JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
40, 4, pp. 895-916, Warsaw 2002

TWO-POINT VELOCITY STATISTICS AND THE POD
ANALYSIS OF THE NEAR-WALL REGION IN
A TURBULENT CHANNEL FLOW

MARTA WACLAWCZYK
JACEK POZORSKI

Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdarnsk
e-mail: mw@imp.gda.pl; jp@imp.gda.pl

The Particle Image Velocimetry (PIV) measurements in the near-wall
region of a turbulent channel flow have been performed. Two-point velo-
city statistics are obtained from experimental data and further subjected
to the Proper Orthogonal Decomposition (POD) analysis. The resulting
empirical function basis characterizes the inhomogeneous shear flow. The
first eigenfunction together with spanwise statistics is used in order to
find an approximate velocity field of a typical eddy structure.
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1. Introduction

Great importance of two-point velocity correlations for turbulence analy-
sis arises from the fact that these statistics contain information about vorti-
cal structures present in turbulent flows (Pope, 2000). In homogeneous fields
the information can be extracted by subjecting two-point correlations to the
Fourier analysis (Tennekes and Lumley, 1972) that yields the turbulent ener-
gy spectrum. However, most of the technically important flow cases like mi-
xing layers, wakes or wall-bounded flows are strongly inhomogeneous. Nu-
merous experimental observations and DNS computation results indicate the
important effect of so-called coherent structures on the flow dynamics (Can-
twell, 1981). The coherent structures can be defined as high-energy and high-
vorticity regions, often with a typical shape for a given flow case, occurring
quite systematically in time and space in contrast to the purely random mo-
tion of smaller vortices. In a particular case of near-wall flows, the shapes of
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typical coherent structures resemble vortical rolls, elongated in the streamwise
direction.

In order to investigate an inhomogeneous turbulent field and detect cohe-
rent structures we have to use approaches different than the Fourier analysis.
The Proper Orthogonal Decomposition (POD) is a statistical analysis me-
thod, based on the two-point correlation functions. It was first introduced to
the area of fluid dynamics by Lumley (1970) in order to analyze turbulent flow
properties and find an approximate velocity field of coherent structures (Ba-
kewell and Lumley, 1967; Moin and Moser, 1989). The method is a subject of
great interest, as it also leads, via the Galerkin projection (Aubry et al., 1988;
Panton, 1997), to a low-dimensional set of ordinary differential equations go-
verning the evolution of vortical structures. Solving the equations gives insight
into the flow dynamics.

The main aim of the paper is to present POD application to the near-wall
region in a turbulent channel flow. Although a detailed POD analysis of the
turbulent channel flow has already been performed (Moin and Moser, 1989),
it was based on an extensive DNS data set. Here, we carry out the analysis
for a set of experimental data. We follow the pioneering paper of Bakewell
and Lumley (1967) where the pipe flow was considered. Moreover, we believe
that the analysis of the unavoidable PIV measurement error can be another
interesting contribution of this paper.

Section 2 presents a short description of the performed PIV experiment.
In this Section we also propose a method to estimate the r.m.s. of the PIV
error, based on differences between the errors of one- and two-point statistics.
This will be also used to reduce a systematic error of the velocity variance.
Section 3 contains a concise mathematical description of the POD method.
Next, in Section 4 the approach is constrained to the near-wall flow case and
is described in a more detailed way, together with some new ideas concerning
the derivation of the formula for the velocity field of a coherent structure.
Two-point streamwise and wall-normal velocity correlations, together with
obtained empirical POD functions, and the resulting typical eddy are presented
in Section 5.

2. PIV experiment

Experimental measurements in the wall region of the turbulent channel
flow at the Reynolds number (based on the centerline velocity and the channel
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half-width) Re = 6600 have been performed with the Particle Image Velocime-
try (PIV) technique (Ronald, 1991). In order to carry out the measurement, a
thin sheet of the Nd:YAG laser light is directed into the channel, perpendicular
to its walls. The CCD Kodak ES 1.0 camera takes two pictures in short time
intervals, At = 100 us, recording the images of seeding particles (here: smoke)
injected into the channel. The instantaneous velocity field is computed from
the registered particle displacements in the time interval between consecutive
snapshots.

channel
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Fig. 1. Flow geometry

The size of the measurement area was 21 x 21 mm?. In wall units y*, it was
located in the region 4 < y* < 130. The position of the measurement area (cf.
Fig. 1) indicates that the flow has not yet reached the state of full development
in the whole channel cross-section. However, we do not think that this is of
major importance for the subsequent POD analysis that refers to the near-
wall region, y* < 60. From the experiment, 100 pictures of the instantaneous
velocity field with a spatial resolution of 249 x 251 samples for each picture
have been obtained. Time separation between subsequent pairs of snapshots
was sufficiently large so that they could be treated as statistically independent
flow realizations. After averaging of the pictures over all realizations, we get a
mean streamwise velocity component (U). The friction velocity and the von
Karman constant deduced from linear and log-law profiles are respectively
equal to u, = 0.09m/s and k = 0.46.

Next, turbulence statistics like the streamwise velocity variance (u?) are
computed (Fig.2). Two-point statistics have been obtained by averaging the
products of velocity fluctuation measured at two different points of the flow
Q(z1,y1;22,y2) = (u(z1,y1)u(z2,y2)). The correlations will be used in the
subsequent considerations.

2.1. Error estimation

The PIV measurement error of instantaneous velocity arises from non-
uniform distribution of seeding particles as well as from errors in particle
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Fig. 2. Variance of the streamwise velocity fluctuation; computed (- - -),
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displacement estimations. More precisely, it is related to the PIV algorithm
of computing the instantaneous velocity at a point by smoothing the data
from neighboring space locations; Westerweel (2000) provides an example of
the PIV error analysis. It is related to the measurement error of instantaneous
particle displacement. Following Willert and Gharib (1991), we assume here
that the error can be treated as approximately Gaussian. In the following
considerations we show how to estimate its standard deviation o from the
comparison between the computed one- and two-point turbulence statistics.
This derivation is presented in detail in the Appendix. In turbulent flows,
instantaneous velocity consists of its mean and fluctuation part. Assuming that
the fluctuations are Gaussian and taking into account the Gaussian error, the
measured instantaneous velocity U of a given flow realization can be written as

U= (U)+u+ocaéa = (U)+oubu+0aéa (2.1)

where o, is the r.m.s. of the velocity fluctuation and o, is the standard de-
viation of the measurement error; £,, £a are independent standard Gaussian
numbers. In practice, the mean velocity (U) is obtained by averaging the me-
asured velocity U over N independent realizations. Next, we have computed
the fluctuation field by subtracting the mean velocity field from an instantane-
ous one. This leads to the expression for the error of the velocity fluctuation u
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and the error of its square u? (see Appendix). After averaging over N reali-
zations the computed (u?) statistic can be written as

. 2 p
(uz)mmp =02 + 02& +14/ N\/ai + 20402 ¢ (2.2)

With N = 100 realizations and after averaging over uncorrelated points in the
streamwise direction the last term in the above equation is relatively small.
However, there is still the systematic error ¢% that increases the computed
fluctuation variance and is independent of the number of realizations N. Kno-
wing ¢4 we could subtract it from the computed velocity variance and obtain
a more accurate value. For this purpose we will consider the errors of two-
point statistics. This will be more complicated, since for small space intervals
the measurement errors, i.e. the random variables €4 at two different points
are correlated. Denoting the space interval between the two points by r, for
r — 0 we obtain formula (2.2). On the other hand, in large r limit the com-
puted two-point statistics can be written as

(u(x)u(x + 7)) comp = (u(x)u(r + 1)) +
(2.3)

1
2 2 2 2 2 2
+\/N\/JAIJA2 + 041002 + A0 €

where o a1, 0A2, 0u1, 0u2 are the error and fluctuation standard deviations at
the points = and x+7, respectively, and (u(x)u(x+r)) is the exact two-point
correlation value.

The conclusion is that the error of two-point correlation decreases with
the increasing r value. This can be clearly seen in Fig.3. For small r (say
r* < 5) the slopes of two-point streamwise statistics are very steep, in this
region we observe peaks that do not occur in accurate turbulence statistics.
Outside this interval, random crrors at two different points are not correlated.
From the comparison of (2.2) with (2.3), the variances 0% as well as their
correlations can be calculated out of the two-point statistics. The variances
are equal to the heights of peaks (Fig.3). We have found that oa increases
with decreasing distance to the wall, from 1% of the largest mean velocity
value in the measurement area at y* = 130 to 3% at y* = 4, i.e. the un-
certainty of a single velocity measurement changes from 2 to 6%. The errors
are correlated within about 5 measurement points (roughly 2 wall units).
Figure 2 presents the computed velocity variance and the one corrected by
subtracting 0%. The maximum r.m.s. error of (u?) in the buffer and logarith-
mic layer attains 4% (the uncertainty equals 8%). The largest uncertainty for
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Fig. 3. Two-point strecamwise correlations at y* =15 (- --), y* =35 (——)

streamwise two-point correlations occurs on the tails of the curves, as they are
not averaged in the streamwise direction, its value is approximately equal to
+0.07. The one for wall-normal statistics (and for the resulting eigenfunctions)
does not exceed £0.02.

3. Mathematical formulation of POD

The Proper Orthogonal Decomposition is a method of random field analy-
sis, which leads to the empirical function basis, optimal for the energy repre-
sentation (Aubry, 1991; Berkooz et al., 1993; Holmes et al., 1996). The basis is
not given analytically but is determined from experimental or numerical data
of two-point correlations of the velocity field. We note that the optimality of
the basis relates to coherent structures which can be defined as high-energy
regions. This makes us expect that using the POD method one can find the
velocity field of coherent structures. As we feel that the issue is only tersely
addressed in most of recent articles, we present here, at some detail, the ma-
thematical formulation of the problem and show how the two-point statistics
are involved into the considerations.
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The mathematical concept of the Proper Orthogonal Decomposition (Lum-
ley, 1970) is based on the assumption that a given velocity component u,(x)
of a turbulent field realization w can be expressed as a linear combination of
orthogonal functions ¢ (z) with random and statistically independent coef-

ficients a&k)

u(z) = > aP¢k)(z) (3.1)
k=1
where
o) = (10,6%") = [ uo(@)¢®(a) d

! (3:2)
(#9@), V@) = [ ¢V @)Y (@) da = 6
2

the parenthesis (-,-) denotes a scalar product of functions; z could be either
the position vector or any spatial or temporal coordinate; 2 is the flow area,
* denotes the complex conjugate and dy; is the Kronecker delta.

The most important property of the POD method is expressed by the
fact that the function basis {¢*)(x)} is not given a priori (eg. as the Fourier
sines and cosines basis), but is deduced from two-point correlation data. The

expression ((aﬁ,”“))Q) represents the average energy of the kth POD mode. We
want the basis to be optimal in the energy representation, i.e. we seek for
functions ¢*), for which the expression

(k) (k)
() ey o

reaches its maximum value (the Einstein sum convention does not apply here).
In further considerations the index (k) is skipped. Defining the average (-)
as a sum over N realizations, formula (3.3) is written as follows

ANo(z), ¢ Z /uw z)¢p*(x) d:z:f *(2)p(z') d’ =
. ! (3.4)

/ Zuw(:n ()]¢* (@)p(e') dads’
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The expression in brackets is the two-point correlation function Q(z,z’).
Next, the variational method (Lumley, 1970) is used in order to find the ma-
ximum value of A, which leads to the eigenfunction and eigenvalue problem

(Q,2),¢"@)) = A() (3.5)

The solution to (3.5) gives a class of functions o) (z) which form, for a given
flow case, the optimal POD basis. In homogeneous and isotropic turbulent
fields the two-point correlation function depends only on the difference z — 2’
and can be therefore expressed as the Fourier series

Qz,z') = Z Cy explik(z — )] = Z Cy, exp(ikz) exp(—ikz') (3.6)
k=1 k=1

Using the above formula in equation (3.5) we find that {exp (ikz)} consti-
tute the eigenfunction basis with eigenvalues C}. The conclusion is that for
homogeneous velocity fields (at least in one direction) the Fourier sine and
cosine functions are the optimal basis and therefore the Fourier analysis is an
appropriate method for examining these fields.

4. POD for the near-wall region of a channel flow

In this section we present the application of the POD method to a particular
case of the near-wall region of the channel flow and derive the expression for
the velocity field of a typical eddy structure. Since the flow is homogeneous
in the streamwise and spanwise directions (z and z), the fluctuation field can
be expressed as

w(@,Y, 2 Z ol (2, 2)0™ (y) (4.1)

where {¢(y)} are eigenfunctions, and al?) denotes their random coefficients.

From normalization condition (3.2) and from (4.1), the two-point correlation
function has the form

Q(z, 7 y,y;2,7) = Q(ra;y,ys12) =
(4.2)

‘E( B (@, 2)a® (', ') ) o P ()6 P (v

k=1
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where 7, = z — 2/, r, = z — 2'. In order to obtain the optimal basis {¢},
eigenvalue problem (3.5) has to be solved in the wall-normal direction. If we
assume 7, = 0 and 7, = 0, then

Ly
| / QUy,y)o(y) dy' = Ap(y) (4.3)

where Q(y,y') = Q(0;y,¥/;0) and L, is the height of the measurement area.
The resulting eigenfunctions ¢*)(y) with the eigenvalues A*¥) = ((ac(dk) (0,0))?)
contain information about the fluctuation field; also, a qualitative velocity field
of the coherent structure can be deduced out of them.

For this purpose we will use two additional assumptions (Bakewell and
Lumley, 1967). In formula (4.2) we neglect all functions except the first one,
which relates to the highest eigenvalue, as it contains the major part of the fluc-
tuation field energy. The two-point correlation function can be then expressed
as the inverse Fourier transform

Qrasy,y'srs) ~ ¢ (y)oM () F [H (kg k)] (4.4)

where H(kg,k.) is the Fourier transform of (a(!)(z,z)a™(2/,2)) in homoge-
neous directions z and z. Henceforth, the index (1) will be neglected.

The second assumption is concerned with a stochastic process which scat-
ters coherent structures in the (z,z) plane. Let ¥(z — zpu,y, 2 — 2nw) be a
component of the velocity field of a structure; the point (2, 2n.) fixes its
position in space. The function ¥ has a compact support (i.e. its value equ-
als 0 apart from the bounded area) and is an even function of its arguments
xz and z. We assume that coherent structures positions (%, zne) and their
amplitudes a,,, are random and statistically independent. In other words, the
functions ¥(z,y, z) are scattered in the (z, z) plane by a stochastic process g,

N
00(2:2) = 3 (T ~ Tnis 7 = 2m) (45)
n=1

As the flow is dominated by the largest eigenfunctions, we further assume
that the fluctuation field contains only the coherent structures characterized
by the function ¥. The situation for the one dimensional case is presented in
Fig. 4. The fluctuation field u can be therefore written as a convolution of the
function ¥ and the process g

uy(z,y,2) = /_/!P(w — 2"y, z—2")gu(2",2") dz"d2" (4.6)
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Fig. 4. Schematic ”coherent structure” 1 and its convolution with g,

The two-point correlation function has the following form:

(u(z,y, z)u(z’,y, %) /// U(x—a" y,z=2"YW' 2"y, = mz’"()- |
4.7

<g(mﬂ zf})g(m!ﬂ zﬂ}')) dmﬂdzﬂdmﬂ}dzﬂf
Basing on equation (4.5), the expression for two-point correlations of g is

(9(z,2)g9(", 7)) = é(z — ',z = &) (4.8)

Using the above relation in (4.7) and comparing with (4.4), for the case y = ¢/

we obtain
FWFH ke k)] = [[0E0.0VE - rop, ¢~ 1) dedc (49)

where £ =z — 2", ( = 2z — 2”. As we have previously assumed, ¥ is an even
function of its first and third argument. So, after the Fourier transform in the
z and z directions, the RHS of the above equation will contain the Fourier
transform of the convolution of the functions ¥ that is further expressed as
the product of Fourier’s transforms. Finally, the velocity field of the coherent
structure can be written as

U(ry,y,72) ~ £6(y)FHHY? ke, k2)] = £(y) F(rz,72) (4.10)

Note that we do not have any information about the phase, or in other words
— about the structures positions in the (z, z) plane. This information has been
lost because the fluctuation field is homogeneous in the x and z directions.
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5. [Eigenfunctions of the turbulent channel flow

5.1. Two-point correlations in homogeneous directions

Based on experimental data, the two-point correlations of the u velo-
city component have been obtained in the area perpendicular to the chan-
nel wall. Figure 5 presents two-point correlations in the streamwise direction
Q(rz;y = v';0). It can be seen that for a certain y* range (5 < y™ < 25) the
fluctuation field is strongly correlated. This fact confirms the existence of the
mentioned coherent roll structures, elongated in the flow direction.

y

Fig. 5. Two-point streamwise correlation

The spanwise statistics change their sign for bigger 7, values. This is a
typical feature of a cross-correlation function in a homogeneous direction. The
spanwise statistic presented in Fig. 6 is taken from the DNS computation (Kim
et al., 1987) of fully developed turbulent channel flow. It will be used in further
considerations because of the lack of PIV data in the spanwise direction.

5.2. Eigenfunctions in the y direction

Two-point correlation in wall-normal direction Q(y,3’) is presented in
Fig. 7. Since the wall-normal direction is inhomogeneous, the two-point cor-
relations depend on both arguments y and 3’ separately, and not on their
difference y — /. In Fig. 7, the velocity variance (u?) is readily found on the
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diagonal line y = y'. This wall-normal correlation has been used in equation
(4.3) in order to compute the near-wall eigenfunctions out of it.

Eigenvalue problem (4.3) has been solved by the standard Inverse Iteration
method (Press et al., 1992), which is optimal for this case, as we need only
a few eigenfunctions with the largest eigenvalues. The first four of them are
presented in Fig. 8. The shapes of subsequent eigenfunctions are increasingly
closer to the sine function. As was already mentioned, the Fourier sine and
cosine basis is optimal for the homogeneous field. The conclusion is that a few
first eigenfunctions describe the flow inhomogeneity, since the subsequent ones
are typical for homogeneous flows.

2 . 2 . :
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Fig. 8. Eigenfunctions: (a) first (-——), second (- - —), (b) third (——), fourth (- - -)

For r, = 0 and r, = 0, setting y = ¢’ in equation (4.2), we obtain the
u-fluctuation variance as a function of the wall distance

W) = 3 M) (5.1)

Figure 9 presents the sums of 1, 2, 3 and 4 squares of the eigenfunctions,
respectively. The comparison with the fluctuation variance confirms the POD
basis optimality in the energy representation.
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Fig. 9. Fluctuation variance (bold line) and sums of squares of eigenfunctions:

Lrmem) 2 (=3 (), 4 (—)

5.3. Velocity field of coherent structures

From the PIV experiment we have obtained only wu-component statistics.
In order to obtain an approximate velocity field of a coherent structure we need
to introduce some additional simplifications. From the negative correlation of
u and v in the near-wall region we assume that v ~ —u. Using equation (4.10)
for u-fluctuation we obtain

u e =U(rg,y,rz) = =d(y)F(re,72)
(5.2)

v~ U (rg,y,12) = G(Y) F(r3,72)
The w-fluctuation component can be found from the continuity equation

ou Ov Ow

—+ =+ —=0 5.3
oz + Ay i 0z (5:3)
Taking into account the big streamwise correlation of the vortical structures
(Fig.5), for small 7, we can assume

ou i vy, z)
— , [~ g —_——— 4
3 0 w(y, 2) -0/ )y dz (5.4)
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Finally, the velocity field of the coherent structure in the (y,z) plane is obta-
ined from the following equations

v (y,rF) ~ ¢(y")F(0,r])
(5.5)

wh (y,rt) ~

Ty
9p(y™) [

6(y+) [ Fort) art
0

Figure 10 presents the resulting streamlines of the coherent structure in the
(y,z) plane. It forms two counter-rotating rolls placed in the area of high
streamwise correlations (5 <y < 25), which means that they are elongated
in the flow direction. The similar roll shape was obtained by other authors from
POD analysis (Bakewell and Lumley, 1967; Moin and Moser, 1989) and from
conditional sampling techniques. Different visualisation techniques confirm the
presence of many elongated vortical structures in the near-wall turbulence field
(Cantwell, 1981; Robinson, 1991).

Fig. 10. Coherent structure in the near-wall region: streamlines
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6. Conclusions

6.1. Summary

In the paper we have presented velocity statistics obtained from the PIV
experiment together with ample discussion of the measurement error. The
latter is particularly important when strong velocity gradients occur within the
PIV measurement area like in the case for near-wall flows. The POD analysis
of two-point correlations enabled us to find the empirical basis, where the first
and second eigenfunctions were dominating and the following functions shapes
resembled more and more the ones characteristic for homogeneous flows. That
is the reason to suppose that only a few first eigenfunctions describe the flow
inhomogeneity. The obtained streamwise statistics show large correlations in a
certain range of wall-distances (5 < y™ < 25) which indicates the existence of
elongated structures in the fluctuation field. The computed first eigenfunction
and spanwise flow statistics from (Kim et al., 1987) were used in order to
find the velocity field of a typical eddy structure. This confirms the fact that
two-point statistics contain information about vortical structures present in
the flow.

6.2. Limitations and future development

Figure 11 presents the coherent structure resulting from the two-point cor-
relation analysis superposed with the schematic picture of hairpin vortices in
an instantaneous fluctuation field. It can be seen that the analysis of avera-
ged statistics gives only an "approximate” or "typical” eddy which is not the
instantaneous picture of the flow. We argue that a suitable averaging of the
velocity induced by hairpin vortices results in the mean structure (streamwise
rolls), as the contributions of the hairpin "head” (central region) compensate
each other, but those of the "arms” inclined to the (z,z) plane add to the ve-
locity components in the (y,z) plane, finally resulting in averaged rolls. The
experimental analysis of turbulent near-wall regions shows that the so-called
"bursting events”, caused by a sudden breaking of vortical rolls, contain large
energy contribution and strongly influence the flow dynamics. However, the
POD method uses the averaged correlation functions, so the energetic but
rare events like "bursts” are lost during the averaging process. In order to
describe the rare structures, methods of the single flow realization analysis,
like the wavelet technique, are needed (Farge, 1992). Such an analysis of the
PIV experimental data has been also performed by the authors (Waclawczyk
and Pozorski, 2002).
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A |

Fig. 11. Coherent structure in the near-wall region: streamlines

All the above considerations concern only the kinematical point of view.
The next step is to study the dynamics of the coherent structures. This can be
attempted by projecting the truncated function basis on the governing equ-
ations (Aubry et al., 1988; Holmes et al., 1996; Joia et al., 1998); the resulting
set of ordinary differential equation constitutes a low-dimensional turbulence
model, arguably well-suited for low-cost simulations of flows dominated by
distinct vortical structures and for turbulence control. The model can also be
used to investigate the near-wall transport of passive scalars (eg. heat transfer),
which additionally confirms the technical importance of the above analysis.
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A. Appendix

In turbulent flows an instantaneous velocity consists of its mean and fluctu-
ation part. Assuming that the fluctuation is Gaussian and taking into account
the Gaussian error, the measured instantaneous velocity can be written as

U= (U)+u+oaéa = (U) + oubu+ 0aéa (A.1)
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where o, and o are the r.m.s. of the velocity fluctuation and the stan-
dard deviation of the measurement error, respectively; &,, €4 are the inde-
pendent Gaussian random numbers of zero mean values and the variances
(€2) = (€4) = 1. The mean velocity field is computed by averaging the me-
asured velocity U over N independent realizations. In the limit N — oo

1
lim — Y UM = A2
m YU = (o) (A2)
but since the number of realizations is finite, it can be found from (A.1) and

(A.2) that the mean velocity value has a Gaussian error with a standard
deviation oy that for large N goes to 0 as 1/vVN

N
gz,:\]((%zvtn)-(w)?) _ %,/aﬁmg (A.3)
n=1

The fluctuation field is computed by subtracting the mean velocity field from
the instantaneous one

(n)
ucomp

—ym_ L Z UM = 0™ 4 o0 —gpe®  (A4)

n 1

where u(® = cru&(;n) is the exact fluctuation value in a given flow realization.
Hence, the error of the fluctuation measurement is equal to

AW = g2 — el (A.5)

The last term in the above equation can be neglected as it is already of order

1/V/N. Now, we want to estimate the r.m.s. error o3 of (u?). The error Ag”’)
for a single flow realization n can be obtained from (A.4). After averaging
over N realizations

¥ Z AP = AL SR b 2oan T (a0
n-—l N n=1 N n=1

It must be noted that with N — oo the above error takes the constant positive
value 0'31. What goes to 0 in large N limit is the variance of the error

A= (5 S a0 -)) - () +

ﬂ._...

X ) (n))? i 204 S8 )y
w ((Zs 6)) +oh - =A D (ED))

n=1

(A7)
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The above equation can be re-written as

N

N
A= BTN +Y S (€] +

n=1 n=1k=1,k#n

(A.8)

4 N o
+0a0u ) ((€8760)?) - o

n=1

Remembering that for Gaussian variables (€*) = 3 and (¢%£2) = 1, the expres-
sion for the computed mean velocity variance writes finally

(1;,2),303,‘,1er — (uQ) + 0"2,_'\ + o9& :I(u2) + 0‘24 +- \/% 044 4 20%03 £ (A.9)

The last term in the above equation tends to 0 as N — oo; however, there is
still a systematic error 0% that increases the computed fluctuation variance
and is independent of the number of realizations N.

The procedure leading to expression for the computed two-point statistics
is analogous. The starting point is again formula (A.4). The measured velocity
fluctuations at two different points are multiplied and averaged over a finite
number of realizations. The random variables at two different points are corre-
lated for small space intervals. Denoting the space interval between two points
by r, for r — 0 we obtain formula (A.8), and in large r limit the computed
two-point statistics can be written as

(u(@)u(x + 7)) comp = (A.10)

1
= (u()u(z + 7)) + —=/ohiohy + 0k 7k + a0l €

OAl, Oul, OA2, Oy2 are the standard deviations of the error and fluctuation
at the points z and x + r respectively, (u(z)u(z + r)) is the exact two-point
correlation value. The computed two-point statistics tend to the exact value
when N — oo, since no systematic errors occur in the above expression.
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Notations

two-dimensional Fourier transform
inverse Fourier transform of H/2
Fourier transform of (a™)(z,2)a( (2, 2"))
number of realizations

two-point correlation function
streamwise velocity component
POD coefficient

stochastic process

wavenumber

space interval between two points
friction velocity

streamwise velocity fluctuation
wall-normal velocity fluctuation
spanwise velocity fluctuation
streamwise coordinate
wall-normal coordinate

spanwise coordinate

Greek symbols

S QM > T %K

velocity field of coherent structure
Dirac delta

von Karman constant

POD eigenvalue

Gaussian number

standard deviation

POD eigenfunction

Superscripts and subscripts

=D E 4 x

complex conjugate
non-dimensional value
realization

error

component of the function basis
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Wyznaczanie dwupunktowych funkcji korelacyjnych predkosci i analiza
POD przeptywu turbulentego w obszarze przysciennym kanatu ptaskiego

Streszezenie

Wykonany zostal pomiar turbulentnego pola predkoéci w obszarze przysciennym
kanalu plaskiego metoda PIV (ang. Particle Image Velocimetry). Na podstawie da-
nych pomiarowych wyznaczono dwupunktowe funkcje korelacyjne predkosci, ktére
nastepnie poddane zostaly analizie POD (ang. Proper Orthogonal Decomposition).
Otrzymana w wyniku tej analizy baza cmpiryeznych funkceji wlasnych charakteryzuje
niehomogeniczny przeplyw w obszarze przyéciennym. Z pierwszej funkcji wlasnej oraz
statystyk dwupunktowych w poprzek przeplywu wyznaczone zostalo przyblizone pole
predkosci typowej dla obszaru przysciennego struktury wirowej.
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