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The position vector of the deformed shell reference surface is expressed
by its projection onto the coordinate plane and the height function over
that plane. The projected position is then determined by quadratures en-
tirely from three surface strains and the height function. The latter fields
can be found as solutions to the non-linear boundary value problem of
thin elastic shells, developed by Szwabowicz (1999). The corresponding
displacement field is determined from the deformed position vector by
simple algebraic formulae.
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1. Introduction

The non-linear theory of thin shells is based on the kinematic hypothesis
that deformation of a shell is described with sufficient accuracy by the de-
formation of its reference surface alone. Then, the principle of virtual work
postulated on the reference surface and surface kinematics allows one to es-
tablish various non-linear boundary value problems (BVPs) expressed in dif-
ferent sets of fields as independent variables (see Pietraszkiewicz (1989, 2001)
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and references given there). Of the three main existing approaches the one,
so-called displacement form of shell relations, or some of its simplified versions,
enjoys the greatest popularity in the literature, but this formulation is very
complex and hardly manageable for unrestricted deflections. The intrinsic shell
relations expressed in the surface strain and/or stress measures are relatively
simple even for unrestricted deflections. However, they are applicable only to
special shell problems, and an additional complex non-linear analysis of the
compatibility conditions is required in order to determine the displacement
field.

A novel formulation of the non-linear BVP for thin elastic shells undergoing
small strains was developed by Szwabowicz (1999). It is expressed in three
surface strains and one height function of the deformed shell reference surface
as basic independent field variables. The BVP posed in this form benefits from
relative simplicity of intrinsic shell relations and circumvents complexities of
the displacement approach. The corresponding field equations consist of three
equilibrium equations and one extended equation of Darboux (see Darboux,
1894), which is a compatibility condition for the four unknowns. When the
surface strains and the height function are found from the BVP, the surface
curvature changes can be computed from simple differential relations, and the
internal surface stress and couple resultants follow then from the constitutive
equations. '

It was mentioned in Szwabowicz (1999) that the two remaining Cartesian
components of the displacement field can be determined by quadratures from
three surface strains and the height function. However, only the final formulae
based on the Darboux idea (Darboux, 1894) were presented in Szwabowicz
(1999), and the appropriate procedure was outlined in sketchy form. The aim
of this paper is to explicitly derive such quadratures for the two displacement
components. Our solution is based on methods applied in continuum mecha-
nics, and differs from that suggested by Darboux (1894), developed with some
errors by Hartman and Wintner (1951), and presented concisely in Szwabowicz
(1999).

The contents of the paper is as follows. Section 2 is devoted to notation
and some basic relations valid for the surface geometry. The undeformed shell
reference surface is projected onto the coordinate plane Ozy and the surface
geometry is described by the Euclidean metric of the projected flat region and
the height function over that region. This allows us to concisely derive the
Darboux equation in Section 3. In Section 4 we propose an original solution
to the problem of embedding of the two-dimensional metric into the Ozy
plane. Our approach is based on mapping of a domain in the Ozy plane
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parameterized by Cartesian coordinates into the flat region of the projected
reference surface. The gradient of the map is then polarly decomposed into the
right stretch tensor and the rotation tensor, for which explicit formulae (4.12)
and (4.24), (4.13); are derived in terms of the projected flat metric. Position
vector (4.27) of the projected region is obtained by quadratures (4.28), and
it describes the position of the surface in space as well. In Section 5 we find
the spatial position of the deformed shell reference surface using the results of
Section 4 for the undeformed surface. The metric of the deformed surface is
described by the undeformed surface metric and three strains. Therefore, the
spatial position of the deformed surface is immediately found by its analogous
projection (5.4) onto the Ozy plane, with subsequent analogous quadratures
for the position vector of the projection. The corresponding displacement field
is then determined from the simple formula (5.9) in terms of three surface
strains and the height function of the deformed shell reference surface.

2. Notation and surface geometry

The notation here follows that used by Pietraszkiewicz (1989, 2001) and
Szwabowicz (1999).
A simply connected regular surface M in the 3D Euclidean point space
& can locally be described by choosing a fixed orthonormal frame (O, 14,3,k),
O € &, and three functions z(9%), y(9%) and z(9%) of class C?, where 9%,
a = 1,2, are surface curvilinear coordinates. The position vector of M is then
given by
r =zt +yj + zk = r(9%) (2.1)

With each regular point M € M we can associate the natural base vectors
@y = Or/09* = r,4, the dual base vectors a® such that a - a, = aﬁ with
0 = 05 = 1, 6 = &7 = 0, the components ans = @4 - a5 and a* = a® - a?
of the surface metric tensor a with a = det(aqg) > 0, the unit normal vector
n = (a, X a)/+/a orienting M, the components byg = —n,, -ag of the second
fundamental tensor b, and the components e,3 = (a4 X ag) - n of the surface
permutation tensor € with eys = v/aeqs, €12 = —e21 =1, €11 = egp = 0.

The components a,g and byp satisfy the Gauss-Mainardi-Codazzi equ-
ations

bpaln = bpula boabgu — bapbpr = Rapap (2.2)
where (-)|o denotes the surface covariant derivative, and Rgg), are compo-

nents of the Riemann-Christoffel tensor related to the Gauss curvature K and
] by
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RaﬁAp = ﬂan(FE#»\ _FEAW +P:Apgu - F:MF;;A)
K 1 KA K
af = 53 (a-,\a,ﬁ +a',\,f35f:t _a'(x,ﬂw\) =—Qq-a,3 (23)

1
K = aeaﬁ e Ropry = Riem(agg)

It is evident from (2.3)3 that K is determined by the Riem(-) operator entirely
from the metric components aqg.

3. Position of a surface

The position of M in £ can also be established by prescribing three func-
tions aeg(¥*) and one coordinate function, say z(9*), called the height func-
tion of M, all of class C?, which satisfy the Darboux equation (Darboux,
1894)

M(z) — K(1 — 2,4 2,5 0%) = 0 (3.1)
where the Monge-Ampére operator M(z) is defined by
1
M(z) “ ZeP Mz arzs (3.2)

Indeed, for a given z(¥%), the vector r can be decomposed into
r=p+zk (3.3)

where p is the position vector of P € P — the projection of M € M onto

the coordinate plane Ozy, see Fig. 1. From (3.3) it follows that z =r -k and

Z,q = Gq - k, which, if introduced into the identity k = (@, - k)a® + (n - k)n,
leads to

k=z,a%+(n-kn (3.4)

Let us square the relation (3.4), differentiate it with respect to coordinates

and multiply the result by a,. This yields

(n-k)?=1-2,423a*
’ (3.5)

0= k:,@ Qo = 2,08 T2k a&:ﬁ Qg + (ﬂ' ' k)ﬂ':ﬁ ‘Ao
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P‘l
y=x*
i
x=x1
Fig. 1.
From (3.5) it follows that
1
baﬁ = n- kzlcz,ﬂ (3-6)
provided that
Zya 2,50 < 1 (3.7)
In view of (2.3)3, the Gauss equation (2.2)9 can be modified to the form
1
5€ M barbgy = K (3.8)

Introducing now representation (3.6) with (3.5); into (3.8) we can easily trans-
form it to the Darboux equation (3.1). Likewise, with representation (3.6) each
of the two Mainardi-Codazzi equations (2.2); can also be reduced to (3.1) by
somewhat more involved transformations. Hence, equation (3.1) is a compati-
bility condition for the surface metric components a,g and the surface position
coordinate z.

Four functions aqs(9*) and z(9%) satisfying (3.7) and the Darboux equ-
ation (3.1) describe the surface position in space up to the rigid translation
and rotation parallel to the Ozy plane.
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4. Embedding of two-dimensional flat metrics

Decomposition (3.3) allows one to express the geometry of M by geometry
of its projection P onto the coordinate plane Ozy. In particular, we obtain

Go =Ggo+ 20 k o =D (4.1)

@oB = gapf + 20 2,8 9o = 84 "398 9= det(gaﬁ) (4-2)

By decomposition (3.3) and relations (4.2) our problem has been reduced to
finding a local embedding of the prescribed flat metric ds? = ga,@dﬂ“d't?ﬁ into
the Euclidean plane Ozy. This differential problem turns out to be completely
solvable in terms of quadratures. The principal idea was already outlined by
Darboux (1894, p.216) and developed by Hartmann and Wintner (1951), who
presented explicit quadratures for z[gas(9*)] and y[gap(¥)] expressed by a
quadrature for the angle between the z and 9! coordinate lines. Unfortunately,
the formulae in the latter paper contain some errors corrected by Szwabowicz
(1999), and the solution itself does not exhibit invariance properties one might
expect from that kind of a problem. In the remainder of this Section we develop
an alternative, coordinate-invariant method of solution to this problem.

Let us consider an open domain I in the 0992 plane. The position vector
g of points in U with the Cartesian coordinates (', 9?), the line element, the
unit base vectors and the standard metric are as follows

g = 9%, dg = d9*4, in = 1% = (1,5)
(4.3)
ds? = (d9')? + (dv*)?
Consider now a map f : U — P, p = f(q) of U, whose image is the region
P also lying in the O9'9? plane. Write down the position vector of points in

P as
p = %, (4.4)
Then, two functions z® = z%(9?) establish the location of any point of I in
the image of f. Assuming f to be continuously differentiable, we may write
dp =Tdg 9o =Tlig
(4.5)
I'=Vp=p,,i"=g,8i"

where T' is the 2D gradient of the map f taken in the metric dsg. Assuming
f to be orientation-preserving, we also have detI’ > 0.
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The polar decomposition of I yields
I'=QH (4.6)

where, using the terminology of continuum mechanics, H is the right stretch
tensor (symmetric, H' = H, and positive definite, v - (Hv) > 0 for all vec-
tors v # 0), and Q is the rotation tensor (proper orthogonal, Q" = Q ',
detQ = +1). Our goal is to determine H and Q, and then I', from three
components g,s alone.

From (4.5); and (4.6) it follows that

ds® = dp- dp = dq - (H*dq) = i, - (H%ig)d¥*dv” (4.7)

If we introduce the tensor G such that

G = gopi® ® i° detG =g
0 (4.8)
trG =G = g11 + g2
then from (4.7) and (4.8) we obtain
H>=G detH = /g (4.9)

The 2D second-order tensor H satisfies the Cayley-Hamilton equation
H? — (trH)H + (det H)I =0 (4.10)

in which, according to Hoger and Carlson (1984), Eq. (5.2)

trH:\/trG+2\/detG=\/6 C=G+2/g (4.11)

Therefore, solving (4.10) for H with the use of (4.9) and (4.11) we express H
solely by gas

1
H=—(G+ /7l 4.12
\/5( Vel (4.12)
The rotation tensor Q can be represented in 2D space as
Q = cos ¢l — sin ¢e
l=9,®9" =i, ®1% (4.13)

e=epi° R =iQj-joi
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where ¢ is the angle of rotation in the Ozy plane. In order to express Q in
terms of g,p, let us use the integrability condition for p

€Pp,05= 0 (4.14)
which with the help of (4.5); and (4.6) takes the form
Qo He -+ Q(He), [i* = 0 (4.15)
Differentiating (4.13); and using (4.13)2 3 leads to
Q.o = —Qedyq (4.16)

When (4.16) is introduced into (4.15) and the result left-multiplied by H,
using V¢ = ¢,, 1* we obtain

HeHeV$ = H(He),, i® (4.17)

Let us now apply the Cayley-Hamilton theorem (4.10) to the tensor He.
Since tr(He) =0 and det(He) = det H = ,/g, the result is

HeHe = —/5 | (4.18)

which if introduced into (4.17) yields

Vo= —%H(He),a e (4.19)

By differentiating (4.12) we obtain

(He)ai® = { - HeCia + =GO +e(y.a i
(4.20)

H(He),q * = é_{_%c;ec,a +(G+ /g D[(Ge) o +e(1/9) 1o ]}ia _

= é [G(Ge)aa +\/§(Ge),a - %GQG,Q +e\/§(\/§),a :I 3¢

With (4.20)9 and (4.11) the final relation for the gradient of ¢ is

1 1 1 ‘o
Vi = a0~ /5068 ~(Ge)a e(va)a [i*  (42)
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or in a component form

1 1 1
—_— ———— — . BA . ﬁﬁ. pA .

—Gapor € — eé\(\@)m]

Now the angle of rotation arising in the polar decomposition of I' follows
from the quadrature

(4.22)

$ = do + / b0 d9° (4.23)

According to (4.23) with (4.22), the angle ¢ is expressed entirely by the com-
ponents g, in the explicit relation

1
¢ = ¢o+ / m{ [\/57(912,1 —g11,2) + 911912,1 +

1 1
+§912(922 —g11)51 —5(911 + 922)911;2] a9 +
(4.24)

+ [\/5(922,1 —g12,2 ) — §22012,2 +

1 1
+§912(922 - g11)2 +§(911 + 922)922,1] dﬁ?}

Let us introduce the rotation tensor (4.13); described by the angle (4.24)

and the right stretch tensor (4.12) into the polar decomposition formula (4.6),
which allows one to calculate the gradient I’

I'= %(cos ¢l —singe)(G+ /gl) = 2% 514, ® i’

(4.25)
1
a a\ oy o oA «
R N 7 [cos (6% grp + /9 03) — sind(e* grs + /g €53)
But
I‘iﬁ :p,ﬁzxa,ﬁia Em;ﬁi+y:ﬁj (4‘26)

and the position vector of the point P € P follows from the quadrature

P=0p,+ / P, di” (4.27)

or, explicitly, for the Cartesian components of p = zt + yj
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3:—:30+/ \/.W{ [cos ¢(g11 + +/9) — sin ggia]dd’ +

+[COS ¢g12 — sin qf)(ggg + \/5)] d’ﬁ2}
(4.28)

“w+ T/"E:"i_izﬁ{[""s b9z +sin ¢(gu1 + vg)ldd" +

+[cos ¢(g22 + /) + sin ¢g12] dﬂg}

By (4.28) the position vector p(9%) is expressed in terms of the components
gop as well. With known p(4%), the position vector r(9%) of the surface M
in the space £ follows from relation (3.3).

Thus, in order to find the embedding of a flat metric ds? into the 2D
Euclidean space one needs to perform three quadratures: first (4.24), which
yields the angle of rotation ¢ = ¢(9¢), and two remaining (4.28) yielding two
Cartesian coordinates = = z(9%) and y = y(9%), respectively.

5. Position of the deformed surface

Let M = x(M) be the reference surface of the deformed shell obtained
from the undeformed surface M by the deformation map x. The map is assu-
med to be single-valued, orientation-preserving and differentiable a sufficient
number of times. The position vector of M relative to the same orthonormal
frame (O,1,3,k) can be described in analogy to (2.1) by

r(0%) = x[r(9)] = 2(9°)i + y(9%)j +Z(9%)k = r(¥%) +u(¥%)  (5.1)

where u is the displacement vector and 9° are convected surface coordinates.

In the convected coordinates all geometric quantities and relations at any
regular point M € M are now analogous to those at M € M given in
Section 2. In this report the quantities corresponding to the deformed surface
M will be marked with a dash: @, @, Gup, @*°, 8, @, W, beg, s, K etc.,
while the surface covariant derivative in the deformed metric will be denoted
by a double vertical stroke (-)||o. The dashed quantities can be expressed by
analogous undashed quantities defined on M and the displacement field u

with the help of formulae presented in Pietraszkiewicz (1989) and Szwabowicz
(1999).
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When the field u is known from solving a shell BVP, the spatial position of
M is uniquely described by (5.1). It follows from discussion in Sections 3 and 4
that the position of M in space can also be established by the four functions
of class C?: three metric components @,g(9*) and the height function z(9%)
satisfying the Darboux equation for M

P M 2o Zllgu — K(1 — Z,q Z,p 3*F) =0 (5.2)

B | =t

The metric components @3 can be found from the relation
Gop = Qo + 27ap (5.3)

where <, are the components of the Green surface strain tensor <. Thus,
having given the metric of M and the three functions y,3(9*) of class C?
satisfying (5.2) we are able to uniquely establish the metric of M.

The BVP formulated in 7,3 and Z as independent field variables was
recently proposed by Szwabowicz (1999) for static analysis of thin shells. It
was also assumed that the shell is composed of an isotropic elastic material and
that the strains are small everywhere in the shell space. The resulting BVP
consists of four non-linear shell equations — three equilibrium equations and
one compatibility condition following from the Darboux equation (5.2) — which
are linear in 7,3 and non-linear only in Z. Four fields 7,3 and 7z satisfying
such a BVP allow us to establish the spatial position of M by carrying out
three quadratures analogous to those discussed in Section 4.

With Z(9%) given, the vector 7 can be decomposed, as in (3.3), into

F=p+7k (5.4)

The geometry of projection P of M onto the Ozy plane is described by

9o = Do = Gq —Zak
ga,@ =G, gﬂ = QB — Zsa 238 (55)
g= det(gaﬂ)

Having given the geometry of M, it is seen from (5.3) and (5.5)23 that
three strains ,3 and the height function z uniquely describe the flat metric
ds* = Eaﬁdﬁ‘“dﬂﬁ of the projected region P. Therefore, following Section 4, by
analogy to (4.27), (4.26) and (4.25), we can immediately establish Cartesian
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components of p = 7“4, = 7% + yj expressed by g,z from the quadrature

=Py +/ cosqﬁ gm + \/353) -
\/ G+ 27

—sing(e®* gz + /7 6?}3)]3’.:! dv?

(5.6)

Here

G=g1+0x 9=91182 ~ (912)° (5.7)
and the angle of rotation ¢ is established from Jop by a quadrature analogous
to (4.23) and (4.22)

- 1 1 1 |
= S T ZBAA | _sBR— pAY
¢°+/@+z\/§[\/§9“’3(28 G0 Tepn )

~Tapr € — €2 (+/7) ] dy®

The displacement field 4, if necessary, can now be calculated from p and
Z by the simple relation

(5-8)

u=@-p) +(Z -2k (5.9)

Since all the metric components g,z in (5.6) and (5.7), and thus also
in (5.8), are uniquely expressed by <v,8, Z and the position of M, we have
explicitly determined here the field u in terms of these quantities. The result
is purely kinematic and valid for an arbitrary geometry of M satisfying (3.7)
as well as for unrestricted surface strains. It does not depend on the material
of which the shell is composed as well.

6. Conclusions

We have explicitly shown that in order to find the spatial position of the
reference surface of a deformed shell it is sufficient to know only the position
of the undeformed shell reference surface, three surface strains and one height
function of the deformed surface over the coordinate plane. The two remaining
position components of the deformed surface can be found by quadratures (5.6)
and (5.8). This purely kinematic result may have important implications for
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the non-linear theory of thin shells. It suggests, in particular, that the BVP
formulated in the surface strains and the height function by Szwabowicz (1999)
may be an attractive alternative to other BVPs reviewed by Pietraszkiewicz
(1989, 2001) and expressed in displacements, or in rotations and other fields,
or in surface strain and/or stress measures as independent variables.
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O wyznaczaniu przemieszczen ze znanych odksztalcen i funkcji wysokoséci
w nieliniowej teorii powlok

Streszczenie

Wektor wodzacy powierzchni podstawowej powloki odksztalconej wyrazono przez
jego rzut na plaszczyzne odniesienia i funkcje wysokoéci ponad te plaszczyzne. Zrzuto-
wane skladowe tego wektora wyznaczono za pomocg kwadratur zaleznych od odksztal-
cefi powierzchni i funkeji wysokoéci, ktére mozna wyznaczyé, rozwiazujac zagadnienie
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brzegowe nieliniowej teorii cienkich powlok sprezystych w postaci zaproponowanej
przez Szwabowicza (1999). Odno$ne pole przemieszczei wyznaczono przy pomocy
prostych wzoréw algebraicznych.
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