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The problem of the determination of response characteristics and quasi-
optimal control for nonlinear stochastic dynamic systems by using a
multi-criteria linearization technique is presented in this paper. This idea
was first introduced in previous author’s paper (Socha, 1999a) for a sim-
ple dynamic system. In this paper, it is extended, and detailed analysis
is given for a nonlinear oscillator with Gaussian external excitations and
for a few criteria of statistical linearization. The obtained results are
illustrated by a numerical example for Duffing’s oscillator.
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1. Introduction

Linearization methods are the most versatile methods for analysis of non-
linear systems and structures under stochastic excitations. Different criteria of
linearization connected with well known linearization methods such as statisti-
cal linearization, equivalent linearization or exact linearization in three basic
spaces were separately considered in the literature. They were discussed in:

• space of moments of stochastic processes – Elishakoff (2000)
• space of probability density functions of stochastic processes – Socha
(1999b)

• space of spectral density functions of stochastic processes – Bernard and
Taazount (1994).
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The number of different linearization criteria is large (more than 100).
For details see, for instance, a survey papers Elishakoff (2000) or Socha and
Soong (1991). It is clear that the choice of a group of criteria of lineariza-
tion depends on a considered problem but in one group, for instance, in the
space of moments of stochastic processes the problem is open and the choice
requires analysis. To study multicriteria problems, special approaches called
multicriteria optimization methods were developed in the literature. In the
field of mechanics, it was reviewed in Stadler (1984). The objective of this
paper is to show a relationship between these criteria using two approaches of
poly-criterial optimization techniques, namely the scalarization method and
Pareto-optimal solution (Sawaragi et al., 1985; Skulimowski, 1996) in appli-
cation to the determination of the response characteristics and quasi-optimal
control for nonlinear stochastic dynamic systems. This idea was first introdu-
ced in previous author’s paper (Socha, 1999a) for a simple dynamic system. In
this paper, it is extended and detailed analysis is given for a nonlinear oscil-
lator with Gaussian external excitations and for a few criteria of statistical
linearization. The obtained results are illustrated by a numerical example for
Duffing’s oscillator.
Consider a nonlinear stochastic model of a dynamic system described by

the Ito vector differential equation

dx(t) = Φ(x) dt+
M
∑

k=1

Gk dξk(t) (1.1)

where x = [x1, . . . , xn]
> is the state vector, Φ = [Φ1, . . . , Φn]

> is a nonlinear
vector function such that Φ(0) = 0, Gk = [Gk1, . . . , Gkn]

> are deterministic
vectors, ξk are independent standard Wiener processes. We assume that a
unique solution to equation (1.1) exists.

2. Linearization techniques for stochastic systems

2.1. Statistical and equivalent linearization

There are two basic groups of linearization methods for stochastic dy-
namic systems, namely the statistical (or local) linearization and equivalent
linearization. In the case of statistical linearization, the objective is to find
for a nonlinear vector Φ = [Φ1, . . . , Φn]

> an equivalent one ”in the sense of a
linearization criterion”, i.e., replacing

Y = Φ(x, t) (2.1)
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in equation (1.1) by a linearized form

Y = Φ0(mx,Θx, t) +K(mx,Θx, t)x
0 (2.2)

where
mx = E[x] Θx = [θij ] = E[x

0
i x
0
j ] (2.3)

with x0i = xi −mxi being the centralized stochastic process

Φ0 = [Φ01, . . . , Φ0n]
>

is a nonlinear vector function of the moments of x and K = [kij ] is a n × n
matrix of statistical linearization coefficients.
In the case of equivalent linearization, the objective is to find for nonlinear

dynamic system (1.1) an equivalent one in the sense of a linearization criterion
based on response properties for nonlinear system (1.1) and for the following
linearized system

dx(t) = [A(t)x+C(t)]dt+
M
∑

k=1

[Dkx+Gk]dξk(t) (2.4)

where A = [aij ], Dk = [dkij ], i, j = 1, . . . , n, k = 1, . . . ,M are matrices
and C = [C1, . . . , Cn]

>, Gk = [Gk1, . . . , Gkn]
> are vectors of linearization

coefficients.

2.2. Basic linearization criteria for stochastic dynamic systems

Criterion 1a – Criterion of Equality of the First and Second Moments of
Nonlinear and Linearized Variables (Kazakov, 1956)

E[Yi] = Φi0
(2.5)

E[(Yi −E[Yi])(Yj −E[Yj ])] =
n
∑

i=1

n
∑

j=1

kikjθij

Criterion 1b – Criterion of Moment Error of Approximation

E
[(

Φ2pi (x, t)−
(

Φ0i +
n
∑

j=1

kjx
0
j

)2p)2]

p = 0, 1, 2, . . . (2.6)

where for p = 0 and p = 1 it is known in the literature as Criterion
of Mean-square Error of Approximation (Kazakov, 1956) and Energy
Criterion (Elishakoff and Zhang, 1984)
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Equivalency of response probability densities (Socha, 1999b):

Criterion 2a – Pseudomoment metric

I2a =

+∞
∫

−∞

. . .

+∞
∫

−∞

x[2r]|gN (x)− gL(x)| dx1 . . . dxn (2.7)

where x = [x1, . . . , xn]
>, x[2r] = x2r11 x

2r2
2 . . . x

2rn
n , r1, . . . rn ∈ N ,

∑n
i=1 2ri = 2r.

Criterion 2a – Square probability metric

I2b =

+∞
∫

−∞

. . .

+∞
∫

−∞

[gN (x)− gL(x)]2 dx1 . . . dxn (2.8)

where gN (x) and gL(x) are probability density functions of solutions to
nonlinear (1.1) and linearized systems (2.4), respectively.

2.3. Poly-criteria optimization methods

In this section, we quote some basic definitions and facts from multicriteria
optimization theory (Socha, 1999a,b).
A subset Θ of a linear space B is called a convex cone if and only if

∀α1 ­ 0 ∀α2 ­ 0 ∀x1x2 ∈ Θ (α1x
1 + α2x

2) ∈ Θ (2.9)

To every convex cone Θ, there corresponds an ordering relation R in B defi-
ned by

x1 ¬ x2 ⇐⇒ x2 − x1 ∈ Θ (2.10)

The relations of partial order induced by convex cones are generalization of
the natural order in Rn defined as follows

x ¬ y ⇐⇒ ∀i = 1, . . . , n xi ¬ yi (2.11)

where x = [x1, . . . , xn]
> and y = [y1, . . . , yn]

>. This is equivalent to the
relation y − x ∈ Rn+. The positive orthant Rn+ satisfies all properties of the
convex cones.
The general problem of multicriteria optimization is

(F : Ud → B) → min(Θ) (2.12)

where the set of admissible controls Ud is a subset of a linear space U , the
goal space B is partially ordered Banach space with a closed convex cone Θ.
Moreover, it is assumed that the admissible set F (Ud) is non-empty and closed.
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2.4. Pareto-optimal approach

A control uopt is said to be nondominated or Pareto-optimal, or Θ-optimal
if and only if

(F (uopt)−Θ) ∩ F (Ud) = {F (uopt)} (2.13)

Condition (2.13) means that no element of the admissible set is better than
uopt in the sense of the partial order relation.

Relation (2.10) plays the fundamental role in classical problems of multi-
criteria optimization which can be reduced to the simultaneous minimization
of scalar functions

(F1, F2, . . . , Fm)→ min (2.14)

2.5. Scalarization methods

The most frequently used scalarization method for the problem

(F : Ud → Rn) → min(Rn+) (2.15)

is a positive convex combination of the criteria

Fw(u) =
N
∑

i=1

wiFi(u) (2.16)

where u ∈ Ud, wi > 0 for 1 ¬ i ¬ N and
∑N
i=1wi = 1. The parameters

wi > 0, 1 ¬ i ¬ N are weight coefficients.
The scalarization by distance

Fd(u) = d(q, F (u)) (2.17)

where d is a metric in the goal space, q is a fixed unattainable element of the
goal space which dominates at least one point from F (Ud), for instance

Fp(u) = ‖q − F (u)‖pp (2.18)

where ‖ · ‖pp is a p-th power of the norm in the Lp space. For instance, as the
scalarizing family for the finite-dimensional multicriteria optimization problem
with respect to the natural partial order in Rn, one can consider the following
family of functionals

Np(u,w) =
N
∑

i=1

wi(Fi(u)− qi)p w ∈ Rn+ \ {0} 1 ¬ p ¬ ∞ (2.19)
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In a particular case, when n = 2, Ud = R
1 = {k : −∞ < k < +∞} and

Fn = In, n = 1, 2 an illustration of a dominated point q and relation (2.17)
is given in Fig. 1. In this case, I1 and I2 are two criteria (for instance line-
arization criteria) and the convex curve is parametrized by k (for instance, a
linearization coefficient). The points of the curve are defined by (I1(k), I2(k)).

Fig. 1. A geometric illustration of condition (2.17)

3. Applications for single degree of freedom systems

Consider a single degree-of-freedom system described by

dx1 = x2 dt
(3.1)

dx2 = [−f(x1)− 2hx2] dt+ σ dξ

where h and σ are constant parameters, f is a nonlinear function such that
f(0) = 0. Then, the mean value of the stationary solution is equal to zero, i.e
E[x1] = 0.

An equivalent linearized system has the form

dx1 = x2 dt
(3.2)

dx2 = [−kx1 − 2hx2] dt+ σ dξ

where k is a linearization coefficient.
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The most frequently used scalarization method is a positive convex com-
bination of considered criteria, i.e.

Iopt(k) =
N
∑

i=1

αiIi(k) (3.3)

where Iopt and Ii, i = 1, . . . , N are multiobjective criteria of the linearization,
and partial criteria of the linearization, respectively, αi > 0, i = 1, . . . , N are
weight coefficients such that

∑N
i=1 αi = 1.

The idea of finding the Pareto-optimal solution is to determine a nondomi-
nated point q whose coordinates are defined by minimal values of considered
criteria, i.e.

q(k) = q(Iimin(k)) (3.4)

where

Iimin(k) = min
k
Ii(k) (3.5)

The scalarization distance dw is defined, for instance,by

dw =

√

√

√

√

N
∑

i=1

αi(Ii(k)− Iimin(k))2 (3.6)

where αi > 0, i = 1, . . . , N are weight coefficients such that
∑N
i=1 αi = 1.

To illustrate an application of the Pareto-optimal approach and scalari-
zation method in the determination of response characteristics, we use two
criteria of the statistical linearization (N = 2). In further consideration, we
analyse two cases of the moment criteria and criteria in the probability density
space.

The corresponding criteria and linearization coefficients have the following
forms.

3.1. Statistical linearization criteria in state space

• Mean-square Criterion

IMS =
E[f2(x1)]E[x

2
1]− (E[f(x1)x1])2
E[x21]

(3.7)

kMS =
E[f(x1)x1]

E[x21]
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• Energy Criterion

IE =

E
[(x1
∫

0
f(x) dx

)2]
1
4E[x

4
1]

1
4E[x

4
1]

−

(

E
[

x2
1

2

x1
∫

0
f(x) dx

])2

1
4E[x

4
1]

(3.8)

kE =

E
[

x2
1

2

x1
∫

0
f(x) dx

]

1
4E[x

4
1]

3.2. Probability density linearization criteria

• Pseudomoment metric

IPMM =

+∞
∫

−∞

. . .

+∞
∫

−∞

x2p1 x
2q
2 |gN (x1, x2)− gL(x1, x2)| dx1dx2 (3.9)

where p+ q = r, p, q = 0, 1, . . ..

• Square probability metric

IPSM =

+∞
∫

−∞

. . .

+∞
∫

−∞

[gN (x1, x2)− gL(x1, x2)]2 dx1dx2 (3.10)

where gN (x) and gL(x) are probability density functions of solutions to
nonlinear (3.1) and linearized systems (3.2), respectively. gN (x1, x2) is
defined by the Gramm-Charlier expansion (Pugacev and Sinicyn, 1985)

gN (x1, x2) = gG(x1, x2)
[

1 +
N
∑

k=3

∑

σ(ν)=k

cν1ν2Hν1ν2(x1, x2)

ν1!ν2!

]

(3.11)

where

gG(x1, x2) =
1

2π
√

k11k22 − k212
exp
[

−k11x
2
2 − 2k12x1x2 + k22x21
2(k11k22 − k212)

]

(3.12)
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and cν1ν2 = E[Gν1ν2(x1, x2)], are quasimoments ν1, ν2 = 0, 1, . . . , N ,
ν1 + ν2 = 3, 4, . . . , N , Hν1ν2(x1, x2) and Gν1ν2(x1, x2) are Hermite’s po-
lynomials defined by

Hpq(x1, x2) = (−1)p+q exp
(1

2
A
) ∂p+q

∂xp1∂x
q
2

exp
(

−1
2
A
)

(3.13)

Gpq(x1, x2) = (−1)p+q exp
(1

2
A
)

·

·
[ ∂p+q

∂yp1∂y
q
2

exp
(

−1
2
(k11y

2
1 + 2k12y1y2 + k22y

2
2)
)]

y=V x

where

A = v11x
2
1 + 2v12x1x2 + v22x

2
2

K =

[

k11 k12
k21 k22

]

K−1 = V =

[

v11 v12
v21 v22

]

(3.14)

kij = E[xixj ] i, j = 1, 2

For the stationary probability density function the corresponding mo-
ments are as follows

k12 = k21 = 0 k22 =
1

v22

v12 = v21 = 0 k11 =
1

v11

(3.15)

The moment k11 has to be found from moment equations.

4. Example

Consider the Duffing oscillator described by

dx1 = x2 dt
(4.1)

dx2 = [−ω20x1 − εx31 − 2hx2] dt+ σ dξ

where ω20, ε, h and σ are constant parameters. The parameters selected for
calculations are: ω20 = 0.5, ε = 0.1, h = 0.05 and σ

2 = 0.2.
The corresponding linearized system has form (3.2).
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4.1. Moment criteria in statistical linearization

• Mean-square Criterion
IMS = (ω

2
0 − k)2E[x21] + 15ε2(E[x21])3 + 6ε(ω20 − k)(E[x21])2 (4.2)

• Energy Criterion

IE =
3

4
(ω20−k)2(E[x21])2+105

( ε

4

)2
(E[x21])

4+
15

4
ε(ω20−k)(E[x21])3 (4.3)

where

E[x21] =
σ2

4hk
(4.4)

Then, the set of dominating points is presented in Fig. 2

Fig. 2. A graphical illustration of the set of dominating points determined by
(4.2)-(4.4)

• Convex combination
Iopt = αIMS(k) + (1− α)IE 0 ¬ α ¬ 1 (4.5)

The characteristics kmin = kmin(α) and Iopt = Iopt(α) determined by
relation (4.5) are shown in Fig. 3a,b, respectively.

The characteristics dE = dE(k) and dw = dw(α) obtained by Scalariza-
tion by distance have the form

dE(k) =
√

[IMSmin − IMS(k)]2 + [IEmin − IE(k)]2
(4.6)

dw(α) =
√

α[IMSmin − IMS(k)]2 + (1− α)[IEmin − IE(k)]2

for 0 ¬ α ¬ 1. A graphical illustration of these characteristics is given
in Fig. 4a,b, respectively.



Application of poli-criterial linearization... 685

Fig. 3. (a) Characteristics kmin = kmin(α) determined by relation (4.5);
(b) characteristics Iopt = Iopt(α) determined by relation (4.5)

Fig. 4. (a) Characteristics dE = dE(k) determined by relation (4.6)1;
(b) chracteristics dw = dw(α) determined by relation (4.6)2

4.2. Probability density linearization criteria in equivalent linearization

• Pseudomoment metric

IPMM =

+∞
∫

−∞

. . .

+∞
∫

−∞

x2p1 x
2q
2 |gN (x1, x2)− gL(x1, x2)| dx1dx2 (4.7)

where p+ q = r, p, q = 0, 1, . . ..

• Square probability metric

IPSM =

+∞
∫

−∞

. . .

+∞
∫

−∞

[gN (x1, x2)− gL(x1, x2)]2 dx1dx2 (4.8)
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where gN (x) and gL(x) are probability density functions defined by

gN (x1, x2) =
1

cN
exp
[

−2h
q21
(ω20x

2
1 +
ε

2
x41 + x

2
2)
]

(4.9)

gL(x1, x2, k) =
1

cL

4h
√
k

q21
exp
[

−2h
q21
(kx21 + x

2
2)
]

where cN and cL are normalized constants.

Then, the set of dominating points for parameters ω20 = 0.5, h = 0.05,
ε = 0.1, σ2 = 0.2, p = 1, q1 = 0 is presented in Fig. 5.

Fig. 5. A graphical illustration of the set of dominating points determined by (4.7)
and (4.8)

5. Applications in control problems

The multicriteria analysis was also used in the determination of optimal
control for linear stochastic systems by Piunovski (1996) and by Radievski
(1993). In this Section, we extend these results for a class of nonlinear systems
combining the multicriteria approach, statistical or equivalent linearization
with the LQG technique.
Consider the following optimal control problem. The nonlinear stochastic

model of a dynamic system is described by

dx(t) = [Ax(t) +Φ(x) +Bu(t)] dt+
M
∑

k=1

Gk dξk(t) (5.1)
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where x ∈ Rn and u ∈ Rm are the state and control vectors, respec-
tively. A and B are time invariant matrices of appropriate dimensions,
Φ = [Φ1, . . . , Φn]

> is a nonlinear vector function such that Φ(0) = 0 are time
invariant deterministic vectors, ξk are independent standard Wiener proces-
ses for k = 1, 2, . . . ,M . We assume that the unique solution to equation (5.1)
exists and the system is controllable.
The control strategy is designed to minimize the criterion

I = E[x>Qx+ u>Ru] (5.2)

where Q and R are time-invariant positive definite symmetric matrices.

5.1. Quasi-optimal control

We assume that the nonlinear vector Φ(x) can be substituted by a linearized
form

Φ(x) = Aex (5.3)

where Ae is a n×n matrix of linearization coefficients such that (A+Ae,B) is
stabilizable and detectable. Then, the optimal control for the linearized system

dxL(t) = [(A+Ae)xL(t) +Bu(t)] dt+
M
∑

k=1

Gk dξk(t) (5.4)

can be found by a standard method (Kwakernak and Sivan, 1972) in the linear
feedback form

u = −KxL K = R−1B>P (5.5)

where K is the gain matrix and P is a positive solution to the algebraic Riccati
equation

P(A+Ae) + (A+Ae)
>
P− PBR−1B>P+Q = 0 (5.6)

Substituting (5.5) into equation (5.4) yields

dxL(t) = [(A+Ae −BK)xL(t)] dt+
M
∑

k=1

Gk dξk(t) (5.7)

The corresponding covariance equation and criterion have the form

(A+Ae −BK)V L +VL(A+Ae −BK)> +
M
∑

k=1

GkG
>

k = 0 (5.8)

and
IL = E[x

>

L (Q+K
>RK)xL] = tr [(Q+K

>RK)V L] (5.9)
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where the subindex L corresponds to the linearized problem, tr denotes the
trace of the matrix

VL = E[xLx
>

L ] (5.10)

In the case of statistical linearization, the elements of the nonlinear vector
Φ(x) have to be replaced by corresponding equivalent elements ”in the sense
of a given criterion” in a linear form.
The following two moment criteria for scalar functions are considered:

Criterion 1. Mean-square error of displacements (Kazakov, 1956)

E[(c1x− φ(x))2]→ min (5.11)

Criterion 2. Mean-square error of potential energies (Elishakoff and Zhang,
1984)

E
[(

x
∫

0

[c2y − φ(y)] dy)2
]

→ min (5.12)

In the case of application of the linear feedback gain obtained for the
linearized system to the nonlinear system, the state equation and the corre-
sponding criterion have the form

dxN (t) = [(A−BK)xN (t) +Φ(xN (t))] dt+
M
∑

k=1

Gk dξk(t) (5.13)

and
IN = tr [(Q+K

>RK)V N ] VN = E[xNx
>

N ] (5.14)

where the subindex N denotes the original nonlinear problem with

V N = E[xNx
>

N ] (5.15)

In general, the covariance matrix VN can be found approximately. To
obtain the linearization matrix Ae and quasi-optimal control, one of the four
proposed criteria should be selected and used with an iterative procedure.

5.2. Iterative procedure for multicriteria nonlinear control problem

The following procedure is an extended version of a standard one given in
(Yoshida, 1984):

Step 1. Choose a parameter of the nonlinear system (an element of Eq. (5.1))
and criteria of linearization, then select Ae = 0 in (5.3). Next, for every
criterion repeat Steps 2 - 11.
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Step 2. Solve (5.6). The solution to (5.7) is P .

Step 3. Substitute P obtained in Step 2 into (5.6) and find the matrix K.
Next, substitute K and Ae = 0 into equation (5.8) and solve the equ-
ation. The solution of equation (5.8) is VL.

Step 4. Substitute P obtained in Step 2 into (5.9) and find IL.

Step 5. For each nonlinear element find the linearization coefficient which
minimizes the selected criterion, for instance, (5.11) or (5.12).

Step 6. Substitute the matrix of linearization coefficients Ae(VL) obtained
in Step 5 into equation (5.8) and then solve the equation.

Step 7. If the error is greater than a given parameter ε1, then repeat Steps
3 - 6 until VL converges.

Step 8. Substitute the matrix of linearization coefficients Ae(VL) into Riccati
equation (5.6) and then solve the equation.

Step 9. Substitute the matrix P obtained in Step 8 into covariance equation
(5.8) and then solve the equation.

Step 10. If the error is greater than a given ε2, then repeat Steps 3 - 9 until
VL and P converge.

Step 11. Calculate criteria IL and IN given by (5.9) and (5.14), respectively.

Step 12. Calculate a measure of the multicriteria optimization problem based
on criteria calculated in Step 11 for different linearization criteria chosen
in Step 1.

5.3. Example (Duffing oscillator)

Consider the Duffing oscillator described by

dx1 = x2 dt
(5.16)

dx2 = [−ω20x1 − εx31 − 2hx2 + bu] dt+ σ dξ

where ω20, ε, h, b and σ are constant parameters, u is a scalar control, ξ is the
standard Wiener process, and the mean-square criterion is

I = E[x>Qx+ ru2] (5.17)



690 L. Socha

where x = [x1, x2]
>, Q = diag [Qi], i = 1, 2; Qi, r are positive constants. The

linearized system has the following form

dx1 = x2 dt
(5.18)

dx2 = [−ω20x1 − εcx1 − 2hx2 + bu] dt+ σ dξ

where c is a linearization coefficient. The coordinates of solutions to algebraic
Riccati and covariance equations denoted by P = [pij] and V L = [vLij ],
respectively, for i, j = 1, 2 are the following

p11 = 2hp12 + cp22 + βp12p22

p12 =
1

β
(−c+

√

c2 +Q1β) (5.19)

p22 =
1

β

√

4h2 + β(Q2 + 2p12)

and

vL22 =
g2

2(2h + βp22)
vL12 = 0 vL11 =

v22
γ + βp12

(5.20)

where β = b2/r. The optimal value of the criterion for linearized system is

IL = (Q1 + βp
2
12)vL11 + (Q2 + βp

2
22)vL22 (5.21)

Applying the obtained linear feedback control to nonlinear system we ob-
tain the state equation and the corresponding criterion

dx1 = x2 dt
(5.22)

dx2 = [−2hx2 − ω20 − εx31 − β(x1p12 + x2p22)] dt+ σ dξ

and

INopt = (Q1 + βp
2
12)vN11 + (Q2 + βp

2
22)vN22 (5.23)

where the second order moments vN11 and vN22 can be found in an analytical
form from

vNii =

+∞
∫

−∞

+∞
∫

−∞

x2i gN (x1, x2) dx1dx2 i = 1, 2 (5.24)
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where

gN (x1, x2) =
1

cN
exp
[

−2h+ βp22
σ2

(ω20 + βp12)x
2
1 + ε
x41
2
+ x22

]

(5.25)

and cN is a normalized constant.

One can show (Elishakoff and Zhang, 1984; Kazakov, 1956) that the line-
arization coefficients for two considered criteria have the form

c1 = 3E[x
2
1] c2 = 2.5E[x

2
1] (5.26)

To obtain the quasi-optimal controls and corresponding mean-square cri-
teria I1 and I2 depending on the choice of linearization coefficients c1 and c2,
one can use the iterative procedure proposed in the previous section. To illu-
strate the obtained results, a comparison of the considered criteria is discussed.
The set of dominating points for parameters ω20 = 1, h = 0.05, b = 1, ε = 1,
σ = 1, Q1 = Q2 = 1, r = 100 is presented in Fig. 6.

Fig. 6. A graphical illustration of the set of dominating points

Figure 8 shows that the considered mean-square criteria I1 and I2 are
linearly dependent and there are no dominated points. It means that the quasi-
optimal controls obtained for both criteria are the same. This confirms an
earlier observation presented in an earlier author’s paper (Socha, 2000).

6. Conclusions

Numerical studies show that in the response analysis there are significant
differences between the obtained linearization coefficients and corresponding
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criteria in contrast to control problems where for a given mean-square criterion
of minimization (5.2) there are no significant differences between the applied
linearization methods. It means that the mean-square criteria corresponding
to different linearization criteria are linearly dependent. This linear depen-
dence also appears in application of linearization techniques with criteria in
probability density space.
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Zastosowanie wielokryterialnej linearyzacji w problemie sterowania
stochastycznych nieliniowych układów dynamicznych

Streszczenie

W pracy przedstawiono problem wyznaczania quasi-optymalnego sterowania
w nieliniowych stochastycznych układach dynamicznych za pomocą wielokryterial-
nej metody linearyzacji stochastycznej. Pomysł wielokryterialnej linearyzacji został
zasygnalizowany we wcześniejszej pracy autora (Socha, 1999a). W niniejszym artyku-
le jest on rozwinięty i zastosowany do problemu sterowania, a szczegółowa analiza jest
przeprowadzona dla nieliniowego oscylatora z addytywnym wymuszeniem Gaussa.
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