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The problem to find an optimal thickness of a three-layered plate (igno-
ring shears in the middle plate) in a set of bounded Lipschitz continuous
functions is considered. The variable thickness of the exterior layer of the
plate is to be optimized to reach the minimal weight under some con-
straints for maximal stresses. The cost functionals represent: 1) weight
of the three-layered plate, 2) positive distribution (a non-negative Radon
measure). The state problem is represented by a variational inequality
and the design variables influence both the coefficients and the set of ad-
missible functions. The existence of the optimal thickness is proved and
some convergence analysis for an approximate penalized optimal control
problem is presented. We prove the existence of a solution to the weight
minimization problem or minimization the work of interaction forces on
the basis of a general theorem on the control of variational inequalities.
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1. Introduction

Plates and shells are main elements of many advanced structures. One of
the most important characteristics of a construction is its weight, which deter-
mines the consumption of a material needed for production of the construction
as well as some operating features of the latter.

We shall deal with an optimization problem for the unilateral contact be-
tween an elastic three-layered plate and inner obstacle. The model of the three-
layered plate ignores shears in the middle layer. We assume that the homoge-
neous and orthotropic plate occupying the domain §2 x (—[Hg+ e, [Ho +e]) of
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the space R? is loaded by the transversal distributed force O(z,y) perpendi-
cular to the plane XY. The orientation of the load is positive down along the
Z-axis. The plate is supported unilaterally by an inner rigid obstacle (punch).
The role of the control variable is played by the thickness of the exterior layer
(appearing also in the right-hand side). The inner obstacle and the variable
thickness (the exterior layer) imply that the convex set of admissible states de-
pends on the control parameters. The cost functional represents a weight of the
three-layered plate. Here, for the weight minimization problem, we introduce
constraints, which express bounds for some mean values of the intensity of
the stress field. The state problem is modelled by a variational inequality (fo-
urth order elliptic variational inequality), where the control variable influences
both the coefficients of the linear monotone operator and the set of admissi-
ble state functions. On the basis of the general existence theorem for a class
of optimization problems with variational inequalities, we prove the existence
of at least one solution to the weight minimization (is treated via a penalty
method). We deduce a continuous dependence of the deflection on the control
variable (thickness of the plate). Further, introduce the cost functional which
represents a positive distribution on {2 (non-negative Radon measure). This
measure describes the work of interaction forces between the plate and the ob-
stacle. Next, we define a finite element discretization of the penalized optimal
control problem and prove its solvability. Here, any sequence of approximate
solutions, with the mesh size decreasing to zero, contains a subsequence, co-
nverging to the solution of the penalized control problem. From here, taking
into account a sequence of the solutions with the penalization parameter ten-
ding to zero, any limit point is proved to coincide with the solution of the
original weight minimization problem.

2. Basic relations

A three-layered plate consists of two exterior layers, which are made of
a strong material (the so-called carrier layers), and of a comparatively light,
non-strong middle layer (the so-called filler). The latter ensures the joint work
of the exterior layers. Consider the three-layered plate whose middle layer is of
the thickness Hy(z,y) and two exterior layers are of the thickness e(z,y). We
suppose that e is much less than Hy(e < Hy(z,y)) and that the material of
the middle layer is much more flexible than the material of the exterior layers.
In this case, the shearing stresses perceive mainly the middle layer and the
bending stresses perceive mainly the exterior ones.
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Suppose also that, in the transversal direction, the elasticity modulus of
the material of the middle layer is infinitely large. The material of the middle
layer is usually light, so that the mass of the plate is concentrated in the
exterior layers. This is why, in solving optimization problems of three-layered
plates, the control is usually realised via the function e(z,y) determining the
thickness of the carrier layers. In what follows, we assume that the equality:
Hy + e = const determining the parallelism of the midplanes of the carrier
layers holds. The Kirchhoff hypotheses are supposed to be fulfilled for the
three-layered plate as a whole. Then, the strain components €.z, €y, €4y) are
expressed by the formulas

0(z,y,2) _ _ 0%v(z,y)

€a2(2,4,2) or dz?
on(z,y, z %v(z,y
Eyy(wu Y, Z) — n( ay ')' = _z_'a(y2“_)
0&(z,y,2) In(z,y,z) 0%v(x,y)
= + — 9, I Y)
€xy (2,9, 2) Oy Oz ‘ Oz0y

where under Kirchhoff hypothesses, the components &(z,y,z) and n(zx,y, 2)
of the vector of displacements of points of the plate in directions of the X and
Y axes have the form

dv(z,y)

5(3:,3},3) = —Z—FK "?(37:? ,Z) -

__0ov(z,y)
Oz z

dy

where v(z,y) denotes the displacements of points of the midplane along the
Z axis.

\ N\ A W g
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For an orthotropic plate, the stress components oy, 0yy, 04y are determi-
ned by the relations

Um(a:,y,z) - Ellsm(:c,y,z)+E12£yy(:c,y,z)=

0v(z,y) &v(z, y)
= —Euz-—am—2 - Emza—y?-—
C"yy(ma Y,z) = ElZEzm(xsyaz) + E22Eyy($=yvz) = (2'1)
v(z,y) &v(z,y)
= —EQIZ——‘—a-sz— — Ezzzmw
2
O'Ey(-T, Y, Z) = Gewy(x,y,z) = —QGZ%%;%)
where
Ey E,
By = —— Eyp = ———— E1g = Eg = paEyy = p1Ea
T T e 2T 1 e T i
(2.2
Ey, Ey, G, pu1, po being the elasticity characteristics of the material.
Suppose that
E, E,, G are positive numbers
w1 and po are constants, 0< pu; <1, i=1,2
* (2.3)

Hy > const 4 > 0
Hy+ e = constg
where const 4 and const g are positive numbers.

For the bending moments and torque, we have in view of (2.1) the following
relations

Ho/2+e ) ]
M:cx(x: y) - / Zo'm(iﬂ,y;z) dz ~ _a(HD + 6)60'3;_7; (m:yr _E(HO + 8)) +
—(Hg/2+e
(Ho/2+e) (2.4)
1 1 0?v(z,y) 8%v(z,y)
+§(H0 + e)edyy (:1:, Y, §(H0 + e)) = Du(e)—-—af?—-—- R Dlg(e)_gy.z_
where
Eq(Hy + €)? Eyo(Hy + €)%e
Dy (e) = 15 02 ey Dya(e) = 12( 02 i)
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and Ejj, Ei are the elasticity characteristics of the exterior layers for which
(2.2) holds true.
Similarly, we have

(Ho/2)+e 52 (z.7) 52 (z,7)
v(z, v(z,
Myy(z,y) = ] 20yy(z,y,2) dz = D21(e)‘“‘§:‘)372' + D22(e)"_%"2_y-
—(Ho/2+e)
(2.5)
(Ho/2)+e
0%v(z,
Mzy(z,y) = f 202y (2,y, 2) dz %Das(e)—-—Lﬁ
dzdy
—(Ho/2+e)
Here one has
Fo1(Hp + e)2e Eqn(Hp + €)%e
D21(€,) _ 21( g ) — D12(6) D22(e) — 22( 02 8)
(2.6)

D33(e) = G(Ha + 6)26

and FE9;, Fag, G are the elasticity characteristics of the exterior layers.

Let 2 C R? be a bounded domain with the smooth boundary 842 and
let S(r,y) be a smooth function in 2 (closure of £2). C™(f2) is a space
of m-times continuously differentiable real-valued functions for which all the
derivatives up to order m are continuous in §2, supp(v) is closure of the set
{lz,y] € 2: v(z,y) #}, CF(2) = {v € C™(f2), v has a compact support
in 2}, D(2) = CT(£2), vly, is trace of v on 9S2. By the symbol C%1($2),
we denote the set of all functions wu satisfying the Lipschitz conditions in
2 (Ju(z) = uly)| € M|z —y|). V*(£2) is the dual of V(£2) and D*(£2) is
the space of generalized functions (or distributions). We denote the standard
Sobolev function spaces by H¥(£2) = W¥(£2), k = 1,2. In the following Ly (12)
and L (f2) denote the space of Lebesgue-square integrable functions on (2
and the space of essentially bounded functions on {2 with the standard norms
|l - llo) and || - ||z (@), respectively. The inner product in Lg({2) will be
denoted by (,-)r,(2), (- ')D(ﬁ) denotes the duality product between D({2)
and D*({2). The function (,-)y(p) defined on V*(§2) x V(£2), is called the
scalar product of V*(£2) and V(£2).

The following energy space is considered

V()= {'v € H(2):v =0, g—:% =0 on 912 in the sense of traces} = HZ(N)
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(Obviously, for the clamped plate homogeneous kinematic conditions are pre-
scribed) or

ov

V() ={ve HY(Q): v=0, -

= 0 on 0245, in the sense of tra,ces}
V() c H*($2)

where 0824isp = 9 pisplacement -

Here we have 02 = 0§24i5p U 082cont (Where 0f2cont = Of2contact), meas
0824isp > 0, meas Of2cont > 0. The plate at the part 02.on¢ is unilaterally
supported. The transversal displacements (deflections) v belong to the energy
space V(12).

Let us recall some connections between continuous functionals and the
Radon measures. We denote by Ciomp(£2) = Clomppact(§2) the space of all
continuous functions with compact support in 2. A sequence {0, },en, 0, €
Cromp(§2) converges to 0 € Ceomp(£2), if the supports of the functions 6,
belong to a compact subset of {2 and {6,}n,en converges to @ uniformly
on §2. Due to the representation theorem every continuous linear functional
V over Ceomp(£2) can be represented by the integral

V,)Cump(y = [0 V0 € Coom() (2.7)
2

where 1 belongs to the set M(S2) (the set of all measures defined on £2). A
linear continuous functional V on C,omy(2) is said to be positive, if V > 0
for all 0 € Ceomp(92), 8(z,y) > 0. Positive functionals on Ceomyp(§2) possess
an important property: the linear and positive functional V on Ceomp(92) is
continuous and can be represented in form (2.7) with a non-negative measu-
re Ji.

Taking into consideration relations (2.1) to (2.6), we get the following
expression for the strain energy of the orthotropic plate as a functional of

v(z,y), say

1 v\ 2 &% 8%
E(e,v) = 5/{1)11(6)('8—5) +2D12(€)%§§§§ +
2

(2.8)

+Das(e) (g;;f + 2D33(e)(8i2;y)2] ds

The convex function &(e,v) is weakly or Gateaux differentiable on V/(12),
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the corresponding element from D*(£2) will be denoted by grad,E(e,v)
E(e,v+ Xo) — E(e,v)

(grad & (e, v),0)p(pn) = lim

A—0 2
02 0%v 0%v
“Z[a 3 (Dll(e) 5 + Dia(e )8_) + (2.9)
o2 9%v 92 9%v \1..
+377 (Dm(e)—?ﬁ + Diafe ) 5200 (Dsale) 5- By)]o dn

for any o € D(12).
Hence, we introduce the potential operator:

A(e)( = grad,E(e,v)): V(2) - D*(12)

such that
5?2 0% d%v
Ale)v = 92 (Du( )6 3 + Diz(e )6y2) + (2.10)
52 0%v 0%v 0?2 %y
+ 5.2 (Dzz( )8 3 +Diz(e) 55 ) 2520y (Daa(e)axgy)

The thickness e will be sought in the following set of admissible functions

— 0 a
Uad(£2) = {e € C(O)’I(Q) : emin < €(Z,Y) < €max, !5;2" < Ch, Iég < Oy

(o [5¢l <@ [5el <o)}

where CO1(12) denotes the set of Lipschitz functions emin, €max and Ci,
Cy, Cy+, Cy+ are given positive parameters, £, 1 some skew coordinates. Due
to Arzela theorem (Haslinger and Neittaanmaki, 1988), U,q(f2) is a compact
subset of U(£2)(= C(£2)).

The loading of the homogeneous, orthotropic plate (e.g. a concrete plate
reinforced by welded ribs) is given by:

1° The surface forces O(z,y)

2° The body forces (within the plate) w;Hp + 2wqe, where w; (i = 1,2) is
the specific weight of the material. Here, w; are positive constants.

Further, we introduce the functional space: H({2) = W »(£2) with some
p € (2,00). Here, the loading functional (O + wiHpy + 2w.) € H*(£2) and the
function S € C(£2) be given describing a lower unilateral obstacle. Next the
obstacle function S: {2 — R fulfils the condition:
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1
; —H,
(HO) mgleagcQS(T?y) + emax + 5 Ho <0

Let us use the virtual displacement principle to establish a variational
formulation of the problem. To this end we introduce the set

K(e, £2) = {’U eV(2): Fv>2S+e+ %H@} (2.11)
or

K(2)={veV(2): Fv = 0on 2, and v > 0 on 92,y in the sense of traces}
(2.12)
where F is the embedding of V(£2) into Lo (£2), £2, C £2. It is important to
note that K({2) is a cone with the vertex at zero.
According to (2.8) and (2.9), the following bilinear form on V(£2) x V(£2)
corresponds to the strain energy of the orthotropic plate
0%v 02z 0%v 0%z
(1(6, v, Z) = !{Du(e)@é—ﬁ -+ D22(e)é?6_y2 +

0%v 8%z . 8% 8%z v 0%z ] i0
0x? 0y?  Oy? Ox? Ox0y dxdy

where Dji(e), Daz(e), Di12(e) and Dsz(e) are defined by (2.6).
Now, define the mapping A(e) : V(£2) — V*(£2) by the formula

+D1a(e) ( ) +2Ds3(e)

(A(e)v, 2)y (o) = ale,v, z) Vv, z € V() (2.13)

On the basis of the virtual displacement principle, we introduce the follo-

wing state problem:
Given any e € U,q(£2), find u(e) € K(e, §2) such that

(Ale)u(e),v — u(e))v(g) > (O + wiHy + 2wze, Ov — Ou(e))yy gy (2:14)

holds for all v € K(e, 2).

Here, O is the embedding of V(§2) into H({2). Later on, we shall prove
that the variational inequality has a unique solution for any e € U,q(f2).

This is a mathematical model of an elastic orthotropic plate in the state
of a static equilibrium, interacting with the obstacle S(z,y).

On the other hand the linear continuous operator A(e) : V(§2) — D*(£2)
is determined by the formula

(A(e)v, 0)p o) = ale,v,0) g 2 ;Eg; (2.15)
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Then, in view of (2.15) from (2.14) (inserting v = ) it follows that
1([e, v], 22) = A(e)v — (O + wy Hy + 2wse) (2.16)

is a positive distribution on (2, and consequently, a non-negative Radon me-
asure in §2. This measure describes the work of the interaction forces between
the plate and the obstacle.

The weight of the homogeneous, orthotropic (three-layered) plate is deter-
mined by

ng(e) = /(UJ]HO + 2(.026) df?
2

where Ly,g(€) = Lweignt (€).
Moreover, the following constraints will be considered (the Norris strength
criterion)

(A1) Si(e,M(e)) <0 i=1,2,...,N; N; < +00 where

9 1
Si(e, M(e)) = 4meas!2;"f2[ (Ho/2 + e)4 .

.[M:fm(e) + M2, (e) + (:—2)2ng(6)] R — o%

2F C 2 are given subdomains, op, Tp are given positive constants
and M(e) is the vector of the bending moment and torque, derived by
relations (2.4) and (2.5) from solution u(e) of (2.14).

Let us introduce the set of statically admissible control variables

Ni

Gaa($2) = {e € Uaa($2) : 3 [Sie,M(e))]* =0}

=1

where at = max{0,a} denotes the positive part of a.
Here, we assume

Gad(£2) #0 (2.17)
Now, our main task is to solve the Optimal Control Problem (P):

(P) ex = ArgMin Lq4(e)
eegad(n)
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In the following, we remove constraints (Al) by means of a penalty
method. To this end we introduce a penalized cost functional

N;
Lewgle,M(©) = Lugle) + 2 Y [Sile, M@ £>0
i=1

and a penalized optimal control problem

('PE) 85 — Arngn Cg,wg(e: M(e))
e€Uq4(92)

3. Existence of a solution to the optimal control problem

We shall consider a class of abstract optimal control problems and prove
their solvability. Then, we shall apply the general result to our optimal control
problem (P).

Let U(2) be a Banach space of controls, Uyq(§2) is a subset of admissible
controls. We assume that U,4(§2) is compact in U(§2). Let the reflexive Banach
space V({2) be endowed with a norm ||-[|y() and let V*(£2) be its dual with
anorm |[|-|y«(p), the duality pairing between V' (£2) and V*(2) being denoted
by <'v'>V((2)-

Definition 1. We say that a sequence {K,(12)},en of convex subsets of V(£2)
converges to a set K({2), i.e. K(f2) = Jim K, (12) (convergence in the sense

of Mosco) if the following two conditions are satisfied:

1° For any v € K({2) a sequence {vn}nen exists, such that v, € K,(2)
and lim v, =v € V()

2° If v, € K,(£2) and v,, — v weakly in V(§2), then v € K(£2).

Let us consider a system {K(en,2)}nen, en € Uaa($2), of closed convex
subsets, K(en,2) C V(£2) and a family {A(e,)}nen of operators A(e,) :
V(£2) — V*(£2), satisfying the following assumptions:
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1° ﬂ K(e,2) #10
e€Uqq(12)

2° n — e strongly in U(2), e, € Uy(2) = K(e,2) =
lim K(en, 2)
n—o0

(H1) { 3° There exist constants: 0 < ag < M, independent of e € Uyq(£2)
and such that a4ljv — z||%,(g) < (A(e)v — Ale)z,v — 2)v (),
|A(e)v — A(e)z|ly () < Mallv— 2lly )

4° e, — e strongly in U(£2), e, € Uga(2) = Alen)v — A(e)v
strongly in V*(§2) holds for all v € V(£2)

\

Finally, let a functional f € V*(2) and a continuous mapping B : U({2) €
V*(£2) be given.

For any e € Ugy(f2) let us consider the following variational inequality:

Find u(e) € K(e, §2) such that

(A(e)ule),v —ule))v () = (f + Be,v —ule))vn)  YveK(e2) (3.1)

Here, we note that there exists a unique solution u(e) € K(e, §2) for any
e € Uuq(92). In fact, we may employ the general theory of variational inequ-
alities (see Barbu, 1987; Khludnev and Sokolowski, 1997; Lions, 1969; Pana-
giotopoulos, 1985).

Next, let a functional £: U(£2) x V(£2) — R be given such that

en — e strongly in U($2)
en € Uaa(£2) = liminf L(en,vn) = L(e,v) (3.2)
vp, — v weakly in V/(£2)

Let us introduce a functional J : Ugq(£2) — R by the formula J(e) =

L(e,u(e)) is the solution to the state problem (3.1). Here we shall solve the
optimization problem (B)

(B) ex = ArgMin J(e).
e€lUyq(92)

Theorem 1. Let the data of state problem (2.1) satisfy assumptions (H1). Let
en € Ugq(£2), e, — e, strongly in U(S2). Then, one has: u(e,) — u(es)
strongly in V(£2).
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Proof. Let us consider inequality (3.1) for any e,, n = 1,2,.... We take
an arbitrary v, € K(e,, £2) and by (H1)20 there exists a sequence {an}nen €

[T K(en, £2) such that a,, — v, strongly in V(§2). Further, we set v = a, in
nenN
(3.1), adding the term (A(en)an,u(en) — an)y(n) to both sides, we derive the

inequality

Alen)ulen) — Alen)an, u(e,) — ay, <
(A(en)u(en) — Alen)an, u(en) — an)v (o) < (33)

< (f + Ben,u(e,) — an)V(!?} + (A(en)an, an — u(eﬂ-))‘/(ﬂ)
Hence in view of (Hl)so 4o and the continuity of B, we deduce:
llu(en)llv (@) < const for all n.

Thus, there exists a subsequence {u(en,)}ken C {u(en)}nen and element
us € V(§2), such that

u(en, ) — ux weakly in V(£2) (3.4)

Assumption (H1)g0 implies that: u, € K(ex, §2) and we can find a sequence
{0k }ken, such that 6y € K(ex, 2)

O — U strongly in V(2) (3.5)

Here, we consider again inequality (3.1) for e = e,, insert v := 6, and
add the term
(A(en, )0k, ulen,) — Ok)v ()

to both sides. We obtain

limsup(A(en, )u(en,) — A(en, )0k, u(en,) — Ok)v () <

k—o00
< li}rcn sup(A(en, )0k, O — ulen,))v (o) + (3.6)
—00
+limsup(f + Ben,, u(en,) — x)v(n) =0
k—oo

The last inequality follows from weak convergence (3.4) of {u(en,)}ren,
(3.5), the continuity of B and the following assertion

e — e strongly in U(§2) | A(ex)vr — A(e)vly+(2) <
er € Una(2) = < Ma|lvg — ’U“V(Q)-I-
v — v strongly in V(£2) +|[A(ex)v — A(e)v|ly+n) — 0

(3.7)
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which is a consequence of (H1)30 40.
Moreover, due to the uniform monotonicity of A(e,,) (H1)3> and due to
(3.6), we can write

Jim lu(en,) = Okllv(e) =0 (3.8)
—00
Thus, by virtue of (3.8) and (3.5), we arrive at
u(en,) — Us strongly in V(£2) (3.9)
Then, relations (3.7) and (3.9) give
Alen, )ulen,) — Aex)ux strongly in V*(£2) (3.10)

Hence, passing to the limsup on both sides the inequality
k—oo

(A(en, Julen,), ulen,) = Ok)y () < (f + Ben,, u(en,) — Ok)v ()

we arrive at (by virtue of (3.9), (3.10))
(Ales)us, ux —V)y () < (f + Bew, us — v)y (@)

Then, from the uniqueness of u(e.), we deduce uy = u(ey). Hence, the
whole sequence {u(en)}nen converges to u(ey) in V(42).

Theorem 2. Let the data of state problem (2.1) satisfy assumptions (H1).
Let the functional £ satisfy condition (3.2). Then there exists at least
one solution to the optimal control problem (B).

Proof. Since the set Uyq({2) is compact in U(§2), there exists a sequence
{en}nen, such that e, € Uy($2), en — e, strongly in U(£2), e. € Uu($2),
J(en) — infm J(e).

ecUqgd

Then, (3.2) and Theorem 1 imply that

< limi ) n)) = i )
L(es,uley)) lﬂ%%fﬁ(e u(en)) eet}?f(rz)ﬁ(e u(e))

As a consequence, e, is a solution to the problem (B).
We now consider a family of the optimization problems (P, ), which de-

pend on &, > 0. Here we apply a penalty method for the existence of the
optimal solution (P).
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Lemma 1. For any e € U,4(£2) the set K(e, £2) defined in (2.11), is a non-
empty closed and convex subset of V(2) and e, € Uy(R2), e, — €
strongly in U($2) = K(e, £2) = limp—o0 K(ep, £2).

Proof. For any v € K(e, 2) there exists a sequence

{vn}nen, such that : v, € V(12), v, € K(ey, §2) for n (3.11)
3.11

sufficiently great and v, — v strongly in V(§2), as n — o0

Indeed, let us define: 6 = v — (S + e + Hy/2) so that 6 € C(£2), 6> 0 in
2 and

19R=(en—e)—6=en—v+8+%H{)EC(ﬁ)

et

O, = {[w,y] €R: Op(z,y) > §c}

where

1
C= max S(z,y)+ emax + =Hg <0
[z,y]€d2 ( Z}) maxt 9 0

due to assumption (HO).
Next, there exists an open set O C O C 2 such that

O,cO  Vn (3.12)

To see this, we realise that: ¥, = S + e, + Hyp/2 < C on the boundary
d12. Hence, the continuity of ¥,(z,y) and the constraints |Je,/0z| < const

and |de, /0y| < consty imply that | O, € £ and (3.12) follows. Obviously,

n=1
there exists a function N € C°°(12) such that N (z,y) =1 for [z,y] € O and
N(z,y) =0, ON/On =0 for [z,y] € 82, 0 < N(z,y) <1 for [z,y] € £2. Let
us set: v, = v + |len — || ()N Then v, € V(£2) and
v —vnllvie) = lle — enllLw@ Ny =0  asn— oo
On the other hand, we can show that there exists n, > 0 such that

1 —
n>n*=>vn>S+en+~2—Hg in 2= v, €K(en,2) (3.13)

Indeed, let
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1° [z,y] € O. Then, one has

1
'un:v+|]eﬂ—-eHLw(Q)>'v+en—e>8+en+—2—Ho (3.14)

2° Let [z,y] € ﬁ\é Then, we have

1 ~
vn>S+e+-2—Hg+o+len—e|N (3.15)

Taking into account that [z,y] & 0, [z,y] & O, for any n and ¥, < C one
has e, —e—0<C, -CN + (1 -N)o< 0+ |en — e|N.
Hence (inserting into (3.15)), we obtain

1 ~
Un>S+€+§H{)+O

where O = —NC + (1 - N)a.

The function O is continuous and attains a positive minimum in the com-
pact set £2\O : M = O([z.,y«]) = minO > 0. Notice that if N(z.,y.) =0,
2\0

then [z.,y.] € 812 and we have

-~

O([E*,y*]) = 3(.‘13,,,, y*) = _[S(I*a y*) + 6(:3*,’9‘*) + %HO] } -C>0

Next, taking into account: N(z,v.) > 0 then one has O([z,v.]) >
—CN(z4,y) > 0. On the other hand there exists n,(M) such that: n >
n(M) = |len — €|l (2) € M. Hence, then we have: O([z,y]) = O([z«,v:]) >
llen —ell Lo () = en(z,y) —e(z,y), so that: vn(z,y) > S(z,y)+en(z,y)+ Ho/2
for n > ny(M) = v, € K(eqn, £2). This means that condition 1° in Definition 1
is verified. Next, we verify condition 2°. As v, € K(en, §2), e, — e strongly
in U(£2) and v, — v weakly in V(£2), then v, — v and e, — e strongly in
C(12) and the inequality for the limit remains valid.

The form of K(e, §2) follows directly from its definition. Since: S + epax +
H/2 < 0 on {2 and due to assumption (HO), the zero function belongs to
K(e, £2) for any e € Uyq(§2). As a consequence, (H1)io 90 are satisfied.

The subspace R(£2) := {v € V(£2) : (A(e)v,v)y () = 0} is the set of rigid
body motion of the plate.

Let Py (f2) be the subspace of all possible (virtual) rigid body displace-
ments of the middle plane, i.e.

Py(2) = {ve V() (%)ZO, (%"5)2=0, (6izgy)2=o}
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Lemma 2. Let v € H?(2) and (6%v/02%)? = 0, (%*v/8y*)? = 0,
(0%v/0z0y)? = 0. Then Py () = {0}, i.e. Py () reduces to the ze-
ro element.

Proof. The regularization of the displacement v gives an element for which

2, h 2 2, h 2 2, h 2
%z:[az]h:O 81)2=[3'U]h=0 d“v =[8v]h=0
T Ox oy Oy? Oxdy dxdy

(3.16)
holds for every domain f2, such that £2, C (2, provided h is sufficiently
small h < dis(f2,,02). Then, from conditions (3.10) we conclude that v"
is a linear polynomial. Since v"» converges to v in Lo(f2) as h, — 0 and
finite-dimensional subspaces are closed in Ly (£2), conclude that v is a linear
polynomial in every interior subdomain {2, 2, C §2 and, thus, throughout 2.
The homogeneous boundary condition of 9245, yields however v = 0. On the
other hand the definition of R({2), inequality (3.18) and Lemma 2 imply that
R(£2) = {0}.

Lemma 3. The family of the operators {A(e,)}nen, en € Usa(£2), defined
by (2.13), satisfies assumption ((H1)zo 40.

Proof. It is readily seen that

(A(e)v,v)v () > aallvly g (3.17)

for any e € Ugy(£2), for any v € V(§2), with the constant «4, independent of
le,v].

Indeed, due to the Sylvester criterion and assumption (2.3) we deduce the
quadratic form

El 2

E
¢ —;
— K12

2u1 E
+ P2 et & VE,GER

1 — pqpo 1 — pipo

to be positive definite. Hence, we have

o) > 0 [[(Z2) + (20 + (o) |40 Gas)
£

where v € V(£2), e € Uyy(£2), C = const > 0.
Then, by corollary 1.6.1 (Litvinov, 2000) the formula

\} Y+ (Z0Y 4 (22 Y] an

£



CONTROL IN OBSTACLE THREE-LAYERED PLATE PROBLEM 627

defines a norm in V' (§2), which is equivalent to the original one, i.e., to the
norm of H?(§2).
Further, we can write (in view of (2.2) to (2.6))

52('0 — z) O*w

(A0, w)v () — (A©)z W)y ()| = | [ Dis(e)

dz?
82(v — 2) 0w az(v — z) Pw
Onle) =g 5z +P 12(6)(82(0 — z) By?
0% (v — z) O*w 0*(v — 2) O*w
, <

+ 57 Oz 2) + 2D33(e) dzdy E)sc(?y] d‘Q\

92(v — z) 0w (v — z) Puw
< Dut(emas) | | (;mz 222 42+ Daa(em) /] (Uy 2 7| 4+

Q (3.19)
10%(v = 2) 0%w | 0% (v — 2) OPw

+DI2(emax)/(} 72 3,9,2' I oy Ox? ]) a2 +

82 (v—2z Bg’w
+2Dg3(Emax) / ~5e5s 6x8y1 a5

< max[Du (ema.x)a D22(emax)a 2D (emax)s 2D33(emﬂ)mv - Z“V(J’?) “w”V{Q) <

< Clemax + Cax + emad IV — 2lv(@) [wllv (@)

where C' = const. As a consequence, assumption (H1)s0 )is satisfied.
To verify (H1)4e, we write

0%v 9w
|<A(€n,)'U - A(e)'v, w)V(Q)l = ’]{[(Du(cn) Dll(e)]a 2 8
2
0% F*w %y 0*w
+[Da2(en) — D22(e)]5§§6;§ + [Di2(en) — Di2(e)] (@W
82 (92 52 32
a ; Oz 2) +2[D33(en) DSS( )](955‘(;) 33‘83,!} df21 <

("en — €|l po(@) + ez — € llLo (o) + lled - 63”1300(!2)) lvllv ) llwllive)

Then, one has

[ A(en)v — A(e)v|ly(a) <

< C(“en — el + ek — |l L) + lles — 63|JLOQ(Q))“U”V(Q) — 0
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as e, — e strongly in U(£2).
Next, we introduce state variational inequality (2.14) for u(e,) € K(en, §2)

(Alen)ulen),v — ulen)v (o) = (O +wiHo + 2wzen, Ov — Oulen)) 1y

for all v € K(ep, £2).
Consequently, due to Lemma 1, we can write (inserting the sequence
{vn}nen from (3.11) into the above variational inequality for e, € Ugq(2))

(Alen)ulen), vn —ulen))v(n) = (O +wiHo+2wze, Ovp, — 6u(en))H(Q) (3.20)

for n > n,.
Hence, in view of (3.17), we have

aallulen)lV ) < (Alen)ulen), v)v(a) +
+{O + w1 Ho + 2waen, Ovn — ulen)) 3y < C|llulen) lvialvllvia) +
+ (101l () + w1 Ho + 2walle]l () -
(onllviay + llulen)lviey) | < Cllluten) vy +1)
and |[u(en)|lv(e) < C for any n.
This means that there exists u € V(§2) and a subsequence {u(ep,)}ren C
{u(en) }nen, such that

u(en,) = u weakly in V(£2) (3.21)

The functional v — (A(0)v,v)y () is weakly lower semicontinuous on
V(£2) for any 0 € U,q(S2). Consequently

liminf(A(e)u(en, ), u(en,))v @) = (Ale)u, u)v () since e € Uyq(92)

n—o0

Moreover, we have

Alen, )ulen, ), u(en, — (A(e)ulen, ), u(en, <
|(A(en, )uleny), ulen, v (o) — (Ale)ulen, ), ulen, vyl < (3.22)

< C(”em —ellLo() + lle2, — €l + e, — €3|ILW(Q))||U(8M)||%/(Q) — 0

as e,, — e strongly in U(2).
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From the above argument, we conclude that

lim inf(A(enk)u(enk)? u(em;»‘/(ﬂ) = liﬂgf(<ﬂ(e)u(eﬂk)> u(enk)>V(.Q) +

k—o0

+(Aleny Juleny), ulen))v(2) — (Al)uleny ), ulen,)vi(a)) 2 (3.23)
> lim inf (A(e)u(en, ), ulen, ) v(a) > (Ale)u Wy (e
Further, we can write (using the decomposition
(Alen,,)u(en,),0)v (o) — (Ale)u,0)y (o) =
+ | (Alen,Julen,), 8)v () = (Ale)ulen,), Bv(a)| + (Ale) (ulen,) = v), Dy (e
and the weak convergence of {u(en, )}ren)
Jim (Aen, )ulen), 0)v (o) = (Ale)u, O)v(a) vee V()  (3.24)

Taking into account (3.11), we obtain as k — oo

=4

A(en, )ulen,), v — v)vo)] < Cllulen)lviollve = vllvig — 0 (3.25)

Then, due to (3.24) and (3.25), we arrive at

[(A(en, Julen, ), vi)v(e) — (Ale)u, v)v o)l < [{(Alen, Julen, ), vk — %’)V(Qe?l’ _56)

+[{(A(en, Julen,), v)v(e) — (Ale)u, v)v ()| — 0
Furthermore, the weak convergence of {u(en,)}ren and (3.11) yield that

(O + w1 Hy+ 2waey, Ovy, — 6u(enk))H(9) — (O + w1 Hp + 2wae, Ov — 6“>H(Q)
(3.27)
when e,, — e strongly in U({2).
On the other hand, from inequality (3.20), we deduce that

(-A(emﬂ )u(enk)y u(eﬂk)>V(Q) + (O + w1 Hy + 2wae, 61).-'5 - 6%(873,6))7-(([2}( S )
3.28

< (Alen, )u(eﬂk ), 'U>V(9)

Passing here (in (3.28)) to the limit inferior on both sides with k& — oo,
using (3.23), (3.26) and (3.27), we obtain

(A(e)u, u)v(q) + (O + w1 Ho + 2wse, Ov — 515)(9) < (A(e)u, v)v (o)
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Consequently, u satisfies inequality (2.14). Since the solution u(e) to (2.14)
is unique, u = u(e) follows and the whole sequence {u(e,)}nen converges to
u(e) weakly in V' (£2).

Finally, it remains to verify the strong convergence. By virtue of (3.28),
(3.26) and (3.27), we can write

liflznsol.ép(A(en)u(en),u(en))v(g) <

(3.29)
< (Ale)ule), v)v () + (O +wiHo + 2wze, Oule) — Ov)yy )
for any v € K(e, §2).
Hence (we put v := u(e) in (3.29)) due to (3.23), we get
(Ale)u(e), ule))v (o) < liminf(A(en)u(en), ulen))v () <
< lim sup(A(en)ulen), ulen))v (@) < (Ale)ule), ule))v(a)
This means that
Lim (A(en)ulen), ulen))v (o) = (Ale)ule), ule))v (a) (3.30)
Taking into account (3.22) and (3.30), we arrive at
Jim (A(e)u(en), ul(en))v (o) = (Ale)ule), ule))v (o) (3.31)

Further, if V(§2) is equipped with the scalar product (A(e)u(e),v)y (o) =
(u(e),v)a, then (3.31) implies that the associated norms |ju(e,)||4 tend to
|lu(e)|| - Since the norms ||-|[4 and |- ||y () are equivalent, we are led to the
strong convergence

lu(en) — ule)llv() — 0 (3.32)

Lemma 4. Let e, — e strongly in U({2) as n — o0, e, € Uyq($2). Then,
one has
M(e,) — M(e) strongly in [Lg(£2)]*

Proof. We can write

[Mzz(en) — Mzz(e)||Lyo) <

< ||ID11(en) = Dur(e)] ‘92;"5”) + [Dra(en) ~ D12(e)] 82;;2“) I]Lzm)
2u(en 2u(e 2u(en 2u(e
+HD11(B)(8 8:1(22 ) - 6853(2 )) +D12(e)(6 3;2 ) - 869(2 )) La(R2) =

= Sln. + SQn
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Next, in view of (3.32) we have: Sy, — 0, S3,, —» 0 as n — oco. Equally,
we obtain

| Myy(en) — Myy(e)llz,(2) — 0
[Mzy(en) — May(€)l|L,(0) — 0

Lemma 5. Let e, — e strongly in U(§2) as n — 00, e, € Ugq(£2). Then, for
any 1 =1,2,..,N;

[Silens M)t — [Si(e, M(e)]*
Proof. Due to the estimate: |a* — b%| < |a — b, we can write
lisi(en,wenm* — [Sile, M(E)]F] < 1Si(en, M(en)) — Sile, M(e))] <
M2, (en) + My (en) + (2 ) 2 (en)] ~

< measQ* / )(Hoz +e )4[

m*lr—y M)+ 30+ (2)' 2430 a <

<C Q/ ey i oy Mze(en) = Mae(e)] + (M (en) = My (e)] +

+(i—§)2lM3y(en) = Mz, ()} + ([2(H021+ en)]

- e oy M) + M3 (@) + (2) M) a2 <

S C[2(H02 ‘::-‘emin)]q' { /(lMxm‘(en) + me(e)[ |me(en) — sz(e)‘ +

i

+|Myy(en) + Myy(e)| |Myy(en) — Myy(e)] +

( )'Mxy(en)-*-Mxy(e)l | Mgy (€n) — xy(e)|) dQ}

1
” 2(Hoz + en)d [2(H02 T o)t ”.rmm) —0

+C(e)

as n — oo and Hgy = Hy/2, due to Lemma 4.
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Lemma 6. The penalized optimal control problem (7., ) has a solution for
any en > 0.

Proof. Note that the functionals L(e) and [S;(e,M(e))]™ are continuous
in Uyy(£2) and Uyy(f2) is compact in U(f2). Hence, there exists a minimizer

e, of L¢, (e,M(e)).

Theorem 3. Let condition (2.17) be satisfied. Let {e,}nen, € — 07 be a
sequence and {e., }nen a sequence of solutions to the penalized optimal
control problems (P, ), {M(e:, ) }nen the sequence of corresponding mo-
ment fields.

Then, there exists a subsequence {ep, }xen C {€n}nen and an element
e« € Gaq(£2) such that

{ Ceny, 7 Ex strongly in U(£2) (3:33)

M(ee,,, ) — M(ex) strongly in [Lo($2)]*
where e, is the solution to the optimal control problem (P).

Proof. There exists a subsequence {e, }ken C {en}nen (here, Uyq($2)
is compact in U(f2)) such that (3.33); holds with e, € Ugy(£2). In view of
Lemma 4, we obtain (2.32).

Further, the definition yields

wg(esnk) +— Z[‘S (C’snk ) M(esnk))] Lug(e) + — Z[S e,M )]+

En 32 Ene 5
(3.34)
holds for any e € U,q(12).
On the other hand, for an arbitrary element e from G.4(f2), we have

N;
Eﬂk'ﬁwg(GEnk) + Z[Si(esnk ) M(eé'nk NIT < Eng Lug(€)

i=1
Ni
<D [Si(een, M€, )T < engLug(e)

=1

=,

Hence, passing to the limit with &, — 0 and by virtue of Lemma 5, we
arrive at

N;
Z[S@-(e*,M(e*))]"' =0
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This means that the element e, € Goq(£2).
Then, on account of (3.34), we obtain

N;
Lag(Can,) € Luglen,) + = 3 [Silecn, Mleen DI < Lugle)  (335)

Tk =1
for any e € G,q(92).

We deduce from (3.35) the estimate (passing to the limit with ¢, — 0
and we use (3.33))

Lug(ex) < Lug(e) Ve € Gaa(2)

Lemma 7. For a non-empty set G,4({2) there exists at least one solution to
the optimal control problem (P).

Proof. The proof follows immediately from Lemma 5 and Theorem 3.

Cost functional with measures

Consider the following optimal control problem (B): Find ex € Uyy(£2)
such that
J(ex) < J(e) Ve € Uya(92) (3.36)

where

J(e) = u(le, u(e)], £2)
Uaa(2) = {e € Uaa(R2) NH*(2) = |le||g2() < C}

The non-negative Radon measure p in (2 is given by the relation (2.16).
For a given e € U,4(12), the state function u(e) € K(e, £2) is the solution
to variational inequality (2.14).

Lemma 8. The optimization problem (B) has a solution.

Proof. Let {e,}n,en be a minimizing sequence. The sequence is bounded,
and hence one has e,, — e, weakly in H?({2) and uniformly in 2 as k — oo.
By the same arguments as the proof of Theorem 1, the sequence {u(en,)}ken
of the solutions to variational inequality (3.20) is bounded in V(§2). Hence,
we conclude that u(en, ) — u(ex) weakly in V(§2) as k — oo. Moreover, u(e)
is a solution to variational inequality (2.14).

In the following, we show weak-star convergence of the sequence of measu-
res {u([en,,ulen, )], 2)}xen. To this end, it is enough to prove that for every
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compact subset Q C §2 the values p(len,,u(en, )], Q) are bounded uniformly
with respect to k = 1,2,.... For any 0 € C§°({2), 6 =1on Q, 0 = 0 (taking
into account (2.15) and (3.19)), we may write (independent of £ =1,2,...)

pllens s uen, )} Q) < [ @ disens(eny ), 2) =

n

= ([ﬁ(enk)(eﬂk)u(eﬂk) - (O +wi1Hp + 2w2€nk )]: 5)132(9) <C

Hence, we deduce that

#([enk? u(enk )]: Q) = A(enk )U(eﬂk) - (O +wiHo + 2‘-‘4’2871;;) -
— 11([ex, ulen)), 2) = Ale)u(en) — (O + wi Hy + 2woe,)

weakly star.
The measure pu([es,u(es)], §2) is obtained as the limit, since the sequence
{u(en, ) }ken is bounded in V(£2). Thus, we have proved the following

Alen, )u(en,) — (O +wiHy + 2waey,, ) —
— A(e.)u(es) — (O + w1 Hy + 2waey)
weakly in V*(£2).
Therefore, from the weakly star convergence of the sequence
{u(len, ulen,)], £2) bken, we obtain

liminf p((en,  u(en, )], 2) > p(fes, u(e)], 2)
Then, the following relation holds
€ =liminf J(en, ) > J(es) > €

k—o0
where £=inf J(e).
eeUad.('Q)
Consequently, e, is a solution to the problem (B).

4. Approximate optimal control. The numerical solution by the
finite element method

We shall propose approximate solutions to the optimization problem for
an elastic three-layered plate by the finite element method. We restrict ourse-
lves to particular domains, namely we suppose that (2 is parallelogram. We
consider only the convex set given by (2.12).
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Let 7}, denote a uniform partition of §2 into a finite number of small

(open) parallelograms H; by means of two systems of equidistant straight lines
. N __
parallel with the sides of 2. Then, we can write 2= (J H;, HiNnH; =0

for i # j and denote h = diam H;. =

Assume that 7}, is consistent with the partition of the boundary 02 =
082cont U 0f2g;5p 1.e. the number of points 3_!7@-3}.) N 02cont is finite and every
point of this kind coincides with the node of 7. Thus, we can write: 02.ont =
ARl N

i=1 A1), i

We introduce the spaces Qp(H) of bilinear (k = 1) or bicubic (k = 3)
polynomials defined on the parallelogram H. If H is not rectangular, the
spaces Qk(H) are defined via the affine mapping

r=V(y): 1=y +y2cosa, Ty = yosina (4.1)
which maps a rectangle H, onto H. We set
vEQr(H) ©voV =7¢€ Qr(H)

Let X}, be the set of all vertices Ag, 1 < Q < M(h) (nodes of T}) of the
parallelograms. Let V3 (§2) be a finite-dimensional subspace of V({2) defined
by (N(h) is the set of all parallelograms)

Vh(2)={veV(2): v

2, €Qs(Ms), 1<0< N(h))

i.e. Vi(£2) contains those functions which are continuous and continuously
differentiable in {2 and piecewise bicubic in each H;. Then, the set KCp(12) is
defined in the following way
Kn(£2) = {'v eVi(82): 0< v(ﬁﬁ-h), where zgh are nodes of 7, such that
jlg’he {2, or all nodes Eihe 2y — the set of all vertices of the

rectangles H; € Tp,, H; € £2,) and 0 < v(A}), 1 <i < n(h)}
Next, let

Uady () = {e € Uaa($2) : e EQi(Ms), 1<0< N(h)}

n
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Convergence of Ritz approzimations

In what follows, we shall consider any families {7, }nen, hn — 07 of
partitions, which refine the (original) partition 77p,. We say that the family
{T 1, }nen is regular if there exists a positive constant such that

hn

— < C for any H; € | JTh,,
P Y H (4.2)

Shy C Zh, if hy > ho

where p denotes the diameter of the maximal circle contained H;. Now, we can
define the following approximate state problem: given any ej € U,g, (12),
find up(ep) € Kp(£2) such that

{ (A(en)up(en),vn — uh(eh))y(ﬂ) = (O + w1 Hp + 2waey, 5vh - 6uh(eh))H(m

holds VY v, € Kp(£2)
(43)
Finally, let us define the penalized cost functional

N.
1 )
Lewg, = /(leg + 2uwnen) A2 + - > [Si(en,Ma(en)]t =0

Here, the approximate optimal control problem consists in finding a func-
tion eg, g of the approximate optimal control problem such that

N.
1 T
P e, wg = ArgMin { Lyo(en) + = [Si(en, Mp(en))]™
(Per)  ecnug ehwﬂdh(m{ olen) + 2 2 I5i(en, M )IF}

Further, we shall prove solvability of the problem (P, ). To this end we
first establish the following lemmas.

Lemma 9. The set K,(f2) is a closed and convex subset of V}(f2) and
K(2) = Jim Kh, (£2) (convergence in the sense of Glowinski).

Proof. Let {vx, }nenN, v, € Kh,(12) being the sequence such that v, — v
weakly in V(£2) for n — oo. In view of the Dirac function, concentrated
at [z,y] € £2, (since d(z,y) € V*(£2)), we have: vy, (z,y) — v(z,y) for
all [z,y] € £2,. Let us suppose that there exists [z5,y5] € £2, such that
v(z5,95) < 0 and that v < 0 in an interval S C 020, respectively. Here,
v € C(2) (the embedding of H?(§2) is compact). Hence, we conclude that



CONTROL IN OBSTACLE THREE-LAYERED PLATE PROBLEM 637

'U(:Ea,yg.) < 0 holds in some neighbourhood: U([z5,¥5],€) N 24, € > 0, where
U([z5,y5),€) = {[z,y] € Re : p([z,y], [moayon < E}
Furthermore,e > 0 and a subinterval Sy C S exist such that v(x5,Y5) <
—e for all [zs,y5] € So. Now, taking into account that diam(H;) < hn for

any H; € Ty, and h, — 0%. Thus, there exists jlmae 2y, such that jlg'hae
U([zs,y35),€) N 2, for any hy, < hg. Further, vy, (;1,-;16) > 0 for any h, < h;.
Hence, one has: v(ﬁiha) = hlm"é ’Uhn(Am ) 2 0, which is a contradiction to

T

the previous considerations. On the other hand, for sufficiently small h,, there
exists always a node A}, € Sp, A}, € X} and we can write

Vhn (Ain,,) = 0(Adh, | = Vny (An,,) — v(AG,,) 2 —v(A,,) 2

which contradicts to: hhn{l) lvn,, — 'UHc(ﬁ) = 0. Consequently, v > 0 i.e. in

{2, and v > 0 on 8!260,,; in the sense of traces. This means: v € }C(.f 2).

Next, we verify that for any v € K({2) there exists a subset O(£2) dense
in K(£2) and mapping Ry, : O(£2) — V(£2) such that Ry, (O(£2)) C Kp, ()
and Ry, v — v strongly in V(£2) as h, — 0" for all v € K(£2).

Let us assume: v € K(2) N H(2). Now, define the set O(§2) by the
following relation:

(5((2) = {'U cC®(2): v=0, % = 0 on 0f2g;sp and v = 0 on O2cont

in sense of traces and v = 0 on Q*}

Then, the functions vs, € O(£2) exist such that: v, — v strongly in V(§2)
as n — 0o. We introduce a mapping Rp,, by the relation: 0, = Rp, vs, where
O, is the Vj, (§2) — interpolate of vs, over the partition 77, . Then, 6, €
Kh, (£2) holds, since the modal parameters involve all the values wvs, (A}, )

and v, (;hhn). Furthermore, the estimate

IR hnVor — Voo llv(2) < CRE||Vs, || 14 (02)

holds for any regular family {7}, }.
Hence, one has

Oy, — v strongly in V(§2) as n — o (4.4)

which concludes the proof.
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Lemma 10. The approximate problem P(.,) has at least one solution for
any fixed rectangulation 7, and any ¢ — 0.

Proof. For fixed 7}, and for e — ep strongly in U(§2), epn €
Uad[n](Q), n=1,2,..., we can prove (parallelly with Lemma 4) that

Msn)(enfn)) — Malen) strongly in [La(£2)]*

Then, taking into account this relation, we prove that the functions
[Si(enfn), M(eppn))] T are continuous in Uy, (£2) (the proof of analogous Lem-
ma 5). Thus, we have proved the following: the cost functional in (P¢,) is
continuous, as well. Obviously, one has

M(h
-(1) EJ&CRM(M

en € Uaa, (2) & {en(Aqn) }

where A, are the vertices of 7T,. But here the set 7}, is compact in RM(*)

being bounded and closed. Hence the cost functional attains its minimum in
Uad, (£2).

Convergence results

In the following, we will study the convergence of finite element appro-
ximations when the mesh size tends to zero. To this end, we establish the
crucial

Lemma 11. Let ep, € Usa, (92), en, — e strongly in U(82), as h, — 0F.
Then, one has

up, (en,) — ule) strongly in U(£2), as h, — 0%
holds for any regular family of partitions {7, }nen, which refine 7, .
Proof. We deduce that
(Alen)v,v)y(a) 2 C||’U||ff;(9) VoeV(82), ep € Ugg, (R2) (4.5)

Hence, the functional

E(v) = z(Alen)v,v)v(n) — (O + w1 Ho + 2waep, 5’0)7{(9}

(SR

(in view of (3.17)) is quadratic, strictly convex on the space V({2). Further
K1(£2) is convex and closed in V(§2). Consequently, there exists a unique
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solution to the approximate state problem (Pg,). Obviously, K;(2) is a co-
nvex cone with the vertex at the origin. Hence, we can insert v, = 0 and
vy, = 2uy(ep) into (4.3) to obtain

(A(en, Yun, (hn)s tn, (ena)Yv(2) = (O+wiHo+2wsen,, Oun, (en,)) 1y (4:6)
Making use of this equality and estimate (4.5), we deduce that

aallun, (er) I} (o) < (Alen,)un, (€rn)s unn (€nn))v () < Cllun, (en,)llv ()

Hence, we conclude

lun, (er)llvey <C  for hp — 0% (4.7)
Thus, a subsequence {’thnk (ehnk)}ke ~ exists such that
Uhy,, (€hy, ) = Us weakly in V(£2) (4.8)

By virtue of Lemma 9, we have: u, € K(f2). On the other hand, we
substitute: vy, = 0y, into (4.3). Then, one has

(A(€hn, Vthn, (€hn,)s Oni — Un, (€n,))v(02) 2 49)

2 (O + w1 Hp + 2waep,,, Oy, — 5’%% (€hny NH(02)

Notice, that the form (A(e)z,2)y () being positive definite in V(2) for
e € Uy(f2). Hence, the functional G(v) = (A(e)v,v)y (o) is weakly lower
semicontinuous, so that

lim inf (A(€)unp, (Chn, )y Uhn, (€hn, )v(2) 2 (Al€)ux, us)v () (4.10)
Taking into account the relation

l(A(ehnk Vb, (€hny )s Uhn, (€hn, NV (2) = (CA(€)UR,, (Ehpy )5 Uy (€, ))vm)‘ <
< C{Hehnk - e”c(ﬁ) + ||6ink - 32”(;'(5] + ”eink - 33”(;@]] : (4.11)

Y|y, (en, )via) — 0

we deduce that

lim inf (A(en,, Jtth, (€hny )s Uhn, (€hn V() =

— likn[ligf{(.A(e)uh_mc (Ehny ) Uhy, (Ehny NV (2) +

(4.12)
[ (A(hng Vg (€ )y Uhn, (€ Wv(2) =

—(A(€) b, (€ )s Uy (€hn V()| } = (Al)Un, u)y ()
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Next in view of (4.9) and (4.12), we can write
—(A(e)uw, ux)v () 2 11::1 sup(A(en,, JUhn, (€hn, )s —Uhn, (€hn, )V (2) 2

> lim sup{ — (A(en,, Junn, (eh, ), O )vie) + (4.13)

k—oo

+((’) + woHoy + 2&)16},,% , 69;% - 6%;1% (ehnk »H(Q)}
By virtue of (4.7) and (4.8), we obtain (for h,, — 0%)

[(A(ehn, Juhn, (€n, )5 0)v(2) — (Al€)ts, 0)v ()| <
< [(Alen,, Vthn, (€ny, )s0)v () — (Ale)un,, (en,, ), 0)v )| +
+|(A(€)un,, (€rn, ), 0)v(2) — (Al€)ux, 0)v ()| <

8%up,, (en,, ) 8%
< [[|(Priten,) = Du(e) =22 +

2

'U«hnk (Eh ) 520 ‘
dy? dy?
82uhnk (ehnk) 820 ’ +
oxdy  Oxdy

+1(922(6h%) — Daa(e))

+2}(933(6hnk) — Da3(e))

52uhn (en, ) 8% azuhn (en,, ) %0
+’(D12(8hnk) - 912(8))( 5;2 : a2 " 31,2 : 6$2)” as2 +

82[uh (en, ) — u] &%0 O?lup,, (en, ) —us 520
ny, ny, ny, ny,
+\ / [D“(e) a2 52+ D22(e) 312 Dy

*lup,, (en, ) — us) 820  O*[un, (n, ) — ) 820
+Daa(e)( o3 37+ 5 8x2)
8?[un,,, (en,, ) —us] 8%
+2Dsy3(e) i 8; -~ ay] df| <

< CNowllun, (en,)llv(a) llollv(e) + max[Dii(e), Daz(e), Di2(e), Dss(e)] -

1 / uhnk (ehnk u*] 620 + 62[uhnk (ehnk) - u*] 820
Ox? Ox? dy? dy?

&*(un,, (€n,, ) —us] 8%
0zdy Oxdy

)d!2|—+0
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Indeed, here the constant being positive and

N, = max { sup sup |Djj(en, ) — Dij(e)l, i, =1,2,
1,7 x,yEn
(4.14)

sup |Dss(en,, ) — DSS(B)I}
x,yen

Here, we have Dy, Doy, Dy, D33 € C([€min, €max)), then the Schwartz The-
orem (Litvinov, 2000) imply: ¢ — [D;;(t), D33(t)] to be a uniformly continu-
ous mapping of the interval [emin,€max] into R. Hence, by (4.14) (as e,, — e
strongly in U(f2)) we obtain klirrgo N, = 0.

The weak convergence of {up, (en,, )}ken yield that
(A(e)uhn, (nn, )s0)v () — (Ale)ux, 0)v(n) Voe V(2) as hyp, — 0"
(4.15)
Making use of (4.7) and (4.4), we obtain (h,, — 0")

[(A(€hp, JUhn, (€hn, )s Ony — V)v(2) < Clltun,, (en, v lOr, — vlvia) — 0

(4.16)
Further, due to (4.16) and (4.15), we derive
[(A(enn, Junn, (€nn, )y On)v(2) — (Al€)ux, V)v(a)| <
< |(A(ehny, Vi, (€hay ) Ony, — V)v(2)| + (4.17)

+|(A(enn, )b, (€hn, ) VIv(2) — (Ale)ux, V)v ()| — 0
By virtue of (4.4) and (4.8), we may write
(O + w1 Hy, 06, — Oun,, (en, ))0) — (O +wiHy, Ov — Ou.)(g)

Now, taking into account (4.13), (4.17) and (4.8), we arrive at (coming back
to variational inequality (4.9) and passing to limes inferior or limes superior
with h,, — 01)

—(A(e)u*, u*>v(g) > -(A(S)u*, 'U)V{_Q) + <O + leo + woe, 6?) - 6’11,*)7.{(_9]

Thus, u, is a solution to state inequality (2.14) for any v € K(e, {2). Here,
from the uniqueness of u(e) (by virtue of (3.17)), we conclude that u. = u(e)
and the whole sequence {up, (en,)}nen tends to u(e) weakly in V(£2), as
hy, — 0%,
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It remains to prove the strong convergence. Here from (4.6) and (4.8), we
conclude that

Tim (A(en, )uh, (eh, )y tha (eh,)v(2) = (O + w1 Ho + wae, Oule))gy ) =
= (A(e)ule), ule))v (o)
On the other hand by virtue of (4.11), we can write

lim (A(e)un,, (en, ), tn, (€ra))v(2) = (Ale)ule), ule))v(x) (4.18)

Here, the bilinear form (A(e)-,-)v(p) can be taken for a scalar product
in V(§2). Thus, due to (4.18) and the weak convergence of {un, (ep,)}nen, we
deduce that

lim (A(e)[un, (en,) — ule)], un, (en,) — u(e))v o) =0

n—00

which, in turn, implies that: wup,, (ep, ) — u(e) strongly in V' (£2).

Lemma 12. Let {en, }nen, hn — 01 be a sequence of ey, € U,g, (§2) such
that ey, — e strongly in U(£2), as h, — 0%,

Then, one has

M;.,. (en,) — M(e) strongly in [Lo(£2)] (4.19)

Proof. By using the inclusion: Uyg, (§2) C Uu(f?2) and Lemma 4, we
conclude that

IM(ep,,) —M(e)llz, 2y — O
Further, relations (4.2) and Lemma 11 yield

M, (er,,) — M(en,)llzy(2y« — 0
Then, in view of the triangle inequality, we obtain

IMh, (enn) = M(e)ll{z(2))4 < [IMn,,(en,) = M(en, )l iLo () +
+IM(en, ) = M(e)lljzz (s — 0

as h, — 0%.
Lemma 13. We have

ﬁfawg(ehn? Mhn (ehn)) —* Es,wg(ea M(e)) as hﬂ - O+
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Proof. The proof is analogous to that of Lemma 5, being based on
Lemma 12.

Lemma 14. For any e € U,($2) there exists a sequence {op, }nen, An — 0T,
such that op, € Usg, (§2) and op, — e strongly in U(§2), as hyn, — 0%,

Proof. Here, we introduce the parallelogram f2 and use the skew coor-
dinates ([¢,7n]) via mapping (4.1). Let 2 = F(£), 2 = (0,L4a) x (0,Lp),
hy = La/m, hy = Lp/n. Further, denote by H;; the grid points with the
coordinates: & = ihy, 7 = jho, 1,7 =0,1,,....m

O = (i = 1)1, iha] x [(j — 1)ha, jho] Oij = F(OF)
O = [(i=5)n, (i-+ 5] x [( = 5)he: (5 + ) o] N 2
0ij = F(OF

From this, we have: O;; is a neighbourhood of the point F(H;;). Here, we
set

1 0<i<m
mes Oéj e(m,y) di2 0< J <N

on(F(Hiz)) = (4.20)
ij
Next, we interpolate nodal values (4.20) by functions from Ql((—jij). Hence,
we obtain oy € Ugg, (§2). We can write

1 . 4
/ Op dfl = Zmes Oi_;,' E Oh(Hfj)
O" k=1
ij

where ’Hfj are the vertices of the parallelogram (Af)i-j. Introduce the notation:

Si; (denote the union of all parallelograms (Ajij which are adjacent to the node
F(Hi;)), then we have

[onda2= ZZ/oth Ty mesO”Zoh(}'

0 i=1j= 1~ i=] j= 1

n

Z onF () s 1y = 3030 BES0 [ ap [edn

P im0 = 04mes@zJ p
ij
since mesS;; = 4mes 0,5, |J O;; = 2.
1,J
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Further, we introduce the functions o =eo F, 0, = e, o F. Then, we can
transform (4.20) into the formula

1
mes

on(Hy) = —— [ Gddn (4.21)
A

ij

Next, take the system [, 7] as a skew system, parallel with the edges of (2.
From this identification it follows

de 90 de 0o dop, _ 9oy, dop, _ Oop,
o6 ¢ an oy o 0t oy on
for the corresponding points.
Let us extend o onto a rectangle (—hy/2, Ly +h1/2) x (=ha/2, Ly +ha/2),
so that the extension ey = 0 in {29 and eg is symmetric with respect to the
sides, namely

— h? h1
eo(Lz +s,m) = eo(Ls —5,m) Ve (——- Ly+ =) se (o, —-)
and similarly along the other sides of 9f2. Taking that into account, we can

write instead of (4.21)

1<m

_ 1 0<
Oh(Hij) = E—Ez— / eo dédn 0<j<n (4.22)
0

where SPJ- denotes the (complete) rectangle with the center H;; and the lengths

of sides hy, hs.
Further, we have

e - 1
—|on(Hit1,5) — on(Hij)| = —2—| / eo dédn — /60 d€d??| —
hl hlhg K Sn
o 7 (4.23)
- 5] f o€ + hu,1m) = eo(€, )] ded] < 5 —Cemes S5 = Ce

here we use the fact that |deg/0¢| < C¢ holds almost everywhere. It follows
from oy € Ql(O? ) in O%, the derivative 0op/0¢ attains its maximum at the
boundary 85%. Then, in view of (4.23), we get the estimate: |06;,/0¢| < C,

for any [£,n] € £2.
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Moreover, the upper bound C; can be derived in a parallel way. Here we
note that the maximum of 0 in O is attained at some vertex of OO Then, in
view of (4.21), we easily verify that emin < Oh(Z,Y) < emax for any [:1:, yl € 2.
Hence, we have proven that op, € Uy, (12).

Notice, that in order to get a convergence of {op, }nen We consider an
arbitrary point [z,y] € £2 and we can write (for [¢,7) = F~!(z,y) € (3%)

10, (2,9) — e(=,9)| = | 3 (M) w(Er) = 3 (€, m)wi(£,)

k=1

where wy, are the shape functions of Ql((::)%) (here one has wi(H]}) = dgm at
the vertices). Hence, in view of (4.21), we obtain

4

|on,(z,y) — e(z,y)| Z |6n, (HE;) — 0(&,m)|wi (€, m)

4
1
_ Y ,\<\
hlhg /60(81,82) ds1dss o /0(5,1’?) d81d82‘wk(€,??)

0k 0k
Sij Sij

(4.24)

<

NE
=

: / leo(s1, 82) — 0(§,m)| dsidse
2

5

where S’?k denotes the rectangle with the center at H and lnesSO"c (h1h2).
On the other hand, we get

leo(s1,52) = 0(&,m)| = leo(s1,52) — eo(§,m)| <
(4.25)

< leo(s1,52) — eo(§, s2)| + leo(€, s2) — eo(€,m)| < 5 (M C¢ + haCy)

B W

Then, due to (4.25) and (4.24), we have
lon, (z,y) — e(z,y)| € 12hmax(C¢, Cy)
which completes the proof.

Theorem 4. Let {ec, wglnen, hn — 0% be a sequence of solutions to the
approximate optimal control problem (P, ). Then, there exists a sub-
sequence {eghnk Yken C {ee,, tnen and an element e« € Uyg(§2) such
that
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{ €en,, — e strongly in U(§2) (4.26)

Ms,., (eshnk) — M(eg) strongly in [Lo($2)]*
and ec- is the solution to the penalized optimal control problem (P;).

Each uniformly convergent subsequence {ec, }nen tends to the solution
of (P¢), and (4.26)2 holds.

Proof. Here we have: Upyg, (£2) C Uyq(f2) and Uyq(f2) is compact in

U(2)(= C(£2)). Hence, there exists a subsequence of {ec,. Jnen such that
(4.26); holds with e. € Uyg(f2). Then, from Lemma 12, we obtain (4.26)3. In
the following, we prove that e. is a solution to the problem (P.). Consider
any e € Ugy(f2) and apply Lemma 14 to obtain {o,, tken, Oh,, € Uadn,, (2),
such that op, — e strongly in U({2).

Now, the definition (P.) implies that

Ee,wg(ess M(es)) - Es,wg(ea M(B)) (427)

Thus, the clement e, is the solution to the problem (P.) which completes

the proof.
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Dobér parametréw w zagadnieniu tréjwarstwowej plyty z wewnetrzng
podpora

Streszczenie

W pracy zajeto si¢ problemem doboru optymalnej grubosci tréjwarstwowej ptyty
(z pominigciem naprezen stycznych w warstwie srodkowej) w zbiorze ograniczonych,
cigglych funkcji Lipschitza. Zmienna gruboéé warstwy zewnetrznej jest optymalizo-
wana poprzez minimalizacj¢ cigzaru przy pewnych ograniczeniach narzuconych na
maksymalne naprezenia. Zastosowane funkcjonaty kosztu reprezentuja: 1) cigzar trdj-
warstwowej plyty, 2) dodatni rozklad (nieujemna miara Radona). Zagadnienie stanu
opisano nieréwnosciag wariacyjng oraz uwzgledniono wpltyw zmiennych konstrukcyj-
nych na wspdiczynniki i zbiér dopuszezalnych funkeji. Udowodniono istnienie opty-
malnej grubosci warstwy i przedstawiono analize zbieznosci przyblizonego problemu
optymalizacji metoda funkcji kary. Wykazano istnienie rozwigzania przy minimaliza-
cji cigzaru plyty i minimalizacji pracy sil oddzialywania pomiedzy plyta a podpora
na podstawie ogélnego twierdzenia o doborze parametréw w ukladach opisanych nie-
réwnosciami wariacyjnymi.
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