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In this work, a numerical approach to analysis of dynamics of a hung
rotor has been presented. A vertical rotor of the ACWW 1000 centrifuge
has been used as a real object for verification of the discussed model.
This rotor, due to its constructional features, should show the gyroscopic
effect in the range of achievable rotational speed.
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1. Introduction

Centrifuges are high-speed machines whose rotor disks are most frequently
situated on a vertical shaft. Such a design allows one to eliminate the disa-
dvantageous influence of the potential asymmetry of the disk or the shaft on
machine dynamics, which is revealed by the occurrence of the so called critical
speed of the second kind (Grybos, 1994).

Due to significant angular rotational speed, even slight unbalance can cause
vibrations with significant velocity and shift amplitudes (Zachwieja, 2002b).
In the case of high slenderness shafts, the gyroscopic effect is of big importance
(Zachwieja, 2002a; Sawicki and Genta, 2000). In some designs, this effect is
forced by a special method of supporting the rotor. Concurrent precession
causes self-centering of the shaft after exceeding the critical speed of the second
kind. This phenomenon is known as the "de Laval effect” (Gosiewski and
Muszynska, 2000).
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Vibrations of rotors as continuous systems used to be the subject of many
studies both analytical (Awrejcewicz and Krysko, 2000) and numerical ones
(Nelson and McVaugh, 1976), which include the anisotropy of the first and
second kind (Zachwicja, 2004; Mohiuddin and Khulief, 1999; Jei and Lee,
1993; Kang et al., 1997).

This work is an example of numerical analysis of vibrations of a vertical
axis centrifuge combined with experimental verification of the achieved results.

2. Numerical analysis of rotor free vibrations

The ACWW 1000 rotor is used in the sugar industry. As a crucial element
of the sugar crystallization process line, it was the subject of tests performed
in order to identify its critical unserviceable states (Mikolajczak and Ligier,
2003). The exterior of the device and its interior are shown in Fig. 1.

(a)

(b)

Fig. 1. (a) ACWW 1000 rotor, 1 engine, 2 bearing housing, 3 clutch, 4 barrel
housing; (b) view of the centrifuge interior

The movable element is the engine (1) = clutch (2) — barrel (6) system.
It can be considered that way because of the length of the shaft on which
the barrel is set, when it is 1200 mm, and its diameter 70 mm, whereas the
rotational speed is 1800 rpm. Then the influence of the gyroscopic effects on
the rotor dynamics should be noticeable. This system is similar to the rotor
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model with a hung disk, however, the classic Green-Stodola’s model assumes
that the disk possesses an infinitely high stiffness, which, for obvious reasons, is
significant simplification of real conditions. However, this assumption enables
relatively easy use of the finite element method in the description of dynamics
of both the shaft and the disk.

2.1. Shaft dynamics

The shaft is most frequently modeled by the so called beam elements, i.e.
elements with four degrees of freedom in the node. This means that we take
into consideration only the possibility of occurrence of shaft flexural vibrations,
thus neglecting the influence of torsional ones as well as the action of axial
forces. Such a simplification does not exactly corresponds with real conditions
as the elementts are also subject to torsion and thus torsional vibrations.

On the other hand, bearing in mind that free vibrations of the torsional
character occur with frequencies higher than flexural vibrations, the intro-
duced simplifications enable one formulate a matrix of inertia, stiffness and
damping in a simple form guaranteeing that obtained calculation results are
found with a small error.

The node displacement vector components d,, are four shifts and four
angles (Fig. 2)

85 = [wi,wi, Pi, 03, w5, wj, %5, 05] " (2.1)
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Fig. 2. A deformable finite element of the shaft with four degrees of freedom in the
node
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The displacements and the deflection angles of the element are expressed
as follows

u(y) | _
[w(y)] =N@w?s (22)
and
¥(y) o Lo
v _ d N
[Q(y) = 3w(g) —[0 1} D(y)ds (2.3)
y
here
N(E) = Ny 0 Nz 0 Nz 0 Nz 0 (2.4)
Tl 0 Ny 0 Ny 0 Ny 0 Nog '
where

Nip = Ngg =1 — 362 4+ 2¢3
—Nig = Nog = LE(1 — 26 + €7)
Ny5 = Nog = 3¢* — 26°

—Ni7 = Nog = L(—€% + £%)

is the matrix of the finite element shape function, whereas the matrix D is
expressed by the relationship

10 N — _1_ Dy, 0 Dz 0 Dis 0 Dz 0

~—~N= 2.5
L ¢ L| 0 Dy 0 Dy 0 Dy 0 Do (2:5)

D({) =

where

—Dyy = Di5 = —Day = Dyg = 6¢ — 6€2
—Dy3 = Dy = L(1 — 4€ + 3¢?)
—Dy7 = Dag = L(—2¢€ + 3€?)

The coordinate y, referred to the infinite element length, is marked with

_ Y
=7 (2.6)

il

The shaft is axi-symmetrical, it does not show any ” inner anisotropy”
features. Since it performs rotation about if, it is convenient to consider its
displacements in a movable system Oz'y'z’ connected with it. The relation

between the movable and the permanent system is expressed by Euler’s angles
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Fig. 3. (a) Reference systems used for dynamical analysis of the asymmetrical shaft;
(b) reference systems used for description of rotation of the centrifuge shaft

¢, 6, . We can assume that the angles 6, ¢ are small, whereas the angular
velocity ¢ is the shaft rotational speed. It will be marked by §2.

The system OXY Z shifts to the location of Oxz'y’z' during three rotations
with respect to the appropriate axes

- rotation around the axis Z by the angle o
- rotation around the axis z; by the angle 0

— rotation around the axis yy by the angle ¢.

Instantaneous angular velocity of the section in the system 0z’y’z’ has the
following components

Wa -'le)COS(% +¢>) +6cos¢ = Bcosd — sing
Wy = 1,5003(% - 9) +o=190+¢ (2.7)

W, =z!}cos¢+9cos(g—¢) =0sin¢ + P cos ¢
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Kinetic energy of the shaft element is the sum of its translatory and rotary
components

L L
Es = %pA/(a%w?) dy+%pf./(w3+2w§+wf) dy (2.8)
0 0
where
Wy, Wy, Wy ~ angular velocities expressed by (2.7)
I,=1.=1 — geometrical inertia moments of the element section
with respect to the principal axes z’ and 2’
I,=I.+1,=2I - inertia moment of the element cross-section with
respect to the axis y
A L,p ~ area of the cross-section, length, density of the ele-
ment, respectively
u, W ~ translatory displacements of the shaft.

From the second term of (2.8), we can additionally separate the element

, L
Esy = pl, / W8 dy = 2p01 [ 08 dy (2.9)
o 5

which is kinetic energy of the shaft element corresponding to precession (gy-
roscopic effect)

Egi = pl / 022 dy (2.10)

which is kinetic energy of the shaft element due to rotation (does not depend
on the generalized coordinates)

L
1 . .
Egr = 5pl [(92 + %) dy (2.11)
0

which is kinetic energy due to angular motions of the shaft.
If we neglect the strain resulting from shear, the energy of the elastic strain
caused by bending is expressed by

L
_ %/ 2 (?91";’) | dy (2.12)
0
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The virtual work of the force of gravity of the shaft element is performed along
the virtual displacement dw. Thus, it assumes the form

L
SLs = —g / pASw dy =
’ (2.13)

L L L L
— —pgA (5w, / Ny dy + 56, / Ny dy + Suws / Ny dy + 565 f N; dy)
0 0 0 0

For formulating equations of motion of the shaft element, we use Lagrange’a
equations of the IT kind

d (OF OF 0(Ug + L
5(355)_8654" ( g;s s) _ g (2.14)
The determination of matrices:
- inertia during translatory motion
L
Mg; = ,oA] NN dy =
’ (2.15)

[ 156 0 —22L 0 54 0 13L 0

0 156 0 22L 0 54 0 —13L
—-22L 0 412 0 —-13L 0 -=3L? 0
_pAL | 0 22L 0 4L? 0 13L 0 —3L?
T 420 | 54 0 —13L 0 156 0 22L 0

0 54 0 13L 0 156 0 —22L
13L 0 -=3L* 0 22L 0 412 0

0 -—-13L 0 -3L? 0 -22L O 4L* |

— inertia during rotation

(36 0 -3L 0 -36 0 —-3L 0 |
0 3 0 3L 0 3 0 3L
. —3L 0 4L? 02 3L 0 —L? 0 2
- pl | 0 3L 0 412 0 —3L 0 —L
Msr = prD Ddy=s0fl-36 0 3. 0 3 0 3L 0
0 0 3 0 -3L 0 3 0 -3L
3L 0 -L?® 0 3L 0 4L® 0
0 3L 0 —-L?* 0 —-3L 0 4L?

(2.16)
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—- gyroscopic
Ffo -1
_ T - _
Gg-le/D [1 O}Ddy_
0 (2.17)
0o -3 0 -3L 0 36 0 —3L]
36 0 -3L 0 =36 0 -3L 0
0 3L 0 4* O -3L 0 —L?
_pl 3L 0 -4*> 0 -3L 0 @ L? 0
~3L|0 3 0 3L 0 -3 0 3L
-3 0 3L 0 36 0 3L 0
0 3L 0 -L* 0 -3L 0 4L?
3L 0 L* 0 -3L 0 -4L* 0 |

is only the question of proper transformations of dependence (2.14). Moreover,
by denoting

(2.18)

where

ap=1-2¢ as = —4 + 6£ a3 = —2 + 6£
we obtain, from the differentiation of the potential energy with respect to dg,
an expression for the stiffness matrix of the shaft element

L
Kg= Efm/BTB dy =
0 (2.19)
12 0 —-6L 0 -12 0 —6L 0 ]
0o 12 0 6L 0 -12 0 6L
—-6L 0 4L*> 0 6L 0 2L 0
_EI| 0 6L 0 4L 0 -6L 0 2L?
3|-12 0 6L 0 12 0 6L 0
0 -12 0 —6L 0 12 0 —6L
-6L 0 2L 0 6L 0 4L*> 0
| 0 6L 0 2L 0 -6L 0 4L?*|
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2.2. Disk dynamics

For the purposes of the analysis of the stiff disk dynamics we assume that
its mass center overlaps the center of the shaft elastic section. The disk nodal
displacement vector has the following form

op = [uo:'wmwo:go]—r (220)

The dynamics of the symmetric disk motion is considered in reference
systems analogical to those for the shaft OXY Z, 0/z'y’'z" (Fig.4). The disk
kinetic energy can be expressed as

1
Ep = §m(ﬂ§ + ) + %[J(W:E +w3) + 2wy (2.21)

where
Wy, Wy, Wy ~ angular velocity vector components of the

disk rotary motion
Jo=dpg=J,Jy =2J mass inertia moments of the disk
m ~ disk mass
Uy, Wo — displacement of the disk mass center.

Fig. 4. The modeling of the disk in the OES method

Equations (2.7) derived for the shaft also refer to a disk set in the shaft.
Therefore, we can show an expression for the disk kinetic energy in the follo-
wing way

Ep = %m(ug + W) + 20 2,0, + JQ? + %.}(9’3 + 92) (2.22)
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The physical meaning of particular terms in expression (2.22) is analogical to
that of the shaft.

Having expressed the dependence for kinetic energy by generalized coordi-
nates, we can define matrices occurring in the equation of motion of the disk
found by making use of Lagrange’s equations. Thus

o o O
o o o

Mp = Gp = (2.23)

coo 3

0
m
0
0

o Lo o
Lo oo
oo o o
WO o

2.3. Free vibrations

Free vibrations of the rotor, whose mathematical model has been presented
in Sections 2.1-2.2, are described by general equations

M§ 8 +202G56 + KEs =0 (2.24)

Here, M%’:D is the global inertia matrix created from local inertia matrices
of finite elements of the shaft and the disk. Gg denotes the global gyroscopic
matrix of disks when we accept the gyroscopic effect as being the only damping
factor and neglecting the internal damping. Kg defines the global stiffness
matrix of the shaft elements. In this model, the disk is an element which is
infinitely stiff and its mass is many times bigger than the mass of the shaft.
The issue of free vibrations of the immovable rotor reduces (2.24) to the
form
M$ 0 +KEs=0 (2.25)

The solution to this equation has the form
6 = §pexp(—iwt) (2.26)

whereas dp is an eigenvector, and w describes natural frequencies. These values
are determined as characteristic roots (w = v/\) of the equation obtained from
the matrix eigenvalue problem

KE]'ME - M =0 (2.27)

The equation of free vibration of the shaft elements including the gyroscopic
effect has the form
M¢ o +20GH6 + KGs =0 (2.28)
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In order to find the solution to the problem of matrix eigenvalues, we substitute

I

Equation (2.28) can be then alternatively written as

o M%,1T[6 M& 0 1[é 0
i S S e

Mg p 20G%
Multiplying (2.30) by the matrix

[[Mg,D]_l 0 ]

0 -[Kg

pne arrivesat the following simplification

0 |
. Jy—ly=0 2.31
l—[Kg]_lMg‘,D —[KE]‘QQG%I y-v (2:31)

If we substitute
y = §pe® = &g expl(a + iw)i] (2.32)

where « is the damping exponent, w — free vibration frequency, we obtain an
equation

(A - %1)50 =0 (2.33)

being the searched one in the eigenproblem of the matrix A

0 I
A= Y B 2.34
l—lxg‘r‘mg,g ~[Kg) 129@5} (234)

Here, f3; = 1/s; denote successive eigenvalues, whereas dy, are the eigenvectors
corresponding to them.

Since the real shape of the rotor is quite complicated (Fig.5a), the idea
of its simplification down to the model basing on the concept of a defor-
mable shaft and infinitely stiff disk, whose dynamics was described in Sec-
tions 2.1 and 2.2, seems to be worth considering. Therefore, a simplified mo-
del (Fig.5b) with similar masses and inertia moments of disks and the shaft
is proposed.

According to the accepted procedure, the rotor shaft is digitized with finite
elements of the beam type and the disks are treated as elements of infinitely
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Fig. 5. (a) The ACWW 1000 centrifuge rotor; (b) simplified model of the rotor

big stiffness at the same time. Due to lack of available data concerning actual
stiffness of the bearings, the support is selected in such a way that it assumes
their low flexibility.

Table 1. Physical features of the rotor and the substitute model

Substitute | error
model (%]

m | kg 30.92 30.92 0
Jez | kgmm? | 3.023E+6 | 3.023E+6 0
kgmm? | 3.023E+6 | 3.023E+6 0
J.. | kgmm? | 1.719E+4 | 1.719E+4 0
m | kg 18.78 20.43 | 8.87
Jew | kgmm? | 1.464E+5 | 1.491E+5 2.12
Jyy | kgmm? | 1.464E+5 | 1.491E+5 2.12
J.. | kgmm? | 2.802E+5 | 2.808E+5 0.21
m kg 203.23 202.60 -0.31
Jez | kgmm? | 2.002E+7 | 1.995E+7 | —0.35
Jyy | kgmm?® | 2.002E+7 | 1.995E+7 | —0.35
J.. | kgmm? | 2.832E+7 | 2.483E+7 | —12.3

Rotor

Shaft
gt"'

Coupling
L
3

Separator

In Fig. 6 the first four free vibration frequencies of the immovable rotor as
well as the corresponding modal forms obtained from equations (2.28)-(2.34)
are presented.
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(b) f~70.84Hz

Fig. 6. The first four natural frequencies and corresponding forms of the simplified
model

For the purposes of comparison, natural frequencies of the rotor vibrations
based on a 3D model truly reflecting the rotor size and its material features
have been numerically determined. In calculations that have been carried out
with the use of the MSC NASTRAN program, infinite beam elements of the
tetragonal type have been used. The results are presented in Fig. 7.

The comparison of the results obtained for both models enables one to
notice that they differ significantly, even in the case of the first resonance
frequency. According to the accepted assumption concerning the simplified
model, one obtains solutions corresponding neither with the rotor longitudinal
vibrations nor vibrations of the disk itself.

2.4. Gyroscopic effect

The method of the shaft support by bearings and the way the disc is
being hung should cause noticeable precession of the rotor. The influence of



270 J. ZacHwIEJA, K. LIGIER

(a) f~14.887Hz (b) f~15.732Hz

(f) f=246.84Hz

Fig. 7. The first six natural frequencies and corresponding modes of the rotor

the gyroscopic effect on free vibration frequencies of the simplified model is
presented in Campbell’s diagram. It has been made for rotational speeds within
the range 0-10000 rpm.

It confirms the assumption that even for the range of rotational speeds
within which the centrifuge operates, the influence of gyroscopic effects should
be significant. In Fig. 9, hypothetic changes of the rotor free vibration frequen-
cies (left column) under the influence of the gyroscopic moment (right column)
at the rotational speed 1800 rpm are presented. The term ”"hypothetic” comes
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Fig. 8. Campbell’s diagram for the analysed rotor model

from the fact that it is not possible to predict whether during real rotor mo-
tion there will exist conditions for the occurrence of backward precession or
whether rotation of the rotor with a revolving disk will be of a concurrent
character.

3. Conclusions

In order to verify the results of numerical calculation for both models, vi-
brations of three ACCW1000 centrifuges have been analysed. Precession me-
asurements were realised with the use of roto-current transformers measuring
shaft deflection during one rotation. Test results are presented in Fig. 10. It
can be seen that in none of the cases the maximum shaft deflection exceeds
the value of 0.15 mm. Bearing in mind the fact that operational clearences in
bearings can even reach the value of 0.1 mm it should be thought that the gy-
roscopic moment is not of much significance for the strained rotor axis within
the applied rotational speeds.

On the resonance curve obtained from measurements of the rotor effective
vibration while it is running up to the velocity 1800 rpm, the maximum values
corresponding with frequencies 19 Hz and 29 Hz are clearly marked. They are
close to the values of calculated free vibration frequencies corresponding with
successive forms of flexural vibrations of the rotor at rest. It means that the
influence of the gyroscopic effect predicted for the simplified model actually
does not occur.
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(b) f~16.83Hz - forward precession.
f=8.18Hz - backward precession

(a) f~11.89Hz - free vibration
at rest

(d) f=86.33Hz - forward precession.

(¢) =70.84Hz - free vibration f=57.61Hz - backward precession

at rest

(e) /=124.7Hz - free vibration (f) f=152.87Hz - forward precession,
at rest /=104.21Hz - backward precession

Fig. 9. Modal shapes and natural frequencies of the rotor for forward and backward
precession
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Fig. 10. Trajectories of a point lying on the shaft axis in the measurement section
A-A (Fig. 1a) recorded in three centrifuges ACWW 1000
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Fig. 11. Amplitude-frequency characteristics of the vibration velocity: (a) during
rotor’s run-up and (b) at the rotation frequency 30 Hz

High values of the amplitude in the velocity amplitude-frequency spec-
trum determined during the centrifuge operation with the rotational speed
29 Hz confirms the resonance character of vibrations in such conditions. A
distinct amplitude that appears in the spectrum near the frequency 58 Hz,
being the next forced frequency harmonic, proves the occurrence of the effect
of clearances in the bearing system.
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The presented analysis of the usefulness of the classic Green-Stodola’s mo-
del for the description of the centrifuge rotor vibration confirms its imperfect-
ness as we can only evaluate the basic free vibration frequency of a modeled
real system. Although in the tested range of rotational speeds, the disk vibra-
tions are not of great importance, which could justify the usage of a simple
model treating the disk as an element with infinitely big stiffness, the discre-
pancy in the results related to precession effects forces one to be careful with
such treatment of this problem. The possibility of formulation of sample ma-
trices occurring in the system of equations of motion, including especially the
gyroscopic matrix, is not always followed y correctness of achieved results due
to their integration.
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Analiza numeryczna dynamiki wirnika pionowego wiréwki ACWW 1000

Streszczenie

W pracy przedstawiona zostala analiza dynamiki wirnika przewieszonego w ujeciu
numerycznym. Obiektem rzeczywistym, ktéry postuzyt do weryfikacji zastosowanego
modelu, byl pionowy wirnik wiréwki ACWW 1000, ktory z uwagi na cechy konstruk-
cyjne powinien wskazywac podatnos$é na wplyw efektéw zyroskopowych.
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