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The numerical implementation of the Lagrangian method using particles
of the magnetization field (magnetons) has been considered. A detailed de-
scription of essential elements of the algorithm has been provided. The pre-
sentation has focused on computations of stretching, where a novel integral-
based rather than point wise approach has been proposed. The results of
test computations, carried out for viscous flows past 2D and 3D bodies, have
been presented. Difficulties with obtaining stable large-time simulations ha-
ve been encountered and discussed. It has also been shown that, in contrast
to flows around solid bodies, the vortex dynamics in the absence of boun-
daries can be successfully simulated. however, some consistent remeshing
technique may be necessary to achieve appropriate resolution.
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1. Introduction

In the first part of the paper (Styczek and Szumbarski, 2002), the theore-
tical foundations of the magnetization-based Lagrangian method for 2D and
3D flows have been presented. This Part is devoted to the description of the
numerical implementation of this method.

One of the crucial elements of the method is the treatment of the stret-
ching. It terms of the magneton discretization, the stretching is responsible
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for modification in time of individual ”charges” of magnetization particles.
The rule governing this modification should be derived from the equation of
evolution of the magnetization field, but there is no unique way to do that. Ori-
ginally, Buttke (Buttke and Chorin, 1993) proposed computing the stretching
term in a point-wise manner (in a center of each magneton). That method can
work well only when the magnetons are very small and the spatial variation
of the stretching term on the length-scale of the magneton core is negligible.
These requirrements, however, are not likely to be satisfied, at least not in the
whole flow domain. Actually, in some parts of the flow domain the stretching
term exhibits rapid space variation. Typical examples are a region near the
body surface (like the boundary layer) as well as "active” regions of the wake
behind the body, i.e. regions with highly concentrated vorticity. In order to
account for the spatial structure of the stretching in such extreme cases, we
develop an alternative method based on local averaging of the stretching. This
approach proved to be more suitable than the point wise treatment.

The properties of the proposed numerical method are tested in a series of
sample computations. We run numerical simulation of fluid motion in domains
with and without solid boundaries: the flow past a circular contour in 2D, the
flow past a spherical body in 3D and the flow induced by a vortex-like structure
evolving in the 3D space.

2. Particles of magnetization (magnetons) and their motion

Consider an external flow around a smooth contour (2D) or a closed surface
(3D). The magnetization field m = m(t,r) is, in general, defined in the whole
flow domain. It has been shown in Part 1 of the paper that the corresponding
(induced) velocity field can be expressed by the following formulae

u=m—Veo=(Id— VA )Ym =Pm (2.1)

The operator P is called the Hodge projector. The inverse of the Laplace
operator A~! can be easily evaluated when no boundary conditions are impo-
sed. Consider a single magneton embedded in an unbounded fluid. Assuming
isotropy of the inner structure of the magneton one can write

m(t,r) = mo(t)g(|r —ro(t)]) (2.2)

where the core function ¢ vanishes identically outside the magnetons interior,
i.e. when |r—ro(t)| > a. Here, the symbol a denotes the radius of the spherical
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core of the magneton and ry(¢) describes an instantaneous location of the
magneton center. The core function ¢ is assumed smooth and it determines
the velocity induced by the magneton. This velocity can be calculated from
formulae derived in Part 1 and re-written below as

w=mo(0)s(r) ~ F0) - PG o) - NpF(Y] (29)
where .
F(r) = = [ €907 10(6) dt (2.4)

0

and Np =2 or Np = 3 for two or three-dimensional motion, respectively.
The value F(a) defines the "charge” of the magneton, namely

Q = a™P F(a) (2.5)

It is not difficult to show (sece Part 1) that the velocity field induced outside
the magneton core is potential accordingly to the formula

_ _ou™T
u = _QV ?‘ND (26)

and that the spherical boundary of the core r = a moves due to self-induction
with the velocity

U= (Np— 1)0.%"‘” (2.7)

Consider a magneton embedded in an ambient fluid moving with the ve-
locity v. We assume that the magneton’s instantaneous velocity is the sum
of the self-induced velocity U and the velocity of advection v. In general, the
advection is due to induction from other magnetons and additional constant
vector field V, introduced in order to ensure appropriate conditions at infini-
ty. Thus, the formulae for complete velocity field at the center of the magneton
can be written as follows

= Ui+ Y u(lro, - ro,)) + Vo (2.8)

Vl ki

0;

The core function g can be chosen as a polynomial defined in the interval
[0,a] and expanded around zero for r > a. Such an expansion has to prese-
rve appropriate regularity of the core function. Consequently, we obtain the
magneton with a finite core as described above. The example is

5a 5

a

g('r) _ (‘.")2 8r 3
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The admissible alternative is to construct the magneton with a infinite
but spatially localized core. It can be achieved by choosing the following core
function

g(r) =e P’ B>0 (2.9)

The constant 3 defines the core concentration in the sense that higher values of
(3 yield more localized distributions of the magnetization. Roughly speaking,
this constant plays the role of a2 in the case of the finite core.

3. Simulation of viscosity by random walks

The magnetization field m is constructed as the sum of a large number
of the magnetons. Each of them moves with accordance to an instantaneous
velocity given by formula (2.8), and additionally performs a random walk. The
random displacements of a magneton in consecutive time instants are stati-
stically independent, and so are the random motions of different magnetons.
The stochastic part of the magneton motion is to simulate the diffusion of the
magnetization due to fluid viscosity. As it was described in Part 1, the loca-
tion of the ith magneton center rp, stems from the following Ito differential
equation

dro, = V‘O dt + \/Edwi (3.1)

The symbol dW; = [dW; ,dW; y, dW; ,] denotes an infinitesimal increment of
the vector Wienner process, whose scalar components are statistically inde-
pendent. Since the diffusion coefficient v/2v is constant, equation (3.1) can be
interpreted in the sense of Stratonovich (see Gardiner, 1990), and integrated
using standard methods.

Equations (3.1) govern the motion of all magnetons in the flow domain.
Looking at the flow field at a certain time instant, one can divide all magnetons
into two categories: the "old” magnetons, i.e. the magnetons that were created
in the past and are still present in the flow domain, and "new” magnetons,
i.e. those currently being created. The satisfaction of the boundary conditions
requires that new magnetons be continuously injected into the flow domain.
It seems physically plausible to add them in the close vicinity of a surface of
an immersed body. I should be noted that, due to a random walk and/or the
self-induction, a magneton is able to move through the body surface into its
interior. If such an event occurs, the magneton can be simply removed from the
simulation or it can be reflected back to the flow domain. Since the boundary



ON THE MAGNETIZATION-BASED LAGRANGIAN METHODS... 829

conditions are formulated for the velocity, both methods seem to be admissible,
and the results of numerical computations should not be method-dependent.
We will discuss this problem later.

4. The stretching effect

The stretching effect is described by the "source” term in the governing
equation
—(VV)'m
om+ (V- -V)m =vAm + (4.1)
(m-V)V¢

L. ~

stretching term

The stretching term can assume one of two forms, as indicated in (4.1), de-
pending on the choice of the gauge transform (see Part 1 for details).

As it has been explained in Part 1, the Lie-Trotter formula is used to sepa-
rate the time-step advancing of the magnetization field into three consecutive
parts. In the last stage, the magnetization is modified due to the source (or
stretching) term appearing in the right-hand side of equation (4.1). Both va-
riants of the stretching lead to a set of differential equations in the following
form

dym® = BogmP (4.2)

Dependently on the chosen variant of the stretching, the matrix B is de-
fined by the first- order derivatives of the velocity V or by the second-order
derivatives of the gauge potential ¢

_ 3% vB
Baﬁ = . (43)
a:r(rxﬁ (rD

Re-writing equation (4.2) in the matrix/vector form
dm = Bm (4.4)

we see that the magnetization field evolves in time at a rate given by the
action of the tensor field B on the "immersed” vector field. Considering a
given instant of time, we can compute an average of the stretching action of
B over one magneton

dmo _ B

i my (4.5)
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The averaged value B’ is given by the following integral

'Uﬁ
Bl = g / { O }g(-f-) 0 (4.6)

’1’.‘0«.'1'(5@

Integrating by parts, we obtain

P
A &

Again, upper and lower expressions appearing in brackets in (4.6) and (4.7)
refer to different variants of the stretching term.

The "upper” variant does not give any self-stretching, i.e. the averaged
effect of the stretching of a single magneton on its own magnetization field is
zero. This fact is due to formula (2.3) and the form of the integrand in (4.7).
[t can be noticed that the product vz, is an anti-symmetric function and
the integration over any spherical domain yields zero.

Formula (4.5) describes the instantaneous rate of time variation of the
vector my. Clearly, the change affects both the length of mg and its direction
in space. It is possible to consider these two effects separately.

Let mg denotes the length of the vector mg. The direction of my is de-
scribed by the unitary vector e = mg/mg. Thus, we have my = mpe, equation
(4.5) can be written as

dmg ~  de 0
BT +myp P moBe (4.8)
and
]_ dm(] _ 0 de 0 0 _ 0
TS (e,B"e) = =B’e— (¢,Be)e = (e x B'e) xe  (4.9)

Equation (4.9); describes "pure stretching”, i.e., describes time variation of
the length of the vector my. Equations (4.9); governs, in turn, variation of
the space direction of my or, equivalently, it describes pure rotation of my.

According to (4.9)2, an instantaneous angular velocity of the rotation of
the vector e is 9 = e x B. Clearly, 9 is perpendicular to e. It means that
the three following unitary vectors

9 xe e_g
19 x e]] 370

form the local Cartesian basis. Hence, the vector e can be expressed as

£1=e 82=

e =&l + &by (4.10)
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and then the vector product 4 x e can be calculated

| & €& &
P xe-— i 0 0 9 |=—(9) + (968 (4.11)
| £1 (':2 i

Differentiating (4.10) and comparing with (4.11), we obtain ordinary differen-
tial equations for the functicus & (¢} and &(%)

d&, dg:

—= = —1 - =9 1.12

o 3] 5 = V& (4.12)
suppiemented by appropriate initial conditions, i.e. £ (0) =1 and &,(0) = 0.
The first-order accurate integration yields

&1(At) = cos(¥AL) £2(At) = sin(JAt)

which means that

3(t) x e(t)

e(t + Ab) = e(t) cos(V()At) + g

sin(9(t) At) (4.13)

The same order integration applied to differential equation (4.9); gives
mo(t + At) = my(t) exp((e, Boe)At) (4.14)

The procedure described above requires the matrix B® to be found. The
averaging of B consists in determination of nine scalar integrals, which have to
be evaluated numerically. In general, an appropriate Gaussian quadrature is
recommended. In the case of magnetons with unbounded cores, the Gaussian-
Hermite integration method would be preferable.

5. The boundary conditions

It has been already mentioned that continuous generation of "new” ma-
gnetons in the vicinity of the body surface is necessary in order to satisfy
the non-slip boundary condition imposed on the velocity field. At any time in-
stant, the velocity can be expressed as a sum of three components: the velocity
induced by the magnetons created in all previous steps of the flow simulation,
the velocity induced by magnetons being currently created (yet unknown) and
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the velocity of the uniform stream U,. If the no-slip condition is enforced in
a point-wise manner, the following set of equations can be derived (see Part 1
of this paper, formula (5.5)), i=1,..,.M

= Uscea|, = > mii(ra, —rileal,  (5:1)

M

n el
> m (I a, — rilea) N
k=1 (k)

The meanings of the symbols used in (5.1) are as follows:

mg.  — magnetization charges of newly created magnetons

mg,  — magnetization charges of already existing magnetons

U - induction operator (see expression (3.6) in Part 1)

e — locations of the centers of newly created magnetons

Ty — current locations of the centers of already existing magne-
tons

TA, — locations of the collocation poiuts at the surface of the im-
mersed body

€af, - local Cartesian basis at a collocation point A; (o =1,2,3)

U L velocity of the uniform stream at infinity.

It should be emphasized that the right-hand sides of system (5.1) involve
only known values. In order to obtain a solvable problem, M collocation po-
ints at the surface have to be chosen. This way, system (5.1) will contain 3M
equations with the same number of unknowns. As it was mentioned in the
Part 1, the boundary conditions can be also formulated in an integral-mean
rather that collocation manner. The numerical tests show that in such a ca-
se the resulting vectors mg, (k = 1,2,.., M) differ only slightly from those
obtained from system (5.1).

During a numerical simulation, some magnetons will unavoidably cross the
material surface and penetrate the interior of the body. Such events occur most
likely for the magnetons located near the body surface. Theoretically, the only
way a magneton can jump into the body interior is due to self-induction or
due to diffusion modeled by a random walk. The possibility of the latter event
decays rapidly with increasing distance from the surface, especially for flows
with a low viscosity. In practice, the condition for the velocity at the boundary
is not ideally fulfilled, and the time integration scheme is of a finite order. This
is why a magneton can cross the body surface also due to the advectional part
of its motion.

It should be clear that the boundary condition for the velocity is enforced
at the beginning of each time step of the flow simulation. Having all magne-
tons moved to their new locations, this condition is violated. Then, another
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generation of new magnetons appears in the vicinity of the surface, modifying
the velocity field so that it satisfies the boundary condition again. The im-
portant issue is that this re-creation of the proper velocity distribution takes
place independently of the method, removal or reflection, which has been used
to deal with the magnetons, which left the flow domain in the previous time
step. Using the local basis defined above, one can conclude that at the body
surface the following condition is satisfied

n-w=n-rotu=0 (5.2)

i.e., the vorticity vector at the surface has only a tangent component. Here,
the symbol n denotes the unitary vector normal to the surface. Consider a
magneton placed near the surface at the distance smaller than the radius of
its core. Let 5, denote the portion of the surface embedded in the magneton
core. Using formulae (2.1) and (2.2), one can verify that the vorticity flux
through 5, equals zero, i.e.

./n—wdS:j{m-df:O (5.3)

Sm 9Sm

In the above, we use the fact that the magnetization vanishes at the boundary
of the core. The meaning of equality (5.3) is following: although condition (5.2)
cannot be imposed at each point of the surface, it is satisfied in an integral
sense by individual magnetons.

6. Discussion of numerical results

In this Section, we discuss some numerical results obtained with the magne-
tization method. At the beginning of each time step, the magnetization charges
of newly born magnetons are computed from equations (5.1). Next, all ma-
gnetons perform convective and diffusive (random) displacements accordingly
to Ito’s differential equations (3.1). Finally, the charges of the magnetons are
modified due to the stretching effect as described in Section 4 (see Eq. (4.14)).

6.1. Simulation of a 2D flow past a circular contour

In this section, we discuss results of numerical simulations of two-
dimensional viscous flow past a circular contour. The computations were car-
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ried out with the use of magnetons with finite cores (r = a) and polynomial
core functions in the following form

T‘3 2
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e e e T R T AN
Enq---,.,pfa,—'fmﬂ;‘.waaa4-....;4..44-.4_.*
EEE L L e B e bk kb ko bk b
et - 2w A AN 37 ottt -
T g
A LA SRR = Mf:‘f-::‘\‘:"::‘ NTaanniaanaes
R :.a);a:: I.aa;;.-q-\.,.\\ -k h ok b kb b b
IS Sarr EURES e M At 0 (R -
LI e e Swr hpasss Aa e At
B e PP A g ot ok e
PERRAL NN R, it .{' -s.}‘\\ﬂ_.,....... -------
PSR R Y R ! e ettt e
1 m N e e gt . Cm e h B byt
ey, [ — - “ I e
LirIvysIIoooooo - 1 R EEEER v ioeirieie
r;‘_.“_‘,., ______ P Vi A PN
t L b LR L LR
ff?aﬁ,'_.-ﬂ___q_,..., - R . T T e,
P s e N AN N T,
LA A I N T e
LA AR R A SO
vy P o o ot et et et ettt - st P2 e ad e adaan
/222 IEEE e 2ty
e e B IR L e
A S T LT Caae# [,
P st i e e e e :n—.,\‘.“_w\h\_\-..nq-a-;.nffffr' LR r ™
i, 3-.4--._,,..,%-.,-.-.-—,4»//// s s s s saaaaa
23 :---‘.‘,ﬁmw_,__-&#//f.....-_q----4.
:ﬁ‘ﬂ-‘.‘mwfaﬂqnqq-q“q‘g_g
=

o et T bbbkt

- e e o e

----- - ..

1=0.25

B P

J
{

- [P
:-.-44‘4.“_,’1#"/”1;4—-—_.—“;.»4-44.4»..;»».‘
MM 5..;» %%‘.444aa4*44444
RPN EORI - PP wAss s s A ada s
e L Ry oo APION NN TEEEEP LTS
BRI 2 NV B R R R e N P
= I A A o PR, P aadaaaaasaa
o"‘-\_‘\‘-\.%\‘ \‘-‘—i -] f/ff’ D‘D\ ".

R R e ST T kvl., 4 - ™ e
YNSS o ! R\ NP EPEEPEs
RN ewmamomall S AL F 15 NN oA PSS

R N . ey P A w e -
IR R v LA T .
T R I — M PP P N NN

Pla L e - / Lt T Bttt

L - r/.a\,‘\.r-...-__..__

L NN, Y N L PP P TP,
S A e Y - v -\‘Q kb .
R AT RN \_‘“"”‘ r * R e R
’4}5};.—.‘_.‘,..__........._.. s ;}} ZNN T aacas
LA - e \\ -~ - * f -k
2L AT WNIF . srp Py PANIIIII0CC
7/, E Y S P

s S N Y
d /f/fa...._._._._._._._._._. \‘
1

’
»
O iy P g NN —
S s AL Soooo p PaLLillIiilNC
bt 1S S pepamanannaa il BULN N PRI usad AN ) SOt et
EESESS e B, s 3em et P TP,
P e 5 3

o ST SN :---k ety ot A P P h e n e aa s
P A s s

-
-

»
P T p
»

LRidibi
Ay
‘L
b
{
4
4
4
-
P
.y
»
-

bt Ay e - -~
ppoies oy oS asoananny maaas DO AP St

=030 =0.33

Fig. 1. Instantaneous velocity field computed for Re=100 (magnetons with the
polynomial core function go(r), Adams-Bashforth 3rd order integration scheme with
At =0.01)

Note that the core function ¢;(r) defines the magneton with a nonzero
charge @, while the function g»(r) corresponds to the magneton with @ = 0.
The Adams-Bashforth third-order integration scheme (AB3) was used, and
the influence of the magnitude of the time step At was tested. In Fig. 1, we
present instantaneous velocity patterns for the flow with the Reynolds number
Re=100, obtained with At = 0.01 and the core function g,. Fig. 2 shows the



ON THE MAGNETIZATION-BASED LAGRANGIAN METHODS... 835

=t e e e e B e e b Y
b et el ke iniabatutatat e e sesnen e AR DR R R E R et i
o M NN St AR St
S P ffm—_,w\\\' bt A, e S 4 ke ek ke
=S ,:eqad___._ﬁ_“%% e R L e - ‘"//"”"“"”"""'""""““""N—"-u‘n.‘--h;\ﬁ"" I
= o 5 FR R R
-~ ..,_,_'::' EEENERENENINIIOIN 1.ad‘//})31|‘) (!ti‘-—!-_,.q\'\"-'JJ-ld-la-l-o—i-l

™ o S AR ‘e RPN

ettt s Sl
AN
Fowan -

i
oA
SO0
'
4
L
113
L1l
[
LLE
[
[yt
Ll
[t
---1.-...‘L
L
///;/
{
e
b
P
F
[
IR
P
411
I

P -

1 -

T :"\ P Taanaan ’\\ [P
1.0y PRI T
‘1‘.\¥Q—ow-¢~b—o—0—|—b—o e e i\\,\\,q_aannn-
‘1'v‘\-‘—|—1—|—o—-‘-—0-—1—0—-ﬁ AT YR "§\-.n4----—-
tir. e i ek b NN * A asassaa

v 3 v vy

.;r}l_._‘_..._._._._._........ TR ;f;’_‘ N
L ;?--.-;-»—o_o_om-o-q-o- e /f“ T h e ek

el
h

r B RS

LA
Wi
T T T I SN - y
;f ,A-—‘—l—lﬂh‘—‘—‘—.—l—-— :‘-‘.‘;&q\;\\ f’ ;n‘,u——n--.-.-o-.-.
» ettt e ot e -, - - n n .
/»,,_.._..HL‘“:_H EPRN % ATuyLIILILINIIN
' ittt 8 e et et e et bt i Lo T / R b T T
A S M /"8114444-‘-0-1-1-044

et et b st ok ket e .

-wjf'—--o—o-o—o—-—o-.--.--.-. ::—4“.—- W/la_uuda _____ -

Lt et ot ottt i b e Fw s s n 4 S I TN

S S i s e R e T e
-

e e T e e
B R I LI I T T e e e T T

1=0.25

WA s a s s s e haea

;////,-..H,‘nx..".".:'\ Wuwresecssssnns

’{))J,'(w“m e R
FRFSE

I

e A ek T h o W
B
e R

Fres

»
.
.
.
.
.
.
.
.
.
.

P
ias
e
R
3 :.;
- " —— TR .
1.7 P PV & L
ER i o .- - - T TR
2. rr. w - Rk kb ialTy N >
e g < H SN s e e e s
:a” ‘e \\1-. e :!fl’-r '\.,\. NFr et
5 e \'\'\{\_ e kb ::!1._,/( = B R EEEEE
el 4\ N [, R EAAY A s prreeeaene
Seda ey \\ R ;...‘,{ \ ,b\\........-
2 AWWIIIIIIIID iy Nl
31 RSP RIS SEPETESS
.. - - - - - -
i s VENT O 2 Tvyie Tpbyreeeneee -
b t \y4-o-o4-o-a-;-a fee SApyiiiiiiii
- R e .
iy S S 2 BN IR R PRPPPRPY
3 LR 3 RN, T R e
- P B Py /’!‘ L R
D f-“1v-v-v-----‘ $ey ’.L‘.¢-¢-.oab
i A rTEE e . "'.‘....--...o
i Py e P Tt e sssssassas
3. LR R i Tle s v ssnsssssnas
sl I
:‘ :-'
iy a0
AN s a A s
i S PaeealllI1I0000000 BOLTNI S TESSSST ST
“**“"""‘w\,\.‘x;'-ﬂ—w‘!""“‘ “““ hdad gt ddied :-¢4a!\'ﬁl!-"\“N‘-H—bﬂa‘f)aaaaobaaé.ag4!&&!
P T T A T P L L R R e T

=0.30 =0.33

['ig. 2. Instantancous velocity field computed for Re=100 (magnetons with the
polynomial core function ga(r), Adams-Bashforth 3rd order integration scheme with
At = 0.00025)

same case computed with a smaller time step (At = 0.0025). Analogous results
for a higher Reynolds number Re=200 are shown in Fig. 3.

In order to assess the influence of an integration scheme, all above cases
were computed with the fourth-order Runge-Kutta (RK4) method. The pat-
terns of the velocity field obtained for Re=200 and the time step At = 0.005
are presented in Fig. 4.

The presented results show that that the numerical simulations did not give
physically correct flow patterns. The boundary distributions of the magneti-
zation were calculated properly, i.e. they ensured cancellation of the velocity
at collocation points of the contour at each time step. The characteristic fe-
ature of the wake structure behind the cylinder contour (at considered values
of the Reynolds number) contains a ”chain” of large vortices with alternating
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Fig. 3. Instantancous velocity field computed for Re=200 (magnetons with the
polynomial core function go(r), Adams-Bashforth 3rd order integration scheme with
At = 0.01)

direction of rotation. In a physically plausible velocity field, one should ob-
serve clock-wise rotating vortices shed in approximately equal time periods
from the upper part of the back side of the contour, and vortices rotating in a
opposite direction, shed from the bottom part of the back side of the contour.
This phenomenon was not seen in the simulations. Instead, irregular vortex
structures surrounding the contour and attached to it rather than flowing do-
wnstream were obtained. It turned out that the choice of the parameters of
simulations (e.g. the time-integration step, the type of the core function and
others) led to qualitatively similar, physically erroneous results. The use of
the RK4 integration scheme gave a slightly better effect in the sense that at
least the initial development of the wake (simultaneous shedding of a pair of
symmetrically located, counter-rotating vortices) was re-produced. This can
be seen in the upper-right picture in Fig. 4 presenting a magnification of the
flow details right behind the contour.
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Fig. 4. Instantaneous velocity field computed for Re=200 (magnetons with the
polynomial core function g»(r), Runge-Kutta 4rd order integration scheme with
At = 0.005)

The obtained results indicate that the magnetization method (at least in
the current form) is not an appropriate tool for simulating 2D flows past ob-
stacles. Wrong results were obtained for various choices of parameters, which
indicates that the source of encountered difficulties is of general nature. Since
the same class of flows can be successfully computed with the use of vortex
methods (see for instance Protas (2000) and references therein), the source of
the problem might be the dipole character of the particles of magnetization.
The particles of the vortex method are small vortex ”blobs” with positive or
negative vorticity distribution inside their cores. Thus, each of these particles
carries a non-zero charge of vorticity (or circulation). The magnetons are qu-
ite different. Firstly, the magnetons move also due to self-induction, whereas
the vortex blobs do not. Secondly, the magnetons are subject to stretching
and consequently their charges are time-dependent. The vortex particles in
2D preserve their charges during motion because the equation of the vorticity
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transport in 2D does not contain the stretching term. Thirdly, the magnetons
are vortex dipoles, i.e. half of the magneton core is filled with positive and
the other half with negative vorticity. This difference is crucial. The direct
consequence of the dipole nature is that the total charge of vorticity of each
magneton remains equal to zero. This is why typically a large set of overlapping
magnetons will correspond to a rather oscillatory distribution of vorticity. It
seems that any Lagrangian method capable of proper re-production of struc-
tures in wakes behind bluff bodies should admit spatial separation of large
regions of smoothly distributed vorticity of uniform sign. The magnetization
method in 2D apparently fails in this respect.

There is one more issue. In order to obtain physically meaningful results of
the simulation of a flow past an obstacle using the vortex method, an additional
condition should be imposed on the vorticity field. This condition appears due
to the multi-connectivity of the flow domain and it ensures that the pressure
field corresponding to calculated velocity and vorticity fields is a univalued
function of spatial variables (see for instance Szumbarski and Styczek (1997)
for further details). In the case of a flow past a single contour, the condition
is equivalent to the demand that the circulation of the velocity calculated
along any closed line surrounding the contour of the body and all vortex
particles should be zero. An additional effect of this requirement is also the
stabilization of temporal evolution of the vorticity field. Indeed, the condition
means that the total charge of vorticity in the flow domain is fixed in time,
i.e., unlimited generation of the vorticity of the same sign is prohibited. The
natural question is whether an analogous constraint is necessary in the case
of the magnetization method. Formally, the answer is negative. In the vortex
method, the procedure of the pressure recovery is based on the Navier-Stokes
equation, where the pressure appears under the gradient operator. This is
why the integral of the rest of terms of the N-S equation, calculated along any
closed path in the flow domain has to vanish. In the case of the magnetization
however, the pressure is evaluated from an algebraic rather than differential
problem, yielding an unambiguous solution without additional assumptions.

6.2. Simulation of a 3D flow past a spherical body

In the 3D case, the magnetization method was tested on the example of
a flow past a spherical body. The objective of the computations was twofold.
Firstly, the ability of the method to correctly simulate the process of vortex
shedding was to be established. Secondly, the possibility of obtaining large-
time, efficient simulations of the flow in a wake behind the body was to be
assessed.
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The results of computations presented in this paper were obtained using
the finite-core magnetons with the core function g(r) = (ﬁ)2 -84 2. Again,
two different methods of time-integration were used: the fourth order Runge-
Kutta method (RK4) and the third-order Adams-Bashforth method (AB3).
The stretching was computed using the method described above, where volume
integral (4.7) was transformed to a threefold iterated integral evaluated by the

Gaussian quadrature.

1=0.75 t=1.00

Fig. 5. Instantancous velocity of flow past a sphere (Re=200). AB3 integration
method (At = 0.005). The number of the magnetons created in one time step is 400

The results obtained for the Reynolds number Re=200 are presented in
Fig. 5. This figure shows a time sequence of velocity projections on a plane
parallel to the uniform stream at infinity and passing through the center of
the sphere. The integration method is AB3 with the time step At = 0.05. The
number of magnetons generated in each time step near the body surface is 400.
One can observe the development of the first toroidal vortex structure shed
from the body surface. The vortex moves away from the body and the next
structure begins to form - the aerodynamic wake emerges. The streamwise
extension of the wake at the time instant ¢ = 1 is approximately equal to the
diameter of the sphere.
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Fig. 6. Instantancous velocity of flow past a sphere (Re=200). AB3 integration
method (At = 0.03). The number of the magnetons created in one time step is 686
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In order to enhance the resolution and improve the accuracy of the enforce-
ment of no-slip condition at the body surface, the computations were repeated
with an increased number of magnetons injected to the flow domain at each
time step. Figure 6 shows instantaneous velocity patterns obtained for 686
new magnetons at each time step. The time step was reduced to At = 0.03.
The velocity field evolved in a similar manner, and a fully developed primary
toroidal vortex could be observed at t = 0.4. In the course of time, however,
a numerical instability appeared. The wake began to loose symmetry, local
values of the velocity behind the body and the charges of magnetization car-
ried by individual magnetons tented to grow rapidly. The same effect appeared
when the time-integration scheme was changed to the RK4 method. The exam-
ple, computed for Re=150, is presented in Fig.7. Initially, the development
of the wake structure was physically correct. Due to a lower Reynolds num-
ber, the (approximately) symmetric vortex pattern existed for a longer time
and extended farther behind the body. While the simulation was continued,
the numerical instability of rapidly growing magnitude appeared, leading to
"blow-up” of the local values of the velocity field.

One can suppose, that the way to avoid the instability is simply the time-
step reduction. This is an idea dictated by both theory and practice of solving
numerical differential problems. In the case of magnetons, the situation is, ho-
wever, more complex. The point is that the number of differential equations
grows quickly in time - every time step several hundreds of magnetons are
being injected into the low domain. Each additional magneton means another
six differential equations in the system, so after forty-fifty steps the number
of equations exceeds a hundred thousand. Larger systems of equations usu-
ally require stronger restrictions on the time-step. Eventually, the number of
magnetons appearing in the low domain during a given period increases rapi-
dly with time. This growth can be faster when some re-meshing (or rezoning)
procedure is introduced in order to maintain the degree of local overlapping
of the magnetons. This is why time-consuming simulations of 3D flows in the
presence of solid boundaries pose a great computational challenge. In practi-
ce, such simulations can be done successfully only when the time step is kept
reasonably large. In 2D simulations with the vortex method, it is indeed the
case. In a 3D case, the evolution of each magneton is described by six (instead
of two) scalar values (coupled also by the stretching effect, not present in the
2D case), and "crude” time-integration can only work for a very limited time.

In spite of the failure of long-time simulations, the initial stages of the
wake development are, in essence, reproduced correctly.
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6.3. Simulation of the vortex structure in an unbounded 3D space

In this section, we present an example of simulation in an unbounded
3D space. The object of the simulation was a three dimensional magnetization
structure with an inviscid fluid. At the initial time instant, the structure had a
form of a thin box constructed from five parallel square layers, each containing
1600 densely packed magnetons. The initial orientation of the characteristic
vectors of all magnetons was perpendicular to the layers. The initial charges of
the magnetons depended on the distance from the center of the structure, i.e.
the "strongest” magnetons were located along the edges. The core function was
exponential (cores were infinite) and the localization parameter o was equal
to 0.5. The integration scheme was RK4 with fixed time step At = 0.001.

Figure 8 presents obtained results. The sequence of pictures shows the evo-
lution of the magneton locations and induced velocity field. The pictures in
the left column show the side projection of the magneton central points and
the projection of the velocity field on the vertical plane of symmetry. The pic-
tures in the right column show the front projection of the magneton centers
and the projection of the velocity field on the plane oriented perpendicular-
ly and crossing the structure at approximately half of the distance between
left-most and right-most magnetons. The positions of magnetons are shown
with respect to the same motionless reference frame. One can see that initially
the structure moves quickly, because closely packed magnetons induce collec-
tively large velocity. Later, the movement gradually looses homogeneity and
the structure starts to develop a geometrical deformation. At the same time it
slows and starts to expand sideways. The remarkable feature of this expansion
is that the structure preserves its original symmetry. This fact is consistent
with the existence of motion invariants (see Chorin, 1994). A long-time simu-
lation poses no problem (in contrast to the flow past an obstacle, the number
of magnetons is fixed), however, later certain parts of the flow domain do not
contain the sufficient number of particles to maintain appropriate spatial re-
solution. Thus, for serious long-time simulations some ”re-meshing” strategy
would be needed.

7. Final remarks and conclusion

At the first glance, the equation of the magnetization seems to be a per-
fect candidate for discretization with a Langrangian approach. It has a form of
an advection-diffusion equation with the source term (stretching). In contrast
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to the vorticity field, the magnetization is not restricted by a divergence-free
condition. This means that one can define a "piece” of the magnetization,
i.e. choose a small region of space and fill it with a unidirectional vector field
vanishing at and outside the boundary of this region. Assuming further so-
me symmetry properties, one arrives of the magnetization particle called the
magneton.

This construction is elegant and mathematically rigorous. In does not have
any counterpart for the vorticity, simply because the divergence-free vector
field is ex definilione source-less. The induction law is obtained by well-defined
mathematical operations called the Hodge projection. The procedure applied
to the magneton yields an explicit, relatively simple formula.

The magnetization equation reveals some deeper structure of fluid mecha-
nics. When the viscosity is neglected, this equation describes the dynamics
of an infinite dimensional Hamiltonian system (see Chorin, 1994). Following
the Lagrangian approach, one can discretize the magnetization by a set of
magnetons. This way, one obtains a finite dimensional system, which inherits
important properties (invariants of motion) of the continuous system.

The viscosity term appears in the equation of magnetization in the form
completely analogous to the equation of vorticity. Thus, it does not introduce
any additional difficulty as it can be treated in exactly the same way as in
the vortex methods. The random walk can be an immediate choice, however,
some higher order deterministic approaches would be feasible, too.

Finally, the stretching or source term in the equation of magnetization
seems to be more tractable that the analogous term in the vorticity equations
(in 3D). If the appropriate gauge transform is applied, the stretching tensor
with a non-zero trace can be obtained. This means that the ”filaments” of the
magnetization do not have to preserve their volumes (in an inviscid motion), as
do the filaments of the vorticity. This is why the magnetization-based method
should be, in principle, less sensitive to resolution requirements.

In view of all advantages mentioned above, the numerical experience with
the magnetization method is rather disappointing. The method turned out
to be capable of simulating properly only short-time evolution of 3D flows
around immersed bodies. In the two-dimensional case, the method failed even
to reproduce properly the phenomenon of the vortex shedding.

It seems that the weak point of the method is its inability to spatially
approximate separated 2D regions of the vorticity of a uniform sign. In the
3D case, the vorticity structure of the magnetons is not a serious obstacle
because the problem of the approximation of closed vortex tubes can be solved
by distributing the magnetization in the three- dimensional disk-like region
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"spanned” on the tube. Certainly, such a procedure is not very "eflicient”, in
the sense that the approximation of the “almost” one-dimensional structure
in the vorticity field requires the "almost” two-dimensional distribution of the
magnetization. In other words, vortex lines or tubes have to be approximated
using the magnetization distributed on much larger subsets of the 3D space.

Even in the 2D case, the difficulty with the approximation can be over-
come by introducing the magnetons of different sizes. Actually, the full scale
of sizes should be introduced, i.e. the smallest magnetons should conform the
resolution requirement, while the largest ones should be comparable to the
dimension of the computational domain. This solution is however entirely in-
consistent with the general idea of the Lagrangian approach which assumes
that the particles used in simulation are very tiny.

Summing up it is rather not likely that the magnetization method could
be competitive to vortex methods in the area of 2D flows. Like in the three-
dimensional case, the question remains open. The unquestionable advantage
of the method is its solid theoretical background. Further development will re-
quire the identification of the mechanism of instability described in the paper,
designing efficient re-meshing algorithms as well as methods of rapid evalu-
ation of induced velocity.

Acknowledgements
This work has been supported by the State Committee for Scientific Research
(KBN), grant No. 7T07A 022 14.

References

1. Burtke T.F., CHorIN A.J., 1993, Turbulence calculations in magnetization
variables, Appl. Numer. Methods, 47, 12

2. CHORIN A.J., 1994, Vorticity and Turbulence, Springer Verlag

3. GARDINER C.W., 1990, Handbook of Stochastic Methods, 3rd Ed. Springer
Verlag

4. ProTAs B., 2000, Analysis and Control of Aerodynamic Forces in the Plane
Flow past a Moving Obstacle — Application of the Vortex Method. Ph.D. Thesis.
Warsaw University of Technology

5. STYCZEK A., SZUMBARSKI J., 2002, On the magnetization-based Lagrangian
methods for 2D and 3D viscous flows. Part 1: Theoretical background, Journal
of Theoretical and Applied Mechanics, 40, 2, 339-355



846 P.DUSZYNSKI ET AL.

6. SZUMBARSKI J., STYCzZEK A., 1997, The stochastic vortex method for viscous
incompressible flow in a spatially periodic domain, Arch. Mech., 49, 1, 209-232

Lagrangeowska metoda magnetyzacji dla dwu i tréjwymiarowych ruchéw
ptynu lepkiego. Czes¢ II — Realizacja numeryczna i wyniki

Streszczenic

W tej czesci pracy przedstawiono realizacje numeryczna i opis wynikéw wyzna-
czania ruchéw cieczy lepkiej uzyskanych lagrangeowsks metoda czastek magnetyzacji.
Podano szczegdly wyznaczenia cztonu zrodlowego (tzw. stretching term). Zapropono-
wano szczegblny nowy sposéb postepowania zwigzany z tym efektem. Praca zawiera
wyniki symulacji optywéw dwu i tréjwymiarowych oraz dyskusje napotkanych trud-
nosci. Podano tez wyniki symulacji ewolucji swobodnych struktur wirowych. Modelo-
wanic takich struktur jest prostsze wobec braku warunku brzegowego.
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