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The aim of this paper is to formulate, discuss and apply a certain ma-
croscopic model of the heat transfer in the rigid chessboard-type micro-
inhomogeneous conductor. To this end the tolerance averaging approach
is applied. Within the framework of this approach a certain approxi-
mate solution to the periodic cell problem is proposed. It leads to the
initial-boundary value problem for the averaged temperature field co-
upled with the initial value problem for the so-called internal variable
vector field. In contrast to homogenization, the obtained model describes
the effect of microstructure size on the overall behaviour of the medium.
It is shown that the proposed model has a physical sense provided that
the inhomogeneity of the medium is not too large.

Key words: heat transfer, nonhomogeneous media, modelling

1. Introduction

The simplest mathematical models for the overall (macroscopic) behaviour
of micro-periodic solids can be obtained by using results of the well-known
asymptotic homogenization theory; we can mention here the monographs by
Bakhvalov and Panasenko (1984), Bensoussan et al. (1978), Jikov et al. (1994),
Sanchez-Palencia (1980). However, the coefficients of homogenized equations
are independent of the microstructure size. Hence, these equations are incapa-
ble of describing the effect of microstructure size observed on the macroscopic
level. To avoid this drawback, an alternative nonasymptotic modelling method
was proposed and applied in a series of papers by Baron and Wozniak (1995),
Baron and Jedrysiak (1998), Cielecka et al. (2001), Jedrysiak (1999, 2000),
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Matysiak (1991), Mazur-Sniady (1993), Michalak (2000) and others. The afo-
rementioned method was referred to as the tolerance averaging approach and
summarized in the book by WoZniak and Wierzbicki (2000).

The problem we are going to solve in this contribution is to formulate
a tolerance-averaged model of heat transfer in the chessboard-type micro-
periodic medium, cf. Fig. 1. Exact form of the averaged equation for this me-
dium is known within the framework of the homogenization theory. Thus, we
compare both aforementioned models and we formulate certain conditions for
the accuracy of the proposed tolerance averaging model. The discussion of the
illustrative initial-boundary value problem concludes the paper. In the subse-
quent analysis, the Greek indices a, f, ... run over 1,2; summation convention
over all twice repeated indices holds.

Fig. 1. The chessboard-type medium

2. Preliminaries

In this section, following Wozniak and Wierzbicki (2000), we recall some
of the results concerning the tolerance averaging approach.

By {2 we denote the region in two-dimensional reference space parametri-
zed with Carthesian orthogonal coordinates z,zs and occupied by certain pe-
riodic medium under consideration. Setting A = (—1;/2,1;/2) x (—12/2,12/2)
it is assumed that the medium is A-periodic, i.e., [,-periodic in the direc-
tion of the z,-axis, o = 1,2. Moreover, the diameter [ of A is assumed to
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be very small compared with the smallest characteristic length dimension of
£2. That is why [ will be referred to as the microstructure length. Denoting
Alz) =z+ A, Qp:={z € 2, A(z) C 2}, we shall use the known averaging
formula

m(z):é‘_',d(f,) f@) dydy,  z €04

for an arbitrary integrable function f defined in (2. Let F({2) be a set of
smooth enough, bounded functions defined in (2 and endowed with pertinent
unit measures. Moreover, let ¢ : F(2) 3 ¢ — €, € RT be a mapping
which assigns to every ¢ € F(f2) a positive real value ¢, related to the
pertinent unit measure, which will be regarded as an admissible accuracy
related to the computation of the values of ¢ or to the measurements of a
physical field represented by ¢. For an arbitrary ¢ € F(§2) we shall write
() = o(y) iff |p(x) — p(y)| < €, and say that the values of ¢ at z and y
are in a tolerance. It means that the difference between the values of ¢ at z
and y can be neglected from the computational viewpoint. Every e, will be
referred to as a tolerance parameter assigned to ¢ € F(§2) and symbol 2 will
represent a certain tolerance relation (i.e. the binary relation being symmetric
and reflexive) defined on a set R endowed with the known unit measure, cf.
also Zeeman (1965).

Define 7 = (F(£2),e(-),1) and assume that in all subsequent considera-
tions 7 is known. A sufficiently regular function F € F(£2) will be called
slowly varying (with respect to 7)), F(-) € SV(T), if for every =z,y from the
domain of F', the condition ||y —#|| <! implies |F(y) — F(z)| < er and if
similar conditions hold also for all derivatives of F'; for the sake of simplicity
we denote ep = e(F).

A continuous function ¢ € F(£2) is termed as periodic-like, 1 € PL(T),
if for every z € 24 there exists a A-periodic function ,(-) such that for
every y € (2, condition ||y — || < [ implies 1(y) = ¥(y). Function
is said to be a periodic approzimation of ¢ in A(z). If 1 € PL(T) and
(p)(x) = 0 holds for every z € 24 and for some integrable positive-valued
function p defined on 2, then we shall write 9 € PLP(T) and call ¢ the
oscillating function.

In the tolerance averaging approach we shall use the following assertion
and lemmas (cf. Wozniak and Wierzbicki (2000)):

Assertion. If F € SV(T), ¢ € PL(T) and ¢z is a A-periodic approzi-
mation of ¢ € A(x) then for every f € L2, (A) and h € C;e,.(A), such that

max{h(y) : y € A} <1, the following propositions hold for every = € Qa:
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(T1)  (fF)(z) = (f)F(z) for &= {(fl)er
(T2)  ({fe)(@) = (foz)(z) for &= {(|fl)ey
(T3)  (fou(hF))(z) = (fFOh)(z) for &= (|f[)er +levr)

(T4)  (hoa(fe))(Z) = —(fpduh)(z) for e=ceg+leve
and G = (hfp)l~!
where € 18 a tolerance parameter which defines the pertinent tolerance =.

Lemma. Functional spaces in the tolerance averaging technique have the
following basic properties:
(L1) 1If g € PL(T) then for an arbitrary positive valued integrable A-
periodic function p there exist functions ¢° € SV(T), g € PLP(T),
such that the decomposition g = ¢° + g holds

(L2) If g € PL(T) and f € Lpg,(A) then (fg)(-) € SV(T)
(L3) If F € SV(T) and f € Cper(A) then (fF)(-) € PL(T)

(L4) If Fe SV(T), Ge SV(T) and kF +mG € F(£2) for some reals
k, m, then kF +mG € SV(T).

In the linear approximation, the heat conduction properties of a medium
are uniquely described by the second order heat conduction tensor A,z and by
the specific heat scalar ¢. For every A-periodic medium under consideration,
the functions Ayg = Aag(-), ¢ = ¢(-) are A-periodic where A is assumed
to be known. Let 6 = #6(-,t) be a temperature field in (2 at time ¢,
and let f = f(-,t) be the known intensity of heat sources at ¢. Under
the aforementioned notations, a temperature field has to satisfy in 2 the
well-known heat transfer equation

Oa(Aap50) — b = f (2.1)

The tolerance averaging of the heat transfer equations in micro-periodic media
will be based on two assumptions. First, it is the heuristic assumption that in
the problem under consideration, the temperature field conforms to the perio-
dic structure of the medium. The above heuristic statement can be written in
the following mathematical form.

Conformability Assumption (CA). In the modelling of the heat transfer
problems in microperiodic media, every temperature field 0(-,t) has to satisfy
the condition

0(-,t) € PL(T)
This condition may be violated only in the certain near-boundary layer of
2. The second assumption is related to formulas (7'1)-(T4).
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Tolerance Averaging Assumption (T'A). In averaging the equations
involving slowly varying and periodic-like functions, the left-hand sides of for-
mulae (T'1)-(T4) will be approzimated respectively by their right-hand sides.

From (CA) and (L1) it follows that there exists the decomposition 6(-,t) =
0°(-,t) + 9(-,t), with 6°(-,t) € SV(T) and 9(-,t) € PL(T). It was shown
in Wozniak and Wierzbicki (2000) that, under (CA) and (T'1) the tolerance
averaging of (2.1) yields

Oal(Aap)D8° (T, ) + (Aapdpd)(z,1)] — ()6°(z, 1) —

—(cd)(z,1) = (f)(z,1)

for © € 24. At the same time, using (T'A), we can prove that the following
periodic variational equation for the A-periodic function ¥5(y,t), ¥ € A(z),
holds

(2.2)

(0" AapBp9z) (2, t) + (9*0zc) (T, t) =
(2.3)

= (9" f)(2,1) = (9" )0° (2, 1) — (Ba?* Aap)Bs0° (2, 1)

where Z € 24 and 9*(-) is a A-periodic test function, 9* € Hp,.(A); here
either (9*) =0, (¥z) =0 or {(c¥*) =0, (c¥;) = 0. Equations (2.2), (2.3) con-
stitute the fundamentals of the tolerance averaging approach to the modelling
of heat transfer problems in micro-periodic media on the macroscopic level.
In order to obtain the model equations we shall look for an approximate solu-
tions to the periodic cell problem (2.3) in the form 94(y,t) = A4 (yp)VA(z,1)
(summation convention over A =1,...,N holds), y € A(z), £ € 24, where
hA(), A = 1,..,N, are postulated A-periodic mode shape functions and
VA(-,t) € SV(T) are extra unknowns. The aforementioned mode shape func-
tions have to satisfy condition (h4) = 0 or (ch?) = 0, and can be derived
as solutions to a certain eigenvalue problem related to (2.3), or are resulting
from a periodic discretization of the cell A. In this way, setting 9* = h* and
applying (T A), (L2), (L4), after many manipulations, we obtain for 6° and
VA, A=1,...,N, the following system of equations

04 [(Aap)050° (T, t) + (Aapdph® VA (2,t)] — ()8%(2st) = (f)(zst) (2.4
(ch*hBYV B (z,t) + (0 hA AapdshBYV B (2)t) +

+(0ah? Aep)050° (mst) = — (R f)(z, 1) A=1,.,N
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At the same time, using (L3), we can prove that the temperature field can be
approximated by means of the formula

0(z,t) ~ 6%z,t) + h(z2) VA (z,t) T € Np (2.5)

where the accuracy of approximation ~ depends on the number N of terms
in the formula 9z(y,t) = h4(y)VA(z,t), y € A(z). Solutions 6°, V4 to
problems described by Eqs (2.4) can be physically reliable only if

8°(-,t) € SV(T) VA1) € SV(T) (2.6)

for every tand A =1,...,N. For a more detailed discussion of this model the
reader is referred to Wozniak and Wierzbicki (2000).

Equations (2.4), (2.5) together with conditions (2.6) represent the tolerance
model of nonstationary heat transfer problems in a periodic microheterogene-
ous solid. |

3. Formulation of the problem

Let us assume that the chessboard-type medium under consideration is
made of two isotropic materials. In this case Ang = do3A and (2.1) takes the
form

Ba(Aab) — b = f (3.1)

where A = A(:) and ¢ = ¢(-) denote the heat conduction and the specific
heat coefficients, respectively. These coefficients take the values Ap, cp and
Aw, cw in the sets §2p, 2w occupied by the "black” and ”white” consti-
tuents, respectively. Remember that (A\) = (Ap + Aw)/2, and denote
[Al = (AB — Aw)/2. It is known that, using the homogenization approach,
from (3.1) we obtain

Me9,0,0° — (c)6° = f (3.2)
where
2
M= \/ABAw = (M) /1 — % (3.3)

is the homogenized heat conduction modulus, Jikov et al. (1994). However, this
approach neglects the effect of the microstructure size on the overall medium
behaviour. The aim of this contribution is to detect this effect by using the
tolerance model described in Section 2. Main points of this contribution can
be stated as follows:
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e To propose a certain approximate solution 9¥;(y,t) = h(y)VA(z,t),
y € A(z), to the periodic cell problem (2.3) by a specification of the
shape functions h*.

e To compare the obtained tolerance model with the homogenized one.

e To illustrate the effect of microstructure size ! by an example of a certain
special initial-boundary value problem.

4. Tolerance averaged model

Equation (2.2) for the chessboard-type medium takes the form
0al(N)0a8°(2, t) + (ANabs)(E, 1)] ~ (c)0°(z, 1) = f(=, ) (4.1)

where A = Ay, c =cw in 2 and A = A, ¢ = ¢ in §2p. The periodic
variational cell problem (2.3) is given by:

Find 9g(-,t) € Hp,,(A) such that (c¥z)(z,t) =0 and
(A0aD0292) (2, 1) + (cI92)(2,1) + (A0a?)0a6°(2, ) = ~(0f)(2,1)  (4.2)
holds for every A—periodic field 9(-) € H,e,(4) satisfying (cd) = 0.

In this paper an approximate solution ¥4(-,t) to the cell problem (4.2)
will be assumed in the form

V2(y,1) = Ya(¥)va(z, t) y € A(z) (4.3)

with v,(z,t) as the unknown amplitudes, and A-periodic shape functions
1, given in A by

[ 2’;1‘?;2

Yi1(y) = (Z - |:Ull) sin = Pa(y) = (i _ |y2[) sin 21y,

!

where y = (y1,2) € (—1/2,1/2)%. The diagrams of these functions are pre-
sented in Fig. 2. It means that v, = §4V4, 1, = §2h4, A =1,2, and hence

0(z,t) ~ 0°(2,t) + Ya(2)va(2,1) (4.4)
Substituting (4.3) into (4.1), (4.2), denoting
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and applying theorems of the tolerance averaging technique, we arrive at the
following form of equations (2.4)

(N)0a0,8° + b[A[Oava — (c)8° = (f)
(4.5)

al?(c)i., + d(A)vy + b[N]8,0° = —(y f)

with 6°(-,t) and v4(-,t) as basic unknowns. Hence we arrived at the system
of equations (with constant coefficients) for #° and wv,. It has to be remem-
bered (cf. Section 2) that these equations have the physical sense only if basic
unknowns #°(-,t) and v,(-,t) are slowly varying, i.e.

6°(-,t) € SV(T) val-t) € SV(T) (4.6)

Formulas (4.5) and (4.6) represent the proposed tolerance-averaged model
of the chessboard-type medium under consideration.

It has to be mentioned that the chessboard-type medium can be treated
as a special case of a medium investigated by Matysiak (1991), where the
piecewise linear saw-like periodic shape functions were used. However, the
approach in the aforementioned paper applied to the chessboard-type medium
leads to uncoupling of the equations for #° and w,, and hence does not
describe the effect of microstructure size on the distribution of the averaged
temperature field 6°.

5. Applicability of the model

For the asymptotic approach [ — 0 equations (4.5) yield the single equ-
ation

X00,040° — (c)6° = (f) (5.1)
where , ,
_ b" [A]

A=) - 700 (5.2)

and b%/d = 0.45. Formulae (5.1), (5.2) represent the asymptotic approxima-
tion of the tolerance-averaged model proposed in this contribution. By means
of the approximate form (4.3) of the solution to the periodic cell problem (4.2),
the modulus A” represents a certain approximation of the known homogenized
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(effective) modulus A given by (3.3). Now we shall compare A with M. To
this end we introduce the parameter

£ = [Al 2w -—2B
(A Aw+ B
which can be treated as a certain measure of inhomogeneity of the chessboard-
type medium under consideration. Under the above notation, the exact value
of the effective modulus A", derived from homogenization, and the approxi-
mate value A’, resulting from the asymptotic approximation of the tolerance-
averaged model, can be represented by

M= (A1 - €2 A0 = (A)(1 - 0.44¢%) (5.4)

respectively. The diagrams of functions A"/{)\) and A%/{)\) are shown in
Fig. 2.

-1<é<l (5.3)

AR AN
1 RN
| ] Ay, \
| T .
RN
.
| __l-l-___.,______ﬂ:m,_._, |
HEREEE

0 i ! | | | ]
-1.0 -0.8 -06 -0.4 -0.2 0 0.2 04 0.6 0.85 1.0

Fig. 2. Diagrams of functions A\°/()\) = 1- 0.44€2, A/(A) = /1 - &2

To compare the exact effective modulae A" and its approximation A° for
different values of £, we introduce the relative error parameter ¢ and the
inhomogeneity ratio 7 defined by

A Y

5 _
b T=

0<n<oo (5.5)

It can be shown that
(1+n)? —0.44(1 — )2 1
§ = -1 d(n) =4d(= 5.6
Van(l+n) () (n) (5.6)
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where the diagram of §(-) is presented in Fig. 3.

0.15

S5(17)

0.10

0.05

g8 9 10

Fig. 3. Diagram of function d(n)

Thus, by means of (5.6) we finally conclude that the proposed model can
be applied only if the ratio 7 = Ag/Aw is not too large (if 0.25 < 5 < 4
then & < 5%). This is the necessary condition for applicability of the model
equations (4.5) proposed in this contribution.

6. Illustrative example

Let us consider a one-dimensional initial-boundary problem for (4.5) and
neglect the heat sources in all the subsequent analysis. Setting 6° = 8°(z, ¢),
vy = vy(z,t), and denoting & = J/9,, where z = z,, from (4.5) we obtain
the system of partial differential equations for 6° = 6%(z,t) and v; = v, (z, 1)

(A)326° + b[A]Ovy — (c)8° =0
(6.1)
al®(c)in + d{\)v1 + b[A]96° = 0

and the first order ordinary differential equation for vy = vo(z,1)

al?(c)iy + d(A)vg = 0 (6.2)
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Let z €< —L,L > and t > 0. Let us also assume that ;(xL,z2) = 0 for
every 9. We postulate the following initial conditions

0°(z,0) = Ag cos %

(6.3)
v1(z,0) =0 v9(z,0) =0
and the boundary conditions
0°%(—L,t) =0%L,t) =0 t>0 (6.4)

Let us observe that from (6.3)3 and (6.2) we obtain wy(z,%) = 0 for every
€ (—L,L) and t > 0. Hence, formula (4.4) yields

0(z1, 2, t) ~ 0°(z,t) + 1 (z1, z2)01(2, 1) T =1z (6.5)

From (6.4) it follows that the boundary conditions for 6 have the form
6(+L,t) ~ 0 and the initial condition for @, by means of (6.3), is given
by 6(zy,z2,,0) ~ Agcos|rz,/(2L)].

We shall look for the solution to the equations (6.1) in the form

0°%(z,t) = O(z)e v (z,t) = v(z)e (6.6)
where < is a certain positive number. Substituting (6.6) to (6.1) we obtain
(A0 + b[A]OT + () = 0
(6.7)
(d({\) — val*(c))7 + b[A]98 = 0
Hence bl
U= I = a2 (6.8)
Eliminating v from (6.7) we obtain the second order ordinary differential
equation for ¢
A\’ —yal*{c) 57 {c) -
W@ 0+ ’Yma =0 (6.9)
In order to satisfy (6.4) we assume 6(z) = cos[rz/(2L)]. Let us define ¢ = 1/L.
Then by means of (6.8) and (6.9) we conclude that

6(z) = cos 5T

I 0 7
o) = 2L d(\) — val*(c) 2L

(6.10)
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is a certain solution to the system (6.7) provided that the following condition

for  holds

0y 4d + mae® (X) ) md (AWA°
452 (¢)  aL® (c¢)?

0 (6.11)

Taking into account the conditions (4.6) we conclude that functions 6°(-,¢),
v1(-,t) are slowly varying only if [ < L. Thus Egs (6.6) with ~ given by (6.11)
have a physical sense only under the condition ¢ < 1. Hence, bearing in mind
that ¢ is a small parameter, we obtain from (6.11) the following asymptotic
formulae for -y

71.2 )\0( B WQEEEg]IA]]:Z

M= 1 & (A)?) +0(e")

(6.12)

d () N 72b% [A]? N adr?e? (l AL

YT L% (o) T ALk () | & d())2 ) +0(e)

Combining (6.6), (6.10) and bearing in mind (6.12), we obtain the following
general solution to (6.1) satisfying boundary conditions (6.4)

0 — —mt | A2t Tz
6% (z,t) (Ae + Ae ) cos o 61

A

T
2L (d(/\) - mal?(c)

sin —

(A) = yoal?(c) e—’mt) 2L

e Nt 4
d

with A and A as arbitrary constants. Bearing in mind the initial conditions
(6.3)1,2 we obtain from (6.13)

Bo(w,t) _ Ag (d(/\) - 71a12(c} et 4 d()\) — ’]fgalg(c> e"'ht) T

COS —
al®*(c) Y2 =M T = Y2 2L

(6.14)

?)1(1" t) — AO’}T ) (e"'-ht — e“’]’?t) M Si T

al?{c)(v2e —m oL "L

The above formulae together with wvy(z,t) = 0 represent the solution to the
initial-boundary value problem represented by (6.1)-(6.4). Neglecting all higher
order terms in (6.12), we obtain

~ T X ~ 4
M= (c) 7 e
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and hence (6.14) can be also rewritten in the form

w2 )0

0%z, t) = A exp(— mt) coS g%
(6.15)
~ 4 TO[A] 72\ d{\) . T
v@, 8) = dog iy [e"p(‘u;?(c) t) - exp (- a2 (c) t)] singz

Substituting the right-hand sides of (6.15) into (6.5) we obtain the distribution
of temperature 6(z;,z9,t) in the problem under consideration.

In order to investigate the length size effect on the heat transfer, we shall
pass to the analysis of the initial-boundary value problem under consideration
in the asymptotic approximation. Applying the limit passage [ — 0 in Egs
(6.1), we obtain

(\)8260° + b[A]Bv; — (c)6° =0
(6.16)
d{A\)vy + b[A]08° = 0
The same limit passage applied to (6.2) yields vy = 0. From (6.16) it follows
that

bIA] ~p0
= ——=00 6.17
R T5Y (6.17)
and eliminating v; from the system (6.16) one can obtain
206260 — (6)6° =0 (6.18)

where A’ is given by (5.2). Similar equation
A29200 — (c)§° = 0

we also obtain in the framework of homogenization. We look for the solution
to (6.18) in the form

0%(z,t) = Ge (6.19)
Substituting (6.19) into (6.18) we obtain
MN3%0 +v(c)f =0 (6.20)

This equations has the solution 6(z) = Ay cos[rz/(2L)| for which the averaged
temperature 0%(z,t) = Agexp(—~t) cos[rz/(2L)] satisfies the initial condition
(6.3)1 as well as the boundary conditions (6.4), provided that

w2 A0

Y= TN

4L%(c)
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At the same time (6.20) yields

~ wb[AJAy . Tz
vi(z,t) = 2Ld(N) e”Tsin o

Thus we conclude that after neglecting the length-scale effect (I — 0) the

initial condition wv(z,0) = 0 cannot be satisfied.

7. Conclusions

Summarizing the results obtained in this contribution it is possible to for-

mulate the following conclusions.

e By means of (4.5) the proposed averaged model of the heat transfer in
chessboard-type media is isotropic and depends on the microstructure
size .

The proposed model can be applied only if the ratio Ap/Aw is not too
large (if 0.25 < Ap/Aw < 4 then § < 5%).

The proposed model can be used to the analysis of initial boundary value
problems for the temperature 6, in contrast to the homogenized (asymp-
totic) model, where only initial conditions for the averaged temperature
8° can be satisfied.
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Makroskopowy model przewodnictwa ciepta w niejednorodnym osrodku

typu szachownicy

Streszczenie

Celem pracy jest opracowanie, dyskusja i zastosowanie makroskopowego modelu
przewodnictwa ciepla w przewodniku posiadajacym periodyczng mikroniejednorodng
strukture typu szachownicy. Stosujac technike tolerancyjnego u$redniania zapropono-
wano pewne przyblizone rozwigzanie zagadnienia na komoérce. Rozwigzanie to prowa-
dzi do zagadnienia poczatkowo-brzegowego dla urednionego pola temperatury i sprze-
zonego z tym problemem zagadnienia poczatkowego dla pola wektorowego zmiennych
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wewnetrznych. W przeciwienistwie do homogenizacji otrzymany model opisuje wplyw
wymiaru charakterystycznego komorki periodyczno$ci na makroskopowe wiasciwosci
ciala. Wykazano, ze zaproponowany model ma sens fizyczny, jezeli niejednorodnoéé
ofrodka typu szachownicy jest niezbyt duza.
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