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This paper deals with the inverse dynamics problem of underactuated
mechanical systems subjected to execute partly specified motions. The
modeling methodology focuses on a special class of differentially flat
systems, represented by a group of relevant technical examples. The go-
verning equations are obtained as index three differential-algebraic equ-
ations, and a simple numerical code for their solution is reported. The
solution comprises both the dynamic analysis of the underactuated sys-
tems in partly specified motion and the synthesis of control that assures
realization of such motion.
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1. Introduction

Underactuated mechanical systems are mechanical systems with fewer control
inputs than degrees of freedom (Spong, 1997), m < n, and as such k =n—m
degrees of freedom cannot be directly actuated. The determination of a control
input strategy that forces an underactuated system to complete a given set of
specified motion tasks is a challenging problem, and a solution to the inverse
dynamics problem at hand is possible only if the motion is defined by as
many system outputs as the number of control inputs — the motion is partly
specified. The situation is thus substantially different from the fully actuated
case, m = n, which requires also that the motion of the system must be fully
specified.

The controllability of underactuated systems in partly specified motions is
closely related to the concept of differential flatness (Fliess et al., 1995; Ro-



384 W. BLAJER, K. KOLODZIEJCZYK

uchon, 2005), denoted that all the system state variables and control inputs
can be algebraically expressed in terms of desired outputs and their time deri-
vatives up to a certain order. The relationships between the imposed outputs
and the required control inputs provide a basis for the synthesis of control
laws. Such analytical algebraic relations are usually difficult to obtain, ho-
wever. The equivalent/alternative formulation reported in this paper is much
more straightforward and applicable.

2. Relevant technical examples

The modeling methodology is developed for a group of relevant technical exam-
ples of underactuated mechanical systems in partly specified motion, creating
a class of differentially flat systems (Blajer and Kolodziejezyk, 2004). A sim-
ple representative of the group is a two-mass system (n = 2) shown in Fig. 1,
where desired motion s(t) of the mass my is actuated by the force F applied
to the mass mq, and as such m = k =1 = n/2. Another example of qualitati-
vely the same type is the position control of a manipulator with elastic joints
(Spong, 1987). For robot models with compliance lumped between rigid links
and actuators (Fig. 2), the number of degrees of freedom is n = 2m, related to
m links and m actuator rotors, ¢ = [q1,...,¢m]  and 6 = [01,...,0,,]". The
specified motion g,(t) of links is actuated by motor torques T = [11,...,Tm]
applied to the actuator rotors, and as such m =k =n/2.
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Fig. 2. A sketch of a flexible joint
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The overhead trolley crane and the rotary crane seen in Figures 3
and 4 are both five-degree-of-freedom systems, q = [s1,59,1,01,02]" and
q = [p,5,1,01,0]", respectively, the three desired outputs are specified in
time load coordinates r4(t) = [24(t),ya(t), za(t)] ", and the respective three
control inputs are u = [Fy, Fo, M,]" and w = [Mj, F, M,]"; see also Blajer
and Kotodziejezyk (2007) for more details. We have thus n =5, m = 3 and
k=n—m=2.
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Fig. 4. A rotary crane model

For an aircraft in a prescribed trajectory flight (Blajer et al., 2001), Fig. 5,
motion of the six-degree-of-freedom system is prescribed by four demands:
the requested trajectory (two specifications), the condition on the airframe
attitude with respect to the trajectory, and the desired flight velocity. The
control inputs are u = [0q,0e,0,,T]". We have then n = 6, m = 4 and
k=n—m=2.
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Fig. 5. An aircraft in a prescribed trajectory flight

Finally, for a surface ship tracking a desired path (Fig. 6), the two desired
outputs of the three-degree-of-freedom system (Fosse, 1995) are the requested
trajectory and the desired velocity variation in time. The two control inputs
are w=[0,T]". We have: n=3, m=2and k=n—m = 1.
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Fig. 6. A surface ship tracking a trajectory

3. Modeling prelimaries

The dynamical systems quoted in Section 2 can be represented by an n-degree-
of-freedom system described by n generalized coordinates q = [q1,...,qn]"
and enforced by actuator forces due to m control inputs, w = [ug, ..., un]"
where m < n. For the sake of simplicity, let us write dynamic equations of the

)

I

system in the following generic matrix form

M(q)d + d(q,4) = f(q,4) — B (q)u (3.1)

where M is the n x n generalized mass matrix related to ¢, the n-vectors d
and f contain the related dynamic and applied generalized forces, and BT
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is an n X m matrix of coefficients that relate the control inputs w and the
actuating generalized force vector f, = —BTw. In fact, the dynamic equations
for aircrafts and ships are usually introduced as Mo +d = f —BTu, and then
supplemented with the kinematic equation ¢ = Awv; see Blajer et al. (2001)
and Fossen (1995) for more details. However, the subsequent methodology
introduced for dynamic formulation (3.1) is valid for more general formulations
as well.

The system described in (3.1) is subjected to m motion specifications (per-
formance goals) formulated as m desired system outputs v = [y1,...,Vm] "
which, expressed in terms of g, lead to servo-constraints (called also active or
program constraints) on the system (Blajer and Kolodziejezyk, 2004; Gutow-
ski, 1971). The constraint equations, in the original and twice-differentiated
with respect to time forms, are

)

c(q,t) =P(q) —~(t) =0
(3.2)

¢=C(q)g—&(q,q,1) =0

where C = 9 /dq is an m xn constraint matrix, & = 4—Cgq is an m-vector of
constraint-induced accelerations. Evidently, equation (3.2); is mathematically
equivalent to m rheonomic holonomic constraints on the system, ¢(g,t) = 0,
and ~(t) = 0 can be interpreted as drift in time of manifold ®(g) = 0 in
the linear space related to ¢ (Blajer, 2001). The actuating generalized for-
ce f, = —B'w can be then interpreted as the generalized reaction force of
servo-constraints, called the control reaction (Blajer and Kolodziejezyk, 2004)
in the sequel. The realization of servo-constraints (3.2); by applying the ac-
tive control force f, = -B'u (control inputs w) is, however, qualitatively
different from the realization of contact (passive) constraints caused by joints,
hard surfaces, rigid links, slip-less rolling contacts, etc. Namely, assumed equ-
ation (3.2); represents contact constraints, the actuating force f, = —BTuin
(3.1) would be replaced by the passive constraint reaction force f,= —C'X,
where C is the constraint matrix as defined in (3.2);. While the reaction f,
of (ideal) passive constraints is orthogonal to the instantaneous manifold of
contact constraints, the actuating force f, may be arbitrary directed with
respect to the manifold of servo-constraints, and, in the extreme, may be tan-
gent to the manifold (for more geometrical insight the reader is referred to
Blajer (2001), Blajer and Kolodziejczyk (2004)). More specifically, denoted:
N — linear m-space of the system related to ¢, C — constrained (specified)
m-subspace spanned by constraint gradients represented in AN as rows in C,
B — controlled m-subspace spanned by vectors represented in A as rows in B,
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for all the dynamical systems reported in Section 2, the controllability (dif-
ferential flatness) of this class of underactuated mechanical systems in partly
specified motion is warranted by

CUB=N <<= rank([C"B']")=max=n =— 2m>n (3.3)

where Q = [CT:B"]" is a 2m x n matrix. According to (3.3), the C and B
subspaces cover thus the whole space A (see Fig.7), and then

CNB=P = rank(CM'B")=p — p=2m-n (3.4)

where P = CM™'B" is a m x m matrix. The deficiency in rank of P, p < m,
shows that only p desired outputs can directly be governed by the available
control inputs, while the other £ = m — p = n — m outputs are actuated in-
directly through the dynamical couplings, referred respectively to orthogonal
and tangent realization of servo constraints (Blajer and Kolodziejezyk, 2004).
For the systems in Figs. 1 and 2 we have 2m = n and p = 0 (pure tan-
gent realization of servo-constraints), and for the other systems in Figs. 3-6,
2m = n+ 1 and p = 1 (mixed orthogonal-tangent realization of servo-
constraints).
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Fig. 7. Tllustration of C and B subspaces in N’

4. Differential flatness formulation

The initial governing equations for the inverse dynamics problem of an unde-
ractuated system in partly specified motion are

,,Q.
I

M(q)b + d(q,v) = f(q,v) — B (q)u (4.1)
0=®(q) —~(t)
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which form 2n + m differential-algebraic equations (DAEs) in 2n states
r = [qT,vT]T, and m control inputs w. An important characteristic of a
DAE system is its index, which is a measure of singularity of the DAEs and de-
termines difficulty in their numerical integration (Ascher and Petzold, 1998).
The index of DAEs (4.1) is equal to five (Blajer and Kotodziejezyk, 2004),
which produces nuisances in their numerical treatment (most DAE solvers are
designed for index-one DAEs (Ascher and Petzold, 1998)).

In general, the index of a DAE system is the number of times one needs to
differentiate it to get a system of differential equations (Ascher and Petzold,
1998). This definition corresponds to the concept of differential flatness (Fliess
et al., 1995; Rouchon, 2005), i.e. an n-degree-of-freedom underactuated sys-
tem, dim(u) = m < n, is differentially flat if for a set of (flat) outputs -,
dim(vy) = m, all states and controls of the system can algebraically be deter-
mined in terms of « and their time derivatives up to a certain order. More
specifically, from DAEs (4.1), one can theoretically obtain

x=xt,v5 ..., 7 ) and u=u(t,v,7,...,7") (4.2)

which can also be interpreted as index-one DAEs. For all the dynamic systems
reported in Section 2 we have then r = 4 since the value of r is by one smaller
than the index of DAEs (4.1). Given relationships (4.2), both the dynamics of
an underactuated system in the motion specified by ~ can be studied, and the
requested control that assures realization of the motion can be determined.
The problem is, however, that analytical solutions (4.2) to DAEs (4.1) are
attainable usually only for simple systems, and are very difficult to derive, if
possible at all, for more complex systems of technical relevance.

In order to illustrate the differential flatness concept, let us consider the
two-mass system defined in Fig. 1. The respective DAE formulation, (4.1), is

T =11 ml’[)lzk’(ilﬁg—l‘l—d)—l—F
i‘Q = V2 m2'[)2 = —k‘(l‘Q — 1 — d) (4.3)
0=x9 — s(t)

It can be then deduced that: M = diag(mi,my), C = [0,1], B = [1,0],
P=CM'B" = [0], and p = 0 (pure tangent realization of the servo-
constraint ¢ = xg—s(t) = 01is faced). The DAEs (4.3) can be then manipulated
to

xlz%ﬁ—i-(s—d) To =8
v = %3(3) + s vg = § (4.4)
F="0"204) (m1 +ma)3
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which corresponds to (4.2) with = [¢,v "] = [x1, 22, v1,v0] ", u = [F], and
~ = [s]. As seen r = 4, and as such the index of DAEs (4.3) is equal to five.
The last equation from (4.4) provides immediately a feedforward control law
for the underactuated system in the partly prescribed motion. In accordance
with (4.2), the third order (r — 1 = 3) time derivative of ~ is involved in
the determination of the states @. More strictly, the third time derivative
of = is involved in the determination of velocities v = [vq, 1], while the
determination of coordinates q = [a:l,xg]T requires only the second order
time derivative of ~y.

5. Index-three DAE formulation and solution code

As previously said, differential flatness formulation (4.2) is usually very dif-
ficult to attain analytically for more complex systems, if not beyond one’s
grasp. A much more applicable formulation was proposed in Blajer and Koto-
dziejczyk (2004), followed the projection of dynamic equations (3.1) into the
complementary constrained (specified) C and unconstrained (unspecified) D
subspaces of A. The constrained m-subspace C has already been defined as
spanned by the vectors represented as rows in the m x n constraint matrix C.
The k-subspace D (k =n—m) so that CUD = N and CND = O can be then
defined as spanned by vectors represented as columns in an n x k full-rank
matrix D such that CD = 0 < D'C' = 0 (which stands for CND = O),

and then rank ([C":D"]") = n (which stands for C UD = N); for more geo-
metrical insight, the reader is referred to Blajer (2001). For a given matrix C
of full row-rank, its orthogonal complement D as above can sometimes be
guessed or found by inspection (usually for simple systems only) or determi-
ned numerically following a range of computer oriented codes. A convenient
scheme of the latter code patterns after the coordinate partitioning method

(Wehage and Haug, 1982), in which C is first factorized to C = [U:W], where
U and W are m x k and m X m matrices, respectively, and det(W) # 0.
Then, D = [l:(—W™'U)T]T, where I is the k x k identity matrix.

The formula of projection of (3.1) into D and C is (Blajer, 2001)

[C?Atl] (Mo +d-f+BTu)=0 (5.1)
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The projection into D yields k differential equations H(q)v = h(q,v,u,t),
where H = D"M is the k x n matrix and h = D" (f —d — B"u) is the k-
vector. The projection into C, after using (3.2) for substituting Cv = Cqg
with &, leads then to & + CM~Y(d — f + B'u) = 0, which represents
m algebraic equations in the system states = [¢',v']" and control in-
puts u, whose symbolic form is b(q,v,u,t) = 0. Since, according to (3.4),
rank (CM_lBT) = p < m, these m algebraic equations impose only p condi-
tions on wu, and as such £ = m — p restrictions on the system motion, and
in particular on the system coordinates q, supplementary to m original re-
strictions ¢(g,t) = 0. The total number of the supplementary and original
restrictions on q is thus k 4+ m = n, and as such, in this indirect way, the
motion of the system is ’fully specified’, i.e. ¢ and then v can be determi-
ned in terms of ~ and their time derivatives. More strictly, since € involved
in b(q,v,u,t) = 0 depends on %, g determined this way depends on at
most 4, and v depends on at most 7(3). Then, uw determined from p inde-
pendent conditions imposed by b(q,v,u,t) = 0 and k differential equations
H(q)v = h(q,v,u,t), p+ k = m, depends on at most ~@ . The conclusions
correspond to differential flatness formulation (4.4) for the case study with
p = 0, though the upper time derivatives 7(3) and 7(4) are not introduced
explicitly in the present formulation. The governing equations are then

q="v H(q)v = h(q,v,u,t)

(5.2)
0 =b(q,v,u,t) 0 =c(q,t)

which form n+k+m+m = 2n+m index-three DAEs in n+n+m = 2n+m
variables g, v and w, which are just in the middle between initial index-five
DAE formulation (4.1) and differential flatness (index-one DAE) formulation
(4.2).

The solution to DAEs (5.2) are variations in time of state variables of
the system executing the prescribed motion, g4(t) and wv4(t), and the control
uy(t) that is required to enforce the motion. Due to a specific structure of DAE
system (5.2), a simple algorithm based on the Euler backward approximation
method can be recommended to solve the DAEs. Namely, given q,, and v,
at time ¢, (u, is not required), the values @, 1, Vn+1 and wu,4q at time
th+1 = tn + At, can be found as solution to the following nonlinear equations

Qn—l—l —dq,
AntlEn 4,41 =0
At
Up+1 — 0
H(qn—i-l) "7At = — h(qn+17’0n+17un+17tn+1) =0 (5-3)

b(@p115 Un1, Uny 1, tng1) = 0 c(@ny1,tnt1) =0
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where At is the integration time step. This effective simple scheme is of ac-
ceptable accuracy for an appropriately small value of At. Then, due to the
original servo-constraints c¢(q,t) = 0 involved in (5.2)/(5.3), supplemented
then by b(q,v,u,t) = 0, dependent respectively on ~(t) and %(t), q,4(t) is
determined with a numerical accuracy of solving (5.3), and only wv4(t) and
uy(t) are determined with an error followed the rough backward difference
method. The truncation errors do not accumulate in the simulation time, ho-
wever. The proposed simple solution code leads thus to reasonable and stable
solutions. The inverse simulation control wug4(t) can be used as feedforward
control law for the system subjected to execute the desired motion. The solu-
tion scheme can be then modified to include feedback control to provide stable
tracking of the specified outputs ~(¢) in the presence of possible external per-
turbations modeling inconsistencies; see Blajer and Kolodziejezyk (2004) for
more details.

6. Discussion and conclusions

The formulation developed in this paper relate a class of underactuated me-
chanical systems in partly specified motion, whose relevant technical examples
were reported in Section 2. All of them are differentially flat systems (Fliess
et al., 1995; Rouchon, 2005), which assures solvability of this specific inverse
dynamics problem (controllability of the system in specified motion). From
this point of view, the role of flat systems within the set of underactuated sys-
tems is very similar to the role of integrable systems within the set of ordinary
differential equation systems (Rouchon, 2005). On the other hand, there is no
a general algorithm to decide whether the system is flat or not. The definition
that all the states and control inputs of a flat system can be determined in
terms of the desired outputs and their time derivatives may be difficult to
implement for more complex systems.

Differential flatness formulation (4.2), due to its inherent complexity, is
applicable rather to simple systems only. Much more convenient in practi-
cal application is index-three DAE formulation (5.2) motivated in this paper.
While both the formulations lead to exactly the same (numerical) solutions,
the excessive complexity of the differential flatness formulation is completely
removed in the present formulation. Of importance is also that, for the con-
sidered class of differentially flat systems, the differential flatness formulation
involves v®, while the present formulation requires 4 only. The analytical
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solution of the differential flatness formulation is then replaced by simple (and
stable) numerical solution code (5.3).

The present formulation has been successfully applied to numerical simu-
lations of many underactuated mechanical systems executing partly specified
motions, including the two-mass system (Blajer and Kolodziejczyk, 2004) (re-
ported also briefly in this paper), an aircraft in a prescribed trajectory flight
(Blajer et al., 2001), and cranes executing prescribed motions of payloads (Bla-
jer and Kolodziejezyk, 2007). Further developments of this useful approach to
the inverse dynamics problem of underactuated systems subjected to execute
partly specified motions are foreseen within the frame of the project mentioned
below.
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Modelowanie sterowanych ukladéw mechanicznych realizujacych ruch
programowy niezupelny

Streszczenie

Praca dotyczy zagadnienia symulacji dynamicznej odwrotnej klasy uktadéw me-
chanicznych, w ktérych liczba sygnaléw sterowania, réwna liczbie zadanych charak-
terystyk ruchu (sygnaléw wyjéciowych), jest mniejsza od liczby stopni swobody, re-
prezentowanej przez liczne przyklady techniczne. Rownania tak zdefiniowanego ru-
chu programowego niezupelnego otrzymywane sa w postaci réwnan roézniczkowo-
algebraicznych o indeksie réownym trzy. Omawiany jest prosty, efektywny i stabilny
algorytm calkowania tych réwnan. Rozwigzaniem sa przebiegi w czasie zmiennych
stanu uktadu w zadanym ruchu programowym oraz sterowania wymaganego dla re-
alizacji tego ruchu.
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