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Sandwich shells composed of three layers: two thin and very strong faces,
and the soft and comparatively weaker core which is much thicker than
their neighbouring layers covering it from up and down, are considered
in the paper. The proposal of a finite element adequate to such a kind of
structural members is presented. In the paper the finite element based
principally on the Ahmad original element and on the author’s adap-
tation of this very element to the nonlinear range is presented. It was
assumed that in the faces and in the core the materials exhibit orthotro-
pic properties, and only elastic deformations are taken into account. The
static analysis is performed within fully geometrically nonlinear range.
The ultimate purpose of the work is determination of the critical value
of the load intensity factor in a quasi static stability analysis. All proce-
dures related to tracing of nonlinear equilibrium paths are adopted from
the codes prepared before for homogeneous shells. Two verification pro-
blems are inserted. They confirm correctness of the adopted approach.
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1. Introduction

Sandwich shells and plates exhibit many valuable properties and this is the
reason that structures made in that technology are so often used in engine-
ering practice. The most important advantages of sandwich structures can be
listed as follows: good thermal and acoustic isolation, good vibration damping,
good strength to weight ratio, good local and global buckling resistance. These
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physical and mechanical properties of sandwich structural elements have cau-
sed that they are applied not only as finishing elements but also as structural
members (cf. Hop, 1980; Romanéw, 1995).

The mechanical behaviour of this kind of structures is analysed in this
work, and particular emphasis is put on static analysis with reference to the
equilibrium stability phenomenon within the range of large displacements. The
main purpose of the present work can be explained with the help of Fig. 1.
The critical value of the load intensity factor for one parameter loading is
searched. This particular value can be found in fully nonlinear, quasi static
analysis in which nonlinear equilibrium paths are determined in the whole
load displacement space. The critical points in the form of limit points or
bifurcation points can appear on these paths, and the primary critical point
defines the searched value of load parameter. The procedure of calculation of
the nonlinear equilibrium paths must be comprehensive enough to determine
all mentioned objects no matter how complicated the primary or secondary
paths could be.
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Fig. 1. On parameter loading and equilibrium path

The problem is important and this is the reason that so many authors have
been trying to build better and better numerical tools to describe the mecha-
nical behaviour of these kinds of structural members. In the literature there
exist many proposals of numerical modelling of mechanics of sandwich shells
by FEM. In this context, it is worthy to mention the work of Rammerstorfer
et al. (1992). The proposed models are more and more comprehensive and
take into account phenomena observed in experiments. Ferreira et al. (2000)
present the approach in which the plasticity is taken into account and degene-
rated conception of finite element is used. Riks and Rankin (1995) proposed
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a manner of description of face delamination. Works of Ding and Hou (1995)
and Moita et al. (1999) refer to initial buckling of sandwich structures.

In the present work the conception of a degenerated finite element is used
to model the mechanical behaviour of sandwich, three layered shells within
the range of assumptions formulated in the next section.

2. Main assumptions

A three layered sandwich shell or plate is considered. The curvature of the
shell can be arbitrary. The structure is composed of a thick and soft core co-
vered from both sides by very thin and strong faces (comp. Fig. 1a). Materials
of both are linearly elastic and exhibit orthotropy properties. The directions
of orthotropy can be different in the core and in faces.

The main assumptions refer to the mode of core deformation. It has been
assumed that the straight normal to the middle surface of the core remains
straight but can rotate independently with respect to the deformed middle
surface. It means that the severe Kirchhoff’s assumption is dropped.

The faces can deform only within their planes and these membrane defor-
mations are equal to their counterparts in the core fulfilling in this way the
strain continuity conditions. Local deformations of the faces, independent of
the mode of deformation of the core are excluded from considerations, which
is the obvious drawback of the presented approach.

The modes of deformations taken into account are shown in Fig. 2a,b. The
mode shown in Fig. 2¢ is an example of the mode excluded from considerations.

(@) (b) (©)

Fig. 2. Modes of deformation

Generally, arbitrary displacements are taken into account but as far as
rotations are concerned they should be moderate in the presented version of
the program. Strains are small, so linear stress-strain relations can be adopted.
The strain energy corresponding to the stress normal to the middle surface is
ignored. It means that the plane stress state is assumed within every layer
parallel to the middle surface. The constant, plane, membrane stress state
occurs within both faces.
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The formulated assumptions correspond to the assumptions of the Mindlin-
Reissner theory of shells extended to the case of sandwich shells.

3. Finite element

In the present approach the original conception of degeneration due to
Ahmad et al. (1970) is adopted. The idea is based on such geometry and
displacement approximation that the reduction of 3D solid to the 2D curved
surface fulfils all assumptions of the Mindlin-Reissner shell theory.

(a) c=1 (0)
Parent
element

3D solid element

4 y
(©)
2D shell element

Fig. 3. Geometry approximation

The geometry approximation is defined as follows (see Fig. 3)
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where: {z,y,z}" are global coordinates of any point within the shell element
volume, {x;,v;, Zi};zb) — global coordinates of the top (¢) or bottom (b) node,
&,m, ¢ — curvilinear coordinates of any point within the shell element volume,
N;(&,m) — the shape function corresponding to the node i, and summation
holds over all nodes of the element.

Relation (3.1) can be rewritten in the following alternative form

m

where {x;,1;,2},] are global coordinates of the node lying on the middle
surface, {(V3,)z, (V3;)y, (V3,)-} — components of the nodal vector.

It is worthy to mention that the parent element for the defined one is the
cube of side 2. It means that {£,n,(} € (—1,1). It is apparent from relations
(3.1) and (3.2) that the defined approximation is linear with respect to the
third coordinate (. The above definitions refer to the whole volume: the core
together with two faces.

Fig. 4. Displacement approximation

The displacement approximation is more general, and is defined as follows

u Uj ti (ﬁlz)x _(@\2i)x o

w (U15)z —(V2i)z
(3.3)

where {ui,vi,wi}T are components of nodal displacements in the global co-
ordinate system, {u,v,w}' are components of displacements at a given point
{&,n,CY, [014, —D2;] — matrix composed of unit vectors defining axes of the
nodal coordinate system (cf. Fig.4), {a;,3;}" — two independent rotations
defined appropriately in the nodal coordinate system.

W;
t)m



566 J. MARCINOWSKI

LCS z
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Fig. 5. Local coordinate system

In this definition formula, the linear approximation of displacements with
respect to the third coordinate is visible. It is the guarantee that the plane
section will remain plane after deformation. Two independent rotation para-
meters make possible free rotation of the straight normal to the middle surface,
according to the adopted assumptions.

In this manner, the displacement field within the whole sandwich element
is described by means of five nodal parameters: three translations and two
independent rotations. It is exactly the same as it was done in original Ahmad’s
element.

To define strains, a local coordinate system (LCS) is introduced in such a
way that the axes 2z’ and 3’ occur in the plane parallel to the middle surface,
and the axis 2’ is perpendicular to it. Strain-displacements relations ensue
from the full Green-de Saint Venant strain tensor and take the following form
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The component

of o,/ on the strain energy is ignored.

€, was omitted due to the assumption that the influence

Only first three components will appear within the faces of the sandwich

element.
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The constitutive relations are formulated in LCS as well, and due to the
assumed orthotropy properties, take the form

Ew EzVacy 0
o I —vpylye 1 — vpylys €z
O'y = Ey’/ya: Ey 0 €y (3.5)
Try 1 —vpyvye 1 — Vgylys Yoy
0 0 Gy
within the faces, and
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1 —vpyvye 1 — Vgylys
u Eyvye By o
oy 0 0 0 Ey
- _ | vy 1 = Vgt 5 (3.6)
Y 0 0 Gy O 0 o
Taz Vzz
Tyz 0 0 0 kG 0 Yyz
i 0 0 0 0 kGy. |

inside the core.

In these relations the following denote: E,, F, — Young’s moduli in the z
and y directions, v, — ratio of the lateral strain |e,| to the strain e, when
loaded in the y direction, Gy, G-, Gy, — shear moduli in the planes zy, zz
and yz respectively; the condition E,v,, = E,v,, must hold. The correction
factor k = 5/6 was introduced here due to the fact that the uniform shear
stress distribution follows from relation (3.3) while it is parabolic actually.

The governing equations of the problem are obtained from the principle of
virtual work. If p denotes the vector of external load this principle written for
the whole sandwich shell takes the following form

/(ac)TésC dv + /(UTF)T(S&‘TF dv + /(UBF)T(S&‘BF dv — /pTéu dA=0
% VTF VBF
(3.7)
where V¢, VI VBF are volumes of the core, of the top face and the bottom
face respectively, A is the area where the external load is applied, de denotes
strain variations due to virtual displacements, du are virtual displacements.
Passing to finite elements, this principle takes the following form

>( / oioet dv + / ole dA + / 0'0e" dA — AF,0d;) =0 (3.8)
(e) yrce ATF ABF



568 J. MARCINOWSKI

where: t;, t, are thicknesses of the top and bottom faces respectively, A —load
intensity factor, F; — nodal forces due to the load on the reference level, V¢ —
volume of the core, ATF, ABF — area of the top and bottom face respectively,
> — denotes aggregation over all elements, d; are nodal displacements.
(e)

Two terms corresponding to the strain energy generated in the faces appear
in this relation. Because the strains are defined by the same nodal parameters,
the above relation can be rewritten, after some further derivations, as follows

SO[(KC +KTF £ KPM)de — AF°| = 0 (3.9)
(@)

where: K¢, KTF KBF are stiffness matrices of the core, top face and bottom
face, respectively, F'¢ — vector of the nodal forces due to the load on the
reference level.

All stiffness matrices are dependent on the nodal displacements.

The resulting set of nonlinear algebraic equations assumes the following
form

(d,\) = Kyd— AF =0 (3.10)

where Ky is the global stiffness matrix dependent on d, d — global vector of
the nodal displacements, F' — global vector of the nodal forces.

It is worthy to mention that K¢ is calulated using the reduced integration
scheme 2 x 2 x 2 Gauss points, while KT, KB are calculated using 2 x 2
integration scheme (2D integrals).

To obtain a load-displacement curve, set (3.10) have to be solved for the
whole range of the load intensity factor A. The adopted procedures are exactly
the same like these described in the work by Marcinowski (1999) and need not
to be discussed here. These procedures are versatile enough to trace even
the most complicated equilibrium paths with bifurcation points, limit points,
secondary paths, etc.

4. Verification problems

To verify the correctness of the proposed approach and the computer pro-
gram itself, a few problems were solved. The first one was taken from the
library of verification problems of the COSMOS/M system (cf. [2]). It refers
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to deflections of a square sandwich plate clamped along all edges and loaded
by a uniform pressure. The geometry and material data are given in Fig. 6, on
which the load intensity factor versus central deflection curve was shown. The
presented solution was compared with that obtained by COSMOS/M and the
solution taken from the paper of Schmit and Monforton (1970). Quite good
correspondence can be observed. The core in this problem exhibits only shear
rigidity, while the faces are rigid in the plane and in the lateral direction. As
a matter of fact G, and Gy, of the faces could not be incorporated in the
present model because only the membrane effect has been taken into account
within the faces.
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Fig. 6. Nonlinear equilibrium path for the square clamped plate

As a second example the well known benchmark of Sabir and Lock (1972)
will be considered. It is a cylindrical shell simply supported along their rec-
tilinear edges and loaded laterally by a concentrated force applied to its cen-
ter. Details of boundary conditions, geometry and material data are shown
in Fig. 7. In this figure FE mesh is also shown. This division is chosen after
checking that the shell does not exhibit bifurcation phenomenon.
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L=508mm
R=2540mm

f=12.7mm
h=12.7mm
E=3.103kN/mm?
v=0.3

Fig. 7. Cylindrical shell loaded by a concentrated force
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Fig. 8. Equilibrium paths for the homogeneous shell
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The homogeneous case of such a shell was solved by many authors. A
comparison of the present solution with those obtained by other authors is
shown in Fig. 8. Very good correspondence can be observed.

Using the same geometry, a new problem is created following the idea of
Ferreira et al. (2000). The thickness of the shell is now divided into three
zones. Two thin faces (t; = 0.635 mm) are separated from the homogeneous
shell and, in this way, a sandwich shell is created. To analyse the influence
of the core rigidity on the overall stiffness of the sandwich shell the Young
modulus of the core (and the bulk modulus which is expressed by F, and
G = E/[2(1 + v)]) was reduced 10, 100 and 1000 times, while the material
parameters of the faces are kept constant. In this manner, three cases of a
more and more weak core are considered. The results of analysis are presented
in Fig.9 (load versus vertical displacements of the point C) and in Fig. 10
(load versus vertical displacements of the point A). They are shown together
with the solutions obtained by means of the system COSMOS/M for the same
data.
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Fig. 9. Equilibrium path for the sandwich shell

Discrepancies can be observed for very large displacements. These displa-
cements are accompanied by finite rotations which were not taken into account
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Fig. 10. Equilibrium path for the sandwich shell

in the presented version of program. It is the reason of these discrepancies.
The coincidence is pretty good within the initial portions of the curves, and
particularly in the vicinity of the critical points.

5. Final remarks

The conception of degeneration usually adopted to homogeneous shells
has turned out to be effective also in the case of sandwich shells. The perfor-
med test confirmed that the proposed approach is correct within the adopted
assumptions. The limit ratio t¢/t. (the face thickness over the core thick-
ness) was established, and it seems that the adopted assumptions are valid
for t;/t. < 1/15. There is possibility of extending the proposed approach to
a case of thicker layers and a multilayer case, but it would require integration
along the lateral direction within every layer.

There is no possibility of taking into account local deformations of the faces
(cf. Fig. 1c), and this is the obvious drawback of the presented approach. All
numerical procedures used before for nonlinear static analysis of homogeneous
plates and shells (cf. Marcinowski, 1999) turned out to be effective also in the
case of sandwich shells.
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Geometrycznie nieliniowa analiza statyczna plyt i powlok warstwowych

Streszczenie

W pracy rozwaza si¢ plyty i powloki warstwowe zlozone z trzech warstw: dwoch
twardych okladek i stosunkowo migkkiego rdzenia, ktéry jest znacznie grubszy od
przykrywajacych go okladek. Zaprezentowano element skonczony, oparty na koncepcji
degeneracji oérodka tréjwymiarowego, dobrze opisujacy wlasnosci mechaniczne takiej
powloki. W opracowanym elemencie wykorzystano oryginalng koncepcje Ahmada,
Ironsa i Zienkiewicza rozszerzona przez autora na zakres geometrycznie nieliniowy.
Zakladajac blonowy stan odksztalcen i naprezen w oktadkach, uzupelniono macierz
sztywnosci rdzenia o macierze sztywnoéci okladek wykorzystujac przy tym te same
stopnie swobody, ktére wprowadzil Ahmad. Zalozono, ze materialy rdzenia i oktadek
sa liniowo sprezyste i wykazuja wlasnosci ortotropii. Przedstawiona analiza obejmuje
zagadnienia quasistatyczne w zakresie duzych przemieszczen i umiarkowanych obro-
tow ze szczegdlnym uwzglednieniem utraty statecznosci réwnowagi. Do wyznaczania
geometrycznie nieliniowych $ciezek réwnowagi wykorzystano procedury autorskie sto-
sowane wczesniej z powodzeniem w przypadku powlok pelnych, jednorodnych. W pra-
cy przedstawiono kilka przykladéw potwierdzajacych poprawno$é proponowanej kon-
cepcji. Przeprowadzone testy wykazaly, ze sformulowane zalozenia i oparta na nich
koncepcja opisu sa prawdziwe dla powlok warstwowych, w ktérych stosunek grubosci
okladki do grubosci rdzenia jest mniejszy od 1/15.
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