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The aim of this paper is to present the bicriteria optimization model
of a sandwich cylindrical panel under axial compression. The objective
functions are the weight and panel deformability. The deformability is
defined as the panel bending rigidity reciprocal, and it represents some
qualitative measure of the panel deflections. The design variables are the
thicknesses of the layers. The constraints include a stability condition,
stress conditions, the validation of theoretical models, and finally, tech-
nological and constructional requirements. The problem was solved with
the help of Pareto’s concept of optimality, with continuous and discrete
sets of the design variables. Results of numerical calculations are pre-
sented in the form of tables and diagrams. A comparison of the optimal
parameters for the unilayer and the sandwich panels is presented.
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1. Introduction

In recent years thin-walled sandwich-type structures (plates, panels,
shells), due to their advantages, have been applied in a wide range of industrial
branches. The development of the theoretical basis of sandwich structures is
connected with the development of the aircraft and space industry on the one
hand, and civil engineering on the other. The development of new materials,
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significant need for high technologies, and low-weight laminated structures are
very important motivations for intensive research in that field. The progress in
the development of new materials as well as in the technology of their manufac-
turing is very important for distribution of these structures. These premises
show that the further development of sandwich structures will continue to
be in demand. The fundamental distinguishing advantage of multilayer struc-
tures is the beneficial relation of load-carrying capacity to their weight. The
application of more precise techniques for assembling structures eliminates the
influence of so-called geometrical imperfections to some extent. The condition
of stability is the main condition to be regarded in the design of thin-walled
structures.
The advantages of sandwich structures can be better exploited and their

faults can be minimized if the basic geometric and physical parameters are
calculated with the help of multidisciplinary optimization. The multicriteria
optimization procedures allow a designer to model a structure including the
real behaviour of the structure. The multicriteria optimization is nearer to
the technical reality than the traditional scalar optimization both in the sense
of structure modelling and data interpretation. In engineering practice the
multicriteria optimization based on the Pareto-optimality concept is applied
broadly. The best optimal solutions are selected from the set of compromise
Pareto-optimal solutions by means of additional preference functions (Osyczka,
1992).

This paper is a continuation of the research concerning the optimal design
of sandwich structures. In the work by Ostwald (1990) the scalar optimization
of sandwich shells with the weight as the optimization criterion is presented,
whereas the works by Ostwald (1993, 1996) deal with the bicriteria optimiza-
tion of sandwich shells under combined loads. Further, Ostwald (1997) propo-
ses the vector optimization of sandwich plates with a foam plastic core, and
Kasperska and Ostwald (1998) discusses the sandwich plates with a trapezo-
idal core. The scalar optimization of sandwich panels is presented in the work
by Ostwald and Sekulski (1989). The later works by Kasperska and Ostwald
(2000a,b) present the sandwich panels under combined loads with elements of
an expert system.

2. The bicriteria optimization model of a cylindrical panel

This paper presents the bicriteria optimization model of a sandwich cylin-
drical panel under axial compression. An open cylindrical shell is composed



Multicriteria optimization of sandwich cylindrical panels... 373

of two thin carrying layers (faces) made of a material with high strength pro-
perties having different thicknesses h1 and h2 and different elastic properties.
Between the faces the core of the thickness h3, made of a material with re-
latively low strength properties, is stiffly placed. The basic dimensions of the
model and the load are presented in Fig. 1.

Fig. 1. Model of the sandwich cylindrical panel

The following assumptions were made in the panel model. The panel is
thin-walled. The materials of the faces have elastic isotropic properties. It was
assumed that the deformations of the panel are linear and elastic. The core is
incompressible in the direction normal to the middle surface of the shell. The
core has a relatively small rigidity in comparison with the faces (it is so-called
light core). The displacement of any point of the panel is described based on
the Kirchhoff-Love hypothesis of the broken line. The panel edges are simply
supported and they have a membrane joining the individual layers together.
The bicriteria optimization problem, which uses the concept of Pareto’s

optimum, is formulated as follows

Q(x) = [Q1(x), Q2(x)] = (1−W )Q1(x) +WQ2(x)→ minimum

where
x = [h1, h2, h3] – vector of design variables
Q1(x), Q2(x) – optimization criteria
W – weighting coefficient, 0 ¬W ¬ 1.0.

The concept of Pareto’s optimality does not give a single solution, but a
set of Pareto-optimal solutions, also called the nondominated or compromise
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solutions. The graphic models of the scalar optimization (with the single ob-
jective function) and multiobjective optimization are presented in the work
by Ostwald (1996). The best optimal solution must be chosen from the set
of Pareto-optimal solutions with the help of additional criteria. These criteria
are formulated in the form of so-called preference functions (Osyczka, 1992;
Ostwald, 1993).

The multicriteria optimal design of structures requires the formulation of
the optimization criterion set, design variables and the set of constraints. The
most commonly used optimization criterion is the weight of the structure. This
criterion has also some economic meaning. According to the symbols presented
in Figure 1, the first criterion has the following form

Q1(x) = ab(h1γ1 + h2γ2 + h3γ3) [kg] → minimim

where γi is the material density of the ith layer.

The second criterion is the demand of the maximum structural stiffness
in the form of the minimal deformability of the shell. This paper adopted a
simplified model of the procedure, because the relations describing the panel
deflections are not sufficiently reliable. Therefore, the condition of the minimal
structural deformability was formulated by Ostwald (1993). For the cylindrical
panel this criterion is defined as follows

Q2(x) =
1

D(x)
[1/MNm] → minimum

where D(x) – bending shell rigidity (Ostwald, 1993)

D(x) =
Enh1h2(h1 + 2h3 + h2)

2

4(h1 + h2)(1− ν2n)

En = E1 = E2 – Young’s modulus of the faces
νn = ν1 = ν2 – Poisson’s constants of the faces.

Similarly, the optimization criteria for cylindrical shells were established
by Ostwald (1993,1997).

The thicknesses hi (i = 1, 2, 3) of the panel layers are taken as the design
variables. The set of constraints is defined as follows:

1. Permissible critical load must be greater than the axial compressive for-
ce Px

Pcrit per =
P lincrit
αn
­ Px
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The upper critical load P lincrit [MN/m] is calculated as the smallest posi-
tive root of the algebraic equation (Sekulski, 1984)

A1P̃
4
x +A2P̃

3
x +A3P̃

2
x +A4P̃x +A5 = 0

[P̃x] = 1 P lincrit =
B(h1 + h2 + h3)

2

ab
P̃x

B =
3∑

i=1

Bi =
3∑

i=1

Eihi
1− ν2i

where Ai, i = 1, ..., 5 are factors that depend on the physical and geo-
metrical parameters of the panel (Sekulski, 1984).

The factor α = 1.4 (Bushnell, 1987) takes into account the influence of
initial deflections (geometrical imperfections) on the value of the critical
force, and n = 1.25 is a safety factor.

2. Normal stresses in each layer of the panel cannot exceed the permissible
stresses

σxi =
Bi
B

Px
hi
¬ σper i

3. Validation of the critical load equations leads to the assumption (Sekul-
ski, 1984)

R

h1 + h2 + h3
­ 30

4. Considering the technological and constructional requirements, the fol-
lowing conditions are assumed (so-called geometric constraints)

0.1 mm ¬ h1, h2 ¬ 3.0 mm

1 mm ¬ h3 ¬ 50 mm

The set of constraints for the sandwich panel encompasses 10 conditions
simultaneously.

3. Numerical calculations and conclusions

The bicriteria optimization model of the sandwich cylindrical panel pre-
sented above is solved with the help of the PANELA program, which has been
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written in Delphi 4.0 language for Windows 95/98/NT. The program includes
some elements of an expert system. It enables one to choose an optimization
procedure and way of normalization of objective functions, as well as a proper
preference function and control parameters (Kasperska and Ostwald, 2000a,b).
The PANELA program contains four optimization procedures. The first

procedure generates a set of the Pareto-optimal solutions based on a systema-
tic search method, with discrete design variables, which can be in accordance
with the standards (MESP procedure). These solutions have practical signifi-
cation. The second procedure is based on the Hooke-Jeeves method with an
application of a penalty function (HJ procedure). The solutions from this pro-
cedure are exact with the theoretical results (these solutions show which of the
constraints are active). The PANELA program contains also two other discrete
optimization procedures, as simulated annealing (SA procedure) and genetic
algorithm (GA procedure). The best optimization solution is generated from a
set of preferred solutions. This set is a basic guide for the designer and may be
helpful in making the right decisions and selecting the best optimal solution.

The following data were assumed in the numerical calculations:

– the carrying layers are made of aluminium alloy PA6, E1,2 = 7.06 ·10
4MPa,

ν1,2 = 0.3, γ1,2 = 2780 kg/m
3, σper = 0.75 Re = 195MPa,

– the core is made of a foam plastic, E3 = 53MPa, ν1,2 = 0, γ1,2 = 210 kg/m
3

– panel middle surface radius R = 2m

– panel length and width a, b = 0.8m, 1m, 1.25m

– axial compressive force Px = 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0MN/m.

The sizes of the panel were selected for the calculations in such a way, that
the area of the panel ab = 1m2. In the following panels the sizes are:

(a) a = 0.8m b = 1.25m a/b = 0.64

(b) a = 1m b = 1m a/b = 1.00

(c) a = 1.25m b = 0.8m a/b = 1.56

The panel configurations, taken into consideration in this work, are pre-
sented in Figure 2.

According to the technological and constructional requirements, the values
of the design variables h1 and h2 varied from 0.1 to 3.0mm, with the step equal
to 0.1mm. These parameters ought to be in accordance with the standards.
The third design variable, thickness of the core h3, varied from 1 to 50mm,
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Fig. 2. Basic sizes of analysed panels

with the step equal to 1mm. These assumptions mean, that the space of
decision variables contains 45000 vectors x. Some of these vectors do not
satisfy at least one of the constraints, so the set of feasible solutions contains
37571 points. In Figure 3 an image of the set of feasible solutions into the
criteria space R2 is shown.

In Figure 4 a set of the Pareto-optimal solutions is presented – it is a part
of the criteria space from Fig. 3. These solutions were obtained using MESP
procedure. This figure shows the ideal solution, which is determined by the
minimization of every criterion Q(x) separately.

The results of numerical calculations for the panel with a/b = 1.00 and
the compressive force Px = 0.1MN/m are presented in Table 1 (MESP, SA,
GA – discrete models, HJ – a continuous model). The presented results are
the same as in Figure 4.

Table 1. Optimal thicknesses of the sandwich panel according to the dif-
ferent optimization procedures for Px = 0.1MN/m, a = b = 1m

Optimal thickness [mm] Q1 Q2 Active Preferred
No. W Method h1 h2 h3 [kg] [1/MNm] constr. solutions

MESP 0.3 0.3 9.0 3.5580 993.5267
1 0 SA 0.3 0.3 9.0 3.5580 993.5267

GA 0.3 0.3 9.0 3.5580 993.5267
HJ 0.2705 0.2722 9.0818 3.4157 1086.1028 Stability
MESP 0.3 0.3 13.0 4.3980 485.7828

2 0.1 SA 0.3 0.3 12.0 4.1880 567.9828
GA 0.3 0.3 13.0 4.3980 485.7828
HJ 0.2594 0.2594 12.9557 4.1627 569.1466
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MESP 0.3 0.3 17.0 5.2380 287.1132
3 0.2 SA 0.3 0.3 17.0 5.2380 287.1132

GA 0.3 0.3 17.0 5.2380 287.1132
HJ 0.3177 0.3177 15.8674 5.0983 309.8042
MESP 0.4 0.4 18.0 16.0040 190.3580

4 0.3 SA 0.4 0.4 18.0 6.0040 190.3580
GA 0.4 0.4 18.0 6.0040 190.3580
HJ 0.3635 0.3635 18.1563 5.8337 206.7878
MESP 0.4 0.4 21.0 6.6340 140.7276 MM, P2

5 0.4 SA 0.3 0.4 26.0 7.4060 108.2910 MM, P2
GA 0.4 0.4 21.0 6.6340 140.7276 MM, P2
HJ 0.4059 0.4059 20.2768 6.5150 148.4604 MM, P2
MESP 0.5 0.5 22.0 7.4000 101.8431 P1

6 0.5 SA 0.5 0.5 22.0 7.4000 101.8431 P1
GA 0.5 0.5 22.0 7.4000 101.8431 P1
HJ 0.4492 0.4492 22.4399 7.2101 109.5323 P1
MESP 0.5 0.5 26.0 8.2400 73.4184

7 0.6 SA 0.5 0.5 26.0 8.2400 73.4184
GA 0.5 0.5 26.0 8.2400 73.4184
HJ 0.4972 0.4972 24.8339 7.9793 80.8116
MESP 0.6 0.6 28.0 9.2160 52.5271

8 0.7 SA 0.6 0.6 28.0 9.2160 52.5271
GA 0.6 0.6 28.0 9.2160 52.5271
HJ 0.5552 0.5552 27.7342 8.9112 58.0176
MESP 0.6 0.6 33.0 10.2660 38.0572

9 0.8 SA 0.7 0.7 32.0 10.6120 34.4408
GA 0.6 0.6 33.0 10.2660 38.0572
HJ 0.6353 0.6353 31.7348 10.1966 38.7255
MESP 0.8 0.8 40.0 12.8480 19.3578

10 0.9 SA 0.8 0.8 40.0 12.8480 19.3578
GA 0.8 0.8 40.0 12.8480 19.3578
HJ 0.7780 0.7780 38.8671 12.4882 21.0795
MESP 3.0 3.0 50.0 27.1800 3.0591

11 1.0 SA 2.9 3.0 50.0 26.9020 3.1177
GA 3.0 3.0 50.0 27.1800 3.0591
HJ 2.9999 2.9999 49.9999 27.1797 3.0592 h1, h2, h3

Table 1 presents the solutions for the parameter W ∈ [0, 1], obtained by
means of MESP procedure (systematic search method), SA (simulated anne-
aling) and GA (genetic algorithm), and based on the discrete set of the design
variables, which is of practical importance. The lower line presents the results
of the Hooke-Jeeves procedure (HJ) with an interior penalty function, based
on the continuous set of the design variables, which enables the identification
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Fig. 3. The criteria space for the sandwich panel a = b = 1m, Px = 0.1MN/m

Fig. 4. The set of the Pareto-optimal solutions in the objective space for a = b = 1m
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of the active constraints. The average calculation time for one W parameter
is about 6.5 s for MESP, 11 s for SA, 3.5 s for GA and 4.5 s for HJ (processor
Pentium-MMX 166MHz). The last column presents the preferred solutions.
The abbreviation MM means that the preferred optimal solution was obta-
ined by means of the min-max method, P1 – by means of the global criterion
method with the norm p = 1 and P2 – with the norm p = 2.
The following tables present the results of numerical calculations for panels

with different ratios a/b. At first, the scalar optimizations with the weight as
the objective function are presented (Tables 2, 3 and 4 refer respectively to
the a/b ratios).

Table 2. Scalar optimization: a = 0.8m and b = 1.25m (a/b = 0, 64),
W = 0 (weight as the objective function)

Optimal thicknesses
Px [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.3 0.3 9.0 3.5580 993.5267 0.1026 164.98 S
0.2 0.6 0.6 11.0 5.3680 354.2780 0.2037 180.58 S, σ1, σ2
0.3 0.6 1.0 14.0 7.3880 156.9213 0.3110 186.39 S, σ1, σ2
0.4 1.0 1.1 16.0 9.1980 84.6476 0.4007 189.49 S, σ1, σ2
0.5 1.3 1.3 19.0 11.2180 48.1206 0.5058 191.35 S, σ1, σ2
1.0 2.6 2.6 33.0 21.3860 7.8234 1.047 191.48 S, σ1, σ2

Table 3. Scalar optimization: a = 1.0m and b = 1.0m (a/b = 1.00),
W = 0 (weight as the objective function)

Optimal thicknesses
Px [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.3 0.3 9.0 3.5580 993.5267 0.1082 164.98 S
0.2 0.5 0.6 10.0 5.1580 424.6227 0.2015 180.70 S, σ1, σ2
0.3 0.6 1.0 12.0 6.9680 209.7903 0.3146 186.54 S, σ1, σ2
0.4 0.9 1.2 13.0 8.5680 126.9637 0.4156 189.67 S, σ1, σ2
0.5 0.9 1.7 15.0 10.3780 82.4410 0.5222 191.55 S, σ1, σ2
1.0 2.6 2.6 23.0 19.2860 15.1291 1.0051 191.73 S, σ1, σ2
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Table 4. Scalar optimization: a = 1.25m and b = 0.8m (a/b = 1.56),
W = 0 (weight as the objective function)

Optimal thicknesses
Px [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.3 0.3 7.0 3.1380 1612.5000 0.1043 165.35 S
0.2 0.3 0.3 7.0 3.1380 1612.5000 0.1043 165.35 S
0.3 0.6 1.0 9.0 6.3380 357.8931 0.3127 186.78 S, σ1, σ2
0.4 0.9 1.2 10.0 7.9380 205.2616 0.4347 189.86 S, σ1, σ2
0.5 1.2 1.4 10.0 9.3280 156.2226 0.5068 191.80 S, σ1, σ2
1.0 2.6 2.6 23.0 17.1860 41.2919 1.0056 191.98 S, σ1, σ2

The tables below present the results of numerical calculations for the mul-
ticriteria optimization for panels with different ratios a/b (Tables 5, 6 and 7
respectively to a/b ratios). These tables show the preferred solutions based on
the global criterion in most cases.

Table 5. Multicriteria optimization: a = 0.8m and b = 1.25m (a/b =
0.64), (multicriteria preferred solutions)

Optimal thicknesses
Px W [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.40 0.4 0.4 21.0 6.6340 140.7276 0.3085 122.80
0.2 0.50 0.6 0.6 29.0 9.4260 49.0379 0.5458 163.96
0.3 0.50 0.8 0.8 33.0 11.3780 28.2061 0.7043 184.89 σ1, σ2
0.4 0.50 1.0 1.1 36.0 13.3980 17.9261 0.8253 188.27 σ1, σ2
0.5 0.50 1.3 1.3 38.0 15.2080 12.8392 0.9110 190.41 σ1, σ2
1.0 0.50 2.5 2.6 46.0 23.8380 4.2906 1.2839 194.88 σ1, σ2

Table 6. Multicriteria optimization: a = 1.0m and b = 1.0m (a/b = 1.0)
(multicriteria preferred solutions)

Optimal thicknesses
Px W [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.40 0.4 0.4 21.0 6.6340 140.7276 0.3384 122.80
0.2 0.50 0.6 0.6 27.0 9.0060 56.4024 0.5856 164.14
0.3 0.50 0.8 0.8 30.0 10.7480 33.9648 0.8082 185.44 σ1, σ2
0.4 0.50 1.0 1.0 32.0 12.5580 22.5279 0.9593 188.51 σ1, σ2
0.5 0.50 1.3 1.3 33.0 14.1580 16.8552 1.0691 190.65 σ1, σ2
1.0 0.40 2.6 2.6 32.0 21.1760 8.2821 1.2775 191.50 σ1, σ2
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Table 7. Multicriteria optimization: a = 1.25m and b = 0.8m (a/b =
1.56), (multicriteria preferred solutions)

Optimal thicknesses
Px W [mm] Q1 Q2 Pcrit per σ1,2 Active

[MN/m] h1 h2 h3 [kg] [1/MNm] [MN/m] [MPa] constraints

0.1 0.40 0.4 0.4 18.0 6.0040 190.3580 0.2933 123.11
0.2 0.50 0.5 0.6 24.0 8.0980 78.4161 0.5374 179.15 σ1, σ2
0.3 0.50 0.8 0.8 25.0 9.6980 48.4102 0.7594 185.52 σ1, σ2
0.4 0.50 1.0 1.1 27.0 11.5080 31.2750 1.0072 188.82 σ1, σ2
0.5 0.50 1.3 1.3 27.0 12.8980 24.7600 1.1710 190.95 σ1, σ2
1.0 0.50 2.6 2.6 27.0 20.1260 11.3164 1.7357 191.63 σ1, σ2

In Tables 2-7 the values of the permissible critical axial compressive loads
Pcrit per and the normal stresses in the faces σ1,2 are shown. In the last column
the active constraints are presented. The abbreviation S means that the sta-
bility condition is active, the abbreviations σ1 or σ2 mean, that the conditions
connected with the normal stresses in lower (1) or upper (2) faces are active.
In the scalar optimization (Tables 2-4) the stability and stress conditions are
active in most cases. In the multicriteria optimization (Tables 5-7) the stress
conditions are active.

The solutions of the scalar optimization (W = 0, weight as the criterion)
and the preferred solutions for different loads Px for the panel with a/b = 0.64,
a/b = 1.00 and a/b = 1.56 are presented in Fig. 5.

From the comparison of the values with the index Pb/Q1 (load to weight) it
follows that this index achieves higher values for a/b = 0.64 both in the scalar
and vector optimization. A panel with the ratio a/b = 1.56 is characterized
by lower weight and increased deformability in relation to the panel with the
ratio a/b = 0.64 and 1.00.

Figures 6 and 7 present the optimal values of the design variables h1, h2
and h3 for the scalar and multicriteria optimization depending on the load Px
for the panel with different ratios a/b. The change in the face thickness, both in
the scalar (W = 0) and vector optimization, is approximately a linear function
of the load, and this function does not depend on the ratio a/b (Fig. 6). The
change in the core thickness depends on the ratio a/b. The change in the core
thickness h3 is a non-linear function of the load, and this relationship has
different character in the scalar and vector optimization (see Fig. 7).

The condition of structure stability is of decisive importance to the task of
the scalar optimization for W = 0 (weight as the optimization criterion). The
geometrical constraints, which determine the permissible thickness of the panel
layers, are of crucial importance for W = 1 (deformability as the optimization
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Fig. 5. Comparison of the scalar and preferred solutions for the panel with different
ratios a/b

Fig. 6. Change in the face thicknesses for panels with different ratios a/b
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Fig. 7. Change in the core thicknesses for panels with different ratios a/b

criterion). For W = 0.7-0.9 the constraint on the thickness h3 of the core
is activated under higher loads. Under loads Px ­ 0.3MN/m the strength
conditions are active too. In most cases, the optimal parameters of the panel
in the vector optimization are received for W = 0.5. It corresponds to equal
weights of both optimization criteria.

Sandwich structures have many advantages, and hence they are an attrac-
tive option for designers in many practical applications. Among other things,
the relation between the weight and load is better than in other structures. In
Table 8 the optimization results of unilayer panels, made of the same material
as the faces of the sandwich panels, under axial compression are presented. In
the two last columns a comparison between the optimal weight and the opti-
mal deformability is shown. The relationships QU1 /Q

S
1 and Q

U
2 /Q

S
2 show the

superiority of sandwich structures. The results presented here demonstrate
that the use of sandwich panels, in comparison with the use of correspon-
ding unilayer panels, results in considerable weight savings in the scalar and
multicriteria optimization with preferred solutions. In the case of the scalar
optimization with the deformability as the criterion the unilayer panels are
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lighter than the sandwich panels – these results are connected with the acti-
vity of the geometric constraints.

Table 8. Optimal parameters of the unilayer and sandwich cylindrical
panel under axial compression (bicriteria optimization)

Unilayer panel Sandwich panel

P W h QU
1

QU
2

h1 h2 h3 QS
1

QS
2

QU
1

QS
1

QU
2

QS
2

[MN] [mm] [kg] [1/MNm] [mm] [mm] [mm] [kg] [1/MNm]

0 2.8 7.784 19180.8 0.3 0.3 9.0 3.556 993.527 2.189 19.306
0.1 0.5 3.2 8.896 6293.71 0.5 0.5 22.0 7.400 101.843 1.202 61.798
1.0 6.0 16.668 954.779 3.0 3.0 50.0 27.180 3.059 0.613 312.121
0 4.1 11.398 3613.55 0.5 0.6 10.0 5.158 424.623 2.210 8.510

0.2 0.5 4.6 12.788 2118.77 0.6 0.6 27.0 9.006 56.402 1.420 27.566
1.0 6.0 16.668 954.779 3.0 3.0 50.0 27.180 3.059 0.613 312.121
0 5.0 13.900 1693.20 0.6 1.0 12.0 6.968 209.790 1.995 8.071

0.3 0.5 5.4 15.012 1307.71 0.8 0.8 30.0 10.748 33.968 1.397 38.498
1.0 6.0 16.668 954.779 3.0 3.0 50.0 27.180 3.059 0.613 312.121
0 5.7 15.846 1113.95 0.9 1.2 13.0 8.568 126.964 1.849 8.774

0.4 0.5 5.8 16.124 1056.99 1.0 1.1 32.0 12.558 22.528 1.284 46.919
1.0 6.0 16.668 954.779 3.0 3.0 50.0 27.180 3.059 0.613 312.121

Figure 8 shows the optimal thicknesses of the faces for the unilayer and
sandwich panels subject to different axial compressions Px. Figure 9 shows the
weight of the unilayer and sandwich panels. Parameter W = 0 refers to the
scalar optimization with the weight as the objective function, and W = 0.5
refers to the multicriteria preferred solutions.

The presented results of numerical calculations lead to the following conc-
lusions:

• The stability constraint has the decisive meaning in the scalar optimiza-
tion with the weight as the objective function.

• The geometric constraints have significant influence on the optimal thick-
nesses of layers.

• The condition h3 = 50mm is active for W = 0.7-0.9, for superior Px.

• For the axial compression Px ­ 0.3MN/m the strength constraints con-
nected with the normal stresses are active.

• The optimal parameters of the sandwich panels were received for W =
0.5 in most cases. It means that both criteria have the same importance.

• The relationship Pb/Q1 is the greatest for a/b = 0.64 (for the scalar and
multicriteria optimization). The panels with a/b = 1.56 weigh less and
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Fig. 8. Thicknesses of the faces for unilayer and sandwich panels

Fig. 9. Weight of unilayer and sandwich panels under axial compression
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have greater deformability than the panels with a/b = 0.64 and 1.00.

• The thickness of the faces h1 and h2, for the scalar and multicriteria
optimization, is approximately a linear function of the compressive load
and does not depend on the ratio a/b.

• The thickness of the core h3 depends on the ratio a/b and is a nonlinear
function of the compressive load. This relationship is different for the
scalar and multicriteria optimization.

This work was supported by the Poznań University of Technology, Institute of

Applied Mechanics under Grant PB 21-885/99 ”Multicriteria optimization of shell-

type structures”.
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Wielokryterialna optymalizacja trójwarstwowej paneli walcowej przy

osiowym ściskaniu

Streszczenie

W pracy sformułowano model dwukryterialnej optymalizacji cienkościennej trój-
warstwowej paneli walcowej obciążonej osiowymi siłami ściskającymi. Kryteriami
optymalizacyjnymi są masa paneli i jej podatność na odkształcenia. Podatność paneli,
zdefiniowana jako odwrotność sztywności na zginanie, jest jakościową miarą odkształ-
calności konstrukcji. Zmiennymi decyzyjnymi są grubości warstw paneli. Warunkami
ograniczającymi są warunek stateczności, warunki wytrzymałościowe, warunek waż-
ności stosowanych modeli teoretycznych oraz warunki technologiczno-konstrukcyjne.
Zadanie rozwiązano w oparciu o koncepcję optimum Pareto, uwzględniając dyskretne
i ciągłe zbiory zmiennych decyzyjnych. Wyniki obliczeń numerycznych przedstawio-
ne są w postaci tabel i wykresów. Porównano optymalne parametry paneli jedno-
i trójwarstwowych.
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