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A three-dimensional problem of frictionless contact interaction of a pe-
riodic two-layered elastic half-space and a rigid foundation with a lo-
cal sloping surface recess is examined. The analysis is performed within
the framework of a homogenized model with microlocal parameters. By
constructing appropriate harmonic functions, the resulting boundary-
value problem is reduced to some mixed problem of the potential theory.
In dealing with its solution, the integro-differential singular equation of
Newton’s potential type for the function of gap height is obtained. To
determine the unknown region of the gap the condition of smooth run-
ning of its faces is used. As an example, a certain form of the initial
defect is considered and in this case the solution of the equation is found
analytically by using an analogue of Dyson’s theorem.
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1. Introduction

The wide use of layered composite materials in advanced engineering has
evoked considerable attention of researchers. In recent decades there appeared
a number of homogenized models of periodic layered material structures (see,
for example, Bensoussan et al., 1978; Christensen, 1979; Bakhvalov and Pana-
senko, 1984). The common feature of the models is a procedure of averaging of
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the composite properties, in other words, a procedure of changing of a strictly
heterogeneous structure by the homogeneous medium with mean properties.
Such assumption simplifies mathematical treatment of specific problems and
allows one to describe the general behaviour of a composite structure by the
mean parameters (mean displacements, mean stresses). However, in the case
of nonhomogeneous elastic bodies consisting of periodically repeated cells, the
application of homogenized models seems to be more suitable. One of them
is the homogenized model with microlocal parameters, developed by Wozniak
(1987) and Matysiak and Wozniak (1988). This model makes it possible to
evaluate not only mean but also local values of displacements and stresses
in every material component of the stratified body. At the same time, the
method is quite simple in the mathematical aspect: the determination of the
mean as well as local parameters does not demand cumbersome mathematical
calculations. Due to the simplicity of the mathematical apparatus and good
physical description of the processes both at the macro- and microlevel, the
homogenized model with the microlocal parameters has been successfully ap-
plied to numerous problems, whose solutions are of great practical importance
for engineering, geomechanics, machine design industry, building industry and
others (see a survey paper given by Matysiak, 1995).

Some crack problems for a periodically two-layered space, which are impor-
tant from the standpoint of fracture mechanics, have been considered within
the framework of the linear homogenized model with microlocal parameters in
a series of papers given by Kaczynski and Matysiak (1988, 1994) and Kaczynski
et al. (1994). The general approach to the investigation of three-dimensional
static elastic and thermoelastic problems for a periodically stratified medium
weakened by interface cracks was developed by Kaczynski (1993,1994). In tho-
se works, similarity between the governing equations of the homogenized model
with microlocal parameters of a periodically stratified medium and the fun-
damental equations of a transversely isotropic solid was clearly shown. The
method of solving is essentially based on this fact. The desired quantities
(displacements, stresses, temperature) are represented by harmonic functions
(co-called potentials) similar to those corresponding to transversely isotropic
bodies, and the thus posed problems are reduced to classical boundary-value
problems of harmonic potentials. In the present contribution the mentioned
harmonic function method will be used to a new class of elasticity problems
for periodically laminated bodies, which are closely related to crack problems
from the point of view of mathematics.

The problem under study is referred to non-classical contact problems
involving interactions of bodies with conformed surfaces (cf. Johnson, 1985).
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Such a kind of the interaction has not been yet sufficiently investigated in
the literature although it is quite typical for a lot of contacting joints. The
surfaces of real bodies feature various geometrical defects such as recesses,
protrusions, concavities, etc. Among reasons of their existence there are diverse
processes of mechanical, physical and chemical nature, which take place during
manufacturing of details and during operating of machines and mechanisms.
These surface geometric defects, when the bodies are put into contact, lead to
the appearance of zones, where the surfaces of bodies do not touch each other,
so the intercontact gaps are created through these regions. The dimensions of
the defects are small in comparison with the dimensions of the bodies, and
therefore the zone of the intercontact gaps is small in comparison with the
surface of the nominal contact. That is why in the literature the problems
involving contact interactions of bodies with conformed surfaces are called
as the problems of the local contact absence. In this field basic research has
been performed by Martynyak (1985) in the plane case, Shvets et al. (1995,
1996) and by Kit and Monastyrskyy (1998, 1999) in the axisymmetrical case.
In those papers integral equations were constructed and solved analytically
or numerically. Recently, three-dimensional problems dealing with the local
contact absence were considered by Martynyak (2000) and Kit et al. (2001).
By using the method of harmonic potentials the considered problems were
reduced to singular integral equations of Newton’s potentials type.

The problem to be considered is the interaction of a periodic two-layered
half-space with a rigid foundation in the absence of local contact caused by the
presence of a surface geometric defect. In Section 2 we review governing equ-
ations of the homogenized model of the analysed composite. In Section 3 the
formulation of the problem is performed. Section 4 is devoted to the solution of
the resulting boundary value problem. As a result of the general investigation,
a singular integro-differential equation is obtained. Its solution is presented by
considering some special initial recess in Section 5.

2. Governing equations

Let us consider a microperiodically stratified half-space, in which every
unit lamina of a small height & consists of two homogeneous isotropic layers
of heights 4, and d2, so d = 01 + d2 (as shown in Fig.la). Let A;, A2 and
f1, p2 be Lamé’s constants of the subsequent layers (denoted by 1 and 2).
Referring to the Cartesian coordinate system (xj,z2,x3) with its centre on
the boundary of the half-space and the x3-axis normal to the layering, denote
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at the point = (1,79, x3) the displacement vector by u = [uj,us,us] and
the stresses by 11, 012, 022, 013, 023, 033.

(a)

‘\

(© m=0  x)

h(xp,x) =

Fig. 1. Scheme of contact

We take into consideration the homogenized model of the linear elasticity
with microlocal parameters, proposed by Wozniak (1987) and then develo-
ped by Matysiak and WoZniak (1988), characterised by the d-periodic shape
function, given by the formula

)
T3 — — z3 € (0,01) 5
(23) = 2 =2 (2.1)
S\WEB)=Y 6 —mxz & =5 :

—n 2 z3 € (01,6)
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The model is based on the postulate of the microlocal approximation involving
the following representation written in a symbolic form!

ui(z) = wi(z) + s(z3)q:(z) (2:2)

In the above, the unknown functions w; and ¢; are interpreted as macro-
dispalcements and microlocal parameters, respectively. The underlined term
in Eq. (2.2) represents the microdisplacements due to microperiodic material
properties of the composite. Note, that for thin layers (4 is small) this term
may be treated as small and can be neglected, but the derivative s’ is a sectio-
nally constant function that is not small even for small §. Thus, the following
approximations hold

o

u; = w; Ujo = Wjg U3 = wiz + 8 (23)qi (2.3)

Following the procedure of the homogenization, described in cited papers,
the system of differential equations for w; and the system of algebraic equ-
ations for ¢; (in the absence of body forces)are obtained

(X + ﬁ)wt’,ia + ﬂwa,ii + [’\]QB,C: + [#]%,3 =0

(A + mywi s + fws i + (N + 20u])az3 + gy = 0
figa + [1)(wa,3 + w3a) =0

(A + 2)g3 + [Nwi; + 2[plwsz = 0

(2.4)

with the set of constants defined by the relations

(A7) = (A1, 1) + (1 = n)(a, p2)
([AL [1]) = n(A1 = Az, 1 — p2)

2
(’\21#'2)

N n

A =

(A ) = (A, ) + -7
Using Hooke’s law and bearing Egs. (2.2) and (2.3) in mind, the compo-

nents of the stress tensor Uﬁ-) at the point z belonging to the layer of the lth

kind are found to be

IThroughout this paper the Latin indices i, j run over 1,2,3 while the Greek indices
a, 3,y run over 1,2 and summation over repeated subscripts is taken for granted;
subscripts preceded by a comma indicate partial differentiation with respect to the
corresponding coordinates. The index [, assumming values 1 or 2, is associated with
layer 1 and 2, respectively.
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0} = Nbap(Wyy + w33 + 5'03) + Hi(Wa,s + Wp,a)

Ezg = Ut(wa,s + Wy + 31'&'0{) (25}

o5 = (M + 2) (w3 3 + 5'g3) + Ny

where 0,5 is the Kronecker delta, and s’ = 1 if & belongs to 1st layer or
= —n/(1 —n) if  belongs to 2nd layer.

It is possible to eliminate all microlocal parameters from Egs. (2.4) and
(2.5), and hence we arrive at the governing system of three linear partial
differential equations of the second order with constant coefficients for the
macrodisplacements w;, and the stress-displacement relations as follows (see
Kaczynski, 1993, 1994)

1 1
{ 5(611 + €12)Wryya + 5(011 — €12)Wa,yy + CaaWa,33 + (€13 + C44) W3 30 = 0
(€13 + Caa)Wy 43 + Caaws 4y + c33w3 33 = 0 26)

[ (1)
0ol = Caa(Wa,3 + W3,q)

(1)
O3z = C13UWy 4 + C33W3 3
) SO N
o1y = (w2 +wa,1)

Jll) = d(” w1 + dsg’w&g -+ d%)’w;g,g

L :(;2) = ( w1 +d( )’wg,g +d§§w33

Positive coefficients appearing in the above equations, describing the ma-
terial and geometrical characteristics of the subsequent layers, are given in
Appendix A.

It is noteworthy to point out the close relation of Eqgs. (2.6) to fundamental
equations for a transversely isotropic solid. The difference manifests itself in
the fact that the components of the stress tensor O'( ) are discontinuous at the
interfaces. Let us observe that the condition of perfect mechanical bonding
between the layers (the continuity of the stress vector at the interfaces) is
satisfied, so hereafter we shall omit the index [ in the components o3;. Finally,
setting Ay = Ay = A\, p1 = pg = pentails €11 = ¢33 = A+ 2, c12 = c13 = A,
cq4 = ¢ and the well-known equations of elasticity for a homogeneous isotropic
body with Lamé’s constants A, u are recovered.
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3. Formulation of the problem

The problem under study involves the investigation of frictionless contact
for two periodically stratified bodies with geometrically perturbed surfaces.
For the simplicity of reasoning we shall confine ourselves to the case when
one of the bodies, called a substrate, is absolutely rigid and possesses a small
surface recess.

Let the periodic two-layered half-space be put into contact with the rigid
substrate due to a uniform compressive pressure p applied at infinity (see
Fig. 1a)). We assume that this contact is frictionless and unilateral such that
the normal contact stresses cannot be tensional, and mutual penetrating of
bodies surfaces is forbidden.

The surface of the substrate contains a local small deviation from the
plane in the form of the sloping recess. Let us denote by Sy the zone of the
occupation of this defect. The relief of the recess is described generally by a
smooth function (see Fig. 1c))

fi R*3(z1,22) — f(z1,22) €R (3.1)

with the assumptions

flz1,22) =0 Y(z1,22) € R* = Sy
af || of
(311;2’-?’)}‘250{|3$1 |’| T2 } <! (3.2)
9 9
L wra) = L@ =0 V(@,5) €05

In the above, the third condition is in fact a consequence of the first one and
of the smoothness of the function f. It means that the recess is of a sloping
form, not having corner points.

Due to the surface unevenness, the intimate contact occurs not over the
entire plane z3 = 0 but in a region S C Sy where the intercontact gap is
created (see Fig. 1b)). The surfaces of the contacting bodies are assumed to be
free of traction within the gap region because they do not touch each other. As
a result of the smoothness of the initial defect, the dimensions of the zone of S,
depending on the external load, are unknown a priori and must be determined
from the additional condition given later.

Taking into account (3.1) and (3.2), we are able to pose the boundary
conditions at the nominal contact surface, i.e. on the plane z3 = 0.



992 A.KaczynNski, B. MONASTYRSKYY

Now, we are ready to write the following boundary conditions of the pro-
blem at hand

033 = —p 031 =032 =0 T3 — +00

o31(x1,22,0) = o32(21,22,0) =0 V(z1,72) € R?

033($1,x2‘0) =0 V(m,mg) €S (33)
f(z1,x2) V(z1,z2) € So — S

ug(.’.t?l,mg,[}) =
0 Y(z1,72) € R? — S

In addition, one has the requirement of a unilateral constraint (the normal
contact tractions must be compressive) and of the lack of mutual penetrating
(the height h of the intercontact gap must not be negative)

o33(x1,22,0) <0
(3.4)

h(;’;l,Ig) Eu;;(Il,LEQ,O)—*f(Il,"Bz)}O V($1,$2) IS

Finally, to determine the unknown zone S of the intercontact gap, the
condition of smooth closure will be used in the form

—(z1,22) = =—(z1,22) =0 V(zq,29) € OS (3.5)
1 €I

4. Solution to the boundary value problem

Within the framework of the homogenized model presented in Section 2
and applying the principle of superposition to satisfy boundary conditions
(3.3), the problem can be presented as a sum of two components, namely

o=0"+c u=u"+7u (4.1)

where the components with the superscript 0 describe the stresses and displa-
cements in the layered half-space pressed against the substrate with the abso-
lutely flat surface, and the components having tilde describe the perturbations
caused by the existence of the surface defect. The problem of determination of
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0" and u? is trivial, so afterwards we concentrate attention on the perturbed
problem with the boundary conditions

033 =031 =032 =0 T3 — +00
a31(z1,22,0) = G32(21,22,0) =0 Y(z1,22) € R?
o33(x1,72,0) =p V(z1,22) € S (4-2}

f(zy,z2) V(zy,22) € So— S

wy(xy,:2,0) =
3(21,22,0) {0 V($1,$2)€R2—Sg

Here we have used the fact that
0 _ 0 ~ 0 _
o33(x1,22,0) = —p us (w1, 2,0) = wy(zy,22,0) =0

A method of convenient solving the above-mentioned problem was demon-
strated by Kaczynski (1993). Taking into account (4.2), the problem is redu-
ced to determination of a single harmonic function (denoted by @(z;,z2,z3)
in the case py # po and by @(z1,x9,z3) in the case pu; = pg = p), which must
satisfy certain conditions in the plane z3 = 0 (see Kaczynski (1993) for more
details). We restrict ourselves only to writing the values of special interest —
normal displacements and normal stresses on the boundary of the half-space?:

— Case (1 # p2

ws(zy,x2,0) = [Mmo(l -I-’mg)ml —ma(1l +m1)‘1]®’3(m1,$2,0)

(4.3)
Ga3(w1,72,0) = cag(t3 " — t7)P 33(x1, 22,0)
. _ _ — AAe+2upir+(1-n)Az]
—— Case M= p2 =p, B= : (ﬁ—n;)i\l -:1;A2+2,u :
. B+2p_
w;;(.’L'],.’L'Q,O) = — L LP3(3'31,3'32)0)
B4+p ™
(4.4)

533($1 y L2y 0) = '_2“@,33(3:1 3 L2y 0)

The application of conditions (4.2)3 4 yields a mixed problem in the poten-
tial theory of finding the harmonic function

7 for  py # p2
(p =
for  py = o

<l

2All constants appearing below are defined in Appendix B.
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in the half-space z3 > 0, decaying at infinity (in view of (4.2);) and satisfying
on the boundary the conditions

M ¢ 33(x1, 22, 23)]as=0 = P V(z1,m2) €S
f(ml,ﬂig) V(I], $2) € S() -5 (45)
L{ps(w1, 20, 73)]zs=0 = )
0 V($1,:1?2) € R-— 5y
where . .
- for  p1 # p2
M= c““(tg tl)
—2u for = pr=up
ma _ my (46)
I I1+mg 14my for 1 # pe
") B+ for  p1=pp=
B+p :

Following Martynyak (2000), we reduce the problem given by the above
conditions to an integro-differential equation. To this end, the following repre-
sentation for the unknown function ¢ through the potentials of single layers
is used

h(€1:52) d«g]_df?
QD(SE 1 22, L} ) - h
1,22, T3 2L gf \/(x1 —&1)? + (22 — &)? + 3

1 // f(&1,€&2) d61dés
2rL 1)@ — &) + (2 — &)? + 7

(4.7)

So

It fulfils condition (4.5)2, and after substituting to remaining condition (4.5);,
one is led to a singular equation of Newton’s potential type for the function h

h(&1,&2) déidés QWLP (&1,&2) d&1dés
A
// V(1 —&)* + (22 — &2)* //\/-81 £1)? + (w2 — &)?

(4.8)

where A = ai:’;‘ + 3%% stands for two-dimensional Laplace operator.

The above equation is similar to that occurring in crack problems but in
the present consideration the right-hand side possesses the term dependent on
the initial relief of the surface, and the region of the integration S is not fixed.

Solving Eq. (4.8) for an arbitrary recess involves great difficulties. However,
in certain cases (see an example below) the solution can be found analytically.
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5. Example

Consider a circular recess of the radius b: So = {(z1,22) : 2% + 23 < b*}.
The relief of the defect is described by the formula

2 42 3
F(z1,29) = —hg\/(l - “’1;;”"2) ho < b (5.1)

It is easy to note that the contact problem may be considered as axially
symmetric. Consequently, assume that the zone of the intercontact gap is in
the form of a circle, namely S = {(z1,22) : 2? + 23 < a?} with the radius of
the gap a < b being unknown.

For the thus chosen form of the initial defect, the integral in the right-
hand side of Eq. (4.8) can be calculated by the method devised by Khay
(1993). Governing equation (4.8) takes the form

51152 d€,dés _2rLp 3mhg 3z? 33
“‘//\/(a;l T -6)? M 2 (-5 —52) 62

To solve it, we make use of an analogue of Dyson’s theorem (Khay, 1993)
that states:

if Pp is a polynomial of n-th degree (of two variables), then

Pﬂ(&l}&?)
4 // G2 \/($1 &1)? + (22 — &)? ddls

is a polynomial of n-th degree.

Bearing this statement in mind, we seek a solution to Eq. (5.2) in the
following form

2 2
2
h(zy,22) =1/1 — ;:1? - a—g(f‘m-i-cmxl+601’52+020931+C11$112+C[)212) (5.3)

where ¢;; are unknown coefficients.
Substituting (5.3) into (5.2) and calculating the resulting integrals (see
Khay, 1993), we arrive at the equality of two polynomials. Hence,a set of linear
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algebraic equations for c¢;; can be easily obtained, and their solving gives

2Lp 3hy 1hga®
600=a(———+——————2)
™M 2b 20bb (5.4)
ah
clo=co=cuu=0 C‘2(}=C(1:z='——b3—(2

From the above it follows that the gap height is described by

2Lp  3hg hga®? hox?  hox?
= /a? — g2 — p2( 222 4L 20 — 1 Uo2
h(z1,72) = \/a? — 23 3:2( — it " o s ) (5.5)

This expression is dependent on a — the radius of the gap, which is still unk-
nown. For its determination we use the conditions of smooth closure given by
(3.5). This leads us to a quadratic equation (note that two conditions of (3.5)
yield the same equation)

2Lp  3ho a?y
“3 T 5 (1 bg)_o (5.6)

4 b Ip
=b1/1~—-— .
“ 37 ho M (5.7)

It is worth to note that by setting A; = A2, p1 = p2 in Egs. (5.5) and (5.7)
we recover the results obtained by Kit and Monastyrskyy (1998) who used
another method for determining the interaction of an isotropic homogeneous
half-space and a rigid foundation.

The complete displacement-stress field can be found from the harmonic
potential ¢, given by Eq. (4.7), by virtue of (5.7) and (5.5).

from which we have

A. Appendix

Denoting by b = N + 2 (I = 1,2), b = (1 — n)b; + nba, the positive
coefficients in governing equations (2.6) are given by the following formulae

biby  4n(1 —n)(p1 — pa)(Ar — Ao + py — pa)
b N b

b= Mg + 2[nug 4 (1 — )] [nA1 + (1 — ) Ao]
b

c11 =




CONTACT PROBLEM FOR PERIODICALLY STRATIFIED HALF-SPACE...

_ (1 = n)Aaby +nAiby _ b1bs
C13 = b C33 = -_b_
_ 11 42 40 = 4y (N + ) + Mews
Cag = 77— 11 = b
(1 =mnp + np2 !
4O 2N + Nicis O Aicss
12 b{ 13 bi

B. Appendix

The constants appearing in Egs. (4.3) and (4.4) are given as follows

1

t =5t —t-) ty = 5(t+ +1-)
me = ST Vae {12}
where
ti:\/ugzm Ay = Jorem £ o
€33C44

Note that tito = \/c11/c33, myma = 1.
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Zagadnienie kontaktowe dla periodycznie uwarstwionej pélprzestrzeni
i sztywnego podloza z geometrycznym defektem powierzchniowym

Streszczenie

W pracy rozwazono tréjwymiarowe zagadnicnic Sciskania prowadzace do jedno-
stronnego kontaktu bez tarcia periodycznie dwuwarstwowej polprzestrzeni sprezystej
ze sztywnym podlozem zawicrajacym lokalny defekt (gladkie niewielkie wglebienie).
Zastosowano przyblizone podejScie oparte na zhomogenizowanym modelu z parame-
trami lokalnymi. Wynikajace zagadnienie brzegowe sformulowano w postaci miesza-
nego problemu teorii potencjatu, ktory sprowadzono do osobliwego réwnania catkowo-
rozniczkowego na gicbokosé defektu z nieznang powierzchnig kontaktu. Dla szczegol-
nego ksztaltu wglebienia uzyskano jego rozwigzanie z uzyciem analogu twierdzenia
Dysona.
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