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A methodology for the assessment of periodic composites under varia-
ble repeated loads by means of the shakedown theory is presented and
applied to metal-matrix-composites. The approach is based on the local
shakedown analysis in a representative volume element of the compo-
site and the use of averaging techniques to determine the domains of
admissible stresses on the macro-level.
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1. Introduction

Local failure due to fatigue can be considered as being caused by repeated,
dissipative events occurring on the micro-structural level of materials. In this
paper, the scale chosen for observation of these effects will be called ”meso-
scale”, small compared to the scale for measuring macroscopic dimensions of a
mechanical structural element and large compared to the atomistic scale. We
suppose that on this meso-scopic level the laws and methods of the classical
continuum mechanics are applicable, but that different constituents of the
material can be recognised, forming a mechanical structure by itself on this
level of observation. The interaction between these constituents determines
the local response of the material, in particular the mechanisms leading to
local failure and damage. Therefore, the study of the inelastic, dissipative
behaviour on the meso-level of specific materials under repeated, variable loads
can be helpful in better understanding of the failure mechanisms, and the
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methods developed for this purpose can be used in a constructive way for the
design of materials. The appropriate choice of the scale and methodology of
investigation, however, may be different from one material to another and for
different types of loading programs.

A particularly interesting class of materials for this kind of studies are
composites: here, the strong heterogeneity of the material causes in general
large gradients of the mechanical field quantities such as stresses and strains,
initiating local damage and overall fatigue failure by the interaction of different
local effects, which depend upon the mechanical and geometrical properties of
the individual components of the composite. Excluding non-mechanical effects
like chemical reactions and effects of fluid-solid interactions in porous mate-
rials, one may quote brittle fracture of inclusions, local debonding between the
matrix and fibrous reinforcements, localised plasticity and ductile damage due
 to different elastic-plastic properties of the individual components as examples
for such initiation of the failure. To predict failure in such a case, it is important
to understand and to model the mechanical processes on the meso-structural
level and to link them to the characteristic macroscopic material properties.
This can be facilitated if geometrical ”patterns of periodicity” are formed by
different components in the material. In this case, the averaging techniques
such as Homogenisation Technique or Tolerance Averaging Methods (Suquet,
1982; Wozniak, 1999; WoZniak and Wierzbicki, 2000) can be used to bridge
the gap between the local (mesoscopic) and global (macroscopic) properties of
the considered composite.

In continuation of the preceding work (Weichert et al., 1999a,b) it is shown
in this paper, how Direct Methods, in particular Shakedown Analysis (Limit
Analysis being treated as particular case), can help to assess composites which
exhibit plastic deformations on the meso-scale, and how these methods can be
used in a constructive manner for the design of materials.

The classical field of application of shakedown theory is the assessment
of mechanical structures or structural elements exposed to variable thermo-
and/or mechanical loads. It addresses basically failure (non-shakedown) caused
by unlimited growth of plastic dissipation during the loading process, leading
to incremental collapse or alternating plasticity. Limit analysis covers the par-
ticular case of the instantaneous collapse under a monotonous loading. The
foundations of shakedown theory have been laid by Melan (1938) and Koiter
(1960), who derived sufficient criteria for shakedown and non-shakedown, re-
spectively, for elastic-perfectly plastic structures in the framework of geometri-
cally linearised continuum mechanics. Due to the evident practical importance,
their classical theorems have been extended to larger classes of problems and
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widely applied to structural analysis. Reviews and overviews of such studies
can be found e.g. in Gokhfeld and Cherniavsky (1980), Konig (1987), Mréz et
al. (1995), Weichert and Maier (2000).

Here, this theory is applied to the study of periodic composites, in which
at least one component exhibits ductile properties. This type of behaviour
can be found, e.g. in metal matrix composites (MMC’s) (Ponter and Leckie,
1998; Weichert et al., 1999a.b; Carvelli et al., 1999). To relax the classical
assumptions of shakedown theory, in the theoretical part of this paper, plastic
damage is taken into account for the ductile components of the composite, as
well as brittle failure of eventual reinforcing components and their debonding
from the matrix material of the composite.

Plastic material damage is taken into account by using the concept of effec-
tive stress (Kachanov, 1958; Lemaitre, 1985), combined with specific models
of damage evolution. To model brittle failure of inclusions and fibrous reinfor-
cements as well as debonding between the reinforcements and matrix material
following the theory by Needleman (1987), subsidiary conditions on stresses
on the mesoscopic level are introduced.

The simulation of material behaviour by means of structural mechanics
is nowadays well established. Nevertheless, the use of shakedown analysis to
assess and to design composites is rather new: first attempts had been un-
dertaken in a pioneering work by Tarn et al. (1975) for the determination
of safe loading domains of unidirectional composites under an axisymmetric
loading. Ponter and Leckie (1998) investigated the shakedown behaviour of
an aluminium/alumina system under fluctuating temperatures by means of
the homogenisation technique, focusing on the application of the upper bound
theorem. Making use of the finite-element analysis, Carvelli et al. (1999) ap-
plied the upper bound theorem of the shakedown theory to two-dimensional
problems. The authors of the present paper calculated the admissible loading
domains for composites by using the lower bound theorem (Weichert et al.,
1999a,b). It should be noted, that the three last quoted groups of researchers
followed similar lines of thinking: The two principal theoretical ingredients be-
ing averaging techniques, in particular the homogenisation technique combined
with shakedown analysis for a "representative volume element” (RVE) or "unit
cell” V' on the meso-level. This allows under the assumption of periodicity of
the composite, to link the results of shakedown analysis on the meso-level to
the overall material properties on the macro-level. From this point of view,
the presented methodology can be regarded as an extension of that given by
Suquet (1983) for the limit analysis of heterogeneous media.
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The scenario of failure of metal-matrix-composites under variable loads,
assumed in the present study, is as follows: during loading, on the meso-scale
level unlimited accumulation of inelastic deformations occurs in some areas.
These accumulated plastic deformations lead to material damage in the duc-
tile matrix of the composite, which causes the initiation of micro-cracks. These
may in the sequel of the loading process propagate and initiate failure of the
considered structural element. However, the crack initiation and propagation
are not specifically addressed by the presented analysis: If in some part of the
composite the unlimited accumulation of plastic deformations is detected, we
say that the material fails. Similarly, brittle failure and debonding of reinfor-
cements are assumed to initiate failure due to fatigue and are not admissible
for safe states of the material.

2. Definitions and general assumptions

We consider a material which is composed of two or more constitue its,
one of which identified as the matrix material, exhibiting ductile properties.
The other components are usually reinforcements, in form of particles or fi-
bres. It is supposed that the reinforcing components are embedded in the
matrix material according to a regular pattern. Each component is assumed
to be homogeneous, occupying the volume fraction V; (3 V; =1,i=1,...n),
where n denotes the number of components of the composite. The macrosco-
pic behaviour of this heterogeneous material is observed on the scale z and
the mesoscopic behaviour on the scale y (Fig.1). For reasons of simplicity,
effects of geometrical changes occurring during deformation are neglected. We
note that the concept developed in this paper applies also to materials with
regularly distributed voids or perforations, which are considered as material
components with zero resistance.

Material damage of elastic-plastic material constituents is modelled in the
context of continuum mechanics with the help of the concept of the effective
stresses (Kachanov, 1958). This means that the behaviour of the damaged ma-
terial can be represented by the constitutive equations of the virgin material
where the usual stresses ¢ on the meso-level are replaced by effective stres-
ses 0. If we restrict our considerations to isotropic damage, they are defined by

o

°=1-D

(2.1)

The scalar D = 0 corresponds to the undamaged state, D € (0,D,) corre-
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Fig. 1. Heterogeneous material

sponds to a partly damaged state and D = D, defines complete local rupture
(D, € [0,1]). A simple model of isotropic ductile plastic damage is given by
Lemaitre (1985). This model is linear with the equivalent plastic strain ¢4 and
depends upon three material constants, damage threshold strains ep, strain
at fracture er and the critical value of damage parameter at fracture D, for
damage properties and Poisson’s ratio v

D
D= ;i;(Rv&'eq —€D) (2.2)

with R, as the triaxiality ratio given by

R, = g(1 +v)+3(1 - 211)(2&)2 (2.3)
3 Oegq
where o, denotes the von Mises equivalent stress, oy = 0;;/3 denotes the
hydrostatic stress and (-) the Macauley operator, i.e. (z) = (z + |z|)/2.

In the sequel, the superposed tilde indicates quantities related to the da-
maged state of the material. Extensions of the shakedown theory to the case
of non-isotropic damage can be found in Druyanov and Roman (2000).

According to the restriction to the geometrically linear theory, the total
strains €(y) can be split into purely elastic £° and purely plastic &P ones,
respectively

e(y) =€(y) +€°(y) (2.4)

For the considered unit cell V', we adopt the usual homogenisation as-
sumption for the local displacement field u at the position y

u=E. y+uP (2.5)



278 D. WEICHERT, A. HACHEMI

where E is the macroscopic strain tensor and uP®" is the displacement field
satisfying the periodicity conditions. Then, the Hill relationship (Hill, 1963)
holds

E:Ez(a:e)zflf-/a':edV (2.6)
()
with

2(@) = (o) = 1 [ o) dv
V)
(2.7)

E(@) = () = 1 [ ew) v

(V)

where o and £ are mesoscopic stresses and strains also satisfying the pe-
riodicity condition. Within the unit cell, € and o fulfil compatibility and
equilibrium conditions, respectively.

For the plastic part of the material behaviour we assume the validity of
the normality rule for the plastic flow in a sub-differential form, such that

£ € 5y(o) (2.8)

where d¢p(o) denotes the sub-gradient of the plastic potential ¢(o) which
is the indicator function of a convex elastic domain P(y) of all plastically
admissible stress states

o(y) € P(y) VyeV (2.9)
P(y) is defined by means of a yield function F(a,y)
P(y) = {a | F(o,y) <0, Vye V} (2.10)

The convexity of F(o,y) and the validity of the normality rule can be
expressed by the maximum plastic work inequality

(0—0()):e? >0 vol®)(y) € P(y) (2.11)

where o(%) is any safe state of stresses defined by

Py) = {o®

FE,y) <0, Ve V} (2.12)
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The smooth von Mises yield function, defined by

ACHE \/ 22 ((55) - v ) (2.13)

where oy (y) denotes the yield stress and o the deviatoric part of o, is
a particular case and will be used in the numerical calculations presented in
Section 5.

3. Interface model

A cohesive zone model of Needleman (1987) is used for describing the se-
paration of two phases along a predefined process zone by defining an interface
potential specifying the dependence of the tractions in the interface 7' (force
by unit reference area) consisting of normal and tangential components T, T;
and T3 upon the corresponding discontinuity in the displacement field across
the interface

+

[u] =u™ —u~ (3.1)

where 4™ and 4~ are displacement vectors at the interior and the exterior
borders of the interface zone. At each point of the interface, we define

Up =n- [u] up =1t - [u] up =b- [u] (3.2)
and
T,=n-T T,=t-T T,=b-T (3.3)

where n, t and b form a right-hand coordinate system chosen so that a po-
sitive wu, corresponds to increasing interfacial separation and a negative wu,
corresponds to decreasing interfacial separation.

The mechanical response of the interface is described by a constitutive
relation that gives the dependence of the tractions Ty, T3 and T on Uy, Uy
and wup. Here, this response is specified in terms of the function ¢ (Lissenden
and Herakovich, 1995; Ismar et al., 2000)

P(A) = %;Umax(l - ’\)2 (3.4)

with A as a dimensionless parameter defined by

= () ()" (2) 0
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where the Macauley operator (-) specifies that under a compressive loading
(un, < 0) the debonding occurs only in the tangential direction. The characte-
ristic length §, and §; are material parameters which correspond to the work
of separation in connection with the maximum normal traction opax. In (3.4),
A = 0 corresponds to the perfect bonding, whereas for values A > 1 no more
cohesive stresses can be supported.

The non-linear relations between tractions and displacement difference de-
pend upon the maximum value of A in the course of the precedent loading
history, Amax, in order to prevent healing of the interface with decreasing va-

lues of A. For Amax < 1, the interfacial tractions are defined by (Ismar et al.,
2000)

gamalx(ui” for u, <0
o) on
=
qa()\max)‘;—“ for 1w, >0
(3.6)
U U
T, = B(Max) 5 Ty = B¢p(Amax) 5
t t

where the maximum tangential traction is denoted by Tmax = B0max-

4. Formulation of shakedown theorems

We define the admissible domain P™(z) as the set of macroscopic states
of stress ¥(z) for all mesoscopic states of plastically admissible stress o(y)
(Suquet, 1983)

P™(g) = {)3 ! Jo, a(y) € P(y), Qy € V} (4.1)

To determine P™(z), shakedown analysis is carried out on the meso-level.
For this, we introduce the notion of a ” reference representative volume element
(RVE())” differing from the actual one only by the fact that the material is
supposed to behave purely elastically without damage. All quantities related to
this reference representative volume element are indicated by the superscript
n (c)” .

The statical shakedown theorem states that: if there exists a safety factor
« > 1, a time-independent field of the periodic residual stresses " and a
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Sanctuary of Elasticity (Nayroles and Weichert, 1993)
P™(z) c P™(x) (4.2)

with
P"(z) = {z | 309), o(9)(y) € Ply), Vy € V} (4.3)

then the periodic composite material shakes down. Here, the safe state of
stresses o(*) is defined as usual

o®) = qa©) 4 ") (4.4)

where o(¢) is the stress field which would occur in the RVE(®) under the same
boundary conditions as the actual RVE such that the following relations hold

Diva(®d) =0 in V
u(y) — E-y periodic on JV
(4.5)
o(©) . n anti — periodic on JV
o(© =L : [e(uPer) + E] in V
However, the field of the residual stresses o" satisfies
Dive" =0 in V
0" -n anti — periodic on 0V (4.6)
(6™ =0 in V
and such that
(0 (y)) = 2(z) (4.7)

where n is the outward vector normal to 0V and Div the divergence opera-
tor.

4.1. Particular case

If one considers that the boundary conditions on the edges of the represen-
tative volume element are the uniform constraints ¥, as suggested by Suquet
(1982) (see also Marigo et al., 1987), then we have to consider the following
domains of macroscopic stresses

Pg(z) = {£] 301, 0)(y) € P(y), vy € v} (48)
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with the following conditions

Divel® =0 in V
(4.9)
ol).n=2n on OV
and
Dive" =0 in V
(4.10)
g  -n=20 on OV

If, on the contrary, one assumes that the boundary conditions on the ed-
ges of the representative volume element are the uniform strains E, then the
following domains of macroscopic stresses have to be considered

Pg(a) = {230, o)(y) € Ply), vy e v} (4.11)

with the following conditions

Divel® =0 in V
ul® =E.y on 9V
(4.12)
£l0) = V,(u'®) in V
(@) =L g0 in V
and
Dive™ =0 in V
(e™) =0 in V (4.13)

(@) = 2(=)

For the imposed uniform constraints on the edges of the RVE, the domains
of macroscopic stresses are underestimated and for the imposed uniform strains
these domains are overestimated (cf. Suquet, 1982; Marigo et al., 1985)

Py ¢ P"(z) C Pg (4.14)

The condition for shakedown according to the static theorem for the de-
termination of the macroscopic admissible domain P™ against failure due to
inadmissible damage or unlimited accumulation of plastic deformations can be
expressed by the following optimisation problem:

Find

agp = max o« 4.15
SD AmM)D}E‘" ( )
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subjected to (4.6) and

Amax < 1
D(y) < D YyeV
W) <D Y (4.16)
o) (y) € P(y) Vev
(6¥)y =%
such that
0¥ = aol® + 5 (4.17)

Condition (4.16), assures that there is no complete debonding at the inter-
face, and condition (4.16)y assures structural safety against the failure in the
matrix due to plastic damage (see, e.g. Hachemi and Weichert, 1997). Condi-
tion (4.16)3 assures that the safe state of stresses is plastically admissible.

5. Illustrative examples

To illustrate the method, two examples are presented, based on a finite-
element shakedown analysis of appropriately chosen RVEs of the material and
a homogenisation technique of periodic media. In both cases, the analysis is
restricted to two dimensions. Furthermore, the material damage as well as
debonding between the matrix and fibre in the second example, are not ta-
ken into account. First, flat aluminium alloy sheets with periodically arranged
slits of varying length and patterns of periodicity are investigated. The slits
are considered as a material without mechanical resistance. The mechanical
characteristics of the homogeneous and isotropic aluminium are as follows:
Young’s modulus £ = 67200 MPa; Poisson’s ratio v = 0.318 and the conven-
tional yield stress at 0.1% of axial elongation oy = 137 MPa. The following
dimensionless lengths of the openings were considered: r = 1/L = 0.5 and 0.7
with ¢ = 1 mm. The results are compared with the experimental ones obtained
by Litewka et al. (1984). It should be noted that the solution to the elastic
reference problem for the shakedown analysis corresponds to a slit, where the
sharp corners have been replaced by rounded corners with radius ¢/10. The
fact that the calculated solution (Fig. 3b) is non-conservative compared to the

experimental results may be related to this approximation.
In Fig. 2, two considered patterns of openings with the pitch L = 10 mm

are specified. It follows, therefore, that two different types of symmetries regar-
ding the rectangular openings were considered. In the first case the rectangular



284 D. WEICHERT, A. HACHEMI

(a) pattern 1 (b) pattern 2

va

Fig. 2. Arrangement of rectangular opening

openings orientation follows the pitch, whereas in the second this orientation
makes an angle ¢ = 45° with the square grid specifying the pitch. In Fig. 3,
a comparison of the obtained results with experimental values of the uniaxial
macroscopic tensile strength as a function of the load orientation are shown
for the two considered patterns.

(a) pattern 1 r=0.0 (b) pattern 2
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Fig. 3. Uniaxial macroscopic tensile strength versus inclinations ¢

For the limit and shakedown analysis of fibre-reinforced composite mate-
rials, we consider a typical problem of an aluminium/alumina composite with
perfect bonding between the fibres and matrix (A = 0). For the given regu-
lar quadratic, rotated and hexagonal patterns of periodicity of the reinforced
elastic fibres in the ductile matrix as illustrated in Fig. 4, given material pro-
perties of the fibres and matrix (Table 1), the admissible load in the space
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(a) quadratic pattern
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Fig. 4. Arrangement of fibre-reinforced composite
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Fig. 5. Variation of macroscopic stress with fibre volume fraction
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Fig. 6. Admissible domains of macroscopic stresses
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of macroscopic stresses is determined. The adopted mechanical characteristics
for the matrix and the fibres are:

Table 1. Mechanical characteristics of fibre-reinforced composite

Matrix | Fibre
Material Al Al O3
Young’s modulus F [GPa] 70 370
Poisson’s ratio v 0.3 0.3
Yield stress oy [MPa] 80 —

Fig. 5 presents variation of the admissible value of the macroscopic stress
(X2 = Xy = X)), normalised by the yield stress oy of the matrix, with fibre
volume fraction, where the results obtained by Zahl and Schmauder (1994)
for, quadratic, rotated and hexagonal patterns are represented. The admissible
rectangular macroscopic domains for the quadratic pattern are shown in Fig. 6,
where the bounds of elastic, limit and shakedown domains are represented.
These bounds are obtained for different values of the fibre volume fraction

(V¢/V = nD*/4L* = 0% — 50%).
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Analiza przystosowania i wytrzymatosci granicznej kompozytéw
o strukturze periodycznej

Streszczenie

W pracy zaprezentowano metodologie oceny kompozytéw o strukturze periodycz-
nej przenoszacych zmienne, powtarzalne obcigzenia na podstawie teorii przystoso-
wania w zastosowaniach do kompozytéw z metalowg osnowg. Metodologie oparto na
lokalnej analizie przystosowania dla reprezentatywnego elementu kompozytu i zastoso-
waniu technik u$redniajacych w celu okreslenia dopuszczalnych naprezen na poziomie
makroskali.
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