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This paper presents a theoretical study of the process of damping of non-
linear vibrations in a three-mass model of a power transmission system
with a multi-disc flexible friction clutch switched on and off electroma-
gnetically. Steady-state motion of the system is subject to harmonic exci-
tation. The problem is considered on the assumption of a uniform unit
pressure distribution between the contacting surfaces of the cooperating
friction discs. Structural friction, small relative sliding of the clutch discs
and linear viscotic damping have also been taken into account. In the
case of sliding, the friction coefficient is not constant but depends on the
relative angular velocity of slowly sliding discs. The aim of the analysis is
to assess the influence of geometric parameters of the system, its exter-
nal load, unit pressure, viscotic damping on resonance curves and phase
shift angle of steady-state vibrations. The equations of motion of the
examined system are solved by means of the slowly varying parameters
(Van der Pol) method and digital simulation.
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1. Introduction

Friction clutches of usual design, including single and multi-disc systems,
have an important property of damping torsional vibrations as a result of mi-
cro and macro slip between torsionally flexible discs. The sliding effect in the
elastic range of the material of cooperating elements is called the structural
friction. This phenomenon is well know and referred to as a structural hystere-
sis loop (see Godman and Klamp, 1956; Pian, 1957 or Caughey, 1960 for early
studies). In the Polish literature, an overview of structural friction problems
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with applications can be found in the works by Osiński (1986, 1998), Giergiel
(1990), Gałkowski (1981), Kosior and Wróbel (1986). Structural friction is a
natural source of damping present in every real device. In friction clutches, the
magnitude of dissipation can be controlled in such a way that the best dynamic
properties of the entire transmission system are obtained. Nominal driving or
resistance torques of such systems are usually disturbed by additional forces
of a periodical or random nature.

From the point of view of clutch design, it is important to establish a rela-
tion between the external driving load and corresponding torsional motion of
the transmission system. Therefore, a dynamic analysis based on more advan-
ced models is necessary. During the past two decades, attention was mainly
focused on dynamical analysis of systems with structural friction, using rela-
tively simple models of both the stick-slip process and the mechanical system.
More advanced stick-slip models were developed based mainly on finite ele-
ments (see Buczkowski and Kleiber, 1997; Buczkowski, 1999; Grudziński et
al., 1992; Pietrzakowski, 1986; Zboiński and Ostachowicz, 1997). A number
of papers devoted to various dynamical problems of friction clutches was pre-
sented by Skup (1991a,b, 1998, 2001, 2003, 2004), who developed an analytic
description of the dynamic friction torque in a multi-disc clutch with torsional-
ly flexible discs and shafts, and applied this result to solve vibration problems
in transmission systems related to various excitation loads.

The relation between an external load and relative angular displacements
of discs is of the fundamental importance for the design of friction clutches
and their proper selection for particular engine-machine systems.

The degree of energy dissipation in a power transmission system can be
controlled in order to obtain the best dynamical properties of the whole sys-
tem. The traditional professional literature treats frictional torsion dampers,
frictional clutches and brakes as joints of rigid bodies. Therefore, the effect of
natural damping has been neglected.

The author of this paper takes into consideration the elasticity of the ma-
terial of cooperating elements in a friction clutch. The problem is investigated
on the assumption of a uniform distribution pressures, non-uniform friction
coefficient and linear viscous damping. The problem of deriving a precise ma-
thematical description of the structural friction is very complicated because
of the complexity of the friction phenomenon as well as difficulties in descri-
bing the stress and strain states present in the sliding zone. Therefore, the
mathematical description is based on many simplifications.

The assumptions concerning the properties of the material and friction
forces are the same as in the classical theory of elasticity and structural friction
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theory. In the case when friction forces are smaller than applied loadings,
there is a macro-slide (a kinetic coefficient of friction) between the cooperating
elements. Such a phenomenon is accompanied by the occurrence of friction
forces. Studies which have been conducted so far by the author in the domain of
mechanical systems with structural friction were based on the assumption that
there was no sliding between the cooperating elements (in the case of a static
coefficient of friction, for micro-sliding). The phenomena of structural friction
and macro-slip appear simultaneously during engagement or overloading the
damper.
Characteristics of friction are based also on the experimental research pre-

sented by Grudziński et al. (1992), Kołacin (1971), Popp and Stelter (1990),
Skup (1998). Most of the work has been restricted to the analysis of a one-
degree-of-freedom system.

2. Equations of motion of the mechanical system

We assume a three-mass model of a mechanical system which consists of
an engine (E), friction clutch (C), reduced mass (RM) and a working machi-
ne (WM), as shown in Fig. 1. Structural friction occurs between the coopera-
ting surfaces of discs of a friction clutch (C).

Fig. 1. Physical model of the considered power transmission system

Therefore, equations of motion of the considered system may be written
down as follows

I1ϕ̈11 +Mz =M(t) +Mm

I2ϕ̈12 −Mz + k1(ϕ12 − ϕ13) + c1(ϕ̇12 − ϕ̇13) = 0 (2.1)

I3ϕ̈13 − k1(ϕ12 − ϕ13)− c1(ϕ̇12 − ϕ̇13) +Mr = 0

where



878 Z. Skup

Fig. 2. Mechanical system with a non-linear hysteresis loop and linear viscotic
damping reduced to two-degrees-of-freedom

I1, I2, I3 – mass moments of inertia of the driving and driven
part, respectively

ϕ11, ϕ12, ϕ13 – angular displacements
Mz – clutch friction torque in a cycle represented by the

structural hysteresis loop (Fig. 2), dependent on the
relative angular displacement, its vibration amplitude
and its sign of velocity, respectively

c1 – coefficient of viscous damping (Fig. 2)
Mr – resistance torque
M(t) +Mm – variable engine torque described by the constant ave-

rage value of the nominal driving torque Mm and
discrete torque M(t) in the form of a harmonic exci-
tation, i.e.

M(t) =M0 cosωt (2.2)

and
M0 – amplitude of the excitation torque
ω – angular velocity of the excitation torque
t – time

and

Mz =

{

M(ϕ1, A1, ϕ̇1) for ρ < ρ1

MT (ϕ̇) for R ­ ρ > ρ1
(2.3)

Having used the results presented by Skup (2001), a limited radius sliding
zone ρ1, shown in Fig. 3, and M = M(ϕ1, A1, ϕ̇1), shown in Fig. 2, were
determined.
Thus,

M(ϕ1, A1, ϕ̇1) =
1√
η3

(

√

A1
2
+
√

A1 + ϕ sgn ϕ̇ sgn ϕ̇−
√
2A1
2
−
√
2A1
2
sgn ϕ̇

)

(2.4)
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Fig. 3. Load distribution in the frictional pair

and

ν =
3

2πµpR3
ρ1 = r

3
√
1 + ναM 0 ¬ α ¬ 1

η3 =
κ1ν
2

6
κ1 =

2δ(k1 + k2)

k1k2
δ =
µpR

6
k1 = Gh1 k2 = Gh2

(2.5)

where
η3, α – nondimensional parameters
k1, k2 – stiffness of discs
h1, h2 – their thickness
µ – friction coefficient
p – pressure per unit area
r,R – internal and external radius of the discs
G – shear modulus
MT (ϕ̇) – friction torque dependent on the sign of relative angular

velocity.

The moment of friction in the friction clutch is described as below

MT (ϕ̇) = 2π

R
∫

ρ1

p(ρ)ρ2µ(ϕ̇) dρ (2.6)

where ρ is the radius (r ¬ ρ ¬ R), µ(ϕ̇) – variable value of the friction coeffi-
cient dependent on the relative angular velocity. The hysteresis loop described
by (2.4) and (2.6) is shown in Fig. 4.
In the case of macro-slide of the collaborating discs and plunger (ρ1 = r),

we obtain

MT (ϕ̇) =
2

3
πp(R3 − r3)µ(ϕ̇) (2.7)
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Fig. 4. Hysteresis loops: MT (ϕ̇), M(ϕ1, A1, ϕ̇1) – moments of friction for kinetic and
static friction

Fig. 5. Variation of the friction coefficient in function of relative speed of sliding discs

In the papers by Grudziński et al. (1992) Kołacin (1991), Pop and Stelter
(1990), Skup (1998), theoretical studies were confirmed by experimental rese-
arch. Therefore, variation of the friction coefficient µ(ϕ̇) shown in Fig. 5 can
be determined in the following form:

µ(ϕ̇) = (a1 − c1ϕ̇2) sgn ϕ̇− b1ϕ̇+ d1ϕ̇3 (2.8)

where a2, b2, c2, d2 are constant parameters. The numerical results were ob-
tained for the following set of data for dry friction

a2 = 0.25 b2 = 0.03 c2 = 0.02

d2 = 0.002 ϕ̇ = ω = 1 rad/s
(2.9)
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3. The solution to equations of motion

Since we are interested in steady motion of the considered system, we
assume Mm = Mr, which provides a uniform rotation of the undisturbed
system.
Introducing new variables: ϕ1 = ϕ11−ϕ12 and ϕ2 = ϕ12−ϕ13 in forms of

relative angles of torsion, we can reduce equations (2.1) to two second-order
non-linear differential equations describing relative torsional vibration

ϕ̈1 − cϕ̇2 + f1(ϕ1, A1, ϕ̇1)−mϕ2 −B = z cosωt
(3.1)

ϕ̈2 + wϕ̇2 + nϕ2 − βf1(ϕ1, A1, ϕ̇1)−A = 0

where

c =
c1
I2

f1(ϕ1, A1, ϕ̇1) =
Mz
Iz1

m =
k1
I2

k1 =
πGd41
32l1

B =
Mm
I1

z =
M0
I1

w =
c1
Iz2

n =
k1
Iz2

A =
Mm
I3

Iz1 =
I1I2
I1 + I2

Iz2 =
I2I3
I2 + I3

β =
I1
I1 + I2

(3.2)

Let the solution to the system of equations (3.1) be approximated by

ϕ1 = A1 cos θ1 ϕ2 = A2 cos θ2 (3.3)

where
θ1 = ωt− φ1 θ2 = θ1 − φ2 (3.4)

and A1, A2, φ1, φ1 are all slowly varying functions of time t. Then

ϕ̇1 = Ȧ1 cos θ1 +A1φ̇1 sin θ1 −A1ω sin θ1
(3.5)

ϕ̇2 = Ȧ2 cos θ2 +A2φ̇2 sin θ2 −A2ω sin θ2

By analogy to Lagrange’s method of variation of a parameter, it is permissible
to propose the following

Ȧ1 cos θ1 +A1φ̇1 sin θ1 = 0
(3.6)

Ȧ2 cos θ2 +A2φ̇2 sin θ2 = 0
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Thus

ϕ̈1 = ωA1φ̇1 cos θ1 −A1ω2 cos θ1 − ωȦ1 sin θ1
(3.7)

ϕ̈2 = ωA2φ̇2 cos θ2 −A2ω2 cos θ2 − ωȦ2 sin θ2
Substituting equations (3.7) and (3.5)2 into equations of motion (3.1) and

using formulas (3.3), (3.4), (3.6), are arrives at

ωA1φ̇1 cos θ1 −A1ω2 cos θ1 − ωȦ1 sin θ1 + cA2ω sin θ2 +
+ f1(A1, θ1)−mA2 cos θ2 −B = z cos(θ1 + φ1)

(3.8)

ωA2φ̇2 cos θ2 −A2ω2 cos θ2 − ωȦ2 sin θ2 − wA2ω sin θ2 +
+ nA2 cos θ2 − βf1(A1, θ1)−A = 0

Multiplying equation (3.6)1 by ω cos θ1, equation (3.8)1 by sin θ1, then
subtracting the sides and using formula (3.4), we obtain

−A1ω2 sin θ1 cos θ1 − ωȦ1 + f1(A1, θ1) sin θ1 −B sin θ1 +
(3.9)

−mA2 cos θ2 sin(θ2 + φ2) + cA2ω sin θ2 sin(θ2 + φ2) = z sin θ1 cos(θ1 + φ1)
Since the variables A1, A2, φ1 and φ2 are assumed to be slowly varying,

they remain essentially constant over one cycle of θ1.
Thus equation (3.9) may be averaged over one cycle of θ1, which gives

−ωȦ1 +
1

2
cA2ω cosφ2 +

1

2π

2π
∫

0

f1(A1, θ1) sin θ1 dθ1 −
1

2
mA2 sinφ2 =

(3.10)

= −1
2
z sinφ1

Multiplying equation (3.6)1 by ω sin θ1, equation (3.8)1 by cos θ1, adding
the sides, and using formula (3.4), gives

ωA1φ̇1 −A1ω2 cos2 θ1 + cA2ω sin θ2 cos(θ2 + φ2) + f1(A1, θ1) cos θ1 +
(3.11)

−mA2 cos θ2 cos(θ2 + φ2)−B cos θ1 = z cos θ1 cos(θ1 + φ1)
Averaging equation (3.11) over one cycle of θ1, gives

ωA1φ̇1 −
1

2
cA2ω sinφ2 −

1

2
A1ω

2 +
1

2π

2π
∫

0

f1(A1, θ1) cos θ1 dθ1 +

(3.12)

−1
2
mA2 cosφ2 =

1

2
z cosφ1
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Similarly, multiplying equation (3.6)2 by ω cos θ2, equation (3.8)2 by sin θ2,
subtracting the sides, and using formula (3.4), yields

ωȦ2 +A2ω
2 sin θ2 cos θ2 + wA2ω sin

2 θ2 − nA2 sin θ2 cos θ2 +
(3.13)

+βf1(A1, θ1) sin(θ1 − φ2) +A sin θ2 = 0

With equation (3.13) averaged over one cycle of θ1, we obtain

ωȦ2 +
1

2
wA2ω +

β cosφ2
2π

2π
∫

0

f1(A1, θ1) sin1 dθ1 +

(3.14)

−β sinφ2
2π

2π
∫

0

f1(A1, θ1) cos θ1 dθ1 = 0

Finally, multiplying equation (3.6)2 by ω sin θ2, equation (3.8)2 by cos θ2,
adding the sides, and using formula (3.4), gives

ωA2φ̇2 −A2ω2 cos2 θ2 − wA2ω sin θ2 cos θ2 + nA2 cos2 θ2 +
(3.15)

−βf1(A1, θ1) cos(θ1 − φ2)−A cos θ2 = 0

After averaging over one cycle of θ1, equation (3.15) takes the following
form

ωA2φ̇2 −
1

2
A2ω

2 +
1

2
nA2 −

β cosφ2
2π

2π
∫

0

f1(A1, θ1) cos θ1 dθ1 +

(3.16)

−β sinφ2
2π

2π
∫

0

f1(A1, θ1) sin θ1 dθ1 = 0

Steady-state equations (3.10), (3.12), (3.14) and (3.16) can be obtained
when Ȧ1 = Ȧ2 = φ̇1 = φ̇2 = 0
When the following notations are introduced

S1 =
1

π

2π
∫

0

f1(A1, θ1) sin θ1 dθ1

(3.17)

C1 =
1

π

2π
∫

0

f1(A1, θ1) cos θ1 dθ1
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equations (3.10), (3.12), (3.14) and (3.16) assume the following form

−S1 +mA2 sinφ2 − cA2ω cosφ2 = −z sinφ1
−A1ω2 + C1 −mA2 cosφ2 − cA2ω sinφ2 = z cosφ1

(3.18)

wA2ω + βS1 cosφ2 − βC1 sinφ2 = 0
(n− ω2)A2 − βC1 cosφ2 − βS1 sinφ2 = 0

The variable φ1 may be eliminated from the foregoing equations by squ-
aring and adding equations (3.18)1,2. This gives

(S1−mA2 sinφ2+cA2ω cosφ2)2+(C1−A1ω2−cA2ω sinφ2−mA2 cosφ2)2 = z2
(3.19)

Equations (3.18)3,4 may be rewritten in the following form

sinφ2 =
A2[S1(n− ω2) + wωC1]

β(C21 + S
2
1) (3.20)

cosφ2 =
A2[C1(n− ω2)− wωS1]

β(C21 + S
2
1)

In order to determine the amplitude A2, the second equation has to
be formulated by means of squaring and adding the sides of equations
(3.20). Performing the indicated operations and rearranging the equations, are
obtains

A22 =
β2(S21 + C

2
1 )

[(n− ω2)2 + w2ω2] (3.21)

Equations (3.20) can be used to eliminate the variable φ2 from equation
(3.19). Therefore, substituting equations (3.20) and (3.21) into equation (3.19)
and rearranging them, gives

βz2 = (C21 + S
2
1)(α1 − α4) +A1(α2S1 + α3C1) + α5A21 (3.22)

where

x =
β2

[(n− ω2)2 + w2ω2] α1 = β[1 + x(m
2 + c2ω2)]

α2 = 2xω
3[(n− ω2)− wm] α3 = 2ω

2{x[m(n− ω2) + ω2w]− β}
α4 = 2x[ω

2cw −m(n− ω2)] α5 = βω
4

(3.23)



Damping of vibrations in a power transmission system... 885

For ϕ̇ = 0, there appears a discontinuity yn M(ϕ1, A1, ϕ̇1). To avoid this
while integrating Eqs. (3.17), we confine our considerations to a single half-
period (motion between two stops).

Thus, the integration interval (from 0 to 2π) of the right-hand terms of
the above equations is divided into two sub-intervals: from 0 to π for negative
sgn ϕ̇1 and from π to 2π for positive sgn ϕ̇1. Such a procedure, for instance,
was adopted by Caughey (1960), Osiński (1998) and Skup (1998).

Therefore, after substituting formulas (2.4) and (2.7) into equations (3.17)
by using formula (3.2) and subsequent integration, we obtain the following
relationships after some transformations

C1 =
1

π

2π
∫

0

f1(A, θ) cos θ dθ =

=
1

πIz1

{

π
∫

0

[M(ϕ1, A1, ϕ̇1) +MT (ϕ̇)] cos θ dθ↓ sgn ϕ̇<0
}

+

+
1

πIz1

{

2π
∫

π

[M(ϕ1, A1, ϕ̇1) +MT (ϕ̇)] cos θ dθ↓ sgn ϕ̇>0
}

=
8
√
A1

3πIz1
√
2η3
(3.24)

S1 =
1

π

2π
∫

0

f1(A, θ) cos θ dθ =

=
1

πIz1

{

π
∫

0

[M(ϕ1, A1, ϕ̇1) +MT (ϕ̇)] sin θ dθ↓ sgn ϕ̇<0
}

+

+
1

πIz1

{

2π
∫

π

[M(ϕ1, A1, ϕ̇1) +MT (ϕ̇)] sin θ dθ↓ sgn ϕ̇>0
}

=

=
1

πIz1

[

4F
(2

3
c2A
2
1ω
2 − a2)−

4
√
A1

3
√
2η3

]

Finally, substituting equations (3.24) into equation (3.22) and (3.21) and
using formulas (3.23), gives

T8A
8
1 + T7A

7
1 + T6A

6
1 − T5A51 + T4A41 + T3A31 + T2A21 + T1A1 + T0 = 0

(3.25)

A22 =
x

π2I2z1

{32A1
9η3
+
[

4F
(2

3
c2A
2
1ω
2 − a2

)

− 4
√
A1

3
√
2η3

]}
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where

T0 = β
2z4 + α18(α18 − 2βz2) + α214 T5 = 2(α11α12 + α10α13)

T1 = 2[α13(α18 − βz2)] + α14α16 T6 = α
2
11 + 2α10α12

T2 = α
2
18 − 2α12(βz2 − α18) + α216 + 2α14α15 T7 = 2α10α11

T3 = 2[α12α13 + α11(α18 − βz2)] + α15α16 T8 = α
2
10

T4 = α
2
12 + α

2
15 + 2[α11α13 + α10(α18 − βz2)]

(3.26)
and

α6 =
8Fc2ω

2

3πIz1
α7 =

4Fa2
πIz1

α8 =
16F

3πIz1
√
2η3

α9 =
8

3πIz1
√
2η3

α10 = α1α
2
6 − α4α26 α11 = α2α6

α12 = 2α6α7(α4 − α1) + α5 α13 = (α1 − α4)(α28 + α29)− α2α7
α14 = 2α7α8(α1 − α4) α15 = 2α6α8(α4 − α1)
α16 = α3α9 − α2α8 α18 = α1α7

(3.27)
Thus, the formulated steady-state problem has been reduced to a set of two
equations, i.e. (3.25), with two unknown amplitudes A1 and A2.

Equation (3.25)1 was solved by means of the Newton-Raphson Iterative
Technique method. We had to choose one from the eight roots of equation
(3.25)1 which would satisfy the physical condition.

That root takes a specific value of the deformation amplitude in the exa-
mined system. For such a value of A1, the value of A2 was calculated with
formula (3.25)2 in function of the forced vibration frequency.

4. Numerical results

The following data has been assumed in the numerical calculations

h1 = 0.00125 m h2 = 0.00103 m r = 0.050 m

M0 = 20 Nm µ = 0.21 d = 0.035 m
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I1 = 0.35 kgm
2 I2 = 0.08 kgm

2 I3 = 0.420 kgm
2

l = 0.25 m p = 1.2 · 105 N/m2 G = 8.1 · 1010 N/m2

c1 = 0.50 Nms

On the basis of results of the numerical analysis, it has been found that all
resonance curves do not start from zero but tend asomptically to zero in the
superresonance range (Fig. 6 – Fig. 9).

The response curves are typical for the ”soft” type of resonance (Fig. 6).
The influence of the loading amplitude (Fig. 6), unit pressures (Fig. 7), viscotic
damping (Fig. 8) and the internal radius (Fig. 9) on the process of vibration
damping has been examined in the numerical calculations as well. Diagrams
in Fig. 6 show that the maximal values of the amplitudes A1 and A2 in the
first resonance are significantly higher than their maximal values in the second
resonance.

Fig. 6. Resonant curves for various amplitudes of the excitation torque M0

There exists an optimal clamp of the clutch plates, where the resonance
amplitudes in the first and second resonance reach the minimum (see Fig. 7).
The reason for this is the increase of the sliding zone of the cooperating disc
surfaces, which maximizes the loss of energy.

When the amplitude rises, the difference between the maximal values
of the amplitudes A1 in the first and second resonance grows a little, and
the difference between the maximal values of the amplitude A2 decreases a
little.



888 Z. Skup

Fig. 7. Resonant curves for various values of the unit pressure p

The examined system has a ”soft” frequency characteristic and damping
diagram. An increase in the viscotic damping causes a decrease in the reso-
nance amplitudes A1 and A2, particularly in the first resonance (Fig. 8).

Fig. 8. Resonant curves for various values of the viscotic damping coefficient c1

When the unit pressure increases, the sliding zone decreases, which enta-
ils weaker energy dissipation and decreased damping capability of the power
transmission system. The less is the internal radius, the more visible becomes
the damping vibration effect (Fig. 9).
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Fig. 9. Resonant curves for various values of the internal radius r of the discs

5. Concluding remarks

Structural friction between contacting surfaces of discs in the friction clutch
causes increased performance of the examined system in terms of vibration
damping. The author of the paper has carefully examined the effect of the
most important parameters of the vibrating power transmission system with
a friction clutch on resonant amplitudes.

On the basis of the obtained results, it has been found that all resonance
curves start from a non-dimensional resonance amplitude and tend asympto-
tically to zero in the post-resonance zone. They also tend to assume a more
smooth form in that zone. The damping effect is strongest for the optimal
value of the friction force when the area of relative slide between the co-
oporating surfaces of discs is largest. The effects of structural friction and
viscotic damping can be used in order to improve the design of dynamic
systems.

Yet, it should be noted that vibration damping by friction clutches is consi-
derably influenced by the following factors: amplitude of forcing, unit pressure,
coefficient of viscous damping and internal radius of discs. The examined sys-
tem has a ”soft” frequency characteristic and attenuation diagram.
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Tłumienie drgań w układzie napędowym zawierającym

sprzęgło cierne

Streszczenie

Artykuł przedstawia rozważania teoretyczne procesu tłumienia drgań nielinio-
wych w układzie napędowym o trzech stopniach swobody ze sprzęgłem ciernym włą-
czanym elektromagnetycznie. Przedmiotem rozważań jest ruch ustalony układu pod-
danego wymuszeniu harmonicznemu. Zagadnienie rozpatrywane jest przy założeniu
stałego rozkładu nacisku pomiędzy współpracującymi powierzchniami tarcz ciernych.
Uwzględniane jest tarcie konstrukcyjne, mały względny poślizg tarcz sprzęgła oraz
liniowe tłumienie wiskotyczne. W przypadku poślizgu współczynnik tarcia nie jest
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stały, a zależy od względnej prędkości powoli ślizgających się tarcz. Celem analizy
jest zbadanie wpływu geometrycznych parametrów układu, obciążenia zewnętrznego,
nacisku jednostkowego, wiskotycznego współczynnika tłumienia na krzywe rezonan-
sowe i kąta przesunięcia fazowego dla drgań ustalonych. Równania ruchu badanego
układu zostały rozwiązane metodą powoli zmieniających się parametrów (metoda Van
der Pola) i metodą symulacji cyfrowej.
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