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The paper deals with modelling of thermodiffusion processes in periodi-
cally layered elastic composites. The study is based on the homogenized
procedure with microlocal parameters and on the relations of the li-
near coupled theory of diffusion in thermoelastic homogeneous bodies.
A useful homogenized model with microlocal parameters accounting for
certain local effects of heat and diffusion fluxes, as well as stresses is deri-
ved. The equations of the homogenized model are given in terms of unk-
nown macroconcentration, macrotemperature and macrodisplacements
and extra unknowns called the microlocal parameters. An illustrating
example of the application of the presented model is solved.
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1. Introduction

The diffusion processes in deformable non-porous solids play an impor-
tant role in many technological applications (for instance: in semi-conductor
manufacturing (doping), isolation of radioactive and chemical wastes). Two

important factors distinguish the transport in thermoelastic bodies from the
classical diffusion:
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e coupling between the substance concentration and the deformation of
solids,

e coupling between the concentration and the temperature distribution in
the bodies.

The penetration of diffused substance is dependent on the state of strain
and temperature as well as the diffused substance in solids can lead to strains
and stresses. The problems of interactions between thermodiffusion proces-
ses and deformations in homogeneous bodies were considered in many papers
(see for instance Pidstrygach, 1961; Pidstrygach and Shevthyk, 1969; Nowacki,
1971, 1974; Kubik, 1986; Plavséi¢ and Naerlovic-Veljhovic, 1975, and the mo-
nograph by Nowacki and Olesiak, 1991).

The nonhomogeneous bodies with periodically layered structures can be
made by man (layered composites) as well as can be found in nature (varved
clays, sandstone-slote, sandstone-shale, thin-layered limestone). The problems
of modelling of thermomechanical processes in periodically stratified compo-
sites are very important in many branches of engineering, geotechnical and
geophysical investigations. The thermoelasticity of the composite materials
have been given wide attention (see, for example monographs Christensen,
1980; Jones, 1975; Achenbach, 1975; Bakhalov and Panasenko, 1984; Bensons-
san at al., 1978; Guz et al., 1982; Tsai and Hahn, 1980; Sanchez-Palenica,
1980; Pobedria, 1984; Vanin, 1985; Broutman and Krock, 1973-76; WoZniak
and WozZniak, 1995, and references therein). A variety of exact, approximate
and purely numerical methods are available for the solutions of boundary va-
lue problems of laminated bodies. However, in the case of composites with a
large number of repeated layers, it seems to be suitable to use the homogenized
models. One of them is the homogenized model with microlocal parameters
given in papers by Wozniak (1987); Matysiak and Wozniak (1988) for elastic
and thermoelastic composites. These models have been derived by using the
concepts of the nonstandard analysis combined with some postulated a priort,
heuristic physical assumptions. The governing equations of the homogenized
models are expressed in terms of unknown macrodeformations, macrotempera-
tures and certain extra unknowns called microlocal parameters. The microlocal
parameters make it possible to evaluate not only the mean but also local values
of deformation and temperature gradients, stresses and heat fluxes in every
material component of the composite.

In this paper the problem of modelling of thermodiffusion in elastic perio-
dically layered composites is investigated. The considerations are based on the
linear theory of thermodiffusion for elastic homogeneous bodies and the homo-
genization procedure with microlocal parameters presented in Wozniak (1987);
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Matysiak and Wozniak (1988) for linear and nonlinear thermoelastic periodic
composites. The derived homogenized model is given in terms of unknown
macroconcentration, macrotemperature and macrodisplacements, as well as
certain extra unknowns called the microlocal parameters. The macroconcen-
tration, macrotemperature and macrodisplacements represent the averaging
values of the concentration, temperature and displacements in the layered
composite. The microlocal parameters (diffusional, thermal and kinematical)
are related with the periodic structure of the body. The bodies under conside-
ration are assumed to be composed of periodically repeated (n + 1) different
homogeneous isotropic thermoelastic layers. The perfect contact between the
layers being components of the composite is assumed.

Section 2 contains equations of the linear theory of thermodiffusion in
elastic solids. The weak form of equations of this theory is also presented.

In Sections 3 equations of the homogenized model is derived by using the
homogenization procedure with microlocal parameters. The case of periodic
two-layered composites is also discussed. In this case the microlocal parameters
are eliminated from the equations of homogenized model. So, the homogeni-
zed model is expressed in terms of macroconcentration, macrotemperature and
macrodisplacements. Section 4 contains some illustrating example of the obta-
ined homogenized model. In Section 5 some resuming remarks are presented.

2. Basic equations

Consider a thermoelastic nonhomogeneous body, which in a natural (unde-
formed) configuration is composed of periodically repeated, (n + 1) different
isotropic homogeneous layers, see Fig.1. Let the body occupy a regular re-
gion B in the Euclidean 3-space referred to a fixed Cartesian coordinate system
z = (z1,%9,73). Let the axis z3 be normal to the layering. Let hy,..., hni1
denote the thickness of layers and h = hy + ... + hyy1 denote the thickness of
each basic, repeated unit of the body. Let A", u() 7 =1 ... n+1 denote
the Lamé constants, D{" denote the diffusion coefficients, x{") and ’y,ET)
denote the coupling coefficients of diffusion and stresses, k(") denote the coef-

ficients of thermal diffusivities, ,},g ) and k,(;) denote the coupling coefficients
of temperature and stresses, A") and kg) denote the coupling coefficients
of diffusion and temperature. Let ¢ denote time, u(z,t) = (uy,us,us)(z,1)
denote the displacements vector, crg), r=1,..,n+1,1,7 =1,2,3, denote the
components of stress tensor, ngr) denote the components of diffusion fluxes, in
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the rth layer of the fundamental repeated lamina (next called the rth layer).
Moreover, let ¢ = c(z,t) be the concentration of the diffusing substance,
¢ = O(z,t) be the temperature as well as X;; 1 = 1,2,3, denote the com-
ponents of body forces, ¢ and W} denote the internal diffusive and thermal
sources. The layers being the components of composite are isotropic, homoge-
neous and thermoelastic. The restriction connected with isotropic components
of composites can be easily omitted. However, the experimental methods for
determination of all material constants of the theory of thermodiffusion for
elastic bodies in the case of anisotropy is not known; we confine our attention
to isotropic components of the composites. So, the generalized Fick, Fourier
and Hooke’s laws for the rth layer, r = 1,...,n+1, take the following form (cf.
Pidstrygach and Shevthyk, 1969; Nowacki, 1971, 1974; Nowacki and Olesiak,
1991; Olesiak and Pyryev, 1995)

T}gr) = —D(r)c,i - ﬁ(r)a,;‘ + X(r)TLk,ki
(r) _ _&d(f')c;i — A(T')g‘i + F(r)uk,ki (2.1)

where .
1 for i=3j
0ij = { 0 for i+ Eij = 5(’“’1,} +uj,i) (2.2)

and d™, '™ AW r =1, .. n+1, are constants.
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The system of equations governing the processes of thermodiffusion in de-
formable, elastic rth layer takes the following form (cf. Olesiak and Pyryev
(1995))"

— generalized Navier equations
1w g+ (AT 4 pyug i+ p DX = pDiiy + 7085 + 4Dy (2.3)
— a generalized equation of thermal conductivity
K16 5+ ke — kD — 6 = —W, (2.4)
— a generalized equation of thermodiffusion
DWei — XMy + B0 —é = -0 (2.5)

Remark. The assumption of perfect bounding, perfect thermal and diffusio-
nal contact between the layers implies the continuity of the displacement
vector, temperature, concentration, stress vector, heat and diffusion flu-
xes on the interfaces (planes between layers).

Equations (2.3)-(2.5) with (2.1) can be written in the following weak
integral form

n=1
> / [0 i = pO(X; = isyos] dB =0

T=].BT

n=1
3 f (k(r)ﬂ,iw,i — kN év — kD i + v — ng) dB=0 (2.6)

r:IB,.

n=1
Z /(D(")c,is,@ - x(r)u@,gjs,j + 808 5 ; + és - crs) dB =10
T:lBr

for all test functions v;(-), v(-), s(-), such that v;(-)|ap =0, v(-)|ap =0,
s(-)|lap = 0, and where B,,r =1,...,n+1, denotes the part of the region
occupied by the rth material.

Since the body is assumed to be periodic, the material coefficients are h-
periodic functions taking constant values in the subsequent layers of the body.

IThe summation convention holds with respect to all repeated indices and

fi=0f/0x;, f =0f/0t
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3. Homogenized model with microlocal parameters

The analysis of thermodiffusion processes in periodically layered elastic
composites can be derived by using equations (2.3)-(2.5) and (2.1) with ade-
quate initial and boundary conditions. In the cases of sufficiently large number
of repeated layers being the components of the nonhomogeneous bodies, the
number of boundary conditions on interfaces is also large and then it seems to
be more suitable homogenized models. To obtain a homogenized model of the
thermodiffusion processes in periodically layered elastic composites described
in Section 2, the microlocal modelling approach will be applied. This method
is based on concepts of the nonstandard analysis and some postulated a priors
physical assumptions, and it has been presented in Wozniak (1987); Matysiak
and Wozniak (1988) for periodic thermoelastic composites. Making appeal to
the microlocal modelling method, we shall derive a homogenized model of
thermodiffusion processes in periodically layered elastic bodies omitting the
presentation of mathematical assumptions and detailed calculations.

By analogy to the results of papers by Wozniak (1987); Matysiak and Woz-
niak (1988), the components of displacement vector wu;(-), the concentration
¢(-) and the temperature 6(-) are assumed in the form (¢ =1,...,n,7=1,2,3)

ui(z,t) = Uy(z,1) + folz3)Wia(z,1)
c(z,t) = Clz,t) + fo(z3)Ga(z,t) (3.1)
O(z,t)=T(z,t)+ fo(z3)Qu(z, 1)

where fu,(-): R — R, a = 1,...,n are know a priori h-periodic functions,
called the shape functions (cf. Wozniak, 1987) given by

T3 — 15(1 for 0< 23 <4,
@ :Bs - 1
e R < z3 <
5. —h 25“ for 6, <z3<h
fa(z3 + h) = fo(z3) z3€ R (3.2)
6ﬂzhl+u-+h{1 (L:].,...,’n

h = hl +"'+h‘ﬂ.+l

The functions U;, C, T are unknown functions interpreted as the components
of macrodisplacement, macroconcentraction and macrotemperature. The ad-
ditional unknown functions W;,, G, QQ, stand for the microlocal parameters
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for displacements concentration and temperature and they are related with
microperiodic structure of the body.

Since |fq(z3)| < h for every z3 € R, then for small h the underlined terms
in equations (3.1) are small and will be neglected. However, the derivatives
fo(-), a = 1,...,n are not small and the terms involving f, cannot be neglected.
It leads to the following approximations

Uio = Ujq o~ Cq Oo~T, a=1,2

uip & Uy et~ Cy 0 ~T, (3.3)
ui3 = Uiz + foWia ca~C3+ f,Gg

05~Ts+ fiQa a=1,..,n

Assuming that the test functions v;, v take the form
vi(@,t) = Vi(z,t) + fo(23) Zia(2, 1)
v(z,t) = V(z,t) + fo(zs) Zo (2, t) (3.4)
s(z,t) = S(z,t) + folzs)Py(z,t)

and substituting (3.1), (3.3) and (3.4) into equations (2.1), (2.2) and (2.6),

after some calculations similar to those given by Wozniak (1987), we arrive at
the following system of equations

(Ui + A+ w)Ujgi + (Bfai) Wagg + (B fai)Wairg + (Ma,j)Waji —

~{7)Ci = ()T + (p) Xi — (p)U; = 0

(D)Cii — (D f4i)Gai = C + 0 — {x)Uk gii — (3.5)
—{Xfak)War,ii + (B)Tsi + (Bfa,i)Qasi = 0

(k)T i + (kfa,i)Qayi + (ke)C — (ke)Uss =T + Wy =0

and

- [(#fb,j)(Uz',j + Uji) + (A fo,i) Uk k| + (7 fo,0)C + (yr fo,) T =
= (fa,jfo i) Wai + (A + 1) fa,5 fo,i) Waj

(Dfaifsi)Ga~+ (Bfaifoi)Qa — (Xfa,ifbj)Waiyj = (3.6)
= —(Dfp3)Ci + (xfo,i)Viij — (Bfoi) T

(kfafoi)Qa = —{kfoa)Ti + (kfo:) Ui
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where the symbol () denotes

b

0=7 [ / (23) das (3.7)

0

for any h-periodic integrable function g(-).

Using the formulae (3.7) and (3.2) for an arbitrary h-periodic function
g(-) taking a constant value for g; in a layer of the ith kind, 1 =1,...,n+1,
we obtain

n+1 3
= Egrﬂ'r (gfa,,6> =0 L
Q.fa.‘l Zgrnr — Oy Z qr My
r—a—i—l J
n+1
(9fa,3f0,3) Zgrﬂr - Z grilr + ot Z grr f<a
r=b+1 r=a+1
(9faafop) = 0 (9fa3fap) =0 o, =12
(3.8)
where
hr M+ -+
= - Qg = ea=1,...,n 3.9
"= 1= (1 + . + 70) (3-9)

Employing equations (3.8), all material moduli in equations (3.5) and (3.6)
can be calculated by substituting for function g¢(-) the h-periodic functions
As By P5 YT Yes Ky key key D, X B.

Equations (3.5) and (3.6) constitute the governing equations of the ho-
mogenized model of thermodiffusion in periodically stratified elastic bodies.
Equations (3.6) stand for a system of 5n linear algebraic equations for the
microlocal parameters Wy, Qqu, Go, ¢ = 1,...,n, j = 1,2, 3. Solving equations
(3.6) the microlocal parameters can be determined by macrodisplacements Uj,
macroconcentration ', and macrotemperature 7°. Thus, the microlocal pa-
rameters can be eliminated from equations (3.5). It will lead to reduction of
the homogenized model to the system of 5 linear partial differential equations
with constant coefficients for macrodisplacements ¢ = 1,2, 3, macroconcentra-
tion C and macrotemperature 7. These equations should be supplemented by
appropriate constitutive relations expressed in terms of macrodisplacements,
macroconcentration and macrotemperature, as well as by appropriate boun-
dary and initial conditions similar to those of the linear thermodiffusoelasticity
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for homogeneous body. Substituting equations (3.1) with (3.2) and (3.3) into

(2.1) and using (2.2), the constitutive relations describing the diffusion fluxes

ngr), the head fluxes qm, and the stresses o7 i, =1,23r=1..,n+1

i ij
in a layer of rth kind can be written in the form

) = -DC , — BOT, + X (U ko + faWas,a)

) = —DICg + F1Ga) — B (T3 + F1Qa) + X (U ks + faWaz 3)

¢ = AT, —dC 4 + I (Uppo + faWaz,a)

¢S = — ATy + £1Qa) = d7(C3 + fuGa) + I (Ui gs + foWas3) (3.10)
o) = W Uap + Upa) + AN Wii + A0 fiWas = 10T = 7 C)bup

afl}? = MUz + fiWas + Usa)

0% = 2 (Us s + fiWa3) + XD Ui + fiW3) — 70 T — /DO

a,f=1,2 1=1,2,3 r=1,.,n+1 ea=1,..,m

4. Thermodiffusion in microperiodic in two-layered elastic bodies

In the case of microperiodic two-layered elastic bodies, the number of equ-
ations of the homogenized model obtained in Section 3 will be reduced. Assu-
ming that n = 1, the set of shape functions given by (3.2) is reduced to one
function

1

w3—§h1 for 0<z3<h
fi(zs) = _ 1 b
(e z3 — —hy + ! for hy <zz3<h
L—=m 2 L—m
where
hy
= — 4.1
m ;L (4.1)
By using the relation
ha
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and equations (3.8) and (3.9), we obtain

@=gm+gm=ma+1-m)gp=g

(9f1,3) = g1m — _7317}192??2 =m(g — g2) = [¢] (4.2)

1

2 2
2y _ . mo_ -
(9(f1,3)) = g1m + A= 292 = me +t1o 92 =9

By using (4.2), equations (3.5) and (3.6) for the case of two-layered periodic
bodies take the following form

U5 + X+ i)Ujgi + [pIWaj50is + [m]Whi j053 + [NWai ;053 —
—¥Ci —vrTi+ pX; — pU; = 0
(4.3)

DC; + [D]G13 = C + 0 — XUk ki — DXIWhz,is + BT + [B]Qu3 = 0
kT + [k]Qu3 + keC — kUi — T + Wo =0
and
Wi + (O + B)Wisbis = “{[{#]I(Uz‘,Zi + Us i) + [MUg,k0i3 +
(DO + bl T)is |

(4.4)
DGy + BQ1 — XxWizs = —[D]Cs + [x]Uis — [B]T3
kQy = —[k]T + [K]U 3
Solving equation (4.4) we obtain
Wi = _l"l;_]](Ul,S + Us,1) Wi = -E%H(Uzs + Us2)
Al +2 A
Wiy = g+ Eu]] U — _ ]IAUk,k N AH%BAC N A[[’YT]]AT
A+2p A+ 2 A+ 2p A2 (45)

_ [[k]lT [[k]l
Q=g et
B X [D] Ix1 B
G, =-= = - = 3,13 T &
1 DQ+DW13 DCS+DU,3 DUs

Substituting equations (4.5) into (4.3) we can obtain 5 partial differential
equations with constant coefficients for unknowns U;, C and T'.
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5. Example

Consider a stationary problem of thermodiffusion in a microperiodic two-
layered elastic layer resting on the rigid impermeable foundation. Let the upper
plane of the stratified body be subjected to constant temperature 6y, constant
concentration Cp and be free of loadings. The lower plane of the body is assu-
med to be fixed to the rigid impermeable thermal and diffusional foundation.
The considered problem is dependent on the variable z3 only, and it is deter-
mined by nonzero functions Us, Wis, C, G1, T and Q. We assume that no
internal heat and diffusive sources exist.

By using the assumptions presented above, equations (4.3) and (4.4) may
be written in the following form

A+ 21)Us 33 + ([A] + 2[p])Wis3 —¥.C3 —4rT3 =0
DC 33 + [D]G1 3 - XUz 333 — [x]W1333 + ET,SS + [A]@Q13 =0 (5.1)
kT35 + [k] Q13 =0

and
k
Wi=Wi=0 Q1 = —[[«E—]]T,s
Wy = -2y o b o) bl (5.2)
A+2p X+20 A+2pn
Gy =a1Usas + asC3+ a3l
where
2 [A] +2 S [y,
H a (5.3)
T
Bl X bl 12

Using equations

(5.2) we can eliminate microlocal parameters Wis3, G1, Q1
from equations (5.1).

It leads to the system of equations

AUz 33+ AsC3+ A3T3 =10 T33=0 (5.4)
5.4

B1Us 333 + BoC 33 + B3T 33 = 0
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where
~ 2
Ay 5 D1+ 20D gy = AW +20D)
A+24 A+2pn
Al +2 - . Al +2
P (. e (L E=10)
A+ 2 A+ 2
- . ~ k
T N N S PR L [C
A+ 2p A+ 24
(5.5)
The general solution of equation (5.4) takes the form
C(z3) = a1z3 + a9 T(z3) = aszs + a4
(5.6)
1
Ul(zs) = ~2~a5$§ + agz3 -}—_ ay
where ]
a) = —A—(Ala,s + A30,3) (57)
2

and ag,...,a7 are constants which should be determined from the boundary
conditions.

By using equations (3.10) and the assumptions taken in this section, the
constitutive relations can be reduced to the following form

ny) =0 a§) =0 o] =0

??;E,r) = -D(C3+ fiG1) — BT+ F1Q1) + X (Us 33 + fiWia.3)

¢ = —AC(Ty + f{Q1) — dT(C + f{G1) + T (Us g3 + f{Wiss)

o) = [NOWss + [ Wis) = AT = 10C) g 58)
o) = (A" 4+ 25D (Us 3 + fiW13) — WIT - 4O

From equation (3.2) it follows that

1 for r=1

- _ 5.9

S n for r=2 (5.9)
m —1

By using equations (5.8), (5.9) and (5.2) it can be shown that the components

n;(,r), qgr), 0'5:3) , O‘:g;) are continuous on interfaces (they are not dependent on r;
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r = 1,2). For example, since

(A“)+2#(1))( [[AH‘FZ[[#E) ,\(2)+2,u(2))(1+ m [[)\]1'*“2[[#]1)
A+ 20 L—m X+21
1 1 2 2

o -~ c —~ - c

A+ 20 I-=m X+24

A 49,0 A®) 49,

S T T T L I

A+ 2 L=m X+24

the components of stress tensor aég);

05(33) = e1Uz 33 + €2C + e3T

7 = 1,2, are expressed in the form

(5.11)

The problem considered in this section is determined by the following boun-

dary conditions
0(z3 = nh) = by

c(zz = nh) =
dc

6:339( 0)=0

o33(z3 = nh) =

o6

613 (‘1:3 - 0) = 0 (512)
U3(:I;‘3 = 0) =0

where 0y is the given constant temperature, cp is the given constant con-

centration and

n is a sufficiently large natural number. By using the general

solution (5.6), boundary conditions (5.12) and equations (5.11), (5.7) and (5.8),

we obtain
1
C(z3) = ¢ T(z3) = by Uizs) = ~e—(egco + e36p)z3
1 (a) = 0 4" (23) =0 043 (@3) = 033 (23) = 017 (23) = 0
oD = o) = gDy + dDo, o = o = 4 + dD8,
(5.13)
where
4D — X0 (ﬂ)\]] +2[u] 1) e A ] - W)
A+ 20 e A+ 25
9 (1)
dD = AW (———[P‘)]i h 2M )24 “—_AX [[;iﬂ - [zl
1
T2k ek (5.14)
2
42 = _)\O® (1 LM |[f\l+ 2[[#]])@ m )}f )[{’Yﬂ} e
T—=m X422 ‘e l1—m Xx+25
9 (2)
&2 = _\® (1 Lom [P+ E#H) es __m X [[*n;]} O
I—m Xx+2z /&0 1—-m X424
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6. Final remarks

The homogenized model of thermodiffusion in periodically stratified elastic
composites can be treated as a starting point to some applications in geophy-
sical problems, environmental engineering and engineering of materials.

The applicability of the presented model is limited to composites with
components for which the linear theory of thermodiffusoelasticity can be used.
The main feature of the homogenized model is that in the modelling of strains,
stresses, heat and diffusion fluxes, it describes the microlocal effects, i.e. the
effects due to the periodically layered structure of the body by means of mi-
crolocal parameters. The presented model constitutes an approximate theory
of thermodiffusion processes in periodically stratified composites, in which the
conditions of continuity on interfaces of displacement, temperature, concen-
tration as well as of stress vector, normal diffusion and thermal fluxes, are
satisfied. Moreover, assuming that the body is homogeneous, so that

{XO, 1, DO, 7)o, KO A0 50, KO, 50, )}

= {20, 4, D) 30D, () ) o) ), k), 5 g} (6.1)
T# S8 r,s €{1,....,n+1}
we obtain from equations (3.8) and (3.6) that

a=1.,....n
Wy =0 G,=Q,=0 T 6.2
al a Qa ’£=1,2,3 ( )

and equations (3.5) are reduced to the relations of the linear theory of ther-

modiffusion in homogeneous isotropic elastic bodies, c¢f. Nowacki and Olesiak
(1991).
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Termodyfuzja w periodycznie warstwowych sprezystych kompozytach

Streszczenie

W pracy rozwazano zagadnienie modelowania procesu dyfuzji w periodycznie war-
stwowych sprezystych kompozytach. Rozwazania oparto na procedurze homogeniza-
cyjnej z parametrami mikrolokalnymi i na liniowej teorii dyfuzji dla jednorodnych ciat
termosprezystych. Wyprowadzony zostal zhomogenizowany model z parametrami mi-
krolokalnymi uwzgledniajacy pewne lokalne efekty dla strumieni dyfuzji i ciepla oraz

naprezeni. Rozwiazano réwniez przyklad ilustrujacy zastosowania wyprowadzonego
modelu.
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