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André Dragon
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In most cases, adiabatic plastic heating is evaluated using the inelastic
heat fraction coefficient, also known as Taylor-Quinney coefficient, which
is usually assumed to be constant. From the thermodynamic viewpoint,
this method consists in neglecting (or including some part of) various
thermomechanical couplings in the heat equation. Nevertheless this co-
arse method can lead to over-estimation of the temperature rise. In this
paper, adiabatic shear banding incipience is considered in the context
of thermal instability. It is shown that the accuracy in the prediction of
favourable conditions for the onset of this plastic localization is strongly
dependent on the technique retained for evaluating the plasticity indu-
ced heating. This paper aims at showing the influence of various levels
of simplification of the thermal equation on the critical conditions at
localization onset, the latter being obtained from a criterion based on
the linear perturbation method.
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1. Introduction

Dynamic plastic localization in the form of Adiabatic Shear Banding (ASB) is
known to occur at high strain rates under quasi adiabatic conditions as ther-
mal softening prevails against strain and strain rate hardening. Depending on
the application considered, this precursor of structural failure is sought – it is
typically the case for metal cutting (see Rhim and Oh, 2006), or apprehended
– it is the case in penetrator-armour steel interaction (see Odeshi et al., 2006).
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The knowledge of favourable conditions for ASB localization onset and fur-
ther post-critical behaviour is thus of major interest, particularly in numerical
simulations of the processes mentioned above.

In parallel, most of dynamic engineering finite element calculation codes
take into account thermomechanical coupling only through the inelastic heat
fraction which characterizes the fraction of plastic work converted into heat
which is usually assumed to be constant. However, the inelastic heat fraction
can be strongly dependent on strain, strain rate and temperature as observed
experimentally by Mason et al. (1994), Kapoor and Nemat-Nasser (1998) for
example, and shown theoretically by Aravas et al. (1990), Longère and Dragon
(2006). For a better evaluation of plastic deformation-induced temperature rise
and related thermal softening, a specific ’user material’ routine implemented
in the FE engineering code is needed including other aspects appearing in the
formulation of the heat equation (see Longère et al. (2005) for computations
involving LS-DYNA R© code).

According to ASB-devoted experimental studies, the band orientation is
mainly controlled by the maximum shear stress (see Bai and Dodd, 1992; Pę-
cherski, 1998), and a weak localization of deformation, as a consequence of
thermal instability, is primarily observed followed by the genuine strong loca-
lization of deformation leading to the ASB process (see Marchand and Duffy,
1988; Liao and Duffy, 1998). Starting from these results, this paper aims at
studying the consequences of simplifications assumed to evaluate dissipative
mechanisms-induced heating on the determination of dynamic plastic loca-
lization occurrence. The latter is obtained herein from the theory of linear
perturbation (see Bai, 1982; Clifton et al., 1984) in the form of a criterion
relating the resolved shear stress to strain hardening, thermal softening and
viscosity (see Batra and Chen, 2001; Longère et al., 2003) in the context of
ASB induced localization. The purpose of the present study is not to discuss
or extend the theory but to apply the method in order to obtain a practical
criterion reproducing experimental observation – the reader can refer to Fres-
sengeas and Molinari (1987) and Anand et al. (1987) for extensive analysis. For
this purpose, various levels of simplification of the heat equation formulation
are considered, yielding various criteria for the ASB onset.

In Section 2, thermodynamic fundamentals are recalled leading to the
expression of the heat equation in the case of thermo/elastic-viscoplastic mo-
delling. The context considered in this work concerns loading at strain rates
high enough to allow for the assumption of adiabatic conditions while making
it possible to assume the (visco)plastic material behaviour to be pressure in-
sensitive. The strain rates range is thus typically comprised between 102 and
104 s−1, and maximum value of temperature remains lower than the melting
point. Three levels of simplification are studied: first, due to its weak con-
tribution to temperature changes, the thermo/elastic coupling is neglected;
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secondly thermodissipative couplings are neglected as well; finally, the tempe-
rature rise is supposed to be directly linked to the plastic work rate via the
inelastic heat fraction assumed to have a constant value.
In Section 3, the consequences of simplifications mentioned above are exa-

mined in the context of thermal instability induced dynamic plastic localiza-
tion. With this aim in view, the linear perturbation method is applied to the
case of simple shearing of a volume element consisting of a thermo/viscoplastic
material. Note that in the case of the ASB phenomenon, the extension of the
1D loading to a complex 3D loading can be performed today (see Longère
et al. (2003)). Simplifications are assumed in order to reproduce qualitative-
ly different stages of deformation localization (weak and strong) as observed
notably by Marchand and Duffy (1988). Further parametric analysis shows
how the value of the critical shear strain at localization incipience is strongly
dependent on the temperature rise evaluation method.

2. Evaluation of temperature rise under adiabatic conditions

Irreversible thermodynamics framework is used here to describe the
thermo/elastic-inelastic response of a material (see Perzyna, 1966; Bataille
and Kestin, 1975; Raniecki and Nguyen, 1984; Petryk, 2000; Mróz and Olife-
ruk, 2002). At first, the internal variable procedure is summarized leading to
expressions of dissipated energy and thermal equation (see Perzyna (1998) for
computational issues for the evolution problem). Different levels of simplifica-
tion of the latter are then introduced in connection with the further study of
heat evaluation at the dynamic localization onset.

2.1. Thermodynamic context and constitutive framework

The state of the material is supposed to be described by a thermodynamic
potential, namely Helmholtz free energy per unit mass ψ(T, z), where T re-
presents absolute temperature and z a set of normal variables. Gibbs relation
takes the following form

ρ0ψ̇ = −ρ0sṪ + Zż s = −∂ψ
∂T

∣

∣

∣

z
Z = ρ0

∂ψ

∂z

∣

∣

∣

T
(2.1)

where ρ0 represents the mass density in the initial configuration, s – the
entropy and Z – the set of thermodynamic (conjugate) forces associated with
the state variables z.
According to the second law of thermodynamics, the mechanical part of

dissipated energy is written as

D = τ : d− Zż ­ 0 (2.2)
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where d represents the rate of deformation tensor and τ is the Kirchhoff
stress tensor defined as the Cauchy stress tensor σ multiplied by the Jacobian
determinant J of the deformation gradient F (J = detF = ρ0/ρ), i.e. τ = Jσ.

A combination of the first law of thermodynamics and the Gibbs relation
gives a local form of the heat equation

ρ0czṪ + divq + r = τ : d−
(

Z − T ∂Z
∂T

)

ż (2.3)

where cz represents the specific heat, q – the heat flux vector per unit area
and r – the heat supply per unit volume.

Equation (2.3) relies on thermal terms on the left hand-side including the
temperature rate Ṫ , heat conduction divq, and heat supply r, and mechanical
terms on the right hand-side including the mechanical work rate τ : d and
other work rates Zż, while the last term T ż∂Z/∂T is referred explicitly to
thermomechanical couplings.

The study is now reduced to thermo-elastic/viscoplastic behaviour in the
case of isotropic strain hardening. The set of state variables is assumed in
the form z ≡ (εe, p), where εe represents a measure of finite elastic strain
(εe = lnVe; Fe = VeRe) and p is the isotropic strain hardening variable. The
set of conjugate forces is thus given in the form Z ≡ (τ , R), where R represents
the isotropic hardening force (affinity).

The rate of deformation (symmetric part of the velocity gradient)
d = [∂v/∂x]S is furthermore decomposed into a reversible (’elastic’) part

d
e =
∇
ε e (where ∇ designates the objective Jaumann derivative of a 2nd order

tensor) and an irreversible part dp such that d = de + dp (see Sidoroff and
Dogui, 2001).

Mechanical dissipation (2.2) becomes

D = τ : dp −Rṗ ­ 0 (2.4)

The constitutive laws are thus expressed as

s = −∂ψ
∂T

∣

∣

∣

εe,p
τ = ρ0

∂ψ

∂εe

∣

∣

∣

T,p
R = ρ0

∂ψ

∂p

∣

∣

∣

T,εe
(2.5)

The free energy density ψ(T, εe; p) is expressed in the following form

ψ(T, εe; p) = ψe(T, εe) + ψth(T ) + ψb(T ; p) (2.6)

where ψe(T, εe) represents the recoverable energy which includes isotropic li-
near thermo-elasticity, ψth(T ) – purely thermal energy, and ψb(T ; p) – stored
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energy reflecting competition in the material between isotropic strain harde-
ning and thermal softening. These contributions are written as follows

ρ0ψ
e(T, εe) =

λ

2
(Trεe)2 + µεe : εe − αKTrεeϑ

ρ0ψ
th(T ) = −ρ0c0

[

T ln
( T

T0

)

− ϑ
]

− h(0)f(T ) (2.7)

ρ0ψ
b(T, p) = h(p)f(T )− h(0)f(0)

where λ and µ represent the Lamé elasticity constants, K = λ + 2µ/3 –
bulk modulus, α – thermal dilatation coefficient, c0 – constant heat capacity,
ϑ = T − T0 – temperature rise, h(p) – stored energy of cold work and f(T ) –
thermal softening function. For simplification, the thermo-elasticity coefficients
are supposed to be temperature independent.
From now on, the elastic deformations will be considered as small (infini-

tesimal).
After partial derivation of (2.6) with respect to z ≡ (T, εe, p), the thermo-

dynamic forces Z ≡ (−s, τ , R) are written as

−ρ0s = −αKTrεe − ρ0c0 ln
( T

T0

)

− [h(0) − h(p)]f ′(T )

τ = (λTrεe − αKϑ)δ + 2µεe (2.8)

R = h′(p)f(T )

By rewriting mechanical dissipation (2.4) in the form D = Zż ­ 0,
Z = (τ , R) represents a set of thermodynamic forces associated to the set
of fluxes ż = (dp,−ṗ). Considering now the time-dependent plasticity and
applying the normality rule with respect to the dual Φ(Z) of the dissipation
potential, depending on Z via the loading (yield) function F (Z) (i.e. standard
rule for ż), the internal state variable evolution laws are deduced from

ż = Λ
∂F (Z)

∂Z
Λ =

∂Φ(F )

∂F
­ 0 (2.9)

where Λ represents the viscous multiplier governing the dissipative mechani-
sms of plasticity.
Applying the normality rule to the present case yields

d
p = Λ

∂F

∂τ
− ṗ = Λ∂F

∂R
(2.10)

The yield function F (Z) in (2.9) is assumed in the form of Huber-von Mises
criterion

F (τ , R;T ) = J2(τ )− g(R,T ) (2.11)
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where

J2(τ ) =

√

3

2
s : s

and s represents the stress deviator tensor

s = τ − Trτ

3
δ

The strain hardening function g(R,T ) in (2.11) representing the Huber-von
Mises surface radius is expressed by

g(R,T ) = R0f(T ) +R(T, p) (2.12)

The evolution laws in (2.10) are thus detailed as follows

d
p =
3

2
Λ
s

J2
ṗ = Λ (2.13)

The model is completed by the expression of the force potential in (2.9)

Φ(F ) =
Y

m+ 1

〈F

Y

〉m+1
Λ =

〈F

Y

〉m
(2.14)

Furthermore, Eq. (2.3) becomes

ρ0c0Ṫ + divq + r = τ : d
p + T

∂τ

∂T
: de −

(

R− T ∂R
∂T

)

ṗ (2.15)

The context considered here concerns the loading at high strain rate excluding
heat supply, and for which conditions can be assumed as adiabatic (dynamic
loading). Relation (2.15) is thus reduced to

ρ0c0Ṫ = τ : d
p + T

∂τ

∂T
: de −

(

R− T ∂R
∂T

)

ṗ (2.16)

In (2.16), τ : dp represents the plastic part of the mechanical work rate (plastic
work rate), Rṗ – the stored energy rate, the difference τ : dp−Rṗ represents
the unrecoverable energy rate dissipated by heating, see (2.4), (T∂τ/∂T ) :
d
e – thermo-elastic coupling contribution which describes cooling during the
tensile loading and heating during compression, and T ṗ∂R/∂T – the thermo-
dissipative coupling contribution which expresses the stored energy release
rate during the temperature rise (see Clayton (2005) for a similar approach).
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2.2. Levels of simplification of heat equation

As mentioned above, heat equation (2.16) can be decomposed into various
contributions. By denoting

Q̇ = ρ0c0Ṫ D = τ : dP −Rṗ ­ 0

Ẇ τ = T
∂τ

∂T
: de ẆR = T

∂R

∂T
ṗ

Eq. (2.16) can be rewritten as

Q̇ = Ẇ with Ẇ = D + Ẇ τ + ẆR (2.17)

Three cases are now distinguished depending on the terms retained on the
right side of (2.17)1,2. In the first case, called ’quasi complete heat evaluation’,
thermo-elastic coupling effects are neglected due to their weak contribution to
the temperature change: Ẇ τ = 0. Relation (2.17)2 is thus reduced to

Ẇ = D + ẆR =
[

J2 −
(

R− T ∂R
∂T

)]

ṗ (2.18)

In the second case, heat equation (2.16) is further simplified by neglecting both
thermo-elastic and thermo-dissipative couplings contributions (see Voyiadjis
and Abed (2006) for similar simplification). The resulting equation is called
’simplified heat evaluation’. This means that Ẇ τ = ẆR = 0, and (2.17)2
becomes

Ẇ = D = (J2 −R)ṗ (2.19)

The last case is equivalent to the representation involving the constant inelastic
heat fraction β – also known as Taylor-Quinney coefficient (see Mason et al.,
1994) – as frequently done in engineering problems. The resulting equation is
called ’basic heat evaluation’. The expression for the work rate Ẇ in (2.17)2
is then reduced to

Ẇ = βJ2ṗ (2.20)

3. Condition for dynamic localization occurrence

The condition for localization (in form of adiabatic shear banding) onset is
obtained here using the linear perturbation method. In order to analyse the
consequences of simplifications assumed to evaluate the temperature rise, the
loading path considered is simple shearing.
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3.1. Linear perturbation method

The linear perturbation method is, in general, applied to the case of simple
shear under constant velocity boundary conditions. Assuming negligible elastic
effects, laminar viscoplastic flow and adiabatic conditions, the problem can be
reduced to a one-dimensional formulation, see Bai (1982), Clifton et al. (1984),
Molinari (1985), Batra and Wei (2006), and also Anand et al. (1987) when
three-dimensional generalization is presented. Admitting analytical solutions,
the linear perturbation method provides in this case a criterion of instability
onset, which is interpreted as the incipience of the adiabatic shear banding
process, providing in fact the necessary condition for the onset of formation
of bands (possibility of the shear band type instability).

Starting from the governing equations (momentum balance, energy balan-
ce, kinematics and constitutive law) in the case of simple shear in (1,2) plane
under adiabatic conditions and neglecting elasticity, one obtains the following
system

s12,2 = ρ0v̇1 ρ0c0Ṫ = Ẇ

ṗ = Λ(s12, p, T ) d12 =
1

2
(v1,2 + v2,1) ≈ dp12 =

3

2
ṗ
s12
J2

(3.1)

With J2 =
√
3s12, v1 = Γ̇ x2, v2 = 0 and Γ = Γ̇ t, system (3.1) is reduced to

s12,2 − ρ0v̇1 = 0 ρ0c0Ṫ − Ẇ = 0

v1,2 −
√
3ṗ = 0 ṗ− Λ(s12, p, T ) = 0

(3.2)

A small perturbation δU = (δv1, δs12, δp, δT ) is now superimposed on the set
of homogeneous solutions U = (v1, s12, p, T )

U ⇒ U + δU with δU ≪ U

The perturbed system is linearized from (3.2) as follows

δs12,2 − ρ0δv̇1 = 0 ρ0c0δṪ − δẆ = 0

δv1,2 −
√
3δṗ = 0 δṗ − δΛ(s12, p, T ) = 0

(3.3)

With the notations in Appendix – see in particular (A.2) and (A.3), the above
system can be equivalently written as follows

δs12,2 − ρ0δv̇1 = 0 ρ0c0δṪ − (wsδs12 + wpδp+ wT δT + wṗδṗ) = 0
(3.4)

δv1,2 −
√
3δṗ = 0 δṗ − 2P12δs12 −Bδp −EδT = 0
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where the expressions for wi are given in Table 1 depending on the level of
simplification of the energy balance.

Table 1. Expressions for wi

Basic Simplified Quasi-complete

ws
√
3βṗ

√
3ṗ

√
3ṗ

wp 0 −Qṗ −(Q− TY )ṗ
wT 0 −Sṗ TZṗ

wṗ
√
3βs12

√
3s12 −R

√
3s12 − (R− TS)

Let the perturbation have a wave-like form

δU = U exp(̟t+ ikx2) = U exp(̟Rt) exp[ik(ct+ x2)] (3.5)

where U represents the perturbation magnitude, ̟ – wave pulsation, k – wave
number, x2 – wave plane normal, ̟R and ̟I – real and imaginary parts of
the wave pulsation ̟, respectively, and c = ̟I/k – wave velocity.
According to the right-hand side of (3.5), the case ̟R = 0 points the

transition between the stable and unstable states:
• if ̟R > 0, the perturbation may grow with time and the instability
mentioned is possible;

• if ̟R < 0, the perturbation decreases with time.
The objective consists thus in looking for the conditions of transition from

the stable state to the possible unstable state by studying the sign of ̟R.
Injecting (3.5) into system (3.4), yields

iks12 − ρ0̟v1 = 0 (ρ0c0̟ − wT )T − wss12 − (wp + wṗ̟)p = 0
(3.6)

ikv1 −
√
3̟p = 0 (̟ −B)p− 2P12s12 − ET = 0

or otherwise










−ρ0̟ ik 0 0
0 −ws −(wp + wṗ̟) (ρ0c0̟ − wT )
ik 0 −

√
3̟ 0

0 −2P12 (̟ −B) −E





























v1
s12
p
T



















=



















0
0
0
0



















(3.7)

(3.7) can also be put as
[A]{U} = {0} (3.8)

The determinant of the matrix [A] in (3.8), whose components are denoted aij ,
is simply

det[A] = a11a22a33a44 − a11a42a33a24 + a12a31(a23a44 − a43a24) (3.9)
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The spectral equation deduced from (3.8) and (3.9) is a 3rd degree polynomial
in ̟

det[A] = a3̟
3 + a2̟

2 + a1̟
1 + a0 (3.10)

with

a3 =
√
3ρ20c02P12 a2 = ρ0[k

2c0 +
√
3(Ews − 2P12wT )]

(3.11)
a1 = −k2(Ewṗ + wT + ρ0c0B) a0 = k

2(BwT − Ewp)

3.2. Localization vs. instability

As observed by Marchand and Duffy (1988) and demonstrated by Molinari
(1985), the instability does not imply rigorously localization. This means that
the use of the linear perturbation method provides the necessary condition
only, which means that it represents a ’lower’ bound for the effective locali-
zation incipience. The idea is here to ’delay’ the instability onset, i.e. push
it towards the ’upper’ bound in the sense of approaching the strong localiza-
tion incipience. In other words, we distinguish indeed the ’instability point’
characterizing locally the equilibrium between strain hardening and thermal
softening (maximum of the shear stress-shear strain curve in most cases) and
the ’localization point’ beyond which the shear stress drops strongly. The li-
near perturbation method provides the ’instability point’, and we look, via a
pragmatic engineering evaluation approach, for the ’localization point’ which
eventually succeeds the ’instability point’.

The adiabatic shear banding occurs as thermal softening overcomes the
strain hardening. Before the ’instability point’, strain hardening is predomi-
nant and the material is necessarily stable, while past the ’instability point’,
the thermal softening becomes predominant and the material may become
unstable. In the linear perturbation method, attenuating thermal softening al-
lows consequently for pushing forward the ’instability point’ and approaching
the ’localization point’.

Let now examine the sources of thermal softening. In the yield function
presented previously, see (2.12), the thermal softening source is double – in the
function R0f(T ) and in the isotropic hardening force R(T, p), see (2.8)3. Ne-
glecting the contribution of R0f(T ) – by prescribing that R0f(T ) = 0 in the
linear perturbation method solely while maintaining this thermal contribution
in the constitutive law – constitutes a manner to attenuate the thermal softe-
ning and pushes forward the instability onset (without altering the maximum
of the shear stress-shear strain curve).

This simplification is studied here by considering the basic evaluation of
temperature rise. In the first case, the problem is solved with both sources of
thermal softening (assuming that localization and instability are concomitant),
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while in the second case, the first source of thermal softening is neglected (the
localization onset is delayed regarding instability onset).
Employing Table 1, when considering the basic evaluation, the coefficients

a0 to a3 in (3.11) become

a3 =
√
3ρ20c02P12 a2 = ρ0(k

2c0 + 3Eβṗ)

a1 = −k2(E
√
3βs12 + ρ0c0B) a0 = 0

(3.12)

Spectral equation is, in this case, indeed reduced to a 2nd degree polynomial in
̟ and ̟ > 0 if and only if a1a3 < 0. The condition for possible perturbation
growth (instability occurrence) is accordingly given by

√
3s12 >

ρ0c0
β

B

−E (3.13)

The instability incipience in the case of ”two sources of thermal softening” is
given by injecting (A.4)2 and (A.4)3 (see Appendix) into (3.13)

√
3s12 >

ρ0c0
β

Q

−(R2f ′ + S)
=
ρcy
β

h′′(p)f(T )

−[R2 + h′(p)]f ′(T )
(3.14)

In order to delay the instability onset (i.e. to approach the localization one),
we are now considering a ”single source of thermal softening” (f(T ) = 0 in
(A.4)3). In this case, the localization is supposed to occur as soon as

√
3s12 >

ρ0c0
β

Q

−S =
ρcy
β

h′′(p)f(T )

−h′(p)f ′(T ) (3.15)

Relations (3.14) and (3.15) are available for any material behaviour. In the fol-
lowing application, we are interested in a class of metallic materials exhibiting
strain hardening with saturation stress and linear thermal softening. Stored
energy of cold work h(p) and thermal softening function f(T ) in (2.7)3 are
given by

h(p) = R∞
[

p+
1

k
exp(−kp)

]

f(T ) = 1−AT (3.16)

Model constants have been reported in Table 2 below.

Table 2. Material constants for the numerical modelling

E [GPa] ν ρ [kg/m3] c [J/(kgK)] α [K−1]

200 0.33 7800 420 10−6

R∞ [MPa] k A [K−1] R0 [MPa] Y [MPa s1/m] m

1000 20 10−3 1000 100 6
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The response of the above material to shear loading is given for various
initial temperatures and various strain rates in Fig. 1 and Fig. 2, respectively.
The critical plastic strain rate for adiabatic conditions is supposed to be equal
to about 100 s−1.

Fig. 1. Shear stress vs. shear strain. Influence of initial temperature. Instability
criterion deactivated. Γ̇ = 10−1 s−1

Fig. 2. Shear stress vs. shear strain. Influence of strain rate. Instability criterion
deactivated. T0 = 20

◦C

Detection of the plastic localization onset is essential to activate the process
of softening behaviour (see Longère et al., 2003, 2005) for three-dimensional
modelling of a thermoelastic/viscoplastic material incorporating adiabatic she-
ar banding formation and growth). The description of the post–localization
behaviour is not the purpose of the present paper. But in order to visualize
the drop in stress induced by adiabatic shear banding, the ASB deterioration
model developed by these authors has been used. Details regarding numeri-
cal calculations and a corresponding algorithmic procedure can be found in
Longère et al. (2005). It is notable that instability criteria (3.14) and (3.15)
can be applied to any constitutive equations based on irreversible thermody-
namics (see nevertheless the recommendations in Longère and Dragon (2006)).
In Fig. 1 and Fig. 2, the criteria have been deactivated (no deterioration), while
in Fig. 3 and Fig. 4 the corresponding criteria are accounted for and considered
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as a necessary and sufficient condition for the localization onset (plastic locali-
zation induced ASB deterioration is thus producing strong softening behaviour
according to the model by Longère et al. (2005)).

The simplification leading to the delay of the instability point is illustrated
in Fig. 3 and Fig. 4 for given shear strain rates and two values for β.

Fig. 3. Shear stress vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1; β = 1

Fig. 4. Shear stress vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1; β = 0.8

For β = 1 (see Fig. 3), the value of localization deformation (drop in
stress) is close to 25% for the double source of thermal softening, while it
is close to 30% for the single source of thermal softening. For β = 0.8 (see
Fig. 4), the value of localization deformation is close to 27% for the double
source of thermal softening, while it is close to 32% for the single source of
thermal softening.

With the double source of thermal softening, Figures 3 and 4 clearly show
that the instability appears at the maximum of the shear stress-shear strain cu-
rve. This is in opposition with the experimental results obtained by Marchand
and Duffy (1988) who distinguished two stages in the deformation localiza-
tion (a weak one preceding the genuine strong one in form of adiabatic shear
bands). In this sense, the single source of thermal softening seems to be more
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realistic, i.e. reproduces the delay between the thermal instability and genuine
localization onset. The reader can also refer to works by Estrin et al. (1997)
on full non-linear analysis of adiabatic shear band formation in the case of a
shear sample containing a geometric defect.

3.3. Condition for delayed dynamic localization onset

As mentioned in the previous section, delaying the strong localization onset
with respect to the supposed instability onset is favoured by setting f(T ) = 0
in the linear perturbation method (concept of ’upper’ bound approximation).
This approach is consequently used in the following.

According to Table 1, the coefficients a0 to a3 in (3.11) become in the
”simplified evaluation”

a2 = ρ0
[

k2c0 + 3ṗ
(

E + 2√
3
P12S

)]

a3 =
√
3ρ20c02P12

a1 = −k2[E(
√
3s12 −R)− Sṗ+ ρ0c0B] a0 = k

2ṗ(EQ−BS)
(3.17)

with E + 2P12S/
√
3 = 0 and EQ−BS = 0.

The corresponding constants in (3.17) are thus expressed by

a3 =
√
3ρ20c02P12 a2 = ρ0k

2c0

a1 = −k2[E(
√
3s12 −R)− Sṗ+ ρ0c0B] a0 = 0

(3.18)

The spectral equation is once more reduced to a 2nd degree polynomial in ̟.
and the condition for perturbation growth is given by

√
3s12 > R− ṗ

α
+ ρ0c0

∂R
∂p

−∂R∂T
(3.19)

Following the previous procedure for quasi-complete evaluation, gives

a3 =
√
3ρ20c02P12

a2 = ρ0
[

k2c0 + 3ṗ
(

E − 2√
3
P12TZ

)]

a1 = −k2{E[
√
3s12 − (R − TS)] + TZṗ+ ρ0c0B}

a0 = k
2ṗ[EQ− T (EY −BZ)]

(3.20)

The spectral equation remains a 3rd degree polynomial in ̟ for which the
condition of instability onset is not trivial. In order to obtain a practical cri-
terion in the sense of Bai (1982), the condition for instability onset is again
deduced from the sign of the product a1a3.
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The condition for perturbation growth is, in this case, given by

√
3s12 > R− T

(

∂R

∂T
−
∂2R
∂T 2

∂R
∂T

ṗ

α

)

+ ρ0c0

∂R
∂p

−∂R∂T
(3.21)

Figures 5 and 6 give the material response to shearing and temperature evolu-
tion for three cases of heat evaluation (two values for β are given), respectively.
According to Fig. 5, the value of shear strain at localization (critical she-

ar strain) onset is close to 30% for basic evaluation with β = 1.0, to 32%
for basic evaluation with β = 0.8, to 35% for simplified evaluation, and to
38% for complete evaluation. In parallel, the influence of heat evaluation is
shown in Fig. 6, which gives the evolution of temperature. According to the
”basic evaluation”, temperature increases until about 380K, while according
to the ”quasi-complete evaluation”, the maximum of temperature remains un-
der 350K. This difference of 30K is enough to provoke a difference of 8% for
the estimation of the critical shear strain in the conditions prescribed here.

Fig. 5. Shear stress vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1

Fig. 6. Temperature vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1

In this example, the shear stress-shear strain curves diverge from each
other from the shear strain close to 10%, see Fig. 5. As a consequence, the
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value of shear stress at the maximum of each curve is different (the highest is
obtained for the quasi-complete evaluation, while the lowest is obtained for the
basic evaluation for β = 1). So, we consider next here shear stress-shear strain
curves with the same value of the shear stress maximum value (see Table 3 for
new material constants). Numerical results including the instability criterion
are given in Fig. 7 and Fig. 8.

Table 3. Material constants

Evaluation type β R0 [MPa] A [K−1]

Basic
1.0 1000 1 · 10−3
0.8 1015 1.05 · 10−3

Simplified X 1050 1.1 · 10−3
Quasi-complete X 1080 1.15 · 10−3

The values of critical shear strain are lower than the previous ones (see
Fig. 5), but the tendency is preserved: the critical shear strain is greater for
the quasi complete evaluation.

Fig. 7. Shear stress vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1

Fig. 8. Temperature vs. shear strain. Instability criterion activated. T0 = 300K;
Γ̇ = 103 s−1

In Figs. 7 and 8, the maximum shear stress is the same for all simulations.
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4. Concluding remarks

In many boundary value problems involving high strain rates under the hy-
pothesis of adiabaticity and employing numerical simulations via engineering
finite element calculation codes, thermomechanical couplings are usually ac-
counted for by using the approximation of the linear dependency of the tem-
perature growth on the plastic work rate. In practice, a constant inelastic
heat fraction coefficient, also known as Taylor-Quinney coefficient, is used.
This method consists in neglecting genuine thermomechanical couplings expli-
citly occuring in the heat equation. In most cases, this simplification appears
to be sufficient and conservative from the engineering viewpoint and regar-
ding the calculation time. However, if the thermal instability induced plastic
localization is concerned – it is the case of adiabatic shear banding as typi-
cally encountered in speed machining and impact ballistics for example – the
evaluation of temperature growth and its consequences in terms of the related
material behaviour softening must be more accurate. We have applied here the
linear perturbation method to obtain a criterion for adiabatic shear banding
initiation taking into account the strain hardening, thermal softening and vi-
scous effects. This criterion is suitable for a wide range of thermo/viscoplastic
materials. It has been used to study the influence of terms retained in the
plasticity-induced heating and related adiabatic shear banding incipience. The
analysis shows clearly that the use of the coarse method based on the constant
inelastic heat fraction (varying in the usual range between 80% and 100%) le-
ads to over-estimation of the temperature rate and produces an early onset
of adiabatic shear banding instability as compared to a more rigorous ther-
modynamic evaluation. If the use of a constant inelastic heat fraction appears
conservative for impact problems (from the armour viewpoint, earlier detection
via numerical simulation can be interpreted as a safety-oriented approach), it
is not when applied to numerical simulations relevant to metal cutting (in
this case, later detection is rather researched for a more realistic definition of
cutting conditions guaranteeing serrated chip formation under adiabatic shear
banding).

A. Appendix

The perturbed system is linearized from (3.2) as follows

δs12,2 − ρδv̇1 = 0 ρcyδṪ − δẆ = 0

δv1,2 −
√
3δṗ = 0 δṗ − δΛ(s12, p, T ) = 0

(A.1)
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Perturbed viscous multiplier in (A.1)4 is expressed by

δΛ = 2
∂Λ

∂s12
δs12 +

∂Λ

∂p
δp +

∂Λ

∂T
δT = 2P12δs12 +Bδp+ EδT (A.2)

where

Pij =
∂Λ

∂sij
= α

∂F

∂sij
B =

∂Λ

∂p
= α

∂F

∂p

E =
∂Λ

∂T
= α

∂F

∂T
α =

∂Λ

∂F

(A.3)

Furthermore, the coefficients in (A.3) become

Pij =
3

2
α
sij
J2

B = −αQ E = −α[R0f ′(T ) + S] (A.4)

where

Q =
∂R

∂p
= h′′(p)f(T ) S =

∂R

∂T
= h′(p)f ′(T ) (A.5)

The expressions of the perturbed work rate depend on the heat evaluation
type:
— basic evaluation
In this simple case, the perturbed work rate is given by

δẆ = β(δJ2ṗ+ J2δṗ) =
√
3β(δs12ṗ+ s12δṗ) (A.6)

— simplified evaluation
The perturbed work rate is here given by

δẆ = (δJ2 − δR)ṗ + (J2 −R)δṗ = (
√
3δs12 − δR)ṗ + (

√
3s12 −R)δṗ (A.7)

According to (A.4), one obtains

δR =
∂R

∂p
δp+

∂R

∂T
δT = Qδp + SδT (A.8)

Thus, perturbed work rate (A.7) becomes

δẆ = (
√
3δs12 −Qδp − SδT )ṗ + (

√
3s12 −R)δṗ (A.9)

— quasi complete evaluation
The perturbed work rate is here given by the following expression

δẆ =
[

δJ2 −
(

δR − δT ∂R
∂T
− Tδ

(∂R

∂T

))]

ṗ+
[

J2 −
(

R− T ∂R
∂T

)]

δṗ =

(A.10)

=
[√
3δs12 −

(

δR− δT ∂R
∂T
− Tδ

(∂R

∂T

))]

ṗ+
[√
3s12 −

(

R− T ∂R
∂T

)]

δṗ
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Differentiating (A.5)2, yields

δS =
∂S

∂p
δp +

∂S

∂T
δT = Y δp + ZδT (A.11)

where

Y =
∂S

∂p
=

∂2R

∂p∂T
= h′′(p)f ′(T ) Z =

∂S

∂T
=
∂2R

∂T 2
= h′(p)f ′′(T )

(A.12)
Finally, the expression for δẆ in (A.10) becomes

δẆ = [
√
3δs12 − (Q− TY )δp + TZδT ]ṗ+ [

√
3s12 − (R− TS)]δṗ (A.13)
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Szacowanie adiabatycznego ciepła w procesie dynamicznej lokalizacji

odkształceń plastycznych

Streszczenie

Adiabatyczne ogrzewanie w stanie plastycznym jest w większości przypadków opi-
sywane za pomocą ułamkowego ciepła zwanego współczynnikiem Taylora-Quinney’a,
zwykle przyjmowanego jako parametr o stałej wartości. Opis taki, z punktu widzenia
termodynamiki, zasadza się na pomijaniu (lub uwzględnianiu jedynie pewnej części)
sprzężeń termomechanicznych w równaniu definiującym bilans cieplny. Taki zgrubny
opis może prowadzić do przeszacowania wzrostu temperatury w obliczeniach dotyczą-
cych plastycznego ogrzewania. W pracy przedstawiono proces adiabatycznego formo-
wania pasm ścinania wynikający z termicznej niestabilności. Pokazano, że dokładność
w przewidywaniu korzystnych czynników dla inicjacji procesu lokalizacji odkształ-
ceń plastycznych silnie zależy od metody szacowania ciepła powstającego wskutek
uplastycznienia. Celem rozważań jest pokazanie wpływu różnego stopnia uproszczeń
przyjętych w równaniu bilansu cieplnego na warunki odpowiadające za pojawienie się
lokalizacji odkształceń plastycznych. Te ostatnie wyznaczono za pomocą kryterium
opartego na liniowej metodzie perturbacyjnej.
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