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The paper presents the idea and examples of application of a new method
to the modelling of mechanical systems with freeplay and friction. This
method bases on the piecewise linear luz (. . .) and tar (. . .) projections
and their original mathematical apparatus. It is very useful for synthesis
of simulation models and description of the stick-slip phenomenon in
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1. Introduction

Basic models of spring elements with freeplay (backlash, clereance) as well
as dissipative elements with dry friction are based on piecewise linear cha-
racteristics (see Grzesikiewicz, 1990 and state-of-the-art papers: Armstrong-
Helouvry et al., 1994; Brogliatto et al., 2002; Ibrahim, 1994; Nordin and Gut-
man, 2002). Such characteristics cohere (Fig. 1) with the luz (. . .) and tar (. . .)
projections introduced by the author.
A simple but very efficient mathematical apparatus has been elaborated

for the luz (. . .) and tar (. . .) projections in the first part of the paper (Żar-
decki, 2006). Therefore, the proposal of a new method for modelling piecewise
linear systems using the luz (. . .) and tar (. . .) projections was a natural con-
sequence.
This paper presents detailed rules of use of the luz (. . .) and tar (. . .)

projections in synthesis of mathematical models of systems with freeplay or
friction. The method of modelling is described on a representative example
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Fig. 1. Idea of description of characteristics by luz (. . .) and tar (. . .) projections

of a multi-element gear system (Fig. 10) installed by bearings in a fixed stiff
casing.
In the beginning, necessary mathematical models of elementary sub-

systems with single freeplay or friction will be presented. Then, an original
method of synthesis of models of complex systems will be described and ap-
plied to the modelling of some exemplary multi-element system.

2. Modelling of systems with single freeplay

2.1. Elementary model of elasticity with freeplay

Notation:
z1, z2 – dispalcements of elements
∆z0 – freeplay parameter (0.5 of total freeplay),

∆z0 = (z1 − z2)0
FS12, FS21 – spring force affecting elements 1 and 2, respectively
k12 – stiffness coefficient

An elementary model of elasticity with freeplay concerns the relationship
between the strain force and relative displacement of two coactive toothed
elements (Fig. 2).
The relation between the interacting force FS and relative displacement

∆z of the elements expresses piecewise linear characteristics with the ”dead
zone” (Fig. 3).
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Fig. 2. Elastic toothed elements with freeplay

Fig. 3. Strain characteristics with freeplay

Analytical expressions are

FS12 = k12 luz (z1 − z2,∆0) FS21 = −k12 luz (z1 − z2,∆0)

The elementary model of elasticity with freeplay refers to all discrete sys-
tems in which a toothed mechanism of rigid solids is given by weightless springs
with freeplay. They can be simple sliding or rotation elements (rack and pinion
elements, bars, shafts, gears, etc.).
Analytical descriptions of rotation systems with freeplay concern angular

characteristics (strain torque versus angular displacement).

2.2. Model of angular elasticity with freeplay for gear elements

Notation:

δ, γ – angular displacements of gear wheels (the applied sign
convention facilitates the modelling of dynamic systems
with gears); δ = α1, γ = −α2

MSδγ ,MSγδ – spring torques acting on wheel 1 and 2
Fδγ , Fγδ – action/reaction spring forces (Fδγ = −Fγδ)
rδ, rγ – radii of wheel 1 and 2
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p – gear ratio (when without freeplay δrδ = γrγ so δ = pγ);
p = rγ/rδ

l – perimetric translocation of wheels; l = rδδ − rγγ
l0 – perimetric freeplay (0.5 of total freeplay between teeth)
(δ − pγ)0 – angular freeplay parameter (0.5 of total freeplay in whe-

el 1); (δ − pγ)0 = l0/rδ
((δ/p) − γ)0 – angular freeplay parameter (0.5 of total freeplay in whe-

el 2); (δ/p) − γ)0 = l0/rγ
K – stiffness coefficient of a pair of teeth
kδγ , kγδ – angular stiffness coefficient of a pair of teeth measured

from wheel 1 and 2, respectively; kδγ = r2δK, kγδ = r
2
γK

We discuss a simplified model of the gear that consists of two well-coacting
toothed wheels characterised by effective radii of wheels (radii determine the
gear ratio), the perimetric freeplay and the stiffness coefficient between their
teeth. This model concerns rather small disturbances.

Fig. 4. Gear elements with tooth freeplay

Because of freeplay, the spring force can be described by the following
formula

Fδγ = K luz (l, l0) = K luz (rδδ − rγγ, l0) = rδK luz
(

δ −
rγ
rδ
γ,
l0
rδ

)

Fγδ = −K luz (l, l0) = −K luz (rδδ − rγγ, l0) = −rγK luz
( rδ
rγ
δ − γ,

l0
rγ

)

The spring torques of wheels are MSδγ = rδFδγ , MSγδ = rγFγδ , hence

MSδγ = r2δK luz
(

δ −
rγ
rδ
γ,
l0
rδ

)

MSγδ = −r2γK luz
( rδ
rγ
δ − γ,

l0
rγ

)
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The relations between torques and relative angular displacements are expres-
sed by characteristics of the same type as given in Fig. 3, and described by
formulas

MSδγ = kδγ luz (δ − pγ, (δ − pγ)0) =
kγδ
p
luz
(δ

p
− γ,
(δ

p
− γ
)

0

)

MSγδ = −pkδγ luz (δ − pγ, (δ − pγ)0) = −kγδ luz
(δ

p
− γ,
(δ

p
− γ
)

0

)

= −pMγδ

2.3. Model of angular elasticity with freeplay for elements twisted by

elastic shaft with freeplay in its mounting

Notation:
ψ, δ – angular dispalcements of elements; ψ = α1, δ = α2
MSψδ,MSδψ – spring torque acting on elements 1 and 2, respectively
(ψ − δ)0 – angular freeplay parameter (0.5 of total freeplay)
kψδ – angular stiffness

Fig. 5. Elastic shaft with freeplay in its mounting

The relation between torques and relative angular displacements is expres-
sed by the same characteristics as those given in Fig. 3. It can be written
as

MSψδ = kψδ luz (ψ − δ, (ψ − δ)0)

MSδψ = −kψδ luz (ψ − δ, (ψ − δ)0)

3. Modelling of systems with single friction

An elementary dissipation model with dry friction can be formulated for
two cases: the first one – when friction exists between a moving element and a
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fixed base, the second case – when the friction force acts between two moving
bodies. We discuss here the first model. It will be applied to the description
of the model of a bearing element. The second one (more complicated and not
indispensable for modelling of the exemplary system) will be presented in a
next special publication.

3.1. Elementary friction model for ”moving element – fixed base” system

Notation:
FT – friction force
∆ż – slip velocity (here ∆ż = ż)
F – external force
C – damping coefficient
FT0 – maximum value of dry friction
M – mass of block

Fig. 6. Moving element – fixed base system

The friction force can be expressed by modified Coulomb’s characteristics
(which take into consideration the possibility of action of static dry friction at
zero velocity).

Fig. 7. Modified Coulomb’s friction characteristics

The analytical description is given by the formula

FT = C tar
(

∆ż,
FT0
C

)

This formula needs only some linear damping and the same maximum ab-
solute values of kinetic as well as static dry friction. Such conditions are usually



Piecewise linear luz (. . .) and tar (. . .) projections. Part 2... 191

accomplished, especially when the so called Stribeck effect does not appear.
Although its conciseness, this formula contains an ample friction description.
It express the friction force as a sum of viscous and dry (kinetic and static)
friction for every velocity states

FT = C tar
(

ż,
FT0
C

)

=







Cż − FT0 if ż < 0
FT0s

∗ if ż = 0
Cż + FT0 if ż > 0

where s∗ ∈ [−1, 1] so

FT = Cż
︸︷︷︸

Viscous friction (damping)

+ FT0 sgn(ż)
︸ ︷︷ ︸

Kinetic dry friction

+ FT0s
∗

︸ ︷︷ ︸

Static dry friction
︸ ︷︷ ︸

Dry friction

︸ ︷︷ ︸

Kinetic friction (Coulomb′s)

︸ ︷︷ ︸

Static friction (also stiction)

At zero velocity state, the friction force is not calculated on the basis of the
modified Coulomb’s characteristics. The calculation of FT0s∗ needs discussion
of the dynamic model.
The model of motion dynamics is determined by the differential inclusion

Mz̈(t) ∈ F (t)− C tar
(

ż(t),
FT0
C

)

where s∗(t) ∈ [−1, 1]

Note, that for ż(t) = 0, Mz̈(t) ∈ F (t) − FT0s∗(t). The replacement of
ambiguity inclusion by an explicit relation demands calculation of s∗(t). This
will be shown, firstly – using a heuristic rule, then – using general physic
principles.
As it is well known, the description of dry friction can be done by the

following heuristic rule: when the slide velocity goes to zero, the static fric-
tion force FTS(t) starts, and the stiction state (when ż(t) = 0, z̈(t) = 0)
may exist until FTS(t) ∈ [−FT0, FT0]. If ż(t) = 0, while the condition
FTS(t) ∈ [−FT0, FT0], z̈(t) = 0 is impossible, this means only a temporary
static friction without stiction. In such a state, z̈(t) 6= 0 and FTS(t) = ±FT0,
where the sign of the friction force asserts its opposite action. Thus

FTS(t) = FT0s∗(t) =







FT0 if F (t) ­ FT0 (then z̈(t) 6= 0)
F (t) if −FT0 < F (t) < FT0 (then z̈(t) = 0)
−FT0 if F (t) ¬ −FT0 (then z̈(t) 6= 0)

in other words

FTS(t) = FT0s∗(t) = F (t)− luz (F (t), FT0)
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The heuristic description of dry friction with stiction corresponds to the
S-S mathematical procedure (see its definition in Żardecki (2006)). Marking
by s∗∗(t) the singularity variable, which balances the equation of motion when
z̈(t) = 0 (stiction), we have 0 = F (t) − FT0s∗∗(t). Hence, on the basis of the
S-S procedure, we obtain

FT0s
∗(t) = F (t)− luz (F (t), FT0)

The mathematical description of dry friction action ensuing from the heu-
ristic rule (or from the S-S procedure) is equivalent to application of some
general variation principle (Jourdain’s or Gauss’ principle).
On the basis of the Jourdain principle (with extensions) δż variation has

to be minimized in relation to the s∗ singularity in continuity of the ż = 0
state. This means minimization of |z̈|. The task is following

s∗ : min
s∗
|z̈| ∧ s∗ ∈ [−1, 1]

or
s∗ : min

s∗

∣
∣
∣
Mz̈

FT0

∣
∣
∣ = min

s∗

∣
∣
∣
F

FT0
− s∗
∣
∣
∣ ∧ s∗ ∈ [−1, 1]

The solution is

s∗ =







1 if s∗∗ > 1
s∗∗ if −1 ¬ s∗∗ ¬ 1
−1 if s∗∗ < −1

where s∗∗ =
F

FT0

so
s∗ =

F

FT0
− luz

( F

FT0
, 1
)

When we apply the Gauss principle, the so called „acceleration energy” is
minimized

s∗ : min
s∗
(Mz̈2) ∧ s∗ ∈ [−1, 1]

so

s∗ :
∂

∂s∗
(Mz̈2) = 0 ∧ s∗ ∈ [−1, 1]

s∗ :
∂

∂s∗

((F − FT0s∗)2

M

)

= 0 ∧ s∗ ∈ [−1, 1]

s∗ : F − FT0s
∗ = 0 ∧ s∗ ∈ [−1, 1]

so
s∗ =

F

FT0
− luz

( F

FT0
, 1
)
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Therefore, applying the Jourdain or Gauss rules

FT0s
∗(t) = F (t)− luz (F (t), FT0)

As we see, all methods have given the same result. They mean that the
static dry friction FTS = FT0s

∗ can be here described by the characteristics
shown in Fig. 8.

Fig. 8. Characteristics of static dry friction

Applying the FT0s∗(t) formula, for ż(t) = 0, the inclusion description can
be replaced by the differential equation

Mz̈(t) = luz (F (t), FT0)

which perfectly expresses the essence of the ”stick-slip” phenomenon. Note,
that when ż(t) = 0 and −FT0 < F (t) < FT0, then also z̈(t) = 0 (stiction
state). When for ż(t) = 0, F (t) < −FT0 or F (t) > FT0, then z̈(t) 6= 0
(no stiction state). In such a case, the state of ż(t) = 0 is only a tempo-
rary crossing. When the block is sticky and the excitation F (t) < −FT0 or
F (t) > FT0, then the state of slip begins.
Summing up, for every ż(t), the dynamic model of the block can be written

by a differential motion equation with the singularity s∗(t)

Mz̈(t) = F (t)− C tar
(

ż(t),
FT0
C

)

where FT0s∗(t) = F (t)− luz (F (t), FT0).
This model may be expressed without the singularity using a variable-

structural form

Mz̈(t) =







F (t)− C tar
(

ż(t),
FT0
C

)

if ż(t) 6= 0

luz (F (t), FT0) if ż(t) = 0

Both forms of the model are equivalent and both can be used in simulation.
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The presented elementary model of the stick-slip phenomenon is equiva-
lent with other models (eg. the well known Karnop model (Karnopp, 1985)).
Those models have rather more complicate forms, difficult for analytical ope-
rations. A compact, well coherent to parametric operations form of our model
is its important feature. Thanks to the luz (. . .) and tar (. . .) mathematical
apparatus, formal parametric simplification of the friction model is possible
and efficient. This is very important for automation of models synthesis and,
generally, for a more efficient, the so-called, MBS software.
The easiness of parametric operation on the friction model is shown below.

Consider a problem of simplification of the model when the mass of the block
is assumed to be negligible. In this case, when M = 0, the inclusion model is
degenerated to

0 ∈ −C tar
(

ż(t),
FT0
C

)

+ F (t)

On the basis of tar (. . .) projection (Theorem 5.3 in the first part (Żardecki,
2006)) such an inclusion passes to the equation form

ż(t) =
1
C
luz (F (t), FT0)

This equation has no s∗(t) and is well determined also for ż(t) = 0. Because
of the luz (. . .) description, the stick-slip problem is solved ”automatically”:
– when −FT0 < F (t) < FT0, luz (F (t), FT0) = 0 and ż(t) = 0 is continued,
– when F (t) < −FT0 or F (t) > FT0, the stiction state is terminated and

ż(t) 6= 0.
Analytical descriptions of rotation systems with friction concern angular

characteristics of torque and constitutive equations. Here we present a model
of a bearing element.

3.2. Friction model of bearing element

Notation:
α̇ – angular velocity
Mα – external torque
MT – friction torque
µ – damping coefficient
MT0 – maximum friction torque
I – moment of inertia

A stiff solid (inertial or non-inertial) element having a bearing in a fixed
base is analysed here.
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Fig. 9. One-mass element with friction in bearing

In this case, the Coulomb characteristics describing friction in the bearing
relates the friction torque with the angular velocity. Assuming that the element
may be inertial or non-inertial, one presents two variants of the mathematical
model.

• The model of inertial element with friction in the bearing (two variants):

– equation with singularity

Iαα̈i(t) =Mα(t)− µα tar
(

α̇(t),
MT0α

µα

)

where for α̇(t) = 0

MT0αs
∗

α(t) =Mα(t)− luz
(

Mα(t),MT0α

)

– variable-structure equation (without singularity)

Iαα̈(t) =







Mα(t)− µα tar
(

α̇(t), MT0α

µ

)

if α̇(t) 6= 0

luz (Mα(t),MT0α) if α̇(t) = 0

• The model of non-inertial element with friction in the bearing

µαα̇(t) = luz (Mα(t),MT0α)

The model of the bearing element will be useful for synthesis of the model
of the considered multi-body system.

4. Modelling of multi-body systems with freeplay and friction

An efficient method of modelling some class of MBS systems with fre-
eplay and friction has been elaborated on the base of simple piecewise linear
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models of elementary subsystems and the luz (. . .) and tar (. . .) projections.
This class of systems concerns especially mechanisms which can be treated as
rotational systems with fixed axles of rotation. They have invariable mecha-
nical structures, but because of the stick-slip phenomenon their mathematical
description have variable structural forms. The method is following:

• Firstly, a complementary discrete physical model is created. It can be
built with:

– stiff solid (inertial or non-inertial) elements

– spring elements with freeplay

– dissipative elements with dry friction.

• In the primary stage of modelling, all friction sub-systems are treated as
sub-systems having non-zero viscous friction, and all freeplay connections
are treated as sub-systems having non-zero elasticity. Solid elements are
treated as inertial bodies as well. Therefore, the primary physical model
has a redundant form.

• Then equations of motion for the primary model are built. The Lagran-
ge or other well known method can be used. All equations are created
by balancing the inertial forces or torques with external excitation, dis-
sipation as well as elasticity ones which are described by the luz (. . .)
and tar (. . .) projections. As a result, we obtain a redundant mathema-
tical model. Coordinates of bodies and their derivatives are the model
variables. The mass and geometric parameters of the solid elements and
parameters of piecewise linear characteristics are the parameters of the
model.

• The applicable model is obtained from the redundant model. This ope-
ration is done by formal parametric and assymptotic reduction. This
means that we must determine analytical forms of limitations – eg. very
small masses or moments of inertia tend to zero, very large stiffness –
to infinity. Calculations are supported by the mathematical apparatus
of luz (. . .) and tar (. . .) projections. When the model is provided for
simulation investigations, its form should not contain the so-called stiff
differential equations as well as any equations of constraints.

• As a result of successive reductions, we obtain successive aproximations
of the primary model.

The main advantage of the method is simplicity of the primary model
and mathematical formalism of the model reduction. Simplifications of the
reduced model ensue from mathematical formulas of the luz (. . .) and tar (. . .)
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projections. Oftentimes, reduction of equations seems to be very complicated
or even impossible be realised, while application of the luz (. . .) and tar (. . .)
projections makes them surprisingly simple.
A representative example of application of this method is shown below.

4.1. Model of exemplary multi-body system with freeplay and friction

Notation:
Symbols are the same as in Section 2 and Section 3.

A multi-body rotation system consists of two inertial solids, two shafts
and two gear wheels (Fig. 10). We assume that the gear wheels are weightless.
There are three freeplays: one between gears teeth and two – in sockets of
shafts. The rotation elements have four bearings with friction. This system is
driven by two external torques Mψ(t), Mϕ(t).

Fig. 10. An example of a multi-body rotation system

The primary redundant model is given by Newton’s equations of motion

Iψψ̈(t) + µψ tar
(

ψ̇(t),
MT0ψ

µψ

)

+ kψδ luz (ψ(t) − δ(t), (ψ − δ)0) =Mψ(t)

Iδ δ̈(t) + µδ tar
(

δ̇(t),
MT0δ

µδ

)

− kψδ luz (ψ(t) − δ(t), (ψ − δ)0) +

+kδγ luz (δ(t) − pγ(t), (δ − pγ)0) = 0
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Iδγ̇(t) + µγ tar
(

γ̇(t),
MT0γ

µγ

)

− pkδγ luz (δ(t) − pγ(t), (δ − pγ)0) +

+kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0) = 0

Iϕϕ̇(t) + µϕ tar
(

ϕ̇(t),
MT0ϕ

µϕγ

)

− kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0) =Mϕ(t)

These equations will be simplified, therefore at this moment we need not to
determine their variable-structural forms or equations describing the singula-
rities s∗ϕ, s

∗

δ , s
∗

γ , s
∗

ψ, which are necessary for zero velocities.

Simplification 1: when Iδ = Iγ = 0 (weightless gear)
The second and third equation assumes a degenerated form

µδ tar
(

δ̇(t),
MT0δ

µδ

)

− kψδ luz (ψ(t) − δ(t), (ψ − δ)0) +

+kδγ luz (δ(t)− pγ(t), (δ − pγ)0) = 0

µγ tar
(

γ̇(t),
MT0γ

µγ

)

− pkδγ luz (δ(t) − pγ(t), (δ − pγ)0) +

+kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0) = 0

Applying Theorems 2.1, 3.2, see Żardecki (2006), we obtain these equations in
disentangled form. The applicable model of the system has a form

Iψψ̈(t) + µψ tar
(

ψ̇(t),
MT0ψ

µψ

)

+ kψδ luz (ψ(t) − δ(t), (ψ − δ)0) =Mψ(t)

where for ψ̇(t) = 0

MT0ψs
∗

ψ(t) =Mψψ(t)− luz (Mψψ(t),MT0ψ) and

Mψψ(t) =Mψ(t)− kψδ luz (ψ(t) − δ(t), (ψ − δ)0)

µδ δ̇(t) + luz (kψδ luz (ψ(t) − δ(t), (ψ − δ)0) +

− kδγ luz (δ(t) − pγ(t), (δ − pγ)0),MT0δ

)

= 0

µγ γ̇(t) + luz (−pkδγ luz (δ(t) − pγ(t), (δ − pγ)0) +

+ kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0),MT0γ) = 0

Iϕϕ̇(t) + µϕ tar
(

ϕ̇(t),
MT0ϕ

µϕγ

)

− kγϕ luz (γ(t) − ϕ(t), (γ − ϕ)0) =Mϕ(t)

where for ϕ̇(t) = 0

MT0ϕs
∗

ϕ(t) =Mϕϕ(t)− luz (Mϕϕ(t),MT0ϕ) and

Mϕϕ(t) =Mϕ(t) + kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0)
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Simplification 2: when Iδ = Iγ = 0 and µδ = µγ = 0, MT0δ = MT0γ = 0
(weightless gear with perfect bearing, but with teeth feeplay).

The second and third equations assume an involved form

kψδ luz (ψ(t) − δ(t), (ψ − δ)0)− kδγ luz (δ(t) − pγ(t), (δ − pγ)0) = 0

−pkδγ luz (δ(t)− pγ(t), (δ − pγ)0) + kγϕ luz (γ(t)− ϕ(t), (γ − ϕ)0) = 0

These equations are entangled constraints for the first and forth equation.
To reduce the variables δ(t) and γ(t), the second and third equations are
transformed to the form

luz (ψ(t)− δ(t), (ψ − δ)0) =
kδγ
kψδ
luz (δ(t) − pγ(t), (δ − pγ)0)

luz (pγ(t)− pϕ(t), p(γ − ϕ)0) =
p2kδγ
kγϕ
luz (δ(t) − pγ(t), (δ − pγ)0)

Applying properties of the luz (. . .), on the basis of Theorem 4.3 (Żardecki,
2006), we find

luz (ψ(t) − δ(t), (ψ − δ)0) =

kδγ
kψδ

p2kδγ
kγϕ
+ kδγ

kψδ
+ 1
·

· luz (ψ(t) − pϕ(t), (ψ − δ)0 + (δ − pγ)0 + p(γ − ϕ)0)

luz (pγ(t)− pϕ(t), p(γ − ϕ)0) =

p2kδγ
kγϕ

p2kδγ
kγϕ
+ kδγ

kψδ
+ 1
luz (ψ(t)− pϕ(t), (δ − pγ)0)

As the final result, we obtain the model without algebraic constraints (!)

Iψψ̈(t) + µψ tar
(

ψ̇(t),
MT0ψ

µψ

)

+ kψϕ luz (ψ(t)− pϕ(t), (ψ − pϕ)0) =Mψ(t)

where for ψ̇(t) = 0

MT0ψs
∗

ψ(t) =Mψψ(t)− luz (Mψψ(t),MT0ψ) and

Mψψ(t) =Mψ(t)− kψϕ luz (ψ(t) − pϕ(t), (ψ − pϕ)0)

Iϕϕ̇(t) + µϕ tar
(

ϕ̇(t),
MT0ϕ

µϕγ

)

− pkψϕ luz (ψ(t) − pϕ(t), (ψ − pϕ)0) =Mϕ(t)

where for ϕ̇(t) = 0

MT0ϕs
∗

ϕ(t) =Mϕϕ(t)− luz (Mϕϕ(t),MT0ϕ) and

Mϕϕ(t) =Mϕ(t) + pkψϕ luz (ψ(t)− pϕ(t), (ψ − pϕ)0)
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where kψϕ is the reduced stiffness coefficient

kψϕ =
( 1
kψδ
+
1
kδγ
+

p2

kγϕ

)
−1

and (ψ − pϕ)0 is the reduced freeplay parameter

(ψ − pϕ)0 = (ψ − δ)0 + (δ − pγ)0 + p(γ − ϕ)0

Note, when the gear stiffness kδγ →∞ (practically kδγ � kψδ, kγϕ), then

kψϕ =
( 1
kψδ
+
1
kδγ
+

p2

kγϕ

)
−1 kδγ
−→
( 1
kψδ
+

p2

kγϕ

)
−1

This result confirms the possibility of operation with the piecewise linear
model by its reduced parameters. Their theoretical as well as well known in
practice mathematical forms are compatible.

Simplification 3: where Iδ = Iγ = 0, µδ = µγ = 0, MT0δ = MT0γ = 0, and
kδγ � kψδ , kγϕ (kδγ →∞), (ψ − δ)0 = (γ − ϕ)0 = (δ − pγ) = 0.
(Ideal kinematic gear with stiff teeth in the system without freeplay and dry
friction).
The reduced linear model is

Iψψ̈(t) + µψψ̇(t) + kψϕ(ψ(t) − pϕ(t)) =Mψ(t)

Iϕϕ̈(t) + µϕϕ̇(t)− pkψϕ(ψ(t)− pϕ(t)) =Mϕ(t)

As we can see, all these simplifications could be strictly formal.

5. Final remarks

In this paper, the idea and examples of application of a new method to
the modelling of mechanical systems with freeplay and friction have been pre-
sented. The method is based on the piecewise linear luz (. . .) and tar (. . .)
projections and their original mathematical apparatus. It is very useful for de-
scription of stick-slip processes in multi-body systems which can be described
by piecewise – linear equations.
The presented method has been already applied to synthesis of simulation

models of steering systems with freeplays and dry friction (see for example
Lozia and Żardecki, 2002, 2005; Żardecki, 1998, 2005a,b).
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Przedziałami liniowe odwzorowania luz (. . .) i tar (. . .).
Część 2 – Zastosowanie w modelowaniu układów dynamicznych z luzem

i tarciem

Streszczenie

Artykuł przedstawia ideę i przykłady zastosowania nowej metody modelowania
układów mechanicznych z luzem i tarciem. Metoda bazuje na przedziałami liniowych
odwzorowaniach luz (. . .) i tar (. . .) oraz ich oryginalnym aparacie matematycznym.
Metoda jest bardzo użyteczna dla syntezy modeli symulacyjnych i opisu zjawiska
stick-slip w układach wielomasowych.
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