JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
45, 4, pp. 953-967, Warsaw 2007

ACTIVE VIBRATION CONTROL OF TERFENOL-D ROD OF
GIANT MAGNETOSTRICTIVE ACTUATOR WITH
NONLINEAR CONSTITUTIVE RELATIONS

HAO-MI1AO ZHOU
You-HE ZHOU
XIAO JING ZHENG

Lanzhou University, School of Civil Engineering and Mechanics, Department of Mechanics and
Engineering Science, Lanzhou, China

e-mail: zhouyh@lzu.edu.cn

This paper presents a numerical simulation of active vibration control of
the Terfenol-D rod of a giant magnetostrictive transducer with nonline-
ar constitutive relations. In this control system, the goal is to suppress
vibration of the displacement at the free end of the rod that is usually
connected with a platform. Due to the inherent nonlinear relation among
the applied magnetic field, pre-stress, and strain, the extension of the rod
is also nonlinear relative to the external applications. Having an analy-
tical nonlinear constitutive model of the Terfenol-D rod proposed by the
last author of this paper and the finite element method employed in the
deformation analysis, we propose a numerical code to simulate the dyna-
mic behavior of the control system when the negative displacement and
velocity control law is utilized to feed back the signals to the actuator.
The simulation results display that this control is more effective that
other existing control algorithms based on linear constitutive models.
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1. Introduction

In the recent ten and more years, some magnetostrictive materials have been
discovered to generate large or giant strains in materials by utilizing the reali-
gnment of magnetic moments in response to applied magnetic fields like, for
example, in a commercially available magnetostrictive material of Terfenol-D
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made of an alloy of terbium, iron, and dysprosium, which may generate a
strain much more larger than that of other smart materials. To utilize this
significant property, one of potential applications is active control of vibration
suppression of platforms by embedding the Terfenol-D rods to support such
platforms (Jenner et al., 1994; Nakamura et al., 2000; Zhang et al., 2003; Zhang
et al., 2004), since the Terfenol-D rod has some distinct advantages over other
smart materials, such as high strain, good magnetomechanical coupling factor,
fast response, and the magnetostriction property without changing with time,
etc. (Bartlett et al., 2001; Carman and Mitrovic, 1995; Duenas et al., 1996;
Pagliarulu et al., 2004).
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Fig. 1. Comparison of curves of nonlinear magnetostrictive strain versus the
magnetic field between experimental measurements (Moffet et al., 1991) and
theoretical model (Zheng and Liu, 2005), thin lines: the experimental measurements;
bold lines: theoretical predictions

The experimental measurement displayed strong nonlinear behavior of the
Terfenol-D rod, i.e. the extension or constriction strain is strongly dependent
on the application of both magnetic field and pre-stress, while Young’s mo-
dulus of the material also changes with its local stress generated in the rod.
Figsures 1 and 2 show experimental measurements and theoretical results re-
garding the behavior of a Terfenol-D rod (Moffet et al., 1991; Zheng and Liu,
2005). Due to complexity of constitutive relations in experiments, some the-
oretical constitutive models have been established only for the case of low
magnetic fields and some constants in the models indirectly connected to the
existing physical parameters (Carman and Mitrovic, 1995; Duenas et al., 1996).
In that case, most control models applying those smart materials were expres-
sed by approximate linearized constitutive relationships of the materials. For
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example, Reed (1988) proposed an active control theory for a vibration isola-
tion system of a platform by means of magnetostrictive actuators. Then, Hiller
et al. (1989) conducted an experiment to show the feasibility of the isolation
system using magnetostrictive actuators as support mounts to provide low
frequency. In order to control vibration of structures, Flatau and Hall (1992)
employed a Terfenol-D actuator as a shaker for active control of vibration. In
order to reflect the nonlinear effects of the material, some efforts were made
in the simulation of dynamic control systems such as the variable structure
algorithm and fuzzy method to compensate these effects (Jenner et al., 1994;
Nakamura et al., 2000; Zhang et al., 2003), while the relation between the
output displacement and input magnetic field of the actuator was still linear.
In fact, these methods are effective only in an approximately linear region of
strain-magnetic field curves. It is obvious that the Terfenol-D rod functions as
both a sensor (i.e. displacement at the free end) and an actuator in the control
system. In such a case, the nonlinear relations of the materials will generate a
central role to the control systems.
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Fig. 2. Curves of Young’s modulus versus compressive stress for different bias
magnetic fields from the theoretical model (Zheng and Liu, 2005)

Recently, an analytical constitutive model of the Terfenol-D rod has be-
en proposed to fully coincide with experimental measurements, in which the
constants in the model were all given by the existing ones (Zheng and Liu,
2005), which provides feasibility of establishing a control theory with practical
nonlinear constitutive relations in the control system.

Based on the analytical relations of the nonlinear constitutive model by
Zheng and Liu (2005), we propose here a numerical code of an active control
system with the Terfenol-D rod with the negative displacement and velocity
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feedback control law with constant gain employed. In the simulations, the
nonlinear extension of the rod is analyzed by the finite element method for
the spatial part, and the Newmark method is employed for the time part, while
the nonlinear effect is solved iteratively. After that, the simulation results are
displayed to show the efficiency of the proposed control method.

2. Essential formulae for the control system

Here, we consider the control system with a Terfenol-D rod that is subjected
to a specific pre-compress stress, a bias magnetic field along its axial direction
and an excitation or controlling magnetic field, as shown in Fig. 3. When these
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Fig. 3. Schematic drawing of the feedback control system with the Terfenol-D
transducer

external conditions are applied to the rod, it generates some extension or
contraction. By detecting or sensing the displacement and velocity at the free
end of the rod and amplifying the signals of the displacement and velocity,
then feeding back the amplified signals back to the controlling magnetic field,
a control system for suppressing vibration of a vibration platform may be
created. It is obvious that the development of a relationship for deformation
of the rod with nonlinear constitutive relations is the central role in control
systems. For such a purpose, we assume that the rod has one fixed end (lower
end) and a free end (top end) at which the pre-compression stress is specified.
Denote the length of the rod by L, the longitudinal coordinate by x where the
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original point is at the fixed end, and the local longitudinal displacement by
u = u(x). Then we have the longitudinal strain ¢, related to the displacement
in the form

_du

€= (2.1)

The experimental investigation exhibits that this deformation is dependent on
the local stress and magnetic field (see in Fig. 1), which is fully described by
the following nonlinear constitutive model expressed by analytical formulae
(Zheng and Liu, 2005)
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where o represents the local stress in the rod; M and H are variables of
the magnetization and magnetic field, respectively; Fy and FE, are the ini-
tial and saturation Young’s moduli, respectively; M, indicates the saturation
magnetization; Ag stands for the saturation magnetostrictive coefficient; pg =
= 471077 H/m is the magnetic permeability of vacuum; f(y) = coth(y)—1/y;
k = 3xm/Mjs represents the relaxation factor, where x, is the linear magnetic
susceptibility; and o5 = A\;EsEy/(Es — Ep).

Now, we rewrite Eq. (2.2); in the prevalent form

e = ﬁ + Ao, H) (2.3)

in which the nonlinear functions E(o) and (o, H) are respectively expressed
as
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When the applied magnetic field H is specified, we can get a dependence for
M in terms of o. Substituting the resulting dependence for M = M (o) into
Eq. (2.4)1, we can get a relation for F = F(o) which exhibits variable Young’s
modulus as shown in Fig. 2. Equation (2.4)s presents the nonlinear part that
is mainly relevant to the magnetostrictive deformation.

In the linearized constitutive model of the Terfenol-D rod, Eqgs. (2.2) can
be simplified into

a=%+dH B =do+°H (2.5)

where FE is constant at a specific magnetic field; d represents the material
constant; B stands for the magnetic flux density; and u° is the magnetic
permeability at a specific stress.

For the control system, the magnetic field H consists of two parts — one is
the bias magnetic field and the other is the controlling magnetic field generated
by a solenoid. In this case, we have

H(t) = COI(t) + Hpias (26)

Here, cp is the so-called coil factor, I(t) stands for the time-variable control

current in the solenoid, and Hy,,s indicates the bias applied magnetic field.
From the knowledge of electromagnetic fields, we know that the generated

magnetic field in the solenoid can be formulated by Zhao and Chen (1995)

nI(J:,t)( x+1/2 x—1/2 )
2 VRZ+ (x+1/2)2 R+ (x—1/2)2
in which [ and R represent the length and radius of the solenoid, respectively;
and n stands for the coil number per unit length. When [ is sufficiently larger
than L, the distribution of the magnetic field in the solenoid is almost uniform.
In this case, Eq. (2.7) can be simplified into the form

nl(t) l

2 R (27

Ho(z,t) = (2.7)

Hy(t) =

= coI(t) (2.8)
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Here
nl

2V R?+(1/2)?
In order to suppress the displacement vibration at the free end (z = L) of

the rod, a closed loop control with a control law of negative displacement and
velocity feedback is employed

Cy —

1(t) = ~Grup(t) - Gaitg (1) (2.9)

where uy(t) and u(t) are respectively the displacement and velocity signals
at the free end of the rod, which can be detected by some sensing technique
without difficulty; and G; and Gq are the gains. Substitution of Eq. (2.9) into
Eq. (2.6) leads to an expression for the applied magnetic field dependent on
the displacement of the free end of the rod, i.e.,

H(t) = —coGrug(t) — coGatiy(t) + Hpias (2.10)

To give a prediction for the displacement at the free end of the rod, the
finite element method is utilized here. Denote the longitudinal distributed force
by F = F(x), which may be relevant to either a specific distribution or the
magnetic force or both. From the deformation theory of rods, we know that
the differential equation for the rod extension or contraction can be written
as

do I 0%u ou
ax " P et
associated with the boundary conditions of u(0,t) = 0, and w(L,t) = wup.
Here, uy = u(Hpiqas,00) is a displacement at the free end of the rod at the
initial instant, p is the mass density per length of the rod, and 71 denotes the
damping coefficient. By means of the weighted residual method, we get an

equivalent integral form of Eq. (2.11) as follows

=0 (2.11)

do 0%u ou
V/(Su(%—I—F—pW—nE) dv =0 (2.12)

Here, du represents a selected weighted residual function. Divide the length
of the rod into K elements. Selecting the Lagrange interpolation polynomial
functions N;(x) to approximately formulate the displacement in each element
by means of the nod displacements, we have

K
u(zx,t) = Z Ni(z)u;(t) = N(x)u(t) (2.13)
i=1
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Here,
N =[Ny, Ny, -, Ng] w=[u,ug, - ug]" (2.14)

Then we get a system of ordinary differential equations of the dynamic system
in the matrix form

Mii(t) + Ca(t) + K(o)u(t) = Q(t, o, us(t), is(t)) (2.15)

Here, u, @, and @ are respectively the columns of node displacement, velocity,
and acceleration; M, C and K indicate the global matrices of mass, damping,
and stiffness, respectively; us(t) = u(L,t); and Q represents the control force
column. Their elements are explicitly formulated by

z l
dNT dN
Mez/NTNd K= | = Blogy @
p T dx (U) dx B
; ] 0 (2.16)
e __ - ] ) ‘
Q _/ - E(o)A(o, H) dz + P; { Pj=0 for j+#n.
0

in which n. indicates the node number. For the damping matrix, the Rayle-
igh damping is used here, i.e., C is a linear combination of M and K. It is
obvious that for the case of the linear constitutive model of magnetostrictive
deformation (see Egs. (2.5)), dynamic equations (2.15) for the control system
become linear too. This entail that K is independent of ¢ and @ linearly
changes with H. For the case of the nonlinear constitutive model, however,
the dynamic equations are inherently nonlinear.

3. Numerical approach

In order to realize numerical simulations of the nonlinear control system, the
essential step is to solve the nonlinear dynamic equations in the proposed
theory. Once the quantities are obtained at a specific time instant ¢, Eq.
(2.15) in the next time instant ¢ + At, where At means a time step, can be
formulated by Newmark’s method

Mity ap + CUtgy ar + K(0pan) Wi At = QO At Up i1 At Ufp+At) (3.1)
in which

'l:l/t+At - 'l:l/t + [(1 - 5)'U/t + 5'&t+At]At
(3.2)

W = g + WAL + [(% - a)ilt + auHAt}At?
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From Eq. (3.2)2, we get

. 1 1 . 1 .
Ut At = W(uurm —uy) — AT (% — 1)ut (3.3)

Substituting Eq. (3.3) into Eq. (3.2)1, and the resulting equation associated
with Eq. (3.3) into Eq. (3.1), we have

Kitarugpar = @H—At (3.4)
in which

RtJrAt = K(otyat) +doM +d; C
(3.5)

@t+At == Qt+At + M(do’u,t + dg’l:l,t + dg’ilt) + C(dlut + d4’ibt + d5’i.lt)

where dy = 1/(aAt?), di = §/(aAt), dy = 1/(adt), d3 = 1/(2a) — 1,
dy=0d/a—1, ds = (0/a — 2)At/2, dg = (1 — 0)At, and d7 = §At. Here, the
parameters of § and « in our simulations are taken as 6 = 0.5, a = 0.25.

For the nonlinear constitutive model of the materials, it is known that
the local internal stress is nonlinearly related to the deformation, expres-
sed by Eq. (2.1), by means of the constitutive model described by Egs.
(2.2) at each time step, which yields nonlinear relations for K(opya¢) and
Q04 Aty Uf i AL, Uf i Ar) Varying with wgqa¢ at the time step ¢+ At. In order
to solve this nonlinearity, an incremental iterative approach is employed here.
That is to say, we substitute the initial iterative value of u;ya; by uﬁ) A = Ui
Then the internal stress o can be found from Egs. (2.1) and (2.2) for the ap-
plied magnetic field at the instant t 4+ At. Substituting the resulting internal
stress into Eq. (3.4), we get an iterated displacement of this instant. Replacing
the iterated displacement by the previously found displacement, and repeating
this iterative approach, we obtain the displacement of the rod at the instant
t + At till the following condition is satisfied

oA, Wit At

Here, the superscript j represents the iteration step, while d; and Jo are the
pre-selected accuracies. In the following simulations, we take At = 1-1079,
and 61 =1-1075, 6o =1-107%
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4. Numerical results and discussions

In order to present the efficiency of the nonlinear control system proposed
here, the following geometric and material parameters are assumed in the
simulations

L =114.5mm D = 38.1mm p = 9130kg/m>
As = 1300 ppm Xm = 80 woMs =0.8T
E, =110GPa os = 200 MPa co = 9488.49
3
| g0
A
1.5}
1.2}
1.
09 2:-15.3 MPa
3:-23.6 MPa
4:-32.0 MPa
0.6 5:-40.4 MPa
6:-48.7 MPa
0.3 7:-57.1 MPa
8:-65.4 MPa
ol

100 150 200 250 300
H [kA/m]

Fig. 4. Curves of magnetostrictive strain versus the applied magnetic field for
different constant stresses; straight lines: linearized constitutive model (Moffet et al.,
1991); curve lines: nonlinear constitutive model (Zheng and Liu, 2005)

Before we disclose results of the simulations of the dynamic control carried
out on the basis of the nonlinear constitutive model (Zheng and Liu, 2005), let
us see the suitability of the similar control system to the approximate linear
constitutive model (or Egs. (2.5)). In practical applications, the Terfenol-D
based actuators (see Fig.3) have built-in adjustable pre-stress to place the
material on the almost linear region of magnetostrictive curves by a permanent
magnet or an offset coil to generate a bias magnetic field. After that, the gains
in the feedback loop are optimally selected in the stability region of the control.
According to the experiment by Moffet et al. (1991), we can get the bias
magnetic field dependent on the pre-stress at the middle of the approximately
linear region (see Table 1 for eight sets of different compressive pre-stresses).
Then we can plot the linear curves of strain(\)-field(H) to compare them
with the nonlinear curves of the corresponding relation as shown in Fig. 4.
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From this figure, one can see that the linear region is suitable only in a narrow
area indicated by the asterisks in each curve of the figure. For example, the
bias magnetic field is valid in the region of (30.72,51.03) kA /m for the linear
model when the pre-stress is —15.3 MPa. Since the constitutive model of the
material is inherently nonlinear, in fact we still get nonlinear relations between
the magnetostrictive strain and the stress even when the linear relation is used.
This is shown in Fig. 5 where the characteristic F = F(o, H) in the nonlinear
constitutive model is employed. This result tells us that the control system
should be nonlinear even when the linear constitutive model is used. This
nonlinear effect, however, is neglected in design of control systems based on
linear models, which leads to some deviation in practical realisation of the
control goal.

Table 1. Numerical results of the bias magnetic field relevant to pre-stress
(Moffet et al., 1991)

|Biascondition | 1 | 2 [ 3 | 4 | 5 | 6 | 7 | 8 |
Compressive
pre-stress [MPa]

Magnetic bias
field [kA/m]

6.9 | 15.3 | 23.6 | 32.0 | 40.4 | 48.7 | 57.1 | 65.4

11.94 | 31.83 | 55.70 | 79.58 | 103.45( 127.32| 151.20 | 175.07
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Fig. 5. Curves of magnetostrictive strain versus internal stress of the rod for
different constant magnetic fields

As a case study without losing generality, we present simulations of the
dynamic control system with the nonlinear constitutive model when the pre-
stress is —15.3 MPa, and compare then with those of the system based on
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the linear model. Here, the initial deviation of displacement is utilized and
the gains of the feedback loop are taken as G; = 0, and G2 = 0.84 in all
simulations. Firstly, we present the results of the control system when the
point of the bias magnetic field is located at the middle of the straight line of
the A ~ H relation, where the bias magnetic field is equal to 31.83 kA /m.

1.0 R ] e free vibration
F i i i| ---- linear control

u [pm]

-0.5}¢

ol ¥

t [ms]

Fig. 6. Comparison of simulation results of the dynamic control between systems
based on the nonlinear constitutive model and its linearized version when the bias
magnetic field is taken at the middle of the suitable region of the latter model, i.e.

when the pre-stress is —15.3 MPa and the bias magnetic field is selected at
31.83kA/m

Figure 6 plots time responses of displacement at the free end of the rod
for three cases: free vibration without control, active control with either the
nonlinear or linear model. From this figure, we find that the displacement
vibration may be fully suppressed during of about 1.0 ms for the nonlinear
control system proposed, while the vibration in the linear control model is
slowly attenuated after 0.5 ms and the duration is much longer than 2.0 ms, as
shown in this figure. When the bias magnetic field is taken out of the suitable
region, i.e. either Hp;us = 15.92kA/m or 63.66kA/m, Figs. 7 and 8 show
the simulation results in such a case. From these two figures, we know that
the control based on the linear model loses its stability for same selected bias
magnetic fields, while the displacement vibrations are still suppressed during
the duration of about 1.0ms for the nonlinear control proposed here. These
notable deviations between the control strategies based on the nonlinear and
linear models of the Terfenol-D rod indicate that the nonlinear control should
be preferred in practice since the nonlinear constitutive model is more close
to the real case.



ACTIVE VIBRATION CONTROL OF TERFENOL-D ROD... 965

on [ free vibration
--- linear control
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Fig. 7. Comparison of simulation results of the dynamic control between systems
based on the nonlinear constitutive model and its linearized version when the bias
magnetic field is taken at one edge of the suitable region of the latter model, i.e.
when the pre-stress is —15.3 MPa and the bias magnetic field is selected at
15.92k0e

1.5 y [ e free vibration
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Fig. 8. Comparison of simulation results of the dynamic control between systems

based on the nonlinear constitutive model and its linearized version when the bias

magnetic field is taken out of the suitable region of the latter model, i.e. when the
pre-stress is —15.3 MPa and the bias magnetic field is selected at 63.66 kOe

5. Conclusions

A simulation model of the control system of the Terfenol-D transducer is pro-
posed on the basis of analytical formulae of the nonlinear constitutive model
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of the materials used. The numerical results for the analyzed case study of
the control system exhibit that the nonlinear control is efficient in suppressing
displacement vibrations at the free end of the rod. Comparing the results with
corresponding control simulations based on the linearized constitutive model,
we find that the linear control design is effective only when the point of the
bias magnetic field is located in a small region of the linearized area around the
middle point of the region. The nonlinear control design is more efficient than
the linear control strategy in this small region. When the bias magnetic field
is close to the edge of the linear area or outside of it, however, the nonlinear
control still remains efficient, but the linear method loses its stability.
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Aktywne sterowanie drganiami w wielkim aktuatorze

magnetostrykcyjnym z rdzeniem typu Terfenol-D przy uwzglednieniu

nieliniowych réwnan konstytutywnych

Streszczenie

W pracy zaprezentowano symulacje numeryczne aktywnego sterowania za pomoca
wielkiego aktuatora magnetostrykcyjnego zawierajacego rdzen wykonany z Terfenolu-
D opisanego nieliniowymi zaleznosciami konstytutywnymi. Celem rozwazan jest anali-
za tlumienia drgan swobodnego konca preta, zwykle taczonego z platforma. Wydtuze-
nie preta jest opisane nieliniowym réwnaniem z powodu nieliniowych relacji pomiedzy
przyktadanym polem magnetycznym, naprezeniami wstepnymi oraz odksztalceniami.
Po sformulowaniu przez ostatniego Autora niniejszej pracy modelu preta z Terfenolu-
D oraz zastosowaniu metody elementéow skonczonych, wprowadzono procedure nume-
ryczna o symulacji dynamiki uktadu sterowania z ujemnym sprzezeniem zwrotnym
ze wzgledu na przemieszczenie i predkos$é konca aktuatora. Wyniki badan pokazaty,
ze tego typu sterowanie staje sie bardziej efektywne niz inne strategie redukcji drgan
oparte na modelach liniowych.
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