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The problem of adhesive contact for a transversely isotropic elastic half-
space is considered. The problem is reduced to the solution of two coupled
integral equations, and these are solved exactly. Explicit expressions are
found for the contact compliance and for coefficients which characteri-
se the singularities of contact stresses at the boundary of the contact
region. The numerical results presented for some anisotropic materials
show that the influence of anisotropy on the analysed mechanical quan-
tities is significant.
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1. Introduction

The problem of adhesive contact can be solved by the use of the Hankel
transforms and the subsequent use of the Weiner-Hopf technique. The problem
was first solved by Mossakovskǐı (1954) and then was considered by Abramian
et al. (1956) and Spence (1968a,b). The solutions of many adhesive contact
problems can be found in Gladwell’s book (1980). These solutions are related
to isotropic materials.

The adhesive contact problem in the context of a transversely isotropic
elastic stratum is considered in this paper. Many of fiber-reinforced, platelet
and laminated systems, some soils and, of course, a number of crystalic and
other real materials have transversely isotropic mechanical properties. The
present paper clarifies the effect of anisotropy on the mechanical quantities
under consideration in the adhesive contact problem.
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2. Basic elasticity equations and their solutions

The axially symmetric problem of elasticity can be analysed by means of
displacement functions, which are governed by differential equations

∇2iϕi(r, siz) = 0 i = 1, 2 (2.1)

where ∇2i is Laplace’s operator referred to the cylindrical polar co-ordinate
system (r, θ, zi) with zi = siz, where s1 and s2 are the parameters of a
transversely isotropic medium. The displacement and stress can be uniquely
expressed in terms of these displacement functions (Rogowski, 1975). The
solution to equations (2.1) may be presented as a Hankel’s (in terms of r)
representation of the harmonic functions ϕi(r, siz) in the domain (r, siz), as
follows

ϕi(r, siz) = ϑi

∞∫

0

ξ−1Hi(ξsiz)J0(ξr) dξ (2.2)

where

ϑ1 = −
s2

Gz(k + 1)(s1 − s2)
ϑ2 =

s1
Gz(k + 1)(s1 − s2)

(2.3)

Hi(ξsiz) = Ai(ξ)e
−ξsiz

and where Gz is the shear modulus along the axis of elastic symmetry of the
material (z-axis) that has five components of the elastic stiffness cij or three
equivalent parameters s1, s2 and k.
The corresponding displacement and stress components take the form

ur(r, z) =
1

Gz(k + 1)(s1 − s2)

∞∫

0

[
ks2A1(ξ)e

−ξs1z − s1A2(ξ)e−ξs2z
]
J1(ξr) dξ

(2.4)

uz(r, z) =
s1s2

Gz(k + 1)(s1 − s2)

∞∫

0

[
A1(ξ)e

−ξs1z − kA2(ξ)e−ξs2z
]
J0(ξr) dξ

σzz(r, z) = −
1

s1 − s2

∞∫

0

ξ
[
s2A1(ξ)e

−ξs1z − s1A2(ξ)e−ξs2z
]
J0(ξr) dξ

(2.5)

σrz(r, z) = −
s1s2
s1 − s2

∞∫

0

ξ
[
A1(ξ)e

−ξs1z −A2(ξ)e−ξs2z
]
J1(ξr) dξ
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where Ai(ξ) (i = 1, 2) are arbitrary constants and Jν(ξr), (ν = 0, 1) are the
Bessel functions.

By using the substitutions

A1(ξ) = s1t̂(ξ)− p̂(ξ)
(2.6)

A2(ξ) = s2t̂(ξ)− p̂(ξ)

we can transform these equations to give the displacements and stress on the
plane z = 0, and the resulting equations are then

ur(r, 0) =
1

GzC

[ ∞∫

0

t̂(ξ)J1(ξr) dξ − ϑ0
∞∫

0

p̂(ξ)J1(ξr) dξ
]

(2.7)

uz(r, 0) =
1

GzC

[
−ϑ0s1s2

∞∫

0

t̂(ξ)J0(ξr) dξ +

∞∫

0

p̂(ξ)J0(ξr) dξ
]

σzz(r, 0) = −
∞∫

0

ξp̂(ξ)J0(ξr) dξ

(2.8)

σzr(r, 0) = −s1s2
∞∫

0

ξt̂(ξ)J1(ξr) dξ

It is seen that p̂(ξ) and t̂(ξ) are the Hankel transforms of order zero and one,
respectively, of the contact stress σzz(r, 0) = −p(r) and σzr(r, 0) = −s1s2t(r).
In equations (2.7) the material constants C and ϑ0 are defined by equations

C =
(k + 1)(s1 − s2)
(k − 1)s1s2

= 2
Gr
Gz

1

(1− νrθ)s1s2(s1 + s2)
(2.9)

ϑ0 =
ks2 − s1
(k − 1)s1s2

=
GzC√

c11c33 + c13

where Gr and νrθ are the shear modulus and Poissons ratio, respectively, in
the isotropic plane. The constant C is real since s1 and s2 are real or complex
conjugate; in consequence the parameter ϑ0 is also real.
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3. Boundary conditions and integral equations

Consider a rigid circular indenter loaded by the force P on a transversely
isotropic half-space (Fig. 1). Assume that the friction at the interface is suf-
ficient to prevent any slip between the indenter and the edge of the stratum.
This states that the contact region (r ¬ a) has a constant displacement δ in
the z-direction and zeroth displacement in the r-direction. The remainder of
the plane z = 0 is stress-free. Thus

uz(r, 0) = δ 0 ¬ r ¬ a
ur(r, 0) = 0 0 ¬ r ¬ a
σzz(r, 0) = 0 r > a

σzr(r, 0) = 0 r > a

(3.1)

Fig. 1. Translation of a rigid indenter on a half-space

The boundary conditions (3.1) will be satisfied provided that

−ϑ0s1s2
∞∫

0

t̂(ξ)J0(ξr) dξ +

∞∫

0

p̂(ξ)J0(ξr) dξ = GzCδ 0 ¬ r ¬ a

∞∫

0

t̂(ξ)J1(ξr) dξ − ϑ0
∞∫

0

p̂(ξ)J1(ξr) dξ = 0 0 ¬ r ¬ a
(3.2)

∞∫

0

ξp̂(ξ)J0(ξr) dξ = 0 r > a

∞∫

0

ξt̂(ξ)J1(ξr) dξ = 0 r > a

(3.3)
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Introducing the auxiliary functions ϕ(t) and ψ(t), on the assumption that
ψ(0) = 0, such that

p̂(ξ) =

a∫

0

ϕ(t) cos(ξt) dt t̂(ξ) =

a∫

0

ψ(t) sin(ξt) dt (3.4)

we obtain from equations (2.8) the contact stresses

p(r) = −1
r

d

dr

a∫

r

tϕ(t)√
t2 − r2

dt 0 ¬ r < a

t(r) = −s1s2
d

dr

a∫

r

ψ(t)√
t2 − r2

dt 0 ¬ r < a

(3.5)

and p(r) = 0 = t(r) for r > a, where the results (A.1)-(A.4) have been used
(see Appendix).
The equilibrium equation of the punch gives

P = 2π

a∫

0

rp(r) dr (3.6)

Substituting equation (3.5)1 into (3.6) and integrating, we obtain

P = 2π

a∫

0

ϕ(t) dt (3.7)

Now substitute expressions (3.4) into equations (3.2), and use (A.5) and (A.6)

−ϑ0s1s2
∞∫

0

t(ξ)J0(ξr) dξ +

r∫

0

ϕ(t)√
r2 − t2

dt = GzCδ 0 ¬ r ¬ a

1

r

r∫

0

tψ(t)√
r2 − t2

dt − ϑ0
∞∫

0

p(ξ)J1(ξr) dξ = 0 0 ¬ r ¬ a
(3.8)

These equations are of Abel’s type. Applying the inverse Abel’s operator we
obtain

ϕ(t)− ϑ0s1s2
π

d

dt

a∫

0

ψ(x) ln
t+ x

|t− x| dx =
2

π
GzCδ

(3.9)

ψ(t)− ϑ0
π

1

t

d

dt

a∫

0

ϕ(x)
(
2t− x ln t+ x

|t− x|
)
dx = 0
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where results (A.7)-(A.10) have been used.
Multiplying both sides of these equations by dt and t dt, respectively, and

integrating with respect to t from 0 to a and using result (3.7) we obtain the
following equations

ϑ0s1s2

a∫

0

ψ(x) ln
a+ x

a− x dx =
1

2
P − 2GzCδa

(3.10)

π

a∫

0

xψ(x) dx+ ϑ0

a∫

0

xϕ(x) ln
a+ x

a− x dx =
Paϑ0
π

The problem is reduced to the solution of integral equations (3.10).

4. Solution to integral equations

By a suitable change of the variables

x′ =
x

a
Θ(x′) =

1

2
ln
1 + x′

1− x′ tanhΘ(x′) = x′

0 ¬ x′ < 1 0 ¬ Θ(x′) <∞
(4.1)

equations (3.10) become

2ϑ0s1s2

1∫

0

ψ(x′)Θ(x′) dx′ =

= 2ϑ0s1s2

∞∫

0

ψ(tanhΘ)Θ sech2Θ dΘ =
P

2a
− 2GzCδ

(4.2)

π

1∫

0

x′ψ(x′) dx′ + 2ϑ0

1∫

0

x′ϕ(x′)Θ(x′) dx′ =

= π

∞∫

0

tanhΘψ(tanhΘ) sech2Θ dΘ +

+2ϑ0

∞∫

0

tanhΘϕ(tanhΘ)Θ sech2Θ dΘ =
Pϑ0
πa
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Using the fact that ψ(x′) is an odd function and ϕ(x′) is an even function,
we assume the solution to these equations having the forms

ψ(x′) = B(λ) sin(λΘ)
(4.3)

ϕ(x′) = A(λ) cos(λΘ)

where A(λ) and B(λ) are constants and λ plays the role of an eigenvalue.

Substituting equations (4.3) into equations (4.2), and using integrals
(A.11), (A.12) and (A.13), see Appendix, we obtain the following algebraic
equations

B(λ)
[
1− π

2
λ coth

(π
2
λ
)]
cosech

(π
2
λ
)
=
2GzCδ

πϑ0s1s2
− P

2πϑ0s1s2a
(4.4)

B(λ)λ2cosech
(π
2
λ
)
+
4λϑ0
π

A(λ)
[
1− π

4
λ coth

(π
2
λ
)]
cosech

(π
2
λ
)
=
4Pϑ0
π3a

The third equation is obtained from condition (3.7), which gives

A(λ)cosech
(π
2
λ
)
=

P

π2aλ
(4.5)

where the integral (A.14) is used (see Appendix).

Eliminating A(λ) from equations (4.4)2 and (4.5), we obtain

B(λ)cosech
(π
2
λ
)
=

Pϑ0
π2aλ

coth
(π
2
λ
)

(4.6)

Substituting (4.6) into (4.4)1, we have

Pϑ0
π2aλ

coth
(π
2
λ
)[
1− π

2
λ coth

(π
2
λ
)]
=
2GzCδ

πϑ0s1s2
− P

2πϑ0s1s2a
(4.7)

If we define the eigenvalue λ by equation

tanh
(π
2
λ
)
= ϑ0 (4.8)

which has the solution

λ =
1

π
ln
1 + ϑ0
1− ϑ0

(4.9)

then

δ =
Ps1s2
2GzCa

[ ϑ0
πλ
− 1
2

(
1− 1

s1s2

)]
(4.10)
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This solution determines the compliance of a transversely isotropic half-space
in the adhesive contact problem. For real materials the quantity of ϑ0 is real,
positive and 0 ¬ ϑ0 < 1. For example, ϑ0 takes the values: 0.1833; 0.2474;
0.4020 for cadmium, laminated composite consisting of alternating layers of
two isotropic materials with µ/µ = 0.5, h/h = 0.5, µ = 104MPa (shear
modulus) and for E-glass-epoxy composite, respectively.
The constants A(λ) and B(λ) are equal, and are given by equation

A(λ) = B(λ) =
2

π
GzCδ

1
√
1− ϑ20

(4.11)

and the functions ψ(x) and ϕ(x) defined by equations (4.3) are as follows

ψ(x) =
2

π
GzCδ

1
√
1− ϑ20

sin(λΘ)

(4.12)

ϕ(x) =
2

π
GzCδ

1
√
1− ϑ20

cos(λΘ) Θ =
1

2
ln
a+ x

a− x

For an isotropic material the following hold

ϑ0 =
1− 2ν
2(1− ν) C =

1

1− ν s1 = s2 = 1 (4.13)

and

δ =
P

4Gza

1− 2ν
ln(3− 4ν) (4.14)

Result (4.14) agrees with Spence’s solution (Spence, 1968a). For an incom-
pressible material (ν = 1/2 for isotropy or ϑ0 = 0 for transverse isotropy) we
have the limiting values

lim
ν→ 1

2

1− 2ν
ln(3− 4ν) =

1

2
or lim

ϑ0→0

ϑ0

ln 1+ϑ01−ϑ0

=
1

2
(4.15)

so that

δ =
P

8Gza
or δ =

P

4Gza

s1 + s2
s1s2

for ks2 = s1 (4.16)

and

ψ(x) = 0 ϕ(x) =
2

π
GzCδ for ϑ0 = 0 λ = 0 (4.17)
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Equations (3.9) show that for ϑ0 = 0 the solutions are given by (4.17). This
is a confirmation of the correctness of the obtained results and the proper
definition of the eigenvalue λ by equation (4.9). Equations (4.16) agree with
the result of the frictionless contact related to the incompressible material of
a half-space.

5. The stress in the contact region and displacements outside of

one

The contact stresses are given by equations (3.5) or, alternatively, by the
following integrals

p(r) =
1

ϑ0

1

r

d

dr

r∫

0

xψ(x)√
r2 − x2

dx =
1

ϑ0

r∫

0

dψ(x)

dx

dx√
r2 − x2

(5.1)

t(r) = −s1s2
ϑ0

d

dr

r∫

0

ϕ(x)√
r2 − x2

dx = −s1s2
ϑ0

1

r

r∫

0

dϕ(x)

dx

xdx√
r2 − x2

where the second representations are obtained with the use of formula (A.17).
Note, that the equivalence in equation (5.1)1 holds since ψ(x) is an odd func-
tion, while in equation (5.1)2 it does since ϕ(x) is an even function.

The displacements outside the contact region are defined by equations
(2.7), in which the functions t̂(ξ) and p̂(ξ) are given by integrals (3.4). The
substitution with the use of equations (A.3) and (A.4) (for displacements)
yields

p(ρ) =
P

π2a2λ

ϑ0√
1− ϑ20

S1(ρ) 0 ¬ ρ < 1

t(ρ) =
Ps1s2
π2a2λ

ϑ0√
1− ϑ20

S2(ρ) 0 ¬ ρ < 1

ur(ρ) =
δ

ρ

[ 2
π

1
√
1− ϑ20

U2(ρ)− λ
]

ρ ­ 1

uz(ρ) =
2

π
δ
1

√
1− ϑ20

U1(ρ) ρ ­ 1

(5.2)
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where

S1(ρ) = −
1

ρ

d

dρ

1∫

ρ

x cos(λΘ)
√
x2 − ρ2

dx =
1

ϑ0

1

ρ

d

dρ

ρ∫

0

x sin(λΘ)
√
ρ2 − x2

dx =

=
1

ϑ0

1

ρ2

ρ∫

0

d[x sin(λΘ)]

dx

xdx
√
ρ2 − x2

(5.3)

S2(ρ) = −
d

dρ

1∫

ρ

sin(λΘ)
√
x2 − ρ2

dx = − 1
ϑ0

d

dρ

ρ∫

0

cos(λΘ)
√
ρ2 − x2

dx =

= − 1
ϑ0

1

ρ

ρ∫

0

d[cos(λΘ)]

dx

xdx
√
ρ2 − x2

U1(ρ) =

1∫

0

cos(λΘ)
√
ρ2 − x2

dx U1(1) =
π

2

√
1− ϑ20

U2(ρ) =

1∫

0

x sin(λΘ)
√
ρ2 − x2

dx U2(1) =
π

2
λ
√
1− ϑ20 (5.4)

Θ =
1

2
ln
1 + x

1− x 0 ¬ x < 1

In deriving the third representations in (5.3) the integral (A.17) is used.
The stress distribution on the contact surface can be characterised by the

load-transfer factor, P (ρ), which is defined as

P (ρ) = 2πa2
1∫

ρ

ρp(ρ) dρ (5.5)

From equations (5.3)1 and (5.5), we have

P (ρ) =
2

π
P
1

λ

ϑ0√
1− ϑ20

1∫

ρ

x cos(λΘ)
√
x2 − ρ2

dx =

= P − 2
π
P

1
√
1− ϑ20

ρ∫

0

√
ρ2 − x2 cos(λΘ)
1− x2 dx (5.6)

P (0) = P P (1) = 0
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In deriving P (0) and P (1) the integrals (A.14) and (A.15) were employed.

Applying the differentiation rule of the integrand (equation (A.16), see
Appendix), we derive the following relations from equations (5.3)

S1(ρ) =
cos(λΘ)
√
1− ρ2

+ λ

1∫

ρ

sin(λΘ)

(1− x2)
√
x2 − ρ2

dx

(5.7)

S2(ρ) = ρ
[ sin(λΘ)
√
1− ρ2

+

1∫

ρ

sin(λΘ)

x2
√
x2 − ρ2

dx− λ
1∫

ρ

cos(λΘ)

x(1− x2)
√
x2 − ρ2

dx
]

The integrals S1(ρ) and S2(ρ) show singularities at the boundary of the con-
tact region, i.e. as ρ → 1, which results in the relevant stresses singularities,
too. Such behaviour is well known in the analysis of contact and interface
crack problems (Ting, 1990; Ni and Nemat Nasser, 1991, 1992).

In the case of an incompressible material, i.e. when λ = 0, we obtain the
square root of the singularity for the normal stress, while the shear stress
vanishes in this case. This corresponds to the frictionless contact problem of
an incompressible half-space.

The oscillations occur in the regions defined by

1 + ρ

1− ρ > e
π/λ or ε0 <

2

1 + eπ/λ
ρ = 1− ε0

(5.8)

1 + ρ

1− ρ > e
2π/λ or ε1 <

2

1 + e2π/λ
ρ = 1− ε1

for the normal and shear stresses, respectively. For example, for an isotropic
and extreme case when ν = 0 we have ϑ0 = 0.5, λ = 0.3497, ε0 = 0.00025.
The calculation of the local extremum of the first term on the right hand side
of equations (5.7) results in the following relationships, respectively

tan[λΘ(ρ0)] =
ρ0
λ

extrS1(ρ0) =
λ

√
λ2 + ρ20

√
1− ρ20

(5.9)

tan[λΘ(ρ1)] = −λρ1 extrS2(ρ1) =
λρ21√

1 + λ2ρ21

√
1− ρ21

There are many roots of ρ0 and ρ1 in the small intervals (1 − ε0, 1) and
(1− ε1, 1) which can be obtained from the foregoing equation. The one which
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yields the first extremum of the contact stresses at the end (ρ0 or ρ1) is chosen
for numerical computation. The values of ρ0 and ρ1 for different materials are
presented in Table 1.
The stress concentration factors defined by equations

Kz =
√
2a(1 − ρ0)p(ρ0)

(5.10)

Kzr =
√
2a(1 − ρ1)t(ρ1)

are obtained as follows

Kz =
P
√
2

π2a
√
a

ϑ0√
λ2 + ρ20

√
1 + ρ0

(5.11)

Kzr =
P
√
2

π2a
√
a

ϑ0s1s2ρ
2
1√

1 + λ2ρ21
√
1 + ρ1

For ϑ0/λ→ π/2 the obtained results are reduced to the following formulae

p(ρ) =
P

2πa2
1

√
1− ρ2

0 ¬ ρ < 1

t(ρ) = 0 0 ¬ ρ < 1

ur(ρ) =






0

− 2
π
δϑ0
1

ρ

for the incompressible
half−space, ρ ­ 1
for the frictionless
contact, ρ ­ 1

uz(ρ) =
2

π
δ arcsin

1

ρ
ρ ­ 1

δ =
P

4GzCa

(5.12)

Equations (5.12) are well known, and therefore tend to confirm the present
analysis.

6. Numerical results

Table 1 shows the values of compliance (δaµ/P ), the stress concentration
factors and the parameters ε0, ε1, ρ0, ρ1 obtained from equations (4.10), (5.11),
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(5.8), respectively, for six different materials such as cadmium (denoted sym-
bolically as C), magnesium (M) cristals, E-glass-epoxy (EG-E), graphite epoxy
(G-E) composite materials and comparative layered (L) and isotropic (ISO)
materials. For the layered material it is assumed µ/µ = 0.5 and h/h = 0.5;
µ = 104MPa.

Table 1. Compliance, stress concentration factors, parameters ε0, ε1, ρ0,
ρ1 for different materials

ISO
C M EG-E G-E L

(ν = 0.3)

δaµ

P
0.1216 0.09639 0.1894 0.1455 0.1605 0.1701

Kzπ
2a
√

a

P
√

2
0.1287 0.2114 0.2743 0.3647 0.1727 0.1986

Krzπ
2a
√

a

P
√

2
0.1972 0.2080 0.1558 0.1121 0.1797 0.1986

ε0 0.5532 · 10−11 0.3141 · 10−6 0.1865 · 10−4 0.7531 · 10−3 0.6536 · 10−8 0.1020 · 10−6

ε1 0.1530 · 10−22 0.4932 · 10−13 0.1738 · 10−9 0.2838 · 10−6 0.2136 · 10−16 0.5205 · 10−14

1− ρ0 0.4050 · 10−10 0.2261 · 10−5 0.1315 · 10−3 0.5085 · 10−2 0.4748 · 10−7 0.7369 · 10−6

1− ρ1 0.1120 · 10−21 0.3550 · 10−12 0.1225 · 10−8 0.1904 · 10−5 0.1552 · 10−15 0.3759 · 10−13

Figure 2 shows the load-transfer curves obtained from equation (5.6) for
different materials.

Fig. 2. Load transfer characteristics P (ρ)/P (equation (5.6)) for different materials
shown in Table 1

The distributions of contact stresses: normal p = p(ρ)a2/P and tangential
t = t(ρ)a2/P for cadmium are shown in Fig. 3 (see equations (5.2)1,2).
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Fig. 3. Contact stresses p = p(ρ)a2/P and t = t(ρ)a2/P , ρ = r/a for cadmium
(equations (5.2)1,2)

7. Conclusions

The equations derived in the paper make it possible to completely describe
the compliance of the elastic transversely isotropic half-space loaded by a
rigid indenter in the adhesive contact problem. As it could be expected, this
compliance appears to be strongly dependent on mechanical properties of the
presented materials.

The contact pressures (normal and tangential), regadless of their closed
mathematical structures, contain integrals which can only be determined nu-
merically. Those integrals exhibit however singular behaviour, which results in
the oscillations of contact stresses near the contact region edge. The oscillation
regions are characterised by two parameters: width (ε0 or ε1) and location
of the first extremum (ρ0 or ρ1). These parameters are defined by the closed
form equations. They are closely related to the material anisotropy.

The contact stress distribution is illustrated by the load-transfer curves,
and it is visible that these curves are almost material independent.

A. Appendix

A.1. Integrals involving Bessel functions

The following relations are used

1

r

d

dr
[rJ1(ξr)] = ξJ0(ξr) (A.1)
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d

dr
[J0(ξr)] = −ξJ1(ξr) (A.2)

The following integrals are used

∞∫

0

J1(ξr) cos(ξt) dξ =






1

r
0 < t < r

1

r

[
1− t√

t2 − r2
]

t > r
(A.3)

∞∫

0

J0(ξr) sin(ξt) dξ =






0 0 < t < r

1√
t2 − r2

t > r
(A.4)

∞∫

0

J0(ξr) cos(ξt) dξ =






1√
r2 − t2

0 < t < r

0 t > r
(A.5)

∞∫

0

J1(ξr) sin(ξt) dξ =






t

r
√
r2 − t2

0 < t < r

0 t > r
(A.6)

t∫

0

rJ0(ξr)√
t2 − r2

dr =
sin ξt

ξ
(A.7)

t∫

0

r2J1(ξr)√
t2 − r2

dr =
t

ξ

(sin ξt
ξt
− cos ξt

)
= − d

dξ

sin ξt

ξ
(A.8)

A.2. Integrals involving trigonometric and hyperbolic functions

∞∫

0

sin ξt sin ξx

ξ
dξ =

1

2
ln

t+ x

|t− x| (A.9)

∞∫

0

cos ξx
d

dξ

(sin ξt
ξ

)
dξ = −t+ x

2
ln

t+ x

|t− x| (A.10)

∞∫

0

sin(λΘ)Θsech2Θ dΘ = −π
2

[
1− π

2
λ coth

(π
2
λ
)]
cosech

(π
2
λ
)
(A.11)

∞∫

0

sin(λΘ) tanhΘsech2Θ dΘ =
π

4
λ2cosech

(π
2
λ
)

(A.12)
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∞∫

0

Θ cos(λΘ) tanhΘsech2Θ dΘ =

(A.13)

=
π

2
λ
[
1− π

4
λ coth

(π
2
λ
)]
cosech

(π
2
λ
)

∞∫

0

cos(λΘ)sech2Θ dΘ =
π

2
λcosech

(π
2
λ
)

(A.14)

∞∫

0

cos(λΘ)sechΘ dΘ =
π

2
sech
(π
2
λ
)

(A.15)

Results (A.12) and (A.13) have been deducted from the results given by Er-
delyi (page 30 and 88 of Vol. I book by Erdelyi (1954)). The following rule of
differentiation of the integrand was employed in deriving equations (5.7) and
(5.3)

d

dr

a∫

r

h(t)dt√
t2 − r2

= − rh(a)

a
√
a2 − r2

+ r

a∫

r

d

dt

(h(t)
t

) dt√
t2 − r2

(A.16)

r
d

dr

r∫

0

f(t)dt√
r2 − t2

=

r∫

0

df(t)

dt

tdt√
r2 − t2

(A.17)
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Zagadnienie kontaktowe z adhezją dla poprzecznie izotropowej sprężystej

półprzestrzeni

Streszczenie

Rozpatrzono adhezyjne zagadnienie kontaktowe dla poprzecznie izotropowej sprę-
żystej półprzestrzeni. Zagadnienie zredukowano do rozwiązania dwóch sprzężonych
równań całkowych, które rozwiązano dokładnie. Znaleziono w postaci jawnej wzo-
ry na podatność oraz współczynniki określające osobliwości naprężeń kontaktowych
na brzegu obszaru kontaktu. Wyniki liczbowe przedstawione dla różnych materiałów
pokazują wpływ anizotropii na analizowane wielkości mechaniczne.
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