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A comparison between the inverse method, leading within the framework
of the 2D model to prediction of the optimal rotor shape and the direct
approach for evaluating flow through a preexisting rotor shape utilizing
a 3D model is presented in this paper. The principle of shaping the rotor
envelope and blading within the 2D model is illustrated, followed by
subsequent computation of 3D flow through the resulting model. The
design goal is to obtain uniform distributions of flow parameters within
the rotor while avoiding separated flow. It is also shown how the altering
of the overall shape of the rotor from conical to hyperboloidal affects the
uniformity of velocity distribution upstream of the rotor inlet.
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Important symbols

e0 – total energy
f – shape function of stream surface S2
fx1, fx2, fx3 – body force components
p – pressure
T – temperature
Ux2, Ux3 – velocity components
x1, x2, x3 – curvlinear coordinates
ζ – isentropic loss coefficient
τ – flow-area reduction factor
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1. Introduction

The evolution of the outline of the compressor stage is shown in Fig. 1,
according to publications by Siemens company (Tosza and Magdalinski, 2002).

Fig. 1. Evolution of compressor meridional shape

As may be observed, strict radial shape delimited by straight lines has
gradually evolved towards a curved hyperbola-delimited cross-section, with
marked tendency toward reducing the diameter and extending the blade in
the axial direction. The present work can serve to illustrate this progress from
the traditional cone-bounded rotor towards the hyperboloid-of-revolution-
bounded rotor. The starting point is the rotor shape illustrated in Fig. 2,
for which 3D computations have been carried out. The results have shown
a distinct region of separated flow localized at the inlet (Fig. 3.).

Fig. 2. Radial compressor (meridional section)
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Fig. 3. Separation zone upstream to the leading edge

Three distinct vortices can be made out in Fig. 3, which indicates that the
primary vortex is of intensity high enough to generate and feed the subse-
quent two vortices. The large extent of the separation-affected region is also
quite noticeable. There are two incentives that make the elimination of this
region desirable. Firstly, unwanted dissipation effects are invariably exacerba-
ted through the presence of separation zones. Secondly, the existing separation
adversely affects the uniformity of flow distribution at the entrance to the ro-
tor. Such non-uniform inflow requires complex special modifications of blade
shape; if such design modifications are not made and the flow is treated as
uniform, additional losses will be incurred within the rotor.

2. Hyperbolic outline of rotor cross-section

The cross-section outline of the modified rotor is shown in Fig. 4. The
casing has the form of a hyperboloid of revolution generated by the hyperbola

fd = d1 + d2x
−nd
3 (2.1)

The particular hyperbola was chosen so as to avoid the occurrence of separa-
tion similar to that shown in Fig. 3. The remaining curves enclosing the rotor
cross-section are described analytically by the equations

fb = b1 + b2x
−nb
3 finl = a+ bx3 fout = rk (2.2)
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Thus, the configuration of the rotor envelope is fully described by nine para-
meters: d1, d2, nd, b1, b2, nb, a, b, rk. The parameters d1, d2, nd have been
chosen so as to eliminate the separated region where the flow is turned from
the axial to radial direction. The resulting line is characterized by continuous
curvature, as opposed to the conventional jump in the curvature at the junc-
ture of the straight line and arc (Fig. 2). The parameters b1, b2, a, b follow
from the choice of the points P2, R1, R2, as shown in Fig. 5; these points, as
well as the quantity rk, follow in turn from the assumed dimensions of the
compressor stage. The remaining free parameter nb can be obtained by stating
the requirement of uniform flow parameter distribution at the outlet from the
rotor, along the line P1 -P2. With this end in mind, let us define the following
family of curves

f = f(x1, x3) = x1fb + (1− x1)fd (2.3)

Fig. 4. Blade channel boundaries

Note that with x1 = 0 one obtains the profile of the hub disc, and with
x1 = 1 the profile of the outer casing. The curves x1 = const follow the pattern
shown in Fig. 5, forming the basis of a family of hyperboloids of revolution
which can be used as the basis for defining the curvilinear coordinate system
(x1, x2, x3).
The conversion rule with regard to the cartesian system can be written as

x = f(x1, x3) cos x2 y = f(x1, x3) cos x2 z = x3 (2.4)
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Fig. 5. Streamsurfaces S1 in meridional cross-section

If the surfaces x1 = const are taken as stream surfaces, then the problem of
designing the corresponding blade configuration within the R1R2P2P1 region
reduces to the solution of the following system of equations:

• the mass conservation (continuity) equation

[1− τ(x1, x3)]ρUx3
f ∂f
∂x1

√

1 +
(

∂f
∂x3

)2
= m(x1) (2.5)

• momentum conservation equations:

– in the x1 direction

−

ρU2x2
f
+
ρU2x3

∂2f

∂x2
3

1 +
(

∂f
∂x3

)2
= −
∂p

∂x1

1 +
(

∂f
∂x3

)2

∂f
∂x1

+
∂p

∂x3

∂f

∂x3
+ ρfx1 (2.6)

– in the x2 direction

ρUx3

f

√

1 +
(

∂f
∂x3

)2

∂(fUx3)

∂x3
= ρfx2 (2.7)
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– in the x3 direction

ρUx3
√

1 +
(

∂f
∂x3

)2

(

∂Ux3
∂x3
−

Ux3

1 +
(

∂f
∂x3

)2

∂f

∂x3

∂2f

∂x23

)

=

(2.8)

=
∂p

∂x1

∂f
∂x3
∂f
∂x1

√

1 +
( ∂f

∂x3

)2

−

∂p

∂x3

√

1 +
( ∂f

∂x3

)2

+ ρfx3

• the energy conservation equation (ur-rotor velocity)

U2x2 + U
2
x3

2
− urUx2 +

k

k − 1

p

ρ
= e0(x1) (2.9)

• the process equation (an integral of the Gibbs equation with the defini-
tion of the loss coefficient)

ρ = ρ1
( p

p1

)

1

k
exp

[

ζ
[(

p1
p

)

k−1
k
− 1

]

√

(1− ζ)
[

1− ζ
(

p1
p

)

k−1
k
]

]

(2.10)

This system of 6 equations, however, contains 9 unknowns

Ux2, Ux3, fx1, fx2, fx3, ρ, p, τ, ζ

Its closure thus calls for additional assumptions with regard to three of the
above quantities. Let us focus for the moment on continuity equation (2.5).
Transforming it, one obtains the formula

ρUx3 =
m(x1)

[1− τ(x1, x3)]
f
∂f

∂x1
√

1+

(

∂f

∂x3

)2

=
m(x1)

[1− τ(x1, x3)]Pu(x1, x3)
(2.11)

where the parameter Pu depends solely on the geometric configuration

Pu(x1, x3) =
f ∂f
∂x1

√

1 +
(

∂f
∂x3

)2
(2.12)

If one were to aim at uniformity of ρUx3 distribution at the outlet stage,
then all the functions taking part in relation (2.11) should approach constant
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values. The function m(x1) is dependent on conditions at the outlet stage
(line P1 -P2). Any non-uniformity with regard to the parameters making up
m(x1) is reflected in a corresponding non-uniformity at the outlet. This can
be compensated by varying Pu. Let us introduce a quantitative measure of
the non-uniformity in the parameter Pu, based on deviation from the mean
value

mPu =
1

x3R2 − x3P2

x3R2
∫

x3P2

Pu dx3 (2.13)

The non-uniformity factor can be then expressed as follows

NPu =
1

mpu

√

√

√

√

√

√

1

x3R2 − x3P2

x3R2
∫

x3P2

(Pu −mPu)2 dx3 (2.14)

In relation (2.12) for the outlet, the coordinate x1 can be eliminated by making
use of the formula

x1 =
rk − fd

fb − fd
(2.15)

where the expressions

rP2 = rk = b1 + b2x
−nb
3P2

(2.16)

rR2 = rk = b1 + b2x
−nb
3R2

serve to determine the parameters b1, b2. Thus, the parameter Pu becomes a
function of the arguments (x3, b1, b2, nb) only, while NPu is the function of nb
alone. For actual values of all remaining parameters as listed below

d1 = 0.195789 rk = 0.176

d2 = 0.186336 a = 0.0900253

nd = 0.1 b = 0.472992

(2.17)

the non-uniformity factor NPu varies with nb as shown in Fig. 6.
It should be noted that the minimum of NPu falls in the vicinity of

0.50 - 0.55. The values of the remaining parameters are summarized in Table 1.

Table 1

nb b1 b2 Nf

0.45 −0.05020536 0.040771974 0.035485

0.50 −0.03115712 0.030865716 0.012092

0.55 −0.01560754 0.023599713 0.019275

0.60 −0.00268185 0.018192493 0.047338
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Fig. 6. Non-uniformity factor NPu

The behavior of the parameter Pu = Pu(x3) at the outlet is illustrated in
Fig. 7 for nb = 0.5. This is the value for which NPu reaches its minimum of
approximately NPu ≈ 0.012.

Fig. 7. Parameter Pu as function of x3

3. Results of 3D calculations for the hyperboloid-walled rotor

Solving the above system of equations describing the 2D model yields the
shape of the rotor blade surface. The solution uses additional closing assump-
tions in the form of the following relations describing the loss coefficient within
the rotor region (r, x1)

r1 =
r − rin1
rk − rin1

(3.1)

ζ = [w0r1 + (1− w0)r
n0
1 ][w1 + w2(1− x1)

n1 ] + w3x
n2
1
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with the constants set to

w0 = 0.5 w1 = 0.05 w2 = 0.0 w3 = 0.0

n0 = 15 n1 = 40 n2 = 30
(3.2)

so that the level of losses should closely mimic what can be expected in the
rotor region. Two additional functions τ(x1, x3) = 0 and fx1 = 0 were for-
mulated. These are preliminary simplifications which can be prospectively re-
placed by other closure functions matching better the expected values, of fx1
in particular.
The resulting surface is shown in Fig. 8. After allowing for the profile thick-

ness (approx. 5mm) the blade can be modelled along it. The curves making up
the surface are fluid element trajectories passing along axisymmetric stream
surfaces described by the function f as defined in relation (2.3).

Fig. 8. Stream surface S2 (a) and final blade shape (b)

The following illustrations compare the calculation results from the 2D and
3D models. The boundary conditions for the 3D model are as formulated by
Flaszyński and Puzyrewski (2001). Figure 9 shows the distribution of static
pressure at the inlet to the bladed region of the rotor. Figure 10 shows the
corresponding velocity distribution, and Fig. 11 the distribution of pressure at
the rotor disc from the inlet to outlet.
As may be observed, the principal effect of passing into the three-

dimensional regimen is manifested by noticeably lower pressure ratio along the
disc, as seen in Fig. 11. This effect is likewise evident in Fig. 12 and Fig. 13.
As it turns out, the outlet angle in the 3D calculations differs from the 2D
results by some 6◦. This, in turn, influences the velocity distribution at the
outlet (Fig. 13). All these effects must be taken into account in the design pro-
cess, if the 2D inverse method is to be used to its full potential. Specifically,
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Fig. 9. Pressure distribution at the inlet section

Fig. 10. Velocity distribution at the inlet section

Fig. 11. Pressure distribution along the disc

in anticipation of these minor discrepancies due to 3D effects, the designer
should specify a slightly higher pressure ratio, while realizing that the outlet
angle obtained from a finite number of blades is likely to be lower than the
theoretically obtained value.
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Fig. 12. Velocity angle at the impeller outlet

Fig. 13. Velocity at the impeller outlet

Fig. 14. Velocity vectors close to the disc upstream the leading edge
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On the other hand, it is encouraging to note that the qualitative pattern
of parameter variation exhibits close correspondence between the 2D and 3D
models.
A major improvement with regard to the existing design is evident with

regard to the velocity distribution at the inlet, where the extensive separation
zone has been entirely eliminated, as shown in Fig. 14. This translates to a
marked improvement in the flow conditions at the inlet to the blading region.

Fig. 15. Velocity vectors close to the disc

Fig. 16. Velocity vectors in the vicinity of the trailing edge

Figures 15 and 16 illustrate the velocity distributions in the neighborhood
of the rotor disc. Again, no separation zones are noted, in contrast to what is
typical for the majority of existing compressors.
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Figures 17 and 18 show the corresponding velocity patterns in the vicinity
of the cover plate. Here the extensive separation zones are absent as well.
At the trailing edge a small separation region occurs, but it is caused by the
abrupt profiling of the trailing edge.

Fig. 17. Velocity vectors close to the shroud

Fig. 18. Velocity vectors in the vicinity of the trailing edge



802 R. Puzyrewski. P. Flaszyński

4. Conclusions

The design method presented in this paper has made it possible to unifor-
mize substantially the velocity field within the blading of a compressor. It still
remains to optimize the flow with regard to the dissipative losses generated at
the washed surfaces as well as within the recirculation zones.
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Zadanie odwrotne dla sprężarki promieniowej o hiperbolicznym kształcie

Streszczenie

Porównano rozwiązanie zadania odwrotnego w ramach modelu dwuwymiarowego,
prowadzącego do kształtu koła wirnikowego, z zadaniem prostym rozwiązanym w ra-
mach modelu trójwymiarowego dla skonstruowanego wirnika. Przedstawiono elemen-
ty algorytmu kształtowania łopatek przy wykorzystaniu modelu dwuwymiarowego.
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W podanym przykładzie wskazano możliwość optymalizacji kształtu jednego z ogra-
niczeń kanału w celu uzyskania równomiernego rozkładu parametrów w przekroju
wylotowym. Pokazano jak zmiana obrysu wirnika z klasycznego kształtu stożkowe-
go na hiperboliczny może wpłynąć na równomierność rozkładu pól prędkości przed
układem łopatkowym.
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