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A new continuum model for studying the dynamic problems of pe-
riodic elastic lattice-type plates of an arbitrary lay-out is proposed.
The general line of approach is partly based on the tolerance avera-
ging techniques developed by Wozniak and Wierzbicki (2000) for the
termomechanics of composite solids and applied by Cielecka et al.
(1998, 2000) to the modelling of dense cellular structures. The pro-
posed model describes the microstructure length-scale effect on the
dynamic plate behaviour. The obtained equations are applied to the
analysis of wave propagation in a special latticed plate. It is shown
that the length-scale effect plays an important role and cannot be
neglected in the above analysis.
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Notations

Subscripts 1,7, k,l run over 1,2 and are related to Cartesian orthogonal
coordinates z),z2 in the 0zjzy-plane. Indices @ and A run over 1,...,n
and 1,..., N, respectively; indices «, [ take the values 1,...,n—1. Summation
convention holds for all aforementioned indices unless otherwise stated. Points
on the 0z;zy-plane are denoted by = = (z,z2) and ¢ is the time coordinate.
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1. Introduction

In the paper by Cielecka et al. (1998), a new approach to the analysis of
the in-plane dynamic problems for periodic cellular media was proposed and
applied. In this paper we deal with the formulation and application of a con-
tinuum model to study the linearised elastodynamics for lattice-type plates
having an arbitrary complex periodic lay-out in 0z;zy-plane; two examples
of this lay-out are shown in Fig. 1. It is assumed that the length dimensions
of a representative cell of the periodic structure are small compared to the
minimum characteristic length dimension of the whole latticed plate, and that
the mass distribution in this plate can be approximated by assigning concen-
trated masses and inertia moments to every nodal joint of the lattice. Hence
the lattice-type plate under consideration is represented by a certain plane
periodic system of mutually interacting rigid joints.

Fig. 1. Examples of lattice-type periodic plates

It is known that the direct approach to dynamics of periodic systems with
a very large number of interacting rigid bodies leads to computational diffi-
culties due to a large number of ordinary differential equations describing the
problem under consideration. That is why different averaged continuum mo-
dels have been proposed in order to reduce the number of basic unknowns and
to simplify the analysis of particular problems. From many results obtained
in this manner, let us mention those related to the frame-type lattice struc-
tures, summarised in Wozniak (1970) and the modelling procedures applied
in Dow et al. (1985), Gibson et al. (1982), Horvay (1952). More sophisticated
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modelling approach, based on the asymptotic procedures of the homogeni-
zation theory in Bakhvalov and Panasenko (1984), Jikov et al. (1994), leads
to the formulation of continuum models for periodic structures but neglects
the effect of the unit cell size on the global behaviour of discrete system, be-
cause in the course of modelling all length dimensions of every unit cell tend
to zero and the number of cells tends to infinity, Bakhvalov and Panasenko
(1984), cf. also Cioranescu and Saint Paulin (1991). The continuum modelling
of in-plane problems was considered in papers Lewinski (1984a,b, 1985, 1988),
where hexagonal gridworks were investigated and Rogula-Kunin’s approach
was applied as a tool of modelling, cf. Kunin (1975).

Alternative continuum models of periodic trusses and plane cellular media
were formulated in Cielecka (1995) and Cielecka et al. (1998). These models
were applied to analyse honeycomb cellular media in Cielecka et al. (2000).
The line of approach belongs to a new averaging technique in dynamics of
periodic composites and structures, which introduces into the modelling pro-
cedure the concept of tolerance related to the accuracy of the performed ma-
nipulations. The aforesaid concept leads to the so-called kinematic internal
variables, Wozniak and Wierzbicki (2000). These variables, being additional
unknown functions, have described microdynamic phenomena and their effects
on the global composite body behaviour. The characteristic feature of these
functions is that they are governed by a system of ordinary differential equ-
ations (called the dynamic evolution equations) involving only their second
order time derivatives, and hence they have not entered the boundary condi-
tions. From a formal viewpoint, governing equations of the obtained models
(cf. Cielecka, 1995; Cielecka et al., 1998, 2000) were similar to the Cosserat
media equations of motion but, contrary to the Cosserat media, we have also
dealt with the dynamic evolution equations. The averaging techniques based
on the notion of tolerance were applied to analyse dynamic problems for dif-
ferent periodic structures, such as Reissner-type periodic plates (Baron and
Wozniak, 1995), Kirchhoff-type periodic plates (Jedrysiak, 2000), wavy-type
periodic plates (Michalak, 2000). These techniques applied to periodic com-
posites is called the tolerance averaging method (see Wozniak and Wierzbicki,
2000).

The model proposed in this paper is also based on the concept of tolerance,
which leads to kinematic internal variables, cf. WoZzniak and Wierzbicki (2000),
used to describe dynamics of lattice-type plates of an arbitrary complex lay-out
and its foundations show a certain similarity to those explored in Cielecka et al.
(1998). For the lattice-type plate under consideration, represented by a certain
plane periodic system of mutually interacting rigid joints, it is assumed that
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the length dimension in 0z;z9-plane of every rigid nodal joint are negligibly
small as compared with the spans of interconnecting beams which can be
bent and twisted. The obtained continuum model involves the effect of size
of the representative periodicity cell on the global behaviour of plate under
consideration. The proposed model is useful to the analysis of the long wave
problems. In this paper the governing equations of the model are also applied
to the analysis of free vibrations of the rectangular lattice structure.

2. Preliminaries

Let A be a parallelogram on the 0z;z,-plane which constitutes a cell
representative for a whole periodic lattice, cf. Fig. 1. It means that A contains
the representative structural element for the lattice-type plate. In general the
representative element can include one, two or several periodicity cells. The
choice of this element is not unique and depends on the class of motions we
are to investigate. It is assumed that the undeformed representative element
is made of N prismatic linear-elastic beams B4, A =1,..., N axes of which
are situated on the plane 0z;zy. The beams B4 in the representative cell
are interconnected by n rigid joints j¢ a = 1,..,n, with centers at points
z =z% = (2{,2%) on the plane 0z;z5. It is assumed that 0z;z; is a symmetry
plane, both for every beam and every rigid joint treated as certain spatial (3-
dimensional) elements. The beams are subjected to bending and torsion in
the planes perpendicular to 0z;z,-plane and the rigid joints rotate in the
aforementioned planes, and their centers displace in the direction normal to
0z z9-plane.

By 2 we define a region on 0z, z9-plane obtained as an interior of a union
of all closures of repeated cells. It has to be remembered that the periodic
structure of the whole lattice-type plate can be disturbed in the structural
elements situated near the boundary 9f2 of (2. Denoting by L the smallest
characteristic length dimension of 2 and by [ the diameter of a cell A,
it will be assumed that !/L < 1. This is why [ will be referred to as the
microstructure length parameter of the lattice-type plate.

Significant properties of a beam B“ will be given by the flexural stiffness
EATA, the torsional stiffuess G414, the span [4, the mass density p# and
the cross-section area F“. The mass of a beam B“ will be represented by
two equal concentrated masses assigned to the joints situated at the ends of
a beam. The total concentrated mass assigned to a joint 5% will be denoted
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by M® and given by
N
1 a
=5 2 PP (2.1)
A=1

where N, is the number of beams for which a joint 5% is an end. The rotational
moment of inertia of a joint ;7% will be represented by the second order tensor
J&. To every beam B* we shall assign unit vectors #*, n* shown in Fig. 2.
Describing the kinetic energy of a beam by velocities of displacements and
rotations of its ends, the terms of tensor ij can be taken in the form

Th=75 Z pA AT nind + It (2.2)

Fig. 2. Unit vectors of the beam

Let us denote by w® a displacement (deflection) of the joint 5 in the
direction of z3-axis and by ¢ and ¢f — the rotations of j* in the pla-
nes normal to ¢4, n4, respectively. Assuming that joints 5% and 5° are
interconnected by a beam B4, denote

wb — w® 1 b
Aqw := T PAn *— 5(90?; + ‘:on) (2‘3)

Aapn = pp — ¢} Auape =9} — ¢}

For the sake of simplicity let us also assume that every beamn B4 can be
considered in the framework of the Euler-Bernoulli beam theory. Then the
strain components related to B“ can be taken in the form (no summation
over A in formulae (2.4)-(2.6))

= Apw + P an kA = Agpn R = Ay (2.4)
Hence, using additional notations

AA = 12EATA(14) ! K4 .= EATA(14)! KA = cA13aM™!
(2.5)
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the strain energy o# assigned to a beam B“ is equal to

A= SHAE 4+ SKARA) + S RARA)? (2.6)
It has to be remembered that all the aforementioned notations and formulae
are related to an arbitrary but fixed repeated element of the periodic lattice-
type plate under consideration (possibly except some elements situated near
the boundary 912 of 2).

Let us denote by L the set of all periodically spaced points on the plane
0z z9 which are centers of all mutually disjoint cells constituting the region f2.
Then the deflection and rotation vector of the joint 5% belonging to a cell with
the center 2z, z € £, at an arbitrary instant %, will be denoted by w®(z,1),
©%(z,t), respectively. All external loads acting on the medium are assumed
to be applied exclusively to the centers of rigid joints. The resultant external
force and external couples applied to the joint 7% in a cell with a center z € L
will be denoted by f%(z,t) and m®(2,t), respectively. Introducing the action
functional A =& — K — W where

izEf.A:l
% Z[ ( “(2,1) t) + Ji5¢8 (2,1)¢5 (2, t)] (2.7)
zel A=1
W =331 w2, t) + mi (2, 1) el (2, t)]
ZG L A=1

and taking into account formulae (2.3), (2.4), from the principle of stationary
action we derive equations of motion for w®(2,t), ¢%(2z,t),z€ L, a=1,...,n,
i = 1,2. These equations represent a discrete model of a periodic lattice-type
plate but are not convenient in investigations of its global dynamic behaviour
since the number of points L is very large. That is why relations (2.3), (2.4),
(2.7) together with the assumptions formulated in Section 3 will be treated
only as a basis for deriving a continuum model of the lattice-type plate under
consideration.

3. Modelling assumptions

In order to pass from the discrete model of the periodic lattice-type plate
under consideration to a certain refined continuum model, we have to recall
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the concept of a slowly varying function, Wozniak and Wierzbicki (2000).
Let F(-,t) be a sufficiently regular real-valued function defined on (2 and
depending on time ¢, and ep be a positive number determining the accu-
racy of calculations of the values of F. Assume that the values of F(-,t)
for every t and every z,y € (2 such that |z — y| < [ satisfy conditions
|F(z,t) — F(y,t)] < ep. If similar conditions hold also for all derivatives
of F (including time-derivatives) then F(-,t) will be called a regular slowly
varying function (related to the microstructure length parameter [ and to
certain accuracy parameters ep,eyp, e, ...).

In the course of modelling we shall assume two hypotheses. To this end
define v :=n — 1 and let A%, g2 o =1,..,v,4,j = 1,2, be the systems of
real numbers satisfying conditions

a=1,..,v

n
ajpac __ a
;M h 0 Z Jh19ki i hl=12 (3.1)
It has to be emphasised that the systems A%, ¢, a=1,..,n, a=1,.,v
are not uniquely determined but their choice will be irrelevant.

The first modelling hypothesis interrelates the deflection w®(2,t) and the
rotations ¢?(z,t) of the joint ;% in a cell with the center z,z € £, with certain
regular slowly varying functions W (-,t), Q%(,t), @;(-,t), R¥(-,t) which will be
treated as basic kinematic unknowns. This statement is called the kinematic
hypothesis which will be assumed in the form

w(z,t) = W (2%, 1) + K Q*(z®, 1)

b

(3-2)
@i (2,1) = ®i(z,1) + lgi By (2%, 1) zeL
where 2% is the position vector of the joint j%, a = 1,...,n. Because of
(W (z% 1) — W(z,t)| < ew, |@i(z% 1) — Di(2,t)| < eg, etc. and bearing in
mind conditions (3.1) imposed on A%, g/*, under notations M = Yooy M,
Jik = > oy J5 and neglecting terms involving ey, eg,, we obtain

W(z,t) =M le“ %(2,1)
(3.3)

zklz-jz‘ﬂ (2,1) 2L

where J7' is the inverse of the matrix J having components J;. Thus,
we conclude that the fields W(z,t), ®;(z,t) represent respectively weigh-
ted averaged deflections and rotations of repeated elements of the structure.
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Hence Q%(z,t), R$*(2,t) describe respectively the disturbances in deflections
and rotations at a time ¢ within these elements. Fields Q%, R will be called
kinematic internal variables; the meaning of this term will be explained below.
The second modelling hypothesis is related to the concept of slowly varying
function. On this basis we shall approximate finite differences of these functions
by the values of their appropriate derivatives, we shall neglect increments of
the introduced functions inside an arbitrary cell in calculation of averages over
this cell, and after that we shall approximate finite sums over L in (2.7) by the
integrals over (2. This statement will be called the smoothness hypothesis and
it leads to the continuum representation of strain components in an arbitrary
beamn B4 belonging to a cell with the center 2. To this end, under assumption
that joints j¢, j are interconnected by a beam B4, define hA® := pbe — poc,

9% = 0.5(g” +g§’;"), gg“‘ = fj‘* — g; and M =1/14. Also define
Vi(z,t) == Wiz, t) + €;P;(z, 1) ze (3.4)

where €;; stand for the Ricci symbol. After simple calculations, from (2.4),
(3.2) and (3.4) we obtain (no summation over A!)

EA (Z, t) - t?lpﬁ(z: t) + AAh'AuQa (z: t) + lnﬁginR‘?(z: t)
kA(2,t) = lAnftf‘éi,j(z,t) + lnfgjj,—“R;-"(z,t) (3.5)

£z, 1) = 17D, j(2,1) + 1] g/ R (2, 1) zel

It has to be emphasised that restrictions imposed on the class of motions
under consideration reduce to the requirement that the basic unknown fields
W(-,t), Q*(-,t), ®;i(-,t), R¥(-,t) have to be regular, slowly varying functions
for every t.

The above two modelling hypotheses have to be supplement by the condi-
tion imposed on the external loading on the lattice plate under consideration.
Namely, we shall assume that there exist continuous slowly varying functions
F(5t), fo(5 1), mi(-,t), m$(-,t) defined on §2 for every ¢, such that the condi-
tions

Fot) = 1A (e, mi(a 1) = ™A1 mé(e,
Pt = AT o 0h% w0 = AT Y mi (e, )l
a=1 a=1
(3.6)

hold for every z € L; where the cell area is equal to |A|.
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4. Governing equations of internal variable models

The governing equations for the deflection W, rotations &; and the extra
unknowns Q%, R will be obtained from the principle of stationary action un-
der two modelling hypotheses mentioned in Section 3. Introduce the notations

N

Ay = AT A fe
A=1
N _~—
Cijrr = A7 Y42 (K Ayt + KAttt
A=1
N ~
Aaﬁ = |A[—l Z:(AA)QAAhAa’LAﬁ
A=1

N
- s A A A | mAALAY Aa A
A%ﬁ = |A|™! z [AAnf:niAgikégilj + (K njnf + KAt )gkiagzjﬁ]
A=1

N
k= Al E(AA)_I(KAnfnf‘ + K%f‘t?)tfgﬁ“
A=1
N —~
Df = A7) T AR AA A pAe

A=t (4.1)

N
- TALA A
D =A™ Z AT 9k
A=1

N
-1 ATA, Ay A
D?ﬁ = |A| E A2 A% h agiké
A=1

T
pim AT M
a=1
n
Xij == h AT ZJ;;
a=1

TL
uaﬁ - IA‘_I Z Mahaahaﬁ

a=1
n
X5y = hTHAT Y Thgkeer)
a=1

where & stands for mean height of the beams in the direction normal to
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0z z9-plane. After substituting to (2.7) the right-hand sides of equations (3.2),
(3.5), (3.6) and taking into account the smoothness hypothesis (related to
calculations of averages), as well as the conditions (3.1) and the notations
(4.1), we arrive at the integral form of the action functional A =& — K - W,
where now

1

1 ag 8 2 af 8
S AYQUQP 4 S AT RY R

1 1
£ = /(EAéj!pi!pj + 503'3;“@51',3'@&3 + 5
+FBCc e REDs 4 + DPQY + IDGWRS + ID{PQORY) duyda

(4.2)

K = [( WW + 212980008 4 L 5 hixibid; +

- hQHX“ﬁRaRﬁ) dz, dzs

2
2

W = /(fw FUfOQ% + hang; + hlm; R dayday

From the principle of stationary action we obtain the following equations for
deflection W and rotations @;

(Aij¥j + DEQ™ + IDERY) ;s — uW + f =0 ws)

(Criji®j + I BSRS) i + eri(Aij ¥ + DFQ* + IDERY) — B xxi®; + hmy = 0

which are coupled with the following equations for the extra unknowns Q¢,
R<
Z

PP + APQP + DRw; + IDMPRP = 15

(4.4)
R2PXERT + PAYRY +1D8w; + 2B @, + 1D]*QP = him
here ¥; is defined by Eq. (3.4). The obtained equations have to be satisfied
for every % in the region 2 of 0z;29 and represent a continuum model of the
periodic lattice-type plate under consideration.

It can be seen that the extra unknowns Q¢, R{ are governed by the
ordinary differential equations (4.4). Hence in general, Q%, RY do not enter
the boundary conditions and that is why they have been called kinematic
internal variables. Similarly, the obtained continuum model will be referred to
as the internal variable model (IV-model).

The governing equations (4.3)-(4.4) can be also written in the equivalent
form:
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— counstitutive equations

P, Ay 0 DY Dl [ @]
My | | 0 Cuy 0 PPBY; P;)
se | | pg 0 A D¥ || QF
HY | 1pg 12Be, IDP 12AY | | R |
(4.5)
U, = W; +€i;P;
— equations of motion
Pi—pW +f=0
(4.6)
Myi; + exiPs — W2 x3i®; + hmy = 0
— dynamic evolution equations
l‘zuaﬁQﬁ + ge — lfa
(4.7)

WPX R + HE = himg

From a formal viewpoint, equations (4.6) are similar to the known plate-type
Cosserat continuum equations, Wozniak (1970). However, contrary to the Cos-
serat media, we also deal here with dynamic evolution equations (4.7) which
are coupled with equations of motion (4.6) via the constitutive equations (4.5).

As it was stated above, for the internal variables Q¢, R{* we have obtained
ordinary differential equations (4.4) involving exclusively time-derivatives of
Q%, R while the deflection W and rotations &; are governed by the partial
differential equations (4.3). Thus, in formulation of the initial-boundary value
problems, equations (4.3)-(4.4) have to be considered together with two boun-
dary and initial conditions for W, ®; and with two initial conditions for Q¢,
R. Besides, in the framework of the derived continuum model of latticed pla-
tes only boundary conditions for W and &; have a physical motivation, being
independent of possible disturbances of the periodic structure of the medium
near the boundary of a region (2. It has to be emphasised that solutions W,
®;, Q*, R to any initial-boundary value problem have a physical meaning
only if they are represented by slowly varying functions.

In the governing equations of the IV-model there exist two length parame-
ters h and [. The parameter h treated as a certain mean height of beams in
the direction normal to 0z;zs-plane is much smaller than the microstructure
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length parameter [. From the I'V-model proposed we can pass to two models,
the first one will be called the model without rotational inertia terms while the
second one can be called the local model and it will be discussed in Section 5.

The model without rotational inertia terms will be obtained under assump-
tions that the terms involving h in equations (4.3), (4.4) will be neglected. In
this situation the internal variables Rf can be eliminated from the governing

equations of the I'V-model. Denoting by Egﬁ elements of the inverse matrices

of matrices A%ﬁ (which are non-singular because the strain energy (4.2); is
positive definite), from (4.4), we obtain

ZR? = _E%ﬁ(Dﬁé% + 1B, P, + D]Q7) (4.8)

where E:;BA‘;;? = J; (no summation over o, 3). After substituting to equ-
ations (4.3) and (4.4); the right-hand side of (4.8), we arrive at the following
equations

4y — B D3.DY; + (D] - B DI*DYQ" - 1B} By, Dl -
—uW + f=0

{(Ckijl X EaﬁB‘rﬁBpkz) i lb:a,@DCt Bszd? ZEGﬁD’YQngZQW] . +

+5k3-[(A - B9 DBy + (D) - B4 D1 DP)Q - (4.9)

TrL

ml—mjp

~IE*?Be. DPw, ]:0

2uB QP + (A% — E)Y D DY)QP + (DY — E}] Dy D)W,
_lE Da?Bk}p P = l.fa

where ¥; := W; + €;;®;. Now basic unknowns are functions W, &;, Q.
The obtained equations have to be satisfied for every ¢ in the region {2
of 0z;zg-plane and their solutions have a physical sense only if W, &;, Q7
are slowly varying functions. This continuum model will be referred to as the
model without rotational inertia terms of the periodic lattice-type plates under
consideration.

Both the model without rotational inertia terms and the 7V-model can be
used to describe the length-scale effect on the dynamic behaviour of latticed
plates under consideration, on account of the presence of the microstructure
length parameter [ in the governing equations of these models.
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The governing equations of proposed models describe dynamics of a lattice-
type plate of an arbitrary complex periodic lay-out in the 0z;zo-plane. If we
deal with the latticed plate of a simple lay-out, i.e., having only one rigid joint
in every repeated element (in this case n = 1) then Q%, R¢ drop out from
all equations and we pass to the Cosserat model of lattice-type plate which
coincides with that discussed in Wozniak (1970).

At the end of this section let us observe that in the quasi-stationary pro-
blems the internal kinematic variables can be eliminated from the governing
equations of the proposed models by means of equations (4.4) in the frame-
work of the I'V-model or by means of equations (4.9)3 within the model without
rotational inertia terms.

5. Passage to the local model

The continuum model called the local model will be derived from equations
(4.3)-(4.4) by the asymptotic procedure in which the microstructure length
parameter [ is scaled down. At the same time, it is assumed that the length
parameter A tends towards zero much faster than the parameter I, i.e.,
h = ofl).

Taking into account definitions (4.1) it can be seen that all coefficients
except Ck;j; will be constant under the above rescaling. Neglecting the terms
involving h and setting ! — 0 in governing equations (4.3) and (4.4);, we
arrive at the following equations

(AW + DPQ™) ;i — pW + f =0
Cm‘j;@j,gz' -+ Ekz’(Ag'jo + D?Qa) =0

and
AYPQP + D8w; = 0 W = W + €i;P; (5.2)

Equations (5.2) represent the system of linear algebraic equations for QF.
Because the strain energy given by (4.2); is positive definite, hence the matrix
A®® has to be non-singular. Denoting by FE*? the elements of the matrix
inverse to A% F ABY = §27 we obtain for the internal kinematic variables
Q7 the formulae

QP = —E*° DRy, (5.3)
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and hence from equations (5.1) we can eliminate the internal kinematic varia-
bles by means of (5.3). After some manipulations we obtain

expCriji@jtip + bW — f =0
(5.4)
Okéﬂ@j,li + 61‘;3‘(141'3' _ EQ’GD?D?)SPJ- =)
From notations (4.1) it follows that coefficients Cp;;; are of the order of 12 and
hence they can be written down in the form Cj;; = 120;“'3;5. The coefficients

ékijg, similarly to the coefficients A;; — E‘"*@}_)_f"IJé3 are constant under the
limit passage [ — 0. Hence equation (5.4)y yields

2 Criji®; i + exi(Aij — BXP D DY) = 0 (5.5)
Under the limit passage [ — 0 we obtain
;=0 (5.6)
and from the definition (3.9) we have
B = — ;Wi (5.7)

Define
Dpimi = €kpEjmChiji (5.8)

where Cjij is given by (4.1)2. Substituting to (5.4); the right-hand side of
(5.7) and using (5.8) we obtain finally

DpimIW,piml + }-"W -f=0 (59)

The obtained equation (5.9) represents an asymptotic model of the periodic
lattice-type plate under consideration which can be called the local model.
The only unknown in this model is the deflection W which has to be a slowly
varying function for every t in the region (2 of 0zjxs.

6. Applications

The governing equations of models proposed in Sections 4 and 5 will be
now applied to the analysis of free vibrations of the lattice-type plate strip
simply supported on the opposite edges z; = =£0.5L; the lay-out of this
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Fig. 3. The lattice-type periodic plate and its periodicity cell

latticed plate and a cell A are shown in Fig. 3. The cell has two rigid joints;
in this case n =2 and v =n—1=1, ie., the systems of numbers A**, g/,
a=1,..,n, a=1,.., v, reduce to vectors with components A'!, h?' and g¢'!
g*!'. Moreover, let the axes of all beams be parallel to the pertinent coordinate
axes xy,z9. Let us consider the case in which the material of every beam is
characterised by the Young modulus F, the Kirchhoff modulus G and the
mass density p (B! = E? = F3=FE*=E, G' =G> =G® = G* = G,
p1 = pa = p3 = ps = p); the inertia moments of beams I4, I, A=1,..,4,
are assumed to be interrelated by I3 = I, Ig' = Ig and I' = I?, I& = Ig;
moreover, the cross-sectional area of beams is assumed to be equal to F
(F' = F? = F?® = F' = F), and the lengths of beams [“ are defined
as I3 =11 =1y, I' #[?. In this special case, the masses assigned to all nodal
joints are equal and the rotational inertia moments assigned to all joints satisfy
conditions J{y = J§; =0, a = 1,2. Let [ = [, be the microstructure length
parameter shown in Fig. 3. Assuming that all unknown functions depend only
on z; and time ¢, bearing in mind definitions (3.4), (4.1) and neglecting
external loadings, we obtain from (4.3)-(4.4) a system of governing equations
for the plate strip. Calculate from (4.1) the coefficients and denote

Corar = ET'(Iy)™"

Cru = GI(lp) ™

31111 = Béu - 32121 - 51121 =0

p=p't = M(ll)™!

Ay = 12ED ) + () ()™

Agy = 24ED(1")(1?)~?

AN = BEI L[N+ (12)73(1) ! (6.1)
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DY = 4BI[(2)2 - (1))(ly)!
Aj} = Apy = Ay = Ay =
= 4(Lly) " {6BIP (L) + (BI' + GIHIIN ™ + (127}
X1 =h 2D (L)
X22 = h™ 2 Jaa(lily) ™!
Xi1 = X2z = X2 = Xa1 = b7 (Iula) ™ (Ju1 + Jae)

where M = 52 M%, Jy = 322_, J& and M®, J& are defined by (2.1),
(2.2), and denote

A=Al = A} = Al = 43 D=pj
(6.2)
X = X1 = X22 = X12 = Xa1
Introducing a new unknown defined as
R' = R} + R} (6.3)
we obtain the system of three equations for W, Q, &,
An(Wa+ @), +DQ, — pW =0
Co121Pa,11 — Al (W1 + Dy) — DQ' = hlxandy = 0 (6.4)
Pu@' + AMQ + DWW + @5) =0
one equation for &;
Cii11P1,11 — Agpe®y — BPx11P1 =0 (6.5)
and one equation for R!
h*xR' + AR' =0 (6.6)

The equations (6.4) describe bending of the plate strip under consideration
in the planes parallel to 0z,z3-plane while equations (6.5) describe torsion
in the planes parallel to 0zszs-plane. In the aforementioned equations there
exist two length parameters h and [, where h < [. Parameter & have
been introduced in a formal way in Sections 3 and 4 (cf. formulae (3.6)3 4 and
(4.1)g,10 and that is why in the further calculations we shall put

Xij = h*xij X =h*x (6.7)
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Looking for the free vibration frequencies of the lattice-type plate strip, solu-
tions of the above equations can be assumed in the following forms

W = Aw sin(kz) cos(wt)

Py = Ag, cos(kz)) cos(wt)

Q' = Ag: cos(kzy) cos(wt) (6.8)

@) = Ag, cos(kz)) cos(wt)

R' = Api sin(kz,) cos(wt)
Substituting the right-hand sides of (6.8); 23 into equations (6.4) we obtain
the system of three linear algebraic equations for Aw, As,, Ag, which has
nontrivial solutions provided its determinant is equal to zero. This way we
arrive at the characteristic equation for the free vibration frequencies related

to equations (6.4). This equation, being the dispersion relation for (6.8); 2 3,
has the form

32#5{\22w6 - U [M(ZQAH + 12k202121) + f22(12k2A11 + A“)] w! +
+ (A" Av = D) + K*%an) + nCorn (PR Avy + A2 w? = (6.9)

—Ch191 (A Ay — Dk =0
Let us define the nondimensional parameter

_ 2nl
L
where L is the wavelength. Because W, @9, @ have to be regular slowly
varying functions, hence [/L <« 1 and parameter ¢ is sufficiently small
compared to 1. Bearing in mind this fact, from (6.9) we obtain the free
vibration frequencies which can be represented by the following formulae

e =kl (6.10)

(w1)2 - Ca121 X Ca121 ( AN Cya

X22\ .6 8
+#)k+0@)

7 B NAp Al - D2
All D2
(wﬁ=pp+%ﬁﬂ+mg) (6.11)
A AL — D2
(‘U’S)z - 115522_411 + 0(52)

Taking into account the equation (6.5) and its nontrivial solution as (6.8)4, we
arrive at the following free vibration frequency
Ay + Crnik?

2
(wa)® = %u (6.12)
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Substituting the nontrivial solution (6.8); to equation (6.6) we obtain the
following free vibration frequency

S

(ws)? = (6.13)

Thus, in the framework of the IV-model for the lattice-type plate strip un-
der consideration shown in Fig. 3, we have obtained free vibration frequencies
defined by (6.11), (6.12), (6.13).

Now we shall consider the model without rotational inertia terms which is
governed by equations (4.9). For the identical plate strip and representative
cell, as previously we obtain the following system of equations

A (Wi + @)1 + ﬁQ,l — uW =0
Co121P2,11 — A (W + &) — DQ =0 (6.14)

2uQ + AN Q + D(W,, +3,) =0

Coefficients in the above equations are defined by formulae (6.1). Assuming
solutions to the above system in the form given by (6.8); 2,3 we arrive at the
dispersion relation

#2(12‘{411 ~+ l2k202121)w4 - ;LI:AHAM - 52 + (l2k2A11 + A11)02121k2]w2 +
(6.15)
+(AM Ay - D*)Couak? =0

Under similar assumptions as above we obtain the asymptotic formulae for
the free vibration frequencies

11 2
(wp)? = %kd B (OQLQI)A kS + O(e?)
p(A At — D?)
(6.16)
11 _ P2 Ll
(wir)? = ApA D " A Corny k2 + O()

C 2p(Ayy + Cor1k?) T 12u(Ayy + Coya1k?)

Thus, in the framework of the model without rotational inertia terms we have
obtained two free vibration frequencies defined by (6.16). The frequency wpy
is the higher one.
Using the local model for the plate under consideration, from (5.9) we
obtain )
DiyiWan +pW =0 (6.17)
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where assuming the definition (5.8) we have Djj;; = Cg191, and hence we
arrive at the following free vibration frequency

WP — 02121k4
W

(6.18)

Thus, in the framework of the local model we can obtain only one vibration
frequency given by (6.18).

Comparing the results obtained from three models derived above we conc-
lude that from the local model, only one free vibration frequency can be ob-
tained. This frequency does not depend on the microstructure parameter [
characterising a size of representative cell of the lattice-type plate under con-
sideration. Hence in the framework of the local model, dispersion phenomena
cannot be described. From the governing equations of the I'V-model and the
model without rotational inertia terms we have obtained also higher vibration
frequencies because these equations contain the microstructure parameter. Hi-
gher frequencies are defined by (6.11), 3 and by (6.13) in the IV-model, and
by (6.16)2 in the model without rotational inertia terms. The influence of
rotational inertia on dynamic behaviour of the lattice-type plate under consi-
deration is visible both in the formulae for lower and higher frequencies (i.e.
wy and wy). Moreover, the frequencies ws-ws have been caused by the pre-

sence of terms x;;, X?jﬁ (related to inertia moments) in governing equations
of the I'V-model.

7. Numerical example

Now, an application of formulae for free vibration frequencies obtained in
the previous section will be illustrated by a numerical example. We introduce
the following dimensionless coefficients

o= I (IYH)! p=1r}I)t 0%
Y= II[F(ll)z]”l §=GE! £ = lg(h)_l (71)
A=) !

where FE is the Young modulus; G is the Kirchhoff modulus; I', I}, I*, I3

are the inertia moments; [, [ are the lengths of the cell; ! is the length of
the beam B! (see Fig.3); F is the cross-sectional area of beams.
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Free vibration frequencies for the IV-model, (6.11), (6.12), (6.13), for the
model without rotational inertia terms, (6.16), and for the local model, (6.18),
we will write in the dimensionless form

(@7 = 2 (2 (1.2

where p is the mass density of the material of the beam; w is the frequency
described by (6.11), (6.12), (6.13), (6.16) or (6.18).

0.015 6
o R 1] I T (Fl) | T T T (b)
€2 €23
0.010} e — — — ]
L2
£2,
0.005F 21 —
| | ] ] | ] |
0 0.02  0.04 0.006 0.0880.1(} 0 0.02  0.04 0.06 0.088 0.10
100 T T T T
2
= ©
2y
11| B A -

I 1 |

|
0 0.02  0.04 0.06 0.08 0.10
Fy

Fig. 4. Diagrams of spectral lines: (a) for lower frequencies: 2, — ¢ (the I'V-model),
21, — € (the model without rotational inertia terms), 2 — e (the local model);
(b) for higher frequencies: 25 — ¢, £24 — ¢, {25 — € (the IV-model); (c¢) for higher
frequencies: (2, — ¢ (the IV-model), 2y — ¢ (the model without rotational inertia
terms); values of parameters defined by (7.1): a=0.2, 3=0.5,7=0.2, p =4,
§=04,=1,A=02

Nummerical results obtained by using the aforesaid formulae for the frequ-
encies and formula (7.2) are presented as spectral lines in Fig. 4. These plots
are made for the following parameters (7.1): «=0.2,8=0.5,7y=0.2, ¢ = 4,
6 =0.4, £ =1, A =0.2. In Fig. 4a we have plots of the relations for the lower
frequncies: (2 —e¢, §2;, —¢, §2—¢. Diagrams of higher frequencies are presented
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in Fig.4b: the relations (23 — e, {24 — €, {25 — €; and in Fig.4c: the relations
{2y — e, 2y — €. The dimensionless wave number ¢ defined by (6.10) is from
the interval {0,0.1).

Analysing the diagrams of spectral lines we can observe that:

e Differences between values of lower free vibration frequencies calculated
within the I'V- model, the model without rotational inertia terms and
the local model are negligible (Fig. 4a).

e Taking into account the rotational inertia terms in the I'V-model we can
investigate three additional higher frequencies (Fig. 4b).

e Higher free vibration frequencies related to the periodic structure
of the lattice-type plate, which plots are shown in Fig.4c, can be
obtained only within models based on the tolerance averaging method
— the IV-model and the model without rotational inertia terms; but
values of these frequencies are much smaller than those resulting from
the IV-model after neglecting the inertia terms.

8. Conclusions

In this paper, the general averaged continuum model (the /V-model) of
periodic lattice-type plates for the analysis of dynamic problems has been
derived. The obtained I'V-model equations constitute a certain generalisation
of the Cosserat continuum equations. The model has been derived by using
the approach which is similar to the tolerance averaging method proposed by
Wozniak and Wierzbicki (2000) for periodic composites. In what follows the
main features of the presented model will be listed:

e The proposed models can be applied to the analysis of periodic lattice-
type plates which have an arbitrary complex lay-out.

e The IV-model describes the cell size effect on the global dynamic be-
haviour of latticed plates, because in governing equations of the model
there exists a microstructure parameter /.

e Contrary to the homogenized model, by using the IV-model it is possible
to investigate dispersion phenomena and calculate higher free vibration
frequencies (and also higher wave propagation speeds).
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e The IV-models can be formulated on different levels of accuracy; on

every level the system of real numbers A%, gif, o =1,...,v, 4,7 = 1,2,
have to be assumed a priori as describing the class of motions we are
going to investigate. The most simple IV-model is based on the smallest
repetitive cell and consists of the minimum number of internal kinematic
variables. More accurate IV-models are based on cells composed of two
or more adjacent repetitive elements and hence, they may involve even

a large number of kinematic internal variables.

The form of governing equations of the IV-model is relatively simple since
the extra unknowns called internal kinematic variables are governed by
ordinary differential equations involving only time-derivatives of these
variables, and they do not enter the boundary conditions. Moreover, the
boundary conditions with extra unknowns may be not well motivated
from the physical viewpoint.

The I'V-model is mainly restricted to the analysis of long wave problems
(compared with the microstructure length parameter) because it was
obtained under the assumption that all unknown functions (deflections,
rotations and internal variables) are slowly varying.

The governing equations of the general IV-model involve inertia terms
as a result of assigning inertia moments to every nodal joint of the lattice
under consideration. From this model, the model without rotational in-
ertia terms has been derived which also describes digpersion phenomena
and makes it possible to calculate higher order motions. Both models
can be approximated by the local model which neglects the effect of the
microstructure size of latticed plates on their global dynamic behaviour.
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Ciagly model zagadnien dynamicznych periodycznych ptyt siatkowych
o ztozonej strukturze

Streszczenie

W pracy zaproponowano nowy ciggly model do analizowania zagadnien dyna-
micznych sprezystych, periodycznych plyt siatkowych. W przedstawionym podejsciu
cze$ciowo wykorzystano technike tolerancyjnego u$redniania, opracowang przez Woz-
niaka i Wierzbickiego (2000) dla termomechaniki kompozytéw. Podejscie to zastoso-
wano w pracach Cieleckiej i in. (1998, 2000) w modelowaniu gestych struktur komér-
kowych. Zaproponowany model opisuje wplyw wielkoéci mikrostruktury na dynamike
plyty siatkowej. Otrzymane réwnania zastosowano do analizy propagacji fal w pew-
nym szczegdlnym przypadku plyty. Pokazano, ze efekt skali odgrywa wazng role i nie
moze by¢ pominiety w powyzszej analizie.
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