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In this paper new multicriteria design optimization methods are discus-
sed. These methods are evolutionary algorithm based methods, and their
aim is to make the process of generating the Pareto front very effective.
Firstly, the multistage evolutionary algorithm method is presented. In this
method, in each stage only a bicriterion optimization problem is solved
and then an objective function is transformed to the constrain function.
The process is repeated till all the objective functions are considered.
Secondly, the preference vector method is presented. In this method, an
evolutionary algorithm finds the ideal vector. This vector provides the
decision maker with the information about possible ranges of the objec-
tive functions. On the basis of this information the decision maker can
establish the preference vector within which he expects to find a preferred
solution. For this vector, a set of Pareto solutions is generated using an
evolutionary algorithm based method. Finally, the method for selecting
a representative subset of Pareto solutions is discussed. The idea of this
method consists in reducing the set of Pareto optimal solutions using the
indiscernibility interval method after running a certain number of gene-
rations. To show how the methods discussed work each of them in turn
is applied to solve a design optimization problem. These examples show
clearly that using the proposed methods the computation time can be re-
duced significantly and that the generated solutions are still on the Pareto
front.
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1. Introduction

While running evolutionary algorithms for multicriteria optimization a set
of Pareto optimal solutions is generated (see Deb, 2001; Coello et al., 2002).
For some problems the final result of running a computer program is the
Pareto set which contains hundreds or even thousands of solutions. For the
decision maker it is difficult and tiresome to analyze all these solutions. In
addition, the computing time rapidly grows while dealing with this type of
problems. To overcome these difficulties, three methods are proposed in this
paper. These methods can be very useful considering both the computing time
and the decision-making problem while solving different design optimization
problems.

The paper deals with design optimization problems which can be modelled
by means of nonlinear programming, which is formulated as follows:

find x∗ = [x∗1, x
∗
2, ..., x

∗
I ] which will satisfy the K inequality constraints

gk(x) ­ 0 for k = 1, 2, . . . ,K (1.1)

and optimize the vector function

f(x∗) = [f1(x), f2(x), ..., fN (x)] (1.2)

where x = [x1, x2, ..., xI ] is the vector of decision variables.

2. Multistage evolutionary algorithm based method

2.1. Description of the method

The decision-making problem is fairly easy when two criteria are conside-
red. This process becomes more difficult when more than two criteria should
be considered and when the set of Pareto optimal solutions is large. Making
up a decision on the basis of this set is a fairly difficult task. Thus, in this
Section a new multistage optimization process is proposed. The outline of this
process is as follows:

Step 1. Order the objective functions according to their significance for the
design process.

Step 2. Set n = 1, where n is the considered stage of the optimization pro-
cess.
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Step 3. Find the Pareto set for the objective functions fn(x) and fn+1(x).
Illustrate graphically this set in the space of objectives.

Step 4. Consider the function fn(x) as an additional constraint of the form
fn(x) < Fnu for minimized functions or fn(x) > Fnl for maximized
functions, where Fnu and Fnl are the upper and lower restrictions on
the nth objective function given by the designer.

Step 5. Set n = n+ 1, if n < N − 1, go to Step 3, otherwise go to Step 6.

Step 6. Check the obtained results, and if they are satisfied terminate the cal-
culations, otherwise make a new order of objective functions and repeat
the procedure from Step 2.

Verbally, this method can be described as follows. At all stages bicriteria
optimization models are solved giving in each case Pareto optimal solutions,
which can be graphically illustrated in the space of objectives. At each stage
from the obtained set of the Pareto optimal solutions, the designer decides
how to change one of the two objective functions into a constraint and which
new criterion can be considered in the next stage. In particular, all decisions
of the designer consist in choosing the most preferable ranges of objectives.
Note that the results of the optimization process depend on the ordering of the
objective functions, i.e., which one is considered as the first objective function,
the second and so on. To solve bicriterion optimization models in each step,
an evolutionary algorithm based method called the constraint tournament
selection method (Osyczka and Krenich, 2000) is applied.

2.2. An example of multistage method for the robot gripper mechanism

Let us consider an example of a mechanism of the commercial robot grip-
per. For this gripper, the kinematical scheme is presented in Fig. 1.

The outline of the model can be described as follows:

• Vector of decision variables x = [a, b, c, e, f, l, δ]> , where a, b, c, e, f , l
are linear dimensions of the gripper and δ is the angle between element
b and c.

• Objective functions

f1(x) – difference between maximum and minimum griping forces
f2(x) – force transmission ratio between the gripper actuator and

the gripper ends
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Fig. 1. Scheme of a robot gripper mechanism

f3(x) – shift transmission ratio between the gripper actuator and
the gripper ends

f4(x) – length of all the elements of the gripper
f5(x) – maximal force in the joints
f6(x) – mechanical losses in the gripper mechanism

Note that the functions f1(x), f4(x), f5(x), f6(x) are to be minimized,
whereas the function f2(x) and f3(x) are to be maximized.

• Constraints

There are 11 constraints which refer to geometrical constraints, shear
stress constraints, and a minimum gripping force constraint. The full
description of the optimization model is given in Krenich (2002).

Results of the optimization process

For the model given above the optimization process was considered as a
continuous programming problem. The data for the optimization process were
as follows:
— Data for the evolutionary algorithm
population size = 400 number of generations = 400
crossover rate = 0.6 mutation rate = 0.08.

— Lower and upper bounds for the decision variables

10 ¬ a ¬ 250 10 ¬ b ¬ 250

10 ¬ c ¬ 300 0 ¬ e ¬ 250

0 ¬ f ¬ 250 0 ¬ δ ¬ π
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Optimization procedure

Consider the problem of optimum design of the robot gripper presented in
Fig. 1. Assuming that the objective functions are ordered as it is given in the
optimization model, the stages of the optimization process are as follows:

Stage 1

In this stage, the following two criteria are considered:

• f1(x) – function which describes the difference between the maximum
and minimum griping forces for the assumed range of displacement of
the gripper ends

f1(x) = max
z
Fk(x, z)−min

z
Fk(x, z) (2.1)

• f2(x) – function which describes the force transmission ratio between
the gripper actuator and the gripper ends

f2(x) =
min
z
Fk(x, z)

P
(2.2)

The constraints are given by the equations from the basic model. After
solving the above bicriterion optimization problem, the generated by an evo-
lutionary algorithm set of Pareto optimal solutions is as presented in Fig. 2.

Fig. 2. Set of Pareto optimal solutions from stage 1
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Stage 2

At this stage, the designer decides on which level the first objective function
will be treated as the constraint. Assuming that the difference between the
maximum and minimum griping forces should not be less than F1g = 4, the
following constraint is added to the existing set

g12(x) = F1g −
[

max
z
Fk(x, z)−min

z
Fk(x, z)

]

­ 0 (2.3)

where F1g is the assuming upper limit on the first objective function.
The remaining constraints are as considered at Stage 1. A new objective

function is introduced into the optimization model, and now the bicriterion
optimization problem is as follows:

• f1(x) – function which describes the shift transmission ratio between the
gripper actuator and the gripper ends

f1(x) =

∣

∣

∣

∣

y(x, Zmax)− y(x, Zmin)

Zmax − Zmin

∣

∣

∣

∣

(2.4)

• f2(x) – function which describes the force transmission ratio between
the gripper actuator and the gripper ends

f2(x) =
min
z
Fk(x, z)

P
(2.5)

The results of optimization process for the above model are presented in
Fig. 3.

Fig. 3. Set of Pareto optimal solutions from Stage 2
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Stage 3

At this stage of the optimization process it is assumed that the force trans-
mission ratio will be considered as a constraint with the assumed lower bound
F2d = 0.5. Thus, an additional constraint is added to the model. This constra-
int has the form

g13(x) =
min
z
Fk(x, z)

P
− F2d ­ 0 (2.6)

The remaining constraints are as considered at Stage 2.

The objective functions at this stage are:

• f1(x) – function which describes the shift transmission ratio

f1(x) =

∣

∣

∣

∣

y(x, Zmax)− y(x, Zmin)

Zmax − Zmin

∣

∣

∣

∣

(2.7)

• f2(x) – function which describes the length of all elements of the
gripper

f2(x) = a+ b+ c+ e+ f + l (2.8)

The results of the optimization process for this stage of calculations are
presented in Fig. 4.

Fig. 4. Set of Pareto optimal solutions from Stage 3
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Stage 4

At this stage of the optimization process it is assumed that the shift trans-
mission ratio will be considered as a constraint with the assumed lower bound
F3d = 1.5. Thus, an additional constraint is added to the model. This constra-
int has the form

g14(x) =

∣

∣

∣

∣

y(x, Zmax)− y(x, Zmin)

Zmax − Zmin

∣

∣

∣

∣

− F3d ­ 0 (2.9)

The remaining constraints are as considered at Stage 3.

The objective functions at this stage are:

• f1(x) – function which describes the length of all elements of the
gripper

f1(x) = a+ b+ c+ e+ f + l (2.10)

• f2(x) – function which describes the maximum force in the joints

f2(x) = max
j
{Rj} (2.11)

The results of the optimization process for this stage of calculations are
presented in Fig. 5.

Fig. 5. Set of Pareto optimal solutions from Stage 4
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Stage 5

At this stage of the optimization process it is assumed that the length of
all elements of the gripper will be considered as a constraint with the assumed
upper bound F4d = 600. Thus, an additional constraint is added to the model.
This constraint has the form

g15(x) = F4g − (a+ b+ c+ e+ f + l) ­ 0 (2.12)

The remaining constraints are as considered at Stage 4.
The objective functions at this stage are:

• f1(x) – function which describes the maximum force in the joints

f1(x) = f5(x) = max
j
{Rj} (2.13)

• f2(x) – function which describes the efficiency of the gripper mechanism

f2(x) =
Zmax
∑

z=0

[FBTk (x, z)− F
T
k (x, z)] (2.14)

The results of the optimization process, i.e. the set of Pareto optimal so-
lutions, obtained at this stage of calculations are presented in Fig. 6.

Fig. 6. Set of Pareto optimal solutions from Stage 5

Two solutions from this set are presented in Table 1. As it is for most
multicriteria optimization problems, the final decision regarding the choice of
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the solution belongs to the designer. If none of the solutions from the last stage
of calculations satisfies the designer, he may repeat calculation from any stage
assuming another values of the limits for the objective function.

Table 1. Two solutions from the Pareto set obtained at 5th stage of the
optimization process

It.
Objective functions Decision variables

f(x) a b c e f l δ

1 [3.01,0.50,1.67,495.61,90.83,153.85] 134.5 89.12 100.1 0.05 1.04 170.80 1.57

2 [3.05,0.50,1.67,499.81,91.59,152.40] 135.0 90.53 102.2 0.00 1.28 170.57 1.80

where f(x) = [f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)]

3. The preference vector method

3.1. Description of the method

The method consists in reducing the set of Pareto solutions to only those
which are in the space restricted by the preference vector given by the decision
maker. The main steps of the method are as follows:

Step 1. Find the ideal vector for the given multicriteria optimization pro-
blem, in other words find the vector f 0(x) = [f 01 (x), f

0
2 (x), ..., f

0
N (x)]

>

for which the nth element of this vector defines the separately attainable
minimum of the ith objective function which can be evaluated as follows

f0n(x) = min
x∈X
fn(x) (3.1)

This vector is found after running N times an evolutionary single-
criterion optimization method.

Step 2. Set p = 1, where p is the number of iteration.

Step 3. Give a preference vector f p(x) = [fp1 (x), f
p
2 (x), ..., f

p
N (x)]

> accor-
ding to the designer’s preferences.

Step 4. Introduce new constraints to the optimization model

– for minimized functions

gK+n(x) = f
p
n(x)− fn(x) ­ 0 (3.2)



Some methods for multicriteria design optimization... 575

or

– for maximized functions

gK+n(x) = fi(x)− f
p
n(x) ­ 0 (3.3)

where n = 1, 2, ..., N .

These constraints limit the space of search to the solutions which are
within the space defined by the assumed preference vector.

Step 5. For a new model generate a set of Pareto optimal solutions using an
evolutionary multicriteria optimization method.

Step 6. If it is possible to make the final decision regarding the choice of
the preferred solution on the basis of the obtained set of Pareto optimal
solutions, stop the calculations. Otherwise set p = p+1 and go to Step 4.

Each new preference vector should limit the set of Pareto solutions and
move it closer to the user’s preference solution. Note that the search area is
limited by the ideal vector and by the front of Pareto optimal solutions. The
preference vector reduces the search area and, at the same time, reduces the
computing time. A more restricted area of search leads to shorter computing
time for generating the set of Pareto solutions. The area of search restricted
too much may lead to a model in which there is no feasible domain.

3.2. An example of multiple clutch break design

Let us consider an example of a multiple clutch brake, the configuration
of which is shown in Fig. 7. The optimization model is as follows:

• Decision variables

The vector of the decision variables is x = [Ri, Ro, A, F, Z]
>, where

Ri – inner radius [mm]
Ro – outer radius [mm]
A – thickness of the discs [mm]
F – actuating force [N]
Z – number of friction surfaces.

• Objective functions

The vector of objective functions is f(x) = [f1(x), f2(x)]
>, where

f1(x) – mass of the brake [kg]
f2(x) – stopping time [s].
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Fig. 7. Scheme of the multiple clutch brake

Both objective functions are to be minimized. The decision variables are
under 16 constraints which are:

a) shear stress constraint

b) temperature constraint

c) relative speed of the slip-stick constraint

d) geometrical constraints.

The full description of the optimization model is given in Osyczka, 2002.

Results of the optimization process

The given optimization problem is considered as a mixed continuous and
integer programming problem. The data for the optimization process were as
follows:
— Data for the evolutionary algorithm for single and multicriteria problems
population size = 400 number of generations = 400
crossover rate = 0.6 mutation rate = 0.08.

— Lower and upper bounds on the first four decision variables

35.0 ¬ x1 ¬ 80.0 60.0 ¬ x2 ¬ 110.0

1.5 ¬ x3 ¬ 10.0 600.0 ¬ x4 ¬ 1000

The set of integer values for the fifth decision variable

X5 = {2, 3, 4, 5, 6, 7, 8, 9, 10}
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• Optimization procedure

To solve both single and multicriteria optimization problems, the con-
straint tournament selection method is used (Osyczka and Krenich,
2000). Firstly, the separately attainable minima of the objective func-
tions are found. These minima are calculated using the single criterion
optimization method, and they define the ideal vector which is as fol-
lows f0(x) = [0.37, 3.36]. Two case studies for two different preference
vectors are considered:

– The first preference vector f p
I

(x) = [0.6, 9.0]>

– The second preference vector f p
II

(x) = [1.25, 5.0]>

For the first case, the following constraints are introduced to the model

g17(x) = 0.6 − f1(x) ­ 0
(3.4)

g18(x) = 9.0 − f2(x) ­ 0

For the second case, the constraints are as follows

g17(x) = 1.25 − f1(x) ­ 0
(3.5)

g18(x) = 5.0 − f2(x) ­ 0

Fig. 8. The ideal and preference vectors in the objective space



578 A.Osyczka. S.Krenich

The ideal vector and both preference vectors are illustrated graphically in
Fig. 8. Finally, comparison between the traditional optimization method and
the proposed method is made. For the traditional optimization method, the full
set of Pareto solutions is generated. For the proposed method, the set of Pareto
optimal solutions lying only within the assumed ideal vector is generated. The
results of calculations are shown in Table 2 and illustrated graphically in Fig. 9.
It is clearly seen in Fig. 9 that using the proposed method the obtained sets of
Pareto solutions lie on the Pareto front. In both case studies, the calculation
time needed for obtaining these sets is significantly lower.

Fig. 9. The sets of Pareto optimal solutions for the multiple clutch brake

Table 2. Results of the optimization process of the multiple clutch brake

Approach Results
Computing
time [s]

Common procedure of generating No. of solutions
342

the full set of Pareto solutions 1678

Separately attainable minima of Ideal vector
14+15=29

the functions f1(x) and f2(x) [0.37,3.36]

The set of Pareto solutions for the No. of solutions
39

preference vector fp
I

(x) 16

The set of Pareto solutions for the No. of solutions
126

preference vector fp
II

(x) 60
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4. Evolutionary algorithm method with selecting the

representative subset of Pareto solutions

4.1. Description of the method

The idea of the method consists in reducing the set of Pareto optimal
solutions using the indiscernibility interval method after running a certain
number of generations. This process can be called a filtration process in which
less important Pareto optimal solutions are removed from the existing set.
The steps of the method are as follows:

Step 1. Set t = 1, where t is the number of the currently run generation.

Step 2. Generate the set of Pareto optimal solutions using any evolutionary
algorithm method.

Step 3. Is the criterion for filtration the set of Pareto solutions satisfied? If
yes, select a representative subset of Pareto solutions using the indi-
scernibility interval method and go to Step 4. Otherwise, go straight to
Step 4.

Step 4. Set t = t + 1 and if t ¬ T , where T is the assumed number of
generations, go to Step 2. Otherwise, terminate the calculations.

Note that if in Step 3 the answer is yes, we start the process, which can be
called the filtrating process since we filtrate and retain in the Pareto set only
these solutions which are not close to each other in the space of objectives.
Note also that in Step 3 the term criterion for filtration is introduced. Three
types of criteria can be used here:

Type 1. The number of solutions in the Pareto set exceeds the assumed num-
ber P , for example 100.

Type 2. The number of solutions in the Pareto set is assumed as P . The first
filtration is made if the number of solutions in the Pareto set exceeds this
number. The following filtration is made when P new Pareto optimal
solutions are added to the set.

Type 3. The filtration is made after running the assumed number of genera-
tions P , and in this case, the number of solutions in the Pareto set is
not controlled.

These three types of criteria may produce slightly different results, but
generally all of them reduce the computation time significantly. The choice of
the criterion depends on the problem to be solved. Using these three crite-
ria, the choice of P should be made with great care. If P is too small, the
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number of Pareto solutions might not be representative for the problem and
the evolutionary algorithm may not reach the real Pareto frontier. If P is too
large, we lose the effect of reducing the calculation time. Also the choice of the
indiscernibility interval ui is very important. If ui is too small, the number of
rejected solutions is also too small and there is no effect in reducing the set
of Pareto solutions, whereas too big value of ui may make the subset of the
obtained solutions too small to be representative.

4.2. An example of shaft design

Let us consider the problem of optimum design of a shaft, the scheme of
which is presented in Fig. 10. The shaft is under loading as presented in Fig. 11.

Fig. 10. Scheme of the shaft

Fig. 11. Scheme of bending and torsion load of the shaft

The multicriteria optimization problem is formulated as follows:
• The vector of decision variables is

x = [l1, l2, l3, D1, D2, D3]
> (4.1)

• The objective functions are

– volume of the shaft

f1(x) = l1π
(D1

2

)2

+ l2π
(D2

2

)2

+ l3π
(D3

2

)2

(4.2)
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– the first form of eigenfrequency along the direction of the ben-
ding load, generated by Finite Element Method (FEM), system
ANSYS, f2(x).

The function f1(x) is to be minimized and the second function f2(x) is
to be maximized.
There are three stress constraints built on the basis of average stress va-

lues according to Huber-Mises-Hencky’s hypothesis given by formulas (4.3)
and generated by FEM system ANSYS. For three different cross-sections, the
relevant equations are as follows

δred =

√

1

2

[

(δx − δy)2 + (δy − δz)2 + (δz − δx)2 + 3(τ2xy + τ
2
yz + τ

2
zx)
]

(4.3)

δ =
MbR

J
τ =
MsR

Jo

where: δred – reduced stress, δ – bending stress, τ – torsional stress,
Mb – bending moment, Ms – torque, J – moment of interia, Jo – polar
moment of interia, R – radius of cross-section.

Results of the optimization process

For the model given above, the optimization process was considered as a
continuous programming problem. The data for the optimization process were
as follows:
— Lower and upper bounds for the decision variables

200 ¬ l1 ¬ 260 200 ¬ l2 ¬ 260

200 ¬ l3 ¬ 260 18 ¬ D1 ¬ 30

20 ¬ D2 ¬ 32 18 ¬ D3 ¬ 30

— Loading values

F1 = 1300 N F2 = 2500 N

Ms1 = 50 Nm Re = 300 MPa

yield point of material St 30
— Data for the evolutionary algorithm
population size = 400 number of generations = 400
crossover rate = 0.6 mutation rate = 0.08.
penalty rate r = 105
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The experiments were carried out using the indiscernibility interval
ui = 5% for i = 1, 2 and for P = 100. The results of experiments are shown
in Fig. 12, in which Pareto frontiers for solutions without filtration and with
filtration are compared. The solutions depicted by black points are obtained
while running the evolutionary algorithm without the filtration process, whe-
reas those depicted by almost white points are obtained while running the
evolutionary algorithm with the assumed type of filtration.

Fig. 12. Sets of Pareto optimal solutions for the shaft design problem

In Table 3, the number of generated Pareto optimal solutions obtained
during each experiment and the computing time for each experiment are pre-
sented. From these experiments, it is clear that using the indiscernibility in-
terval method with the evolutionary algorithm, the computation time may be
reduced several times and still almost the same Pareto frontier is obtained,
which in some parts is even better than the one obtained by the ordinary
evolutionary algorithm.

Table 3. Comparison of the results for the shaft design problem

Method
Number of Pareto Time
solution [h]

Without filtration 1013 ∼ 42

Filtration Type 1 166 ∼ 6
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In Table 4, the dimensions of the shaft for four Pareto optimal solutions
from the generated set are presented. The numbers of solutions are as denoted
in Fig. 12.

Table 4. Four Pareto optimal solutions from the generated set

No.
f1(x) f2(x) l1 l2 l3 D1 D2 D3
[mm3] [1/s] [mm] [mm] [mm] [mm] [mm] [mm]

1 275052.5 136.7796 200.0 200.5 200.3 22.68 25.30 24.37

2 325083.3 149.7082 200.0 200.1 200.0 25.52 27.95 25.23

3 375254.6 160.6884 200.0 200.0 200.1 27.11 29.97 27.48

4 441487.5 173.6689 200.0 200.1 200.1 29.97 31.80 30.00

5. Conclusions

In the paper, new multicriteria design optimization methods based on evo-
lutionary algorithms are presented. The main aims of these methods is to
reduce the computing time while running an evolutionary algorithm program
and to facilitate the decision making process. This means that the methods
make the process of seeking the preferred solution more effective with respect
to both the computation time and the decision-making problem. The methods
can be very useful for design optimization problems with computationally
expensive functions. Examples presented in this paper show that the methods
can be used to solve different design optimization problems.
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Pewne metody optymalizacji wielokryterialnej w projektowaniu

technicznym przy wykorzystaniu algorytmów ewolucyjnych

Streszczenie

W artrykule przedstawiono nowe metody optymalizacji wielokryterialnej w pro-
jektowaniu technicznym. Metody te oparte są na algorytmach ewolucyjnych, a ich
celem jest znaczne zwiększenie efektywności procesu generowania rozwiązań Pareto
optymalnych. Najpierw zaprezentowano metodę wieloetapowego algorytmu ewolucyj-
nego. W metodzie tej na każdym etapie realizowany jest jedynie problem optymalizacji
dwukryterialnej, po rozwiązaniu którego jedna z funkcji celu jest przekształcana do
postaci ograniczenia. Proces ten jest powtarzany aż do momentu rozpatrzenia wszyst-
kich funkcji celu. Następnie omówiono metodę wektora preferencji. W metodzie tej
w pierwszym etapie algorytm ewolucyjny znajduje wektor idealny. Wektor ten dostar-
cza decydentowi informacji o możliwym zasięgu wszystkich funkcji celu. Na podstawie
tej informacji decydent może oszacować wektor preferencji, wewnątrz którego spodzie-
wa się znaleźć preferowane rozwiązanie. Dla tego wektora preferencji generowany jest
za pomocą algorytmu ewolucyjnego zbiór rozwiązań Pareto optymalnych. Ostatnią
z omawainych metod jest metoda redukcji zbioru rozwiązań Pareto optymalnych po
przebiegu założonej liczby generacji realizowanych przez algorytm ewolucyjny. W celu
pokazania sposobu działania omawianych metod, każda z nich została zilustrowana
innym przykładem zadania optymalnego projektowania. Przykłady te wskazują, że
zaproponowane metody mogą znacząco zredukować czas obliczeń komputerowych nie
pogarszając wyników.
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