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In the first part of this paper mathematical description of heat transfer
processes proceeding in the domain of continuous casting is presented.
The approach called the second generation modelling is taken into acco-
unt. In particular, the capacity of a source function in the energy equ-
ation is determined by the nucleation and growth laws and the Johnson-
Mehl-Avrami-Kolmogorow theory. Next, on the basis of the methods of
sensitivity analysis the influence of cooling conditions of the cast slab
surface on the course of solidification process is analyzed. At the stage of
numerical computations the boundary element method has been used.
In the final part of the paper an example of computations is presented.
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1. Introduction

From the mathematical point of view the solidification and cooling proces-
ses in the domain of continuous casting belong to a group of moving boundary-
initial problems and they are described by the Fourier-Kirchhoff equation and
adequate boundary-initial conditions. It should be pointed out that taking
into account the complicated form of the above mathematical description the
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application of typical analytical methods is rather impossible, and only the
numerical methods allow to find the effective solution to the problem discus-
sed. In the case of a continuous casting process a big number of numerical
algorithms can be used, in particular the finite difference method (Saatdjian,
2000; Kapusta and Mochnacki, 1988; Mochnacki, 1993b; Mochnacki and Su-
chy, 1994), finite element method (Mochnacki and Suchy, 1994; Lewis et al.,
1996), boundary element method (Majchrzak, 1993; Mochnacki, 1993a, 1996;
Mochnacki and Majchrzak, 1995; Majchrzak and Mochnacki, 1996; Mochnacki
and Suchy, 1997a,b; Majchrzak et al., 1999), collocation method (Majchrzak
and Mochnacki, 1988; Mochnacki and Suchy, 1995) and also the certain non-
typical numerical algorithms (e.g. Kapusta and Wawrzynek, 1992; Majchrzak
and Wawrzynek, 1992).

A numerical solution as a rule concerns the analysis of a course of the
solidification process for different technological parameters (grade of the metal,
shape of the cast strand, pouring temperature, pulling rate, cooling conditions
etc.) but one can find the more complex numerical models. It is possible to
analyse the effects of macroscopic segregation in the domain of casting volume
(Mochnacki et al., 1999; Majchrzak et al., 1998), the mechanical aspects of the
process (e.g. thermal stresses) and the course of crystallization process (the
second generation models (Stefanescu, 19993; Fra$ et al., 1993; Majchrzak and
Longa, 1996)).

The very interesting problem consists in the analysis of mutual connections
between the cooling conditions of the cast strand surface and the kinetics of
solidification in the domain considered. Here, the methods of the sensitivity
analysis constitute a very effective tool for such a kind of investigations. In
this paper a direct approach will be used. In particular, the influence of the
heat transfer coefficient determining the heat exchange between the casting
surface and the cooling system on the course of the solidification process will
be discussed.

2. Governing equations

The construction of a numerical algorithm simulating the solidification
and cooling processes in a cast strand volume requires assuming a certain
mathematical model in the form of an adequate partial differential equation
as well as geometrical, physical, initial and boundary conditions. We consider
a rectangular aluminium casting produced by a vertical continuous casting
machine. In a general case, the heat transfer processes proceeding in the casting



SENSITIVITY OF CONTI-CASTING PROCESS... 131

domain (2 are described by the energy equation of the form
c(T) (%—f +w- gra,dT) = div[(MT) grad T) + Q (2.1)

where ¢(T'), A(T) are the thermophysical parameters (volumetric specific heat
and thermal conductivity), w is a velocity field, @ is the capacity of internal
heat sources whereas 7', 1 denote the temperature and time, respectively.

The distribution of the velocity field w results from the technological con-
ditions and, as a rule, this element of the energy equation is treated as a pulling
rate w (e.g. for the vertical cast strand w = [0,0,w]) though the convective
effects in the liquid state sub-domain §2)(¢) associated with the interaction of
the molten metal stream and (or) the action of the rotational magnetic field
should be in a certain way taken into account. The exact analysis of these very
complex phenomena is rather difficult both from the theoretical and numeri-
cal points of view, but recently there have appeared commercial codes using
the FEM on the basis of which such problems can be simulated (Parkitny
and Sowa, 2000). In numerous mathematical models of the continuous casting
process it is assumed that the convective heat transfer in the adequate sub-
domain §2(t) is substituted with an unrealistic heat conduction, which means
that in the place of the real thermal conductivity A(T') the so-called effective
thermal conductivity for molten metal is introduced (Skladostev, 1974). The
component () in equation (2.1) determines the evolution of the latent heat
Ly [J/m3], and this source function can be expressed as

dfs
Q= Lv—=r (2.2)
where fg is the local volumetric fraction of the solid metal in the neighbour-
hood of the point considered. The capacity of the source function @ results
from the analysis of the crystallization process (e.g. Stefanescu, 1993; Fra$ et
al., 1993; Majchrzak and Longa, 1996).
In the Cartesian co-ordinate system {z,y, 2z} (cf. Figure 1) energy equation
(2.1) is as follows

or — ar
" [E{ ' wa] ) (2.3)
= 5% [A(T)%g] + %[A(T)%] - B% [,\(T) %f-] + Lva_gf_

The basic energy equation can be considered in a simplified form. The
heat conduction process in the domain of continuous casting proceeds, first
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=Y

Fig. 1. Rectangular cast slab

of all, from the axis to the lateral surface and its vertical component can be
neglected. Thus we have
or oT ] 0

o(T) {E fu| = = [,\(T)

0 Ofs
+ g [/\(T)a—y] IS (24

(':?T}
Let we rewrite equation (2.4) in a coordinate system tied to a certain section
of the shifting casting, namely z’ = z, y' = y, 2/ = 2z — wi. We assume, as
previously, that the heat conduction in the z direction can be neglected. It is
easy to check up that in the energy equation we lose the component 97'/0z

or 9 a:r] ] dfs

o(T) 55 = 557 M D] + oy A D3, ]“’" ot (25)

The above presented idea constitutes a basis of a certain numerical algorithm
called a wandering cross section method (WCSM) (Majchrzak, 1993; Moch-
nacki and Suchy, 1993). The WCSM corresponds to the assumption that a
certain casting section, in which the temperature field is described by equ-
ation (2.4), is formally fixed and the conditions given on its boundary change
with time. In this way the variable conditions simulate the displacement of
the section considered through the installation. In spite of the fact that 2D



SENSITIVITY OF CONTI-CASTING PROCESS... 133

solutions can be found, in the reality we obtain a 3D temperature field. In
order to simplify the form of the next formulas we denote again z’ = z and
!
¥y =19.
Typical boundary conditions describing the heat exchange on the lateral
surface of the continuous casting are of the form

ADIE = g = o(T - Ty) (2.6)

where 0T'/On is the normal derivative at the boundary point, « is the heat
transfer coefficient, 7, is the cooling water temperature. For the upper sur-
face of the casting it can be assumed that T = Tp, where Tp is the pouring
temperature and this value constitutes the initial condition of the problem
considered. It should be pointed out that the wandering cross section method
applied here does not require the formulation of boundary conditions for the
upper and lower surfaces limiting the casting domain.

Now, the problem of the source function will be discussed. A temporary
value of the solid fraction fg of the metal at the considered point is given
by the Johnson-Mehl-Avrami-Kolmogorov equation (Kolmogorov, 1937; Fra$,
1992; Fra$ et al., 1993)

fs =1 —exp(—w) (2.7)
where
4 [ON[[ .13
wzgwyfﬁ[[udf] dt (28)
0 t

In equation (2.8) N is the number of nuclei (more precisely: density
[nuclei/m®]), v is the coefficient equal to 1 for spherical grains and v < 1
for dendritic growth, u is the rate of the solid phase growth, t' is the initial
instant of the crystallization process. If we assume a constant number of the

nuclei, then
t

4 3
W= gwuN [/ u d'r] (2.9)
t.‘
The solid phase growth (equiaxial grains) is determined by equation
OR
= — pATP 2.10
U= = p (2.10)

where R is the grain radius, g is a growth coefficient, p is the exponent from
within the interval p € [1,2], and

AT =Ty =T (2.11)
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is the undercooling below the solidification point Ti,. Additionally, we assume
that for T > T.: AT = 0, in other words u = 0, and then the lower limit in
integrals (2.8) and (2.9) equals ' = 0. Hence

t

4 3
w = —gm/N [[;,tATp d’r] (2.12)
0

Introducing (2.7) to equation (2.5) one obtains

ar o orT 0 oT Ow

(T = 5a D] + 5, MDG |+ Iven(-o) 55 213
In order to simplify the further consideration we assume constant values of the
thermophysical parameters ¢ and A (the crystallization process proceeds in a
rather small interval of temperature and this assumption does not introduce
essential errors). Thus

c% = A\VT +Q (2.14)

where

t t

Q = 47N Ly u AT? ( / WATP d'r)2 exp [— ng ( / WATP d'r)3] (2.15)
0 0

This equation supplemented with Robin’s boundary conditions (2.6) and the
initial one determining the pouring temperature of the molten metal con-
stitutes a base for numerical computations of the temperature field in the
continuous casting domain

(Pecn - c%=,\v2T+Q

{ Per: AT _ -1y (2.16)
on

L t=0": T =1

3. Sensitivity analysis

In this section a seunsitivity analysis of the solidification process with re-
spect to the heat transfer coefficient on the lateral surface of the casting is
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presented, at the same time the direct method is applied (Dems, 1986; Dems
and Rousselet, 1999).

Differentiation of the equations forming the mathematical model discussed
with respect to « leads to an additional boundary initial problem

| Per - %(%)=a%+T—Tw (3.1)
Li&=0: %TEG=()

where P € {2 is the point from the interior of the casting domain, P € I' is
the boundary one.
We denote U = 0T /0« and additionally

t t
TS = /pATp dr Ty = /uATp"lU dr (3.2)
0 0

Then

d 4
Gy = % = 4dpmvN Ly exp(—gﬂ-erg) . s
3.3

[471'VNp,ATppU'rg' — QUATP pyrg — ;J,UT%ATP‘I]

At the stage of numerical computations the value p = 1 has been assumed.
So, boundary initial problem (3.1) can be written in the form

(Pen: c%¥=AVQU+Qu
Vrer: %Y _aw-uy) (3-4)
on
\ t=0: UO =0
where T T
Uy = =2 (3.5)

One can notice that sensitivity model (3.4) from the mathematical point of
view is the same as the basic one (2.16). In other words, we can use the same
numerical algorithm in order to solve both the basic and additional boundary



136 B. MOCHNACKI, E. MAJCHRZAK

initial problems (the different form of the source functions must be taken into
account, of course). It should be pointed out that the sensitivity model cannot
be analysed separately because it is coupled with the solidification model by
the components @, and U,,. The problem discussed has been solved using the
boundary element method for parabolic equations.

4. Boundary element method

In order to solve the basic and sensitivity problems the 1st scheme of the
boundary element method has been applied. We consider the following Fourier
equation

OF(z,y,t) _
2 =
where F' denotes the temperature or function U, while S(z,t) is the source
function.

We introduce a time grid with the step At = t/ — t/~1, and then, for
the transition /=1 — #/ we consider the following boundary integral equ-
ation (Mochnacki and Majchrzak, 1995; Majchrzak and Mochnacki, 1996; Maj-
chrzak, 2001; Brebbia et al., 1984)

(z,y) € 2 : AVEF (z,y,t) + S(z,y,t) (4.1)

tf
B(G:W)F(&T}:tf)"‘% f /F*(E,n,x,y,tf,t)J(x,y,t) drdt —
tf-1 r

tf
=2 [ [r€nnut,oP@y.y ara+

tf-1r
(4.2)

1
+E//F*(f,n,:c,y,tf’tf“l)F(w,y,tf‘l) 2 +
2

tf
+% / // S(xayft)F*(gsTfai‘:yetf:t) dS2dt

tf=1 2

In equation (4.2) F* is the fundamental solution (Mochnacki and Majchrzak,
1995; Majchrzak and Mochnacki, 1996; Majchrzak, 2001; Brebbia et al., 1984)

?.2

F*(&,m,z,y,t0 1) = mexp[*m] (4.3)
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where r denotes the distance between the observation point (£,7) and the
point under considerations (z,y), whereas

OF*(&,m,z,y,t7,t)
on

JHEm, oyt ) = =X (4.4)

and
OF (z,y,t)

on
The coefficient B(£) is from within the interval (0,1).

For the elements constant with respect to time (Majchrzak, 2001; Brebbia
et al., 1984) one obtains

J(z,y,t) = -\ (4.5)

BEnFEnt)+ [ I, )€ n,z,y) dr =
r

- / P(z,y,t/)h(€, n, z,y) dT + [ f S(z,y, " )g(€,m,2,y) d2 + (4.6)
I o]

+/f J*(g’n’way:tfatf_l)F(xsy;tf_l) das
n

where

tf
LT
bemay) =y [ TEmsutyd
f-1
! (4.7)
tf

1 .
g(ﬁanaway)=z/F(E,mm,'y,tﬂt) dt
tf-1

Discretisation of the boundary and the interior of the considered domain using
the constant internal and boundary elements leads to the following system of
equations (i =1,2,...,N)

N N L L

> Gydf =Y I+ P FT 4 zysT (4.8)
i=1 j=1 =1 =1

where

Gij = fg(éﬂn“}w,y) dr
I;
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f WE ' a,y) dTy i
1

Hij =< I (4.9)
-5 i =]
Pﬂ - ff F*('ﬁii niawwlyatfutf_l) dng
2
Zi = //Q(fiaﬂiaway) ds2
2
Introducing the Robin boundary condition
JI = o(F] - F,) (4.10)

to equations (4.8) we have
N N L L
S (aGi; — Hy)Ff =3 oGy Fy + EP,-;FH Y zusiTt )
j=l1 j=1 =1 =1

The system of equations (4.11) allows one to determine the boundary values of
F, and then, the fluxes J, see equation (4.10). In the second step the internal
values of the function F' can be found using the formula (i = N+1,..., N+ L)

N N L L
Fif = Z Hz'jF}f - Z Gz'ij'»f + z Pz’thf_l + Z Za'lsjfnl (4'12)
j=1 =1 =1 =1

5. Example of computations

The aluminium cast slab of 0.15x0.15 m size is considered. The pulling rate
is assumed to be w = 0.02m/s, while the pouring temperature Ty = 700°C.
The following parameters of the metal are introduced: A = 150 W/mK, ¢ = 3-
108 J/(m3K), Ly = 9.75 - 108 J/m3, T, = 660°C, N = 10'! nuclei/m?, p =
3-105m/(sK), v = 1, p = 1. The heat transfer coefficient o = 1200 W/(m?K),
cooling water temperature 7, = 30°C.

The quarter of the casting section is divided into 256 constant internal cells,
along which the boundary 64 constant boundary elements are distinguished,
and the time step is At = 0.05s.
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/

Fig. 2. Temperaure field (z = 0.3, a = 1200)

Fig. 3. Sensitivity field (z = 0.3, @ = 1200)
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Fig. 5. Indirect solution (z = 0.3, a = 1400)
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In Fig.2 and Fig.3 the temperature and sensitivity fields after 15s are
shown (they correspond to the distance z = 0.3 m from the upper surface of
the casting). Fig. 4 and Fig. 5 illustrate the temperature field for more intensive
cooling conditions (o = 1400 W/(m2K)). In Fig.4 the temperature field is
found directly, while in Fig.5 the temperature field is calculated on the basis
of the sensitivity field. In order to rebuilt the basic solution on the solution
corresponding to the new heat transfer coefficient the Taylor formula should
be used

or
T(a+ Aa) =T(a) + ﬁda =T(a) + Ul« (5.1)

One can notice that both results are practically the same. Figures 6, 7, 8,
9 show the results corresponding to the distance z = 0.6 m. The possibility
of transformation of the basic numerical solution to the solution for other
cooling conditions is one of the essential practical applications of the sensitivity
analysis.

The presented results of computations show that even in the case of non-
steady and non-linear complex problems the application of the sensitivity ana-
lysis leads to quite exact solutions. Propably, in the case of bigger values of
Aa second order sensitivity coefficients should be introduced.

The cooling curves shown in Fig. 10 correspond to basic solution (1) and
the indirect solutions for Aax = £200 W /(m?K) (2, 3). It is clearly visible that
the second generation models give the information concerning the recalescence
effect and the results are closer to the real course of the process. The propelling
force of crystallization is the undercooling below the temperature 7T,.. The
beginning of activity of the internal heat sources takes place when the local
value of temperature T drops below T, (Figure 12: 1 - basic, 2, 3 - indirect).
Initially, the capacity of the internal sources is small and the temperature
decreases as before. The progressive growth of () causes an increase in the
local temperature. At the final stage, the capacity of @) decreases (Q — 0)
and the typical cooling process takes place.

The solidification model based on the well known Stefan boundary condi-
tion or the model, in which the artificial mushy zone is introduced (the fixed
domain method) (Crank, 1984; Idelsohn et al., 1994), do not allow one to take
into account the processes proceeding on the micro scale. On the other hand,
however, such approaches (the I generation models) are also very useful in the
thermal theory of foundry processes.

The paper was sponsored by the State Committee for Scientific Reserch (KBN)
under grant No. 7T08B 00818.
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Fig. 6. Temperaure field (z = 0.6, a = 1200)

Fig. 7. Sensitivity field (z = 0.6, o = 1200)
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Fig. 8. Direct solution (z = 0.6, a = 1200)
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Fig. 9. Indirect solution (z = 0.6, a = 1400)
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Fig. 10. Cooling curves along the z axis near the casting corner
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Fig. 11. Capacity of internal heat sources
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Analiza wrazliwosci procesu cigglego odlewania na warunki chlodzenia
wlewka

W pierwszej czeSci pracy przedstawiono opis matematyczny krzepniecia wlewka cig-
glego wytwarzanego z czystego metalu. Do opisu wykorzystano podejScie nazywane
modelem drugiej generacji. W szczegblnodcei, wydajno§¢ wewnetrznych zrddel ciepta
bedaca sktadnikiem réwnania energii jest wyznaczana na podstawie praw zarodkowa-
nia i wzrostu oraz teorii Johnsona-Mehla-Avrami-Kolmogorowa. Nastepnie, wykorzy-
stujac metode bezpoéredniy analizy wrazliwosci, badano wpltyw warunkéw chlodzenia
powierzchni wlewka na proces jego krzepnigcia. Na etapie obliczelt numerycznych za-
stosowano metode elementéw brzegowych. W koricowej czesci pracy pokazano przy-
klad obliczei numerycznych.
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