manipulations
with higher order partial derivatives. Usually, the Liapunov stability analysis
of plates is performed for all four simply supported edges (Tylikowski, 1978).
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In order to extend the field of possible applications, let us assume the fol-
lowing combinations of boundary conditions: a) c-c-c-¢, b) c-c-c-s, ¢) c-c-s-c,
d) c-c-s-s, e) s-c-s-s, f) s-s-s-s, shown in Fig. 1, where ”s” denotes a simply
supported edge, and ”c¢” denotes a clamped edge. Contrary to the Levy me-
thod of determination of displacements of a rectangular plate with two simply
supported opposite edges, the proposed technique of determining the stability
domains can be applied to plates with arbitrary combinations of simply sup-
ported and clamped edges. In the first combinations of boundary conditions
for plates with all four edges simply supported, we have

o0

w(z,y,t) = Z Wi (t) sin

m,n=1

mmx

sin(nmy) (4.10)

If the plate with mixed simply supported-clamped edges is considered, the
plate displacement is written in the following form
> x

W@,y t) = D W () Xom () V() (4.11)

m,n=1 r

where X,, and Y, are beam functions depending on boundary conditions for
x=0,r and y =0, 1, respectively. For example, if all four edges of plate are
clamped, the beam functions in Eq. (4.11) have the following form

X = (sin Pz _ sinh @) (cos B, — cosh f3,,) +
r r

—(sin 3, — sinh B,) (cos Bz o o )

" " (4.12)
Y,, = (siny,y — sinhy,y)(cos ~y, — cosh,,) +
—(siny, — sinh,)(cos v,y — cosh v,y)
Integrating, we have the following equality
r r 1 1
[ Xt = [ X2 dr [ V2 dy = [ V2, dy (413)
0 0 0 0

Using the orthogonality condition, we can also write

r ﬂQ r 1 9 1
/Xfmdx:—m/)(fndx /ngdy:ﬁfyfdy (4.14)
0 ’ ’imo 0 ’ Xm
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where the first few constants x,, and X, used in equalities (4.13) and (4.14)
are given in Table 1 for the most commonly used boundary conditions: a
clamped-clamped beam (c-c), and a clamped-simply supported beam (c-s).
The constants tend to 1 as n — oo. In order to unify the notations in the
case of the simply supported beam, we assume (3, = nm and k, = 1. Using
properties of the functions X,, and Y}, we have

T

r 1 0o 1
// W ge(x,y, t)w (2, y,t) do = Z wmn,t(t)wmn(t)/an’m dnv/Yn2 dy
00 m,n=1 0

0

(4.15)
Substituting Eq. (4.14)9, yields
00 r 1
Z wmn,t(t)wmn(t)/Xr%z,z dm/y;z2 dy =
m,n=1 0 0
(4.16)
= Z — Wt (E) Wenn (E /X2 dm/Y2 dy
m,n=1 Rm
Similarly, we have
r 1
// W (T, Y, D)Wy (z,y,t) dedy =
0 (4.17)

Z Zwmn Jwij (¢ /XmmX dm/YYyy

m,n=114,j=1

Integrating by parts the terms in the right-hand-side of Eq. (4.17) for
simply supported or clamped edges, we have

r
/Xm,a:a;Xi dx =

/Xm 2 Xigp do = 5ml L, dx (4.18)

m,T

where §,,; denotes the Kronecker delta function

1 1

1
/Ynijyy dy = Yn,ij‘O - /Yn,yyj,y dx = —0n, Yr?,y dy (4.19)
0 0 0
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Substituting Eqgs. (4.18) and (4.19) into Eq. (4.17), yields

//wm Y, )w gy (2, y,t dxdy—// y dz dy (4.20)

Table 1. Numbers &,

lm,n| 1 [ 2 3 4 5 | 6 |7 ]
c-s | 1.3396 | 1.1649 | 1.1086 | 1.0809 | 1.0645 | 0.90205 | 1.0537
c-c | 1.8185 | 1.3392 | 1.2224 | 1.1648 | 1.1309 | 1.10857 | 1.09276

Combining Egs. (4.9) and (4.20) and substituting expansion (4.11), we
have

e}

m,n=1
1 r
0 0 0

— [(Afox + ﬁfw(t))wzrm + fo ()W, t Winn) /X72n,a: dx/Yn2 dy +
0 0

(4. 21)

T 1
= (Mo + BE OV + 1y (O] [ X2 do [ V2, dy} > 0
0 0

Using Eqs. (4.14)-(4.17), yields
00 2 A2
>~ (M + (26000~ B) = Fal0 2~ £ Y +

n=1

2
O o 1) — (Ao + BL0) 22+ (022)

Km Xn Rm

+ 2% - B) + A(ﬂm +olm

— (A foy + Bfy(1) w,, / X2 dx / Y2 dy >

Therefore, the variational inequality is reduced to an infinite system of
quadratic inequalities

)\wgnn’t + 2450 (A, ) Wi, t Wi + B (A, t)w?nn >0 (4.23)
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where
2 72
Ann(0t) = B = 8) = L0 ~ £, (0
B Vo

Bun(\,t) = 26°(A = 8) + Ag (81, + 272 4 5lg) +

Km Xn
2

ﬂ2

~Mow + BE(E)]2 — [Ny + B, (0] 22

Rm Xn

The unknown function A is determined from the zero determinant condi-
tion for all m and n of the form

A Apn (A 1)

‘Amn(Aat) B0, 1) = (4.24)

After some algebraic manipulations, (4.24) yields

A= max A (4.25)

m,n=1,2,...

where

(82 + folt) 2 + £ (t) -
2 2
VBh+ 28R ot o P f, Ty 2

Combining inequality (4.6) and (4.8), yields an upper estimation of the
time-derivative of the functional

% = 26V 42U < ~2(8 - )V (4.27)

(4.26)

)\mn -

Integrating with respect to time, yields the following upper estimation of V'

¢
1
Vit) < V(O)exp[-2(5 - 1 / A(r) dr )t (4.28)
0
Therefore
tlim |lw(-,t)|| =0 (4.29)
if the exponent in (4.28) is negative
.
B> lim — [ X(7)dr (4.30)

t—o00
0
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Additionally, assuming the ergodicity of in-plane forces, we substitute the
time-averaging in (4.30) by the average over a probabilistic space
¢

lim % A7) dr = E{\} (4.31)

t—o00
0

Finally, the trivial solution to Eq. (2.5) is almost surely stable with respect
to the measure of distance defined as the square root of functional (4.1), if the
transcendental inequality is fulfilled

> B{\} (4.32)

Therefore, stability domains for the clamped-clamped plate and the
clamped-simply supported plate are defined as follows

l |82 + fult) g + fy(t) -

0> E{ max 5 ] } (4.33)
VB 28Rt — for i — fo 3+ 2

m,n=1,2,...

We mention that Eq. (4.33) is a generalization of the similar form as the
analytical formula defining the stability region obtained by Kozin (1972) for
the simply supported beam in the strong formulation. It should be emphasized
that formulae (4.32) and (4.33) are obtained without dealing with the third and
fourth order spatial derivatives. If the density functions for the time-dependent
componenets of in-plane forces are known, numerical integration can be used
to evaluate Eqs. (4.32) and (4.33) for different values of parameters such as
for example the variance o2 and JZ. As the damping coefficient [ is involved
in the right hand side of the equations they have to be solved in an iterative
way.

The structure of stability conditions for all boundary conditions is simi-
lar. They contain different values of constants admitting Eqs. (4.13)-(4.14);.
The stability domains are examined for quadratic plates uniaxially loaded
foy = fy(t) = 0 with each combination of simple and clamped supports, cf.
Fig. 1. The dependence of stability regions on different boundary conditions
is shown in Fig.2 for f,, = 0 on the plane 3, o2 for the Gaussian in-plane
force. The influence of boundary conditions on the shape and size of stability
domains is rather weak. The effect is more severe (Fig.3) for fo; = 39 cor-
responding to the critical loading of the quadratic plate with all four edges
simply supported, Fig. 1f. The influence of the constant component f,, = 64
corresponding to the critical loading (Fig. 1d) and f,; = 83 corresponding to
the critical loading (Fig. 1b) on stability domains is shown in Fig. 4 and Fig. 5,
respectively.
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Fig. 2. Stability domains of a plate subjected to the uniaxial in-plane Gaussian
parametric excitation for different boundary conditions, f,, =0
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Fig. 3. Stability domains of a plate subjected to the uniaxial in-plane harmonic
parametric excitation for different boundary conditions, f,, = 39

Although, the stability regions are similar qualitatively for different boun-
dary conditions, the diferences of critical values of o2 (the force variance) are
significant for compressive forces close to critical loadings. Therefore, a more
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Fig. 4. Stability domains of a plate subjected to the uniaxial in-plane harmonic
parametric excitation for different boundary conditions, f,, = 64
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Fig. 5. Stability domains of a plate subjected to the uniaxial in-plane harmonic
parametric excitation for different boundary conditions, f,, = 83

carefull analysis of boundary conditions is needed in the analysis of dynamic
stability of continuous systems.

5. Conclusions

The stability analysis method is developed for distributed dynamic problems
with relaxed assumptions imposed on solutions. The Lyapunov method can
be used to stability analysis of equations in weak formulation. The results are
obtained in the frame of the distributed parameter approach without earlier
discretization or truncation. Without any viscous damping, the plate motion is
unstable due to the parametric excitation. The stability domains are presented
for plates with each combination of simple and clamped supports.

Stability domains of plates compressed by forces close to the critical loading
substantially depend on the assumed boundary conditions. Stability results
obtained for a plate with simply supported boundary conditions in strong
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formulations and stability conditions obtained for simply supported plates
described by strong equations are also valid under weak formulation.
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Dynamiczna statecznos$é stabych réwnan plyt prostokatnych

Streszczenie

W pracy rozszerzono mozliwosci analizy stabilnos$ci uktadéw ciaglych na uklady
z ostabionymi warunkami naktadanymi na rozwiazania. Uktady aktywnego ttumienia
drgan cienko$ciennych elementéw plytowych moga zawiera¢ elementy piezoelektrycz-
ne oddzialywujace na konstrukcje. W uproszczonym modelu oddzialywanie to sprowa-
dza si¢ do dzialania momentéw gnacych lub sit roztozonych na krawedziach elementu
piezoelektrycznego. Wprowadzenie dystrybucji §-Diraca i jej pochodnej prowadzi do
analitycznego zapisu obcigzenia i wprowadza nieregularnosci do rozwiazania zadania
drgan wymuszonych uktadu ciaglego. Stabg posta¢ réwnan plyty otrzymano za pomo-
ca zasady Hamiltona. Badanie staecznoéci stochastycznych ukladéw w formie stabej
jest oparte na analizie funkcjonalu Lapunowa wzdluz stabego rozwiazania. Rozwia-
zanie zadania jest niezalezne od przyjetych warunkéw brzegowych.
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