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An energy method for the position stability analysis of critical points
(equilibrium positions) of dynamical systems with an arbitrary finite
number of degrees of freedom is presented. The method proposed consists
in the analysis of the potential energy balance of a perturbation of an
arbitrary number of generalised co-ordinates of the dynamical system in
order to establish the energy stability of individual degrees of freedom
and of the whole system. In the case of mechanical systems, the position
stability criterion, understood as minimisation of loads of driving systems
with conservative forces, is discussed. Some examples of application of
the method to the position stability analysis of critical points of one-
and two-degree-of-freedom systems are analysed.
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1. Introduction

A physical system in the equilibrium position is subject to various types of
external perturbations. Position perturbations can be caused both by external
loads acting on the system and by inaccuracies of the physical system posi-
tioning. The problem of near-critical analysis of a dynamical system subject
to a perturbation of generalised co-ordinates has practical meaning for the
determination of a tendency of the system behaviour. The dynamical system
remaining in the vicinity of the equilibrium position, such as the critical point,
is stable in the positioning sense if there is a tendency towards conservation
of the equilibrium position despite the effect of perturbations. Otherwise, the
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critical point is unstable. Additionally, in the case of mechanical systems, it
is advantageous to position links in such a way so that driving systems are
unloaded. Critical points, which are equilibrium positions, are such special
configurations of mechanical system links, in which the work necessary to ma-
intain the system at rest is minimised, and thus the driving system loading
with conservative forces is decreased.

In general, among methods of stability analysis of dynamical systems, we
can distinguish methods based on analysis of equations of motion of a system
and energy methods. Commonly used methods of the stability analysis of cri-
tical points are methods based on eigenvalues (Kapitaniak, 2001; Szumiński,
1995; Wiggins, 1990) or Lapunov’s exponents (Kapitaniak, 1991; Kapitaniak
and Wojewoda, 2001; Ott et al., 1990; Wiggins, 1990). These methods allow
for a qualitative description of the dynamical system behaviour in the vici-
nity of the critical point through the statement of its stability or instability.
Well-known are also methods related to limitations of solutions to equations
of motion, for instance investigations of the stability of solutions to equations
of motion in terms of Lagrange’s or Lapunov’s analysis (Kapitaniak, 1991;
Gutowski and Świetlicki, 1986; Demidowicz, 1972). In turn, a method based
on perturbation equations (Szumiński, 1996, Minorsky, 1962) that consists in
analysis of equations of a perturbed motion allows for analysis of the dynami-
cal system behaviour in the vicinity of the critical point as a function of one or
more motion perturbations introduced to the system. Among the energy me-
thods, well known is a method of analysis of derivatives of the potential energy
of a dynamical system in the critical point. It is possible to obtain an answer
concerning the stability of the dynamical system in the vicinity of the critical
point in an easy way on the basis of analysis of the sign of the second deriva-
tive of the system potential energy with respect to the generalised co-ordinate
for parameters of the critical point (Kapitaniak, 2001; Cesari, 1959; Langha-
ar, 1962; Kruszewski et al., 1993; Schuster, 1993). Employing the principle of
virtual works, one can show that the necessary and sufficient conditions for
the stability of critical points can also be generalised for systems with ma-
ny degrees of freedom. A separate group of methods for the investigations of
stability of some defined types of dynamical systems are stability criteria, for
example Routh-Hurwitz’s criterion, which are used for the stability analysis
of dynamical systems described by linear equations of motion with constant
coefficients (Kheir, 1996).

The method proposed here is an energy method. It allows one to answer
the question concerning the position and energy stability of the critical point,
and to carry out quantitative analyses of the dynamical system behaviour in
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the vicinity of the critical point as a function of the number and magnitude of
the perturbation of generalised co-ordinates, without necessity of formulation
of differential equations of motion. The method rests on recording the pertur-
bation potential energy of a dynamical system and on the static analysis of
its changes in the vicinity of the critical point. It allows one to determine the
character of motion in the vicinity of the critical point.
The paper consists of four sections. Theoretical grounds of the method are

discussed in the second part. The third section presents examples of the stabili-
ty analysis and determination of characteristics of critical points of exemplary
dynamical systems. Dynamical systems with one and two degrees of freedom
have been assumed as examples. In the fourth part conclusions are included.

2. Theoretical grounds

Let us assume that a vector of generalised co-ordinates of a dynamical
system assumes the following form

q = [q1, q2, ..., qi, ..., qn]⊤ (2.1)

where qi ∈ M and M is the set of perturbed generalised co-ordinates of the
dynamical system.
Let us now introduce a perturbation of the ith generalised co-ordinate in

the form
qi = qi + ϕi (2.2)

where ϕi is the perturbation of the ith generalised co-ordinate of the system.
Let us assume that the relation expressing the potential energy of the no-

minal system position as a function of its vector of the generalised co-ordinates
is known. The potential energy, taking into account the effect of a perturbation
of selected generalised co-ordinates, is expressed as follows

Ep = A+ Z(ϕi) (2.3)

where A are potential energy terms dependent on the location of the nominal
system in the system state space and the data concerning the mass and geo-
metry of the system structure. Here, the potential energy terms describing the
nominal position of the dynamical system are included; Z(ϕi) are terms of the
potential energy equation describing perturbations of the dynamical system
position.
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In general, the potential energy of the dynamical system is expressed as

Ep = Enp + E
p
p (2.4)

where Enp is the potential energy of the nominal position of the dynamical
system, and Epp – potential energy of the nominal position perturbation.
As a result of the assumption of the analysis in the close vicinity of the

dynamical system equilibrium points, the trigonometric functions describing
the potential energy are replaced by a Taylor series. The obtained relations
represent changes of the potential energy of the perturbation in vicinities of
individual configurations in the system state space as a function of the per-
turbation magnitude of individual generalised co-ordinates and critical point
parameters in the space of motion parameters of the dynamical system.
The perturbation potential energy is understood as the work that should

be performed to bring the perturbed dynamical system to the equilibrium
position.
In order to carry out an analysis of the system dynamics in neighbourhoods

of critical points, the stability criteria based on the following cases are given.
The dynamical system is stable in the position sense in the critical point

if each generalised co-ordinate is stable in this point, that is to say, when

∀i Eppi > 0 i = 1, 2, ..., n

The dynamical system is unstable in the critical point if at least one gene-
ralised co-ordinate of the dynamical system is unstable, i.e. when

∃i Eppi < 0 i = 1, 2, ..., n

We can distinguish the following cases of the sign of the perturbation
potential energy of the dynamical system:

• for Epp < 0 a loss of the system potential energy resulting form the
occurrence of perturbations; energy should be delivered to the system
(work should be performed), the equilibrium point is unstable – some
generalised co-ordinates can be stable; when upset from the equilibrium
position, the system escapes from the critical point;

• for Epp > 0 an increase in the system potential energy resulting from the
occurrence of perturbations; energy can be taken from the system as a
whole, the equilibrium point can be stable or unstable, depending on the
signs of values of potential energies of the perturbation Eppi of individual
generalised co-ordinates of the system; in the case of the stable system,
when upset from the equilibrium position, it tends to return to it;
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• for Epp = 0 lack of perturbations, i.e. the perturbation potential energy
equals to zero; in the case when perturbations take place, a stability
boundary of the dynamical system in the energy sense occurs.

We can distinguish the following cases of the sign of the perturbation
potential energy of the ith generalised co-ordinate of the dynamical system:

• for Eppi < 0 when the position is upset, energy should be supplied to
the system (work should be performed) to bring the system to the equ-
ilibrium position; the generalised co-ordinate is unstable; in mechanical
systems this case is disadvantageous due to an increase in the load of
the driving system of the generalised co-ordinate;

• for Eppi > 0 after the position is upset, the system returns to the equili-
brium position; energy can be taken back from the system; the generali-
sed co-ordinate is stable; in mechanical systems this case is advantageous
due to the fact that the driving system of the generalised co-ordinate
self-unloads.

Apart from the presented position stability criterion of the vicinity of the
critical point, an energy criterion can be assumed. It is as follows: a dynamical
system is stable in the energy sense when the balance of the energy delivered to
the system and taken back from it (i.e. its individual generalised co-ordinates)
in order to bring the system to the critical point is positive, that is to say, when
the potential energy of the system perturbations is positive. This criterion has
been assumed in the analysis of the energy necessary to maintain the system in
the critical point, and to eliminate stresses related to the position perturbation
in driving systems.
As a result of numerical simulations, one can perform an analysis of chan-

ges in the potential energy with respect to the perturbation location of sub-
sequent generalised co-ordinates of a dynamical system as a function of the
perturbation magnitude, and for the case when:

• perturbations of a selected generalised co-ordinate of the dynamical sys-
tem under consideration occur;

• perturbations of a higher number or of all generalised co-ordinates of the
system under consideration occur.

As a result, some information on types and characters of individual critical
points of the dynamical system analysed can be, for instance, obtained.
In the next section, examples of the application of the method to the analy-

sis of types of characteristic points of sample dynamical systems is presented.
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3. Analysis of characteristic points of a double pendulum

In the presented example only gravitational forces occur. The potential
energy of the double pendulum in Fig. 1 with respect to the X-axis is

Ep =
1
2
g[m1L1 +m2(2L1 + L2)− L1(m1 + 2m2) cos q1 −m2L2 cos q2] (3.1)

where g is the gravity acceleration.

Fig. 1. Double pendulum

Now we introduce a perturbation of each generalised co-ordinate, Eq. (2.2)

q1 = q1 + ϕ1 q2 = q2 + ϕ2 (3.2)

Introducing Eq. (3.2) into Eq. (3.1), the potential energy is

Ep = A+B cos(q1 + ϕ1) + C cos(q2 + ϕ2) (3.3)

where the terms of the potential energy describing the basic motion are

A =
1
2
g[m1L1 +m2(2L1 + L2)]

and the terms of the potential energy describing the perturbation are as follows

B = −
1
2
L1(m1 + 2m2)g C = −

1
2
m2L2g
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The potential energy of the system connected with the perturbations, Eq.
(2.4), is equal to

Epp = B cos(q1 + ϕ1) + C cos(q2 + ϕ2) (3.4)

Now the trigonometric functions in Eq. (3.4) are replaced by a Taylor
series, and the series terms higher than four are rejected. Then, the potential
energy of the system perturbations is equal to

Epp = −B
[(ϕ21
2
−
ϕ41
24

)

cos q1 +
(

ϕ1 −
ϕ31
6
+
ϕ51
120

)

sin q1
]

+
(3.5)

− C
[(ϕ22
2
−
ϕ42
24

)

cos q2 +
(

ϕ2 −
ϕ32
6
+
ϕ52
120

)

sin q2
]

If we assume the following values of the system parameters

m1 = 1kg m2 = 1kg L1 = 0.2m L2 = 0.2m

the coefficients B and C are equal to

B = −2.943Nm C = −0.981Nm

Taking into account the parameters of critical points of the system, the po-
tential energy of perturbations, Eq. (3.5), assumes forms presented in Table 1.

Table 1

Parameters of the system Potential energy of perturbations
in the critical point of the system

q1 = 0, q2 = 0 Epp = −B
(ϕ21
2
−
ϕ41
24

)

−C
(ϕ22
2
−
ϕ42
24

)

q1 = 0, q2 = π Epp = −B
(ϕ21
2
−
ϕ41
24

)

+C
(ϕ22
2
−
ϕ42
24

)

q1 = π, q2 = 0 Epp = B
(ϕ21
2
−
ϕ41
24

)

− C
(ϕ22
2
−
ϕ42
24

)

q1 = π, q2 = π Epp = B
(ϕ21
2
−
ϕ41
24

)

+ C
(ϕ22
2
−
ϕ42
24

)

The expressions in Table 1 allow for an analysis of changes of the potential
perturbation energy in the close vicinity of equilibrium positions as a function
of the perturbation magnitude ϕ1 and ϕ2.
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3.1. Examples of numerical analysis

In Fig. 2, cases of stability and instability of the system in the vicinity of
individual critical points for a perturbation of the generalised co-ordinate q2
are presented.

Fig. 2. Perturbation potential energy distribution in the case of an unstable and
stable point

The sign of the perturbation energy decides about stability of the system in
the vicinity of the equilibrium position, according to the assumptions presented
in Section 2. A perturbation of one generalised co-ordinate fulfils the basic
criterion of stability.

Let us consider an influence of both the generalised co-ordinates on the
system stability. In Fig. 3, the vicinity of the equilibrium position: q1 = 0,
q2 = π is shown.

The potential energy of the system perturbation has a positive value,
Epp > 0. The system satisfies the energy criterion of stability. However, the
system is unstable as the generalised co-ordinate q2 is unstable, E

p
p2 < 0.

On the other hand, the potential energy of the system perturbation in the
vicinity of the critical point q1 = q2 = 0 is presented in Fig. 4. The system is
stable near the critical point because both the generalised co-ordinates of the
system are stable, Epp1, E

p
p2 > 0, that is to say, the potential energy of the

system perturbation is positive, Epp > 0. The system fulfils also the energy
criterion of stability.
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Fig. 3. Energy stability of the equilibrium q1 = 0, q2 = π

Fig. 4. Stability of the equilibrium q1 = 0, q2 = 0

In Fig. 5 the potential energy of the system perturbation in the vicinity
of the critical point q1 = π, q2 = 0 is shown. In this case, the generalised
co-ordinate q1 is unstable, E

p
p1 < 0, whereas the co-ordinate q2 is stable,

Epp2 > 0. The system under consideration is unstable, which also follows from
the fact that the value of the potential energy of the system perturbation is
negative, Epp < 0. In this case, the system is not stable in terms of energy.
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Fig. 5. Unstability of the equilibrium q1 = π, q2 = 0

4. Pendulum with an elastic support

Let us consider a system presented in Fig. 6. The potential energy of conse-
rvative forces in the form of forces of gravity and forces of elasticity, expressed
in a system of the co-ordinates XY , is as follows

Ep =
1
2
kq2 −

1
2
mgL(1− cos q) (4.1)

Fig. 6. Elastically suported pendulum

As we know, equating he potential energy derivative, Eq. (4.1), with respect
to the variable q to zero, we obtain the equilibrium points q = 0 and a solution
in the form

2kq = mgL sin q (4.2)
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In such cases, this approach is useful and easy. Let us assume that the stiffness
coefficient k is variable. For

k >
1
2
mgL

there is only one equilibrium position q = 0, and it is stable. For

k <
1
2
mgL

the system has three equilibrium positions: q = 0 that is unstable, and two
equilibrium positions that are stable and determined by the relation

2kq = mgL sin q

Now, let us introduce a perturbation of the generalised co-ordinate

q = q + ϕ

into the potential energy equation, Eq. (4.1), where ϕ is a perturbation of the
position of the system under consideration in the equilibrium point.
Then, the potential energy of the system is as follows

Ep =
1
2
k(q + ϕ)2 −

1
2
mgL[1− cos(q + ϕ)] (4.3)

Expanding the trigonemetric function in Eq. (4.3) into a Taylor series and
rejecting the terms of higher orders, we obtain

Ep = Enp + E
p
p

where Enp is the nominal potential energy of the system

Enp =
1
2
[kq2 −mgL(1 − cos q)]

whereas Epp is the potential energy of the perturbation

Epp = kϕ
(

q +
ϕ

2
)−
1
2
mgL

[

cos q
(ϕ2

2
−
ϕ4

24

)

+ sin q
(

ϕ−
ϕ3

6
+
ϕ5

120

)]

(4.4)

In the case of the equilibrium point q = 0, the perturbation potential energy,
Eq. (4.4), has the form

Epp =
1
2

[

kϕ2 −
1
2
mgL

(

ϕ2 −
ϕ4

12

)]

(4.5)
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Fig. 7. Transition from the unstable system to the stable one

For given m, L of the system under consideration, the stiffness coefficient k
decides whether the critical point is stable or not. In Fig. 7, the distribution
of the perturbation potential energy as a function of the stiffness coefficient k
and the perturbation of the system generalised co-ordinate, based on Eq. (4.5),
is shown.

The following data of the system have been assumed: m = 1kg, L = 1m.

A transition from the unstable system, Epp < 0, to the stable one, E
p
p > 0,

can be seen with an increase in the stiffness k. The boundary stability occurs
for the stiffness coefficient k = 4.905Nm/rad.

Fig. 8. Stability of the equilibrium q = 0
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In Fig. 8, changes in the perturbation potential energy in the vicinity of
the critical point q = 0 for the stiffness k = 6Nm/rad are presented. The
perturbation potential energy is positive, so the system is stable in the vici-
nity of the equilibrium point. In turn, Fig. 9 shows the perturbation potential
energy in the vicinity of the equilibrium point q = 0 for the stiffness coefficient
k = 4Nm/rad.

Fig. 9. Unstability of the equilibrium q = 0

Fig. 10. Identification of the stability boundary for the equilibrium q = 0

The perturbation potential energy is negative, so the system is unstable in
the critical point. Identification of the stability boundary for the equilibrium
point q = 0 is performed through an analysis of the change in the perturbation
potential energy of the system. In Fig. 10 an energy map of the vicinity of the
equilibrium point is shown. It allows for the identification of the stability
boundary of the system, which can be stable or unstable, through finding a
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value of the parameter at which a bifurcation occurs – a transcritical fork-type
bifurcation in the case under consideration. In the figure, the system stability
boundary as a function of the position perturbation is shown as well. In the
case of dynamical systems with a higher number of degrees of freedom than
one, the energy map refers to the energy criterion of stability. In other words,
it is the balance of energy needed to bring the dynamical system to the critical
point.
For the value of the stiffness coefficient k corresponding to the system sta-

bility boundary (boundary value of the stiffness coefficient k between stability
and instability of the system), the perturbation potential energy is positive,
and thus the system remains stable – Fig. 11.

Fig. 11. Perturbation of the system for the coefficient k corresponding to the
stability boundary

Fig. 12. Stability of the system for the equilibrium 2kq = mgL sin q

In turn, changes in the perturbation potential energy as a function of the
perturbation in the vicinity of the equilibrium point described by the solution
(4.2), for the stiffness coefficient k = 4Nm/rad, are presented in Fig. 12.
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As the perturbation potential energy is positive, the system remains stable.
While drawing a plot of the changes in the perturbation potential energy as a
function of the stiffness coefficient k, one can determine the system stability
boundary – Fig. 13.

Fig. 13. Finding the stability boundary of the system

It can be seen that the equilibrium point described by the solution (4.2)
vanishes for the stiffness coefficient k = 4.905Nm/rad.

5. Analysis of characteristic points of an exemplary robot

manipulator

Let us consider a robot manipulator with three degrees of freedom as an
example. A scheme of such a manipulator is shown in Fig. 14. It is a four-
link manipulator with the following kinematic chain structure: R-R-P (R –
rotational kinematic pair, P – prismatic kinematic pair). In order to simplify
the mathematical model, ideal kinematic pairs of the manipulator have been
assumed. In the assumed manipulator model, conservative forces in the form
of gravity forces occur.
Now let us consider a relation describing the potential energy of the ma-

nipulator in the second stage of motion (motion of the second and third gene-
ralised co-ordinate, whereas the first co-ordinate remains stationary).
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Fig. 14. Scheme of the robot manipulator MAR

Let us introduce perturbations of the co-ordinates. We obtain then a rela-
tion describing the manipulator potential energy, in the second stage of motion,
in the form

Ep2 = A+ Z(ϕ2, ϕ3) (5.1)

where
A – terms of the potential energy equation describing basic motion;

factors depending on the robot configuration and on the mass and
geometrical data of its links; in the case under consideration

A =
(

−
1
2
m0L0 +

1
2
m1L1 cos q1 +m2L1 cos q1 +m3L1 cos q1)g

Li – length of the ith manipulator link
mi – mass of the ith manipulator link
Z – terms of the potential energy equation describing the manipulator

perturbation

or transforming Eq. (5.1)

Ep2 = A+B cos(q2 + ϕ2) + C sin(q2 + ϕ2) +Dϕ3 sin(q2 + ϕ2) (5.2)
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where

B =
(1
2
m2 +m3

)

L2g cos q1

C = m3(s3 + q3)g cos q1 (5.3)

D = m3g cos q1

and s3 is the initial position of the centre of gravity for link 3, with regard to
the position of point C – Fig. 14.
Thus, when the perturbation occurs, we can express the manipulator po-

tential energy as a sum of the manipulator nominal potential energy and of the
potential energy, called the potential energy of the manipulator perturbation,
i.e., generally in the form

Ep2 = Enp2 + E
p
p2 (5.4)

After some mathematical transformations and taking into account the clo-
se vicinity of manipulator equilibrium points, the trigonometric functions are
replaced by a Taylor series, and the series terms higher than four are rejected.
Then, on the basis of Eq. (5.1), the potential energy of the system perturba-
tions is

Epp2 = −(B cos q2 + C sin q2)
(ϕ22
2
−
ϕ42
24

)

+

− (B sin q2 − C cos q2 −Dϕ3 cos q2)
(

ϕ2 −
ϕ32
6
+
ϕ52
120

)

+ (5.5)

+ Dϕ3 sin q2
(

1−
ϕ22
2
+
ϕ42
24

)

If we assume the values of the parameters of individual equilibrium points,
then on the basis of Eq. (5.3), we obtain the values of the coefficients B, C,
D of Eq. (5.5) in the neighbourhood of manipulator individual equilibrium
points. A collection of the obtained results is presented in Table 2.
Employing the data included in Table 2, Eq. (5.5) assumes the form

Epp2 = −
B sin q2
120

ϕ52 +
B cos q2
24

ϕ42 +
B sin q2
6
ϕ32 −

B cos q2
2
ϕ22 +

−B sin q2ϕ2 +D sin q2ϕ3 +
D cos q2
120

ϕ52ϕ3 +
D sin q2
24

ϕ42ϕ3 + (5.6)

−
D cos q2
6
ϕ32ϕ3 −

D sin q2
2
ϕ22ϕ3 +D cos q2ϕ2ϕ3
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Table 2

Maniulator Parameters of the critical Coefficient
configuration point in kinematic pairs B C D

q1 = 0
High q2 = 0 (m2/2 +m3)L2g 0 m3g

q3 = −s3
q1 = 0

High q2 = π (m2/2 +m3)L2g 0 m3g
q3 = −s3
q1 = π

Low q2 = 0 −(m2/2 +m3)L2g 0 −m3g
q3 = −s3
q1 = π

Low q2 = π −(m2/2 +m3)L2g 0 −m3g
q3 = −s3

Equation (5.6) allows for an analysis of changes of the manipulator per-
turbation potential energy as a function of the perturbation magnitude of
individual degrees of freedom. We can distinguish here the cases mentioned in
the theoretical introduction.
In the case of a high configuration of the manipulator, and at the genera-

lised co-ordinate q2 = 0 as well as in the case of a low configuration of the
manipulator, and at the generalised co-ordinate q2 = π, Eq. (5.6) assumes the
form

Epp2 =
1
2
Bϕ22

( 1
12
ϕ22 − 1

)

+Dϕ2ϕ3
( 1
120
ϕ42ϕ3 −

1
6
ϕ22 + 1

)

(5.7)

In the case of a high configuration of the manipulator, and at the genera-
lised co-ordinate q2 = π as well as in the case of a low configuration of the
manipulator, and at the generalised co-ordinate q2 = 0, Eq. (5.6) assumes, in
turn, the form

Epp2 =
1
2
Bϕ22

(

1−
1
12
ϕ22

)

−Dϕ2ϕ3
( 1
120
ϕ42ϕ3 −

1
6
ϕ22 + 1

)

(5.8)

6. Examples of numerical analysis results

Analysing Fig. 15-Fig. 18, one can observe changes in the potential energy
of the manipulator location perturbation as a function of the perturbation
magnitude, and the case when:
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• a perturbation of one of the generalised co-ordinates of the manipulator
occurs – in this case it is the generalised co-ordinate q2, see Fig. 15 and
Fig. 16

• perturbations of a higher number of the generalised co-ordinates occur
– in the considered case these are q2 and q3, see Fig. 17 and Fig. 18.

Fig. 15. Perturbation potential energy distribution in the case of an unstable point

Fig. 16. Perturbation potential energy distribution in the case of a stable point

In Fig. 17 and Fig. 18 a distribution of the perturbation potential energy as
a function of the two-dimensional perturbation ϕ2 and ϕ3 for selected cases
of equilibrium points is presented.
The perturbations of the location of the manipulator links in the following

ranges
ϕ2 = ±0.01 rad ϕ3 = ±0.0005 rad
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Fig. 17. Perturbation potential energy space distribution in the case of an unstable
point

Fig. 18. Perturbation potential energy space distribution in the case of a stable point

have been introduced into the system under analysis, [Asada 1986].

Taking into account the stability criteria mentioned in theoretical intro-
duction, the types of individual critical points of the considered manipulator
are presented in Table 3.
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Table 3

Distribution of perturbation
Kind of critical point

potential energy

Figure 15 Unstable point (anti-attractor)
Figure 16 Stable point (attractor)
Figure 17 Energy and position unstable point
Figure 18 Energy and position stable point

The notion of an attractor is understood as the effect of ”attraction” of a
trajectory of changes of the perturbation potential energy by the critical point,
whereas the notion of an anti-attractor refers to the property of the critical
point consisting in ”repulsing” the trajectory of the perturbation potential
energy changes.

The analysis of Eqs (5.7) and (5.8) and of Fig. 17 and Fig. 18 allows one
to observe that in the case of lack of the perturbation of the critical point of
the second generalised co-ordinate a perturbation of the critical point related
to the third co-ordinate does not affect the magnitude of the perturbation
potential energy of the manipulator. Thus, one can state that the behaviour
of the system in the neighbourhood of the critical point is influenced by the
perturbation of the second generalised co-ordinate of the manipulator.

In Fig. 15 and Fig. 16, the character of the potential energy distribution of
the manipulator perturbation for the case of a zero perturbation of the ma-
nipulator third generalised co-ordinate in vicinities of various types of critical
points, in the second stage of robot motion, is presented. The figures confirm
the obtained results referring to the types of individual critical points deter-
mined by the method of eigenvalues and by the motion perturbation method
(Kapitaniak and Wojewoda, 2001; Szumiński, 1995, 1997).

Table 4

Manipulator link number i
1 2 3

Kind of kinematic pair R-rotational R-rotational P-prismatic

Link mass mi [kg] 12.7 12.7 15
Link lenght Li [m] 0.17 0.18 0.42
Position of xrsi [m] −L1/2 −L2/2 0
the centre yrsi [m] 0 0 0
of gravity zrsi [m] 0 0 −L3/2

S3 = 0.18 m
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Stability simulations for the cases of the determined critical points of the
low configuration of the manipulator (q1 = π) yield analogous results to the
presented simulation for the high configuration (q1 = 0).
Physical and geometrical data of the analysed manipulator are included in

Table 4.

7. Conclusions

The presented method of the potential energy perturbation of a dynamical
system allows for the analysis of position and energy stability in the critical
point vicinity as a function of the perturbation of an arbitrary number of the
system generalised co-ordinates. It enables simulation of the dynamical beha-
viour for various cases of generalised co-ordinate perturbations, including the
effect of perturbations of individual generalised co-ordinates on the dynamical
system stability in the critical point. Formulation of equations of motion of
the system is not required. The method is based on the analysis of changes in
the potential energy of the system upset from the equilibrium position.
The forms and kinds of critical points are closely related to the manipulator

model, which has been assumed in the investigations.
This method can be applied for the determination of control algorithms

of motion in terms of subsequent generalised co-ordinates of the dynamical
system in order to maintain the conditions of its position and energy stability
in the critical point.
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Metoda energetyczna analizy stateczności punktów krytycznych

manipulatorów

Streszczenie

W artykule przedstawiono metodę energetyczną analizy stateczności punktów kry-
tycznych (położeń równowagi) układów dynamicznych o dowolnej skończonej liczbie
stopni swobody. Proponowana metoda polega na analizie bilansu energii potencjalnej
zaburzenia dowolnej liczby współrzędnych uogólnionych układu dynamicznego w ce-
lu okreslenia stateczności energetycznej poszczególnych stopni swobody oraz całego
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układu. W przypadku układów mechanicznych przedstawiono kryterium stateczności
w sensie minimalizacji obciążeń układów napędowych siłami zachowawczymi. Przed-
stawiono przykłady zastosowania metody dla celów analizy stateczności punktów kry-
tycznych układów o jednym i dwóch stoopniach swobody.
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