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Analysis of stability and load-carrying capacity of thin-wall orthotropic
poles (columns, beams, masts, shafts) is conducted in the paper. The
pole cross-section is a regular polygon and it is subjected to combined
loads (compression, bending or torsion). The problem of buckling (sta-
bility problem) is solved using the asymptotic method by Byskov and
Hutchinson with taking into account the second order approximation.
Correctness of the results concerning the stability problem (critical lo-
ads and buckling modes) are verified by means of the finite element
method using the programme ANSYS 5.4. FEM is also used in order to
calculate load-carrying capacities. Numerical results are presented in dia-
grams. On the basis of the results several conclusions and final remarks
are derived.
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1. Introduction

The majority of hitherto published papers in the field of stability pro-
blems in thin-walled structures deals with buckling and post-buckling as well
as load-carrying capacity of isotropic or orthotropic members like: plates, be-
ams, columns and shells subjected to simple loads, particularly to uniform
compression. Generally, problems of stability in thin-walled structures are so
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complex, that even for simple cases like compression or shear, obtained so-
lutions are usually of certain level of approximation and are derived using
analytical, analytical-numerical or purely numerical methods. Several works,
which had been published before 1995, concerning the stability, post-buckling
in the elastic and elasto-plastic range as well as the load-carrying capacity
of thin-walled girders subjected to either simple or combined load are widely
discussed in two complete editions by Krélak (1990, 1995).

A solution to the stability problem in thin-walled members (columns, be-
ams, shafts) is extremely difficult when the member cross-section is of complex
shape and the member is subjected to combined load. Because of complex buc-
kling modes such a problem can not be solved using any analytical method.
The most widely used and most general method which can be applied in that
case is the finite element method since it enables one to calculate buckling and
ultimate loads of thin-walled structures of different shapes, different boundary
conditions and under an arbitrary system of loading. The second method,
which has been used in the stability analysis for about 25 years, is a finite
strips method. The method is particularly used in the analysis of girders of flat
walls subjected to combined load (Plank and Wittrick, 1974a; Graves-Smith
and Sridharan, 1978). It is also used in the analysis of the post-buckling state
(Sridharan and Graves-Smith, 1981) and of the interactive buckling (Benito
and Sridharan, 1985).

In the past, thin-walled structural members used to be made of isotropic
materials mostly. Nowadays, carrying structural members are very often made
of orthotropic composite materials, like fibrous cross-ply composites (fibres
perpendicular to each other). One of the advantages of composite materials is
a relatively wide range within which a designer can form their material proper-
ties in chosen directions or chosen areas. Particularly, material properties of
composite orthotropic rectangular plates and also thin-walled bars (columns,
beams, hollow shafts) of flat walls can be formed in an easy way. Designers who
want to apply orthotropic, composite materials (of desirable strength proper-
ties) for carrying thin-walled members search for information about structural
behaviour of such members subjected to different loads. In order to fulfil those
requirements the stability problem of thin-walled orthotropic struts subject to
combined loads is solved in the present paper. An analytical-numerical method
of transition matrices is applied to the solution. The method was successfully
used by several authors (Kroélak and Kolakowski, 1987; Biskupski and Kota-
kowski, 1994; Krélak, 1995) in the analysis of global, local and also coupled
buckling of structures subjected to simple loads.

Analytical-numerical methods, although less general than FEM, allow one
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to generate equations and formulas with an analytical method, and then to ob-
tain their solutions numerically. In comparison with pure numerical methods,
their basic advantages are lower requirements as far as hardware is concerned
and considerably shorter computational time. The correctness of the solution
to the stability problem (critical loads and buckling modes) obtained with the
analytical-numerical method has been verified with the finite element method
(ANSYS 5.4).

2. Aim of the analysis

Carrying structural elements formed as thin-walled members (columns,
beams, shafts) subjected to combined load are widely used in modern struc-
tures. More and more often, such members are made of orthotropic composite
materials.

The aims of the present analysis are as follows:

e gsolution to the stability problem of thin-walled poles of closed cross-
sections built of orthotropic flat walls and subjected to combined load

e elaboration of a computer programime

e realisation of numerical calculations of buckling loads of selected poles,
using the programme mentioned above

e comparison of the obtained results with the results derived from the
finite element method (using ANSYS 5.4)

o calculations of load-carrying capacities of analysed poles using FEM.

The applied analytical-numerical method allows us to calculate buckling
loads and also buckling modes of thin-walled poles of different wall thickness.
The material of each wall (strip) can have different properties.

3. Formulation of the problem and basic equations

Consider a thin-walled structural member (beam, column, shaft) of a pri-
smatic cross-section and the length [ which is built of orthotropic rectangular
plates (walls) having principal directions of orthotropy parallel to their edges.
The member cross-section can be either an open or closed (polygonal) profile
with one axis of symmetry. Each column wall can be divided into several (less
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than ten or a dozen or so) plate strips. Each strip as well as each wall can be
of different thickness and made of different materials. Due to the applied or-
thogonalisation method by Godunov, see Bidermann (1977), the differences in
the thicknesses and material properties of the adjacent walls (or plate strips)
can be significant.

The considered thin-walled member is simply supported at the ends and
can be subjected to a normal load and also to a bending moment. When the
member is of a closed profile a constant torsional moment may be exerted
upon it as well. The plate model of the structure is applied for the purposes
of the stability analysis.

For the kth wall the following general non-linear geometric relations are
taken into consideration

| 2 2
Egk = Uk,z + ‘(uk,x + Vgt wk,x)

2
1 2 2 2
Eyk = Vky T ‘2“('”'10,?; + Uiy + Wiy)
(3.1)
1
Exyk — §(uk,y + Vk,x + Uk, 2 UL,y + Vk,zVk,y + 'wk,:c'wk,y)
Rgk = —Wk,zx Ryk = —Wk,yy Keyk = —Wk,zy
Physical equations for the kth wall (strip) are as follows
1 1
Egk = Borty (Nek — nykNyk) Exyk = meyk
(3.2)
€ ! (N, Ngk)
e — -,
yk Eyktk yk yak+ Yk

Elastic moduli and Poisson’s ratios in equations (3.2) are related to each other
in the following way

Egk Vyck = Eyk Vpyk (3.3)

Variational equilibrium equations obtained from the principle of virtual works
and corresponding to geometric equations (3.1) take the form

f[Nw,m + Nayy + (NoUz) o + (Nyty) y + (Naytig) y + (N-Ty”,y),z] dudS =0
S
/[wa,z + Nyy + (Ngvz) o + (Nyvy) y + (Nayve) y + (ny”,y),x] dvdS =0
S
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S
+(Ngywz)y + (Nzy'w,y),m] dwdS =0

where N, N, and N, are the sectional forces and M,, M,, M, are the
sectional moments.

Kinematic and static continuity conditions for junctions of the adjacent
walls are described in the following form

Upp1 = Uk W41 = Wk €08 O — v sin O,
Whtly = Wiy V41 = Wk Sin Oy + vg cos O,
My11 = My, zyk+1 = Nayk (3.5)
Nyji1 — Ny, cos O — Q. sinfg =0
k1 — Ny sin b — @y cos O = 0

where

Myk = _Dyk (wk,yy + V:rykwk,z:c)

Q;k = Nykwk,y + nyk'wk,z - Dyk [wk,yy + (nyk + 4gyk)wk,x:ny]

_ Kk, _ Gi(l - szkyyxk)
Jyk = -

Boundary conditions corresponding to simple supports of both ends of the
member are fulfilled in the following way

N9 N1
Zb—/Nm dykzzB“mek
k=1 kyk k=1 kyk

N
dyr = > Ny
k k=1

=0,y =L,y
Vi = Uk =10 (3.7)
=0,y =Ly
W = Wk =0
=0,y z=l,yx
M = M, = ()
yk I=0,yk v 3::!:1”9

where by is the width of the kth wall or plate strip.



974 M. KROLAK ET AL.

4. Solution to the problem

The stability problem (for the 1st order approximation) is solved using the
asymptotic Koiter method (Krélak, 1990, 1995). The displacement fields U
and fields of the sectional forces /N have been expanded in power series with
respect to the amplitudes of the buckling modes ¢, (&, — amplitude of the
nth buckling mode divided by the thickness %, of the column wall regarded
as the first one)

Uy = AU 4 ¢, 0™ N = AN 4 ¢, W™ (4.1)

where U( ) and ﬁi") are the fields of the pre-buckling state while U,E”’) and
N,En) are the fields corresponding to the nth buckling mode.

For a complex load the membrane forces of the pre-buckling state acting
in the kth plate are taken as follows

NY = E el Ny, =0 Ng . = 2Gptgel (4.2)

The displacements in the pre-buckling state for the assumed boundary
conditions (support conditions at the member ends) are obtained in the form

0 0 0 0 0
U = EggT Vg = —VaykEqkYk + 2€myk$ (4.3)

xyk

Equilibrium equations expressed in terms of the displacements for the first

order approximation are described as follows
uéﬂ,{){ + gmiugj;zn + (V‘ywk + gwk)v,(;]) + (3 - nyk”ymk)sgkugc:lg)g +

+49xk€gykug2q + 29xk53:k“§: 3m + 2Egyk”§£g§ +

+(1 = vgyk) (Vyar + gmk)E;ck”k g)n + 293&523:&”)(0?31; =0

(nyk + gyk) (grz + gyk'vj(c ,g).g + Ugn,zﬂ +(1 - nyk)(”xyk + gyk) kui g)ﬂ +

Egp
+ (E—x — ys%yk - 2V$ykgyk)623k?)}(::gg + (44)
yk

+4(Vgyk + Zgyk)egykvggn — 2WyykEy kviﬂgn =0

(n) (n) Eyk  (n)
W geee T 2(Vayk + 29yk) Wy gepn + By, ki

by b
-12(1 - mek”yxk)( ) 1kw§£§)§ 48( ) gmkszykwg .f)n =0
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where
K, - Gr(l - Va:'ykyymk)
Gzk = =
ka Emk
_® — Y

In order to obtain a convergent numerical solution to the problem the follo-
wing orthogonal functions of the first order fields (corresponding to boundary
conditions at longitudinal edges) are introduced

) ox(n) b .
gy = NA™ 25 = (1+ 20k A ARV + Vay (1 + Vagk AAg — Ay

v Kk *
Egn.) _ N;;?;)I?_Lc = guil(1 - 2AA;¢)UE§2 + (1 + mek)\Ak - )\Ak)‘vgg)]
- 3 = o 9
7 =)
7 = —Méz)";i = ’*”r(cﬁin + ”ka"'”gf)a
yk

63
= QP Ul g+ g,
Y

where (-)g,e = 0(:)/0k: (k= 0(-)/Om.
Finally, the following system of differential equations is obtained

Eyp ‘ at
Ty = - [gyk - (F; = Voyk — Qnykgyk) AA"] ize -

—gykll = (1 = veye) AARJELS,

65:2' =-[1-3- kaVWk)AAk}EE;& — Vygi[l — (1 - nyk)AAk]Eggﬂ
(n) 55:‘) ~(n)
Com = [Q_k = (1 + vggp AAg — }\Ak)dk,gi‘(l +2}\Ak)"1 (4.6)

& = [Ei“) — Vg (1 + Vg A Ay, — ,\Ak)ag?g] (1 + 20 A Ag) ™!

_(n —(n) n _ _
=I5 Fin =9 = vayeellle

T = hi” — gy Fide



976 M. KROLAK ET AL.

—~n) B FHn) L on) br\ 2 _n)
hk,n - _-‘Ey [ yxk.fk ,';'.fn k{{{{ + 12(1 - nykf/ya:k)(a) AAkek,ff}

Solution to the system (4.6) was foreseen as

ﬁi”) = ZZ(T::k( k) Sin *m—_% g';cn) ZBmk ) cos @6
Egcn) = 3 —(mk (n) cos mg a‘iﬂ) Z D (T?k ) sin m_m_ﬂ){
& = iEﬂTk (mx,) sin m;T e 7 _ Z ™ () sin m;rrb€ (4.7)
ggcn) i Gmk(ﬂk) sin m;rb 3 ﬁi") Z Hmk ) sim m;rbE
m

After substituting the forecast functions given in (4.7) into equations (4.6) and
applying the Kantorowich method (which was necessary to apply because of
the difference in trigonometric functions in z directions) a system of ordinary
differential equations is obtained where the unknown functions are A, — Hpk
(mth harmonic function of 7). These functions will be determined using
the numerical method of transition matrices after numerical integration of
the equilibrium equations in the circumferential direction with respect to 7;
(applying the Runge-Kutta procedure realised) in order to obtain a relation
between the state vectors at the two longitudinal edges. The integration of the
equilibrium equations was carried out using the Godunov orthogonalization
method.

5. Abilities of the elaborated computer programme

The stability equations derived in Sections 3 and 4 with the co-operation
conditions of the adjacent strips and with the assumed boundary conditions
can only be solved numerically. Therefore, a computer procedure, in which it
has been assumed that each strip can have various width, thickness and other
material properties, has been developed. The external load acting on each strip
can be different as well. Owing to this program, the stability of thin-walled
structures with various shapes of the cross-section, wall (strip) thickness and
material properties of the orthotropic strips — for the assumed structural loads
(compression, bending, torsion) — can be calculated. Longitudinal stiffeners can
be modelled with narrow plate strips.
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6. Analysis of results of stability calculations

The first calculations were carried out using an analytical-numerical me-
thod. Buckling loads were calculated for a thin-walled pole with a regular
octagonal cross-section subjected to bending and torsion and also to compres-
sion and torsion.

The plane of the pole in which the bending occurs is shown in Figure 1.

Fig. 1. Cross-section and loading of analysed thin-walled poles

Geometrical dimensions of the pole were as follows:

— length ! =100 mm (distance between diaphragms),
- wall width b = 39.27 mm,

— wall thickness (the same for all walls) ¢ = 1mm.

The calculations were conducted for three poles built of walls which were
made of materials of the two following orthotropy ratios: n = E,/E, = 3.2992;
n = 1.0 (isotropy); 1 = 0.3031.

The dimensionless values of buckling stresses

x _,ch’r103 * __G'cc?'103 * __thrlos

Ober — E Ocer E Tyer = E
T T T

for different contributions of the bending and torsion in the total load expres-
sed by op/7; ratio are given in Table 1, while for different contributions of the
compression and torsion — expressed by o¢y/7; — are given in Table 2 and are
also presented in Figure 2.
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Table 1
n = 2.2992 n = n = 0.3031
Jb/rt * * * %* * *
Ty cr Tt er Jb cr Tt er o-b cr Tt er
0 0 6.160 0 3.490 0 1.271

0.2 | 1.114 | 5.572 | 0.643 | 3.215 | 0.236 | 1.180
0.4 |1.925 | 4.813 | 1.154 | 2.885 | 0.433 | 1.084
0.6 | 2.495 ) 4.162 | 1.547 | 2.578 | 0.597 | 0.996
0.8 | 2.908 | 3.636 | 1.846 | 2.307 | 0.734 | 0.918
1.0 | 3.189 | 3.189 | 2.063 | 2.063 | 0.844 | 0.844
1.25 | 3.441 | 2.753 | 2.261 | 1.809 | 0.955 | 0.764
1.667 | 3.700 | 2.220 | 2.469 | 1.481 | 1.089 | 0.653
2.5 | 3.938 | 1.575 | 2.665 | 1.066 | 1.234 | 0.493
5.0 | 4.111 | 0.822 | 2.811 | 0.562 | 1.353 | 0.270
oo | 4.174 0 2.865 0 1.399 0

Table 2

n = 2.2992 n=1 n = 0.3031
Ub/Tc m

#*
Jc cr Tt cr g

* * * *
ccr Tt er Ocer Tt er

0 0 6.160 0 3.490 0 1.271
0.2 | 1.034 | 5.172 | 0.603 | 3.015 | 0.243 | 1.217
0.4 | 1.735 | 4.338 | 1.048 | 2.620 | 0.443 | 1.108
0.6 | 2.200 | 3.666 | 1.376 | 2.294 | 0.607 | 1.013
0.8 | 2.512 | 3.140 | 1.620 | 2.025 | 0.630 | 0.788
1.0 | 2.728 | 2.728 | 1.802 | 1.802 | 0.709 | 0.709
1.25 | 2.914 | 2.331 | 1.970 | 1.576 | 0.783 | 0.626
1.667 | 3.042 | 1.825 | 2.155 | 1.293 | 0.868 | 0.520
2.5 |3.149 | 1.259 | 2.317 | 0.926 | 0.957 | 0.383
0.0 | 3.221 | 0.644 | 2.383 | 0.476 | 1.036 | 0.207
oo | 3.246 0 2.407 0 1.070 0

In order to verify the results obtained using the elaborated computer pro-
gramme the FEM programme ANSYS 5.4 has been applied.

The load carrying capacity of bent and torsionally deflected beam-columns
has been determined with the finite element method as well. The applied
program of the finite element method allows one to analyse:

e linear problem of stability (eigenvalue method), in which critical loads
(bifurcation points) and buckling modes are determined

e non-linear problem of stability, in which the behaviour of the structure
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Fig. 2. Dimensionless values of the critical stress for different bending-to-torsion
ratios

after the loss of stability is analysed and the load carrying capacity is
determined.

The girder has been modelled with four-node shell elements with six de-
grees of freedom in each node. The load was realised by respective application
of forces with distribution corresponding to bending and torsion.

The problem has been solved in two stages. In the first step, a linear
analysis of the stability (eigenvalue method) has been carried out and, as a
result, the buckling modes of the analysed girder and the critical values of
loading have been determined.

In the second stage, a non-linear analysis of the stability, in which the non-
linear equations have been solved by means of the Newton-Raphson method,
has been carried out. A technique that allows for a non-linear analysis by a
gradual increase in the loading has been employed. The analysis was possible
owing to application of a special ”arc-length” technique. This technique makes
it possible to analyse the non-linear stability problem of a structure. In order
to conduct such an analysis, the model should be prepared before, i.e. in the
case when the loading does not cause a deflection that exerts an influence
on the mode of the stability loss (e.g. a compressed plate), it is necessary to
impose initial imperfections by modification of the geometry of the model so
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that it has initial deflections whose value is equal to approximately 1/50 of
the plate thickness, which corresponds to the lowest buckling mode. In the
case when the way the load is applied causes the structure deflection (e.g. a
rod being bent), the above described way of the model modification is not
necessary.

Table 3 and Figure 3 present values of dimensionless buckling stresses in
the analysed thin-walled pole of the regular octagonal cross-section made of
am orthotropic material of following properties: FE; = 29523 MPa, E, =
97423 MPa, 7 = 3.2992, vy, = 0.3, vgy = 0.09, G = 11818 MPa. The
presented values have been obtained using both analytical-numerical and finite
element methods.

Table 3
Author’s software ANSYS 5.4
WG | e | e | e | Moo ] | T [N
0 0 6.160 0 5.995 0 2641.9

0.2 | 1114 5.572 1.118 | 5.555 255.2 2437.8
0.4 | 1.925 4.813 1.931 | 4.810 441.7 2109.0
0.6 | 2.495 4.162 2.473 | 4.098 568.1 1808.5
0.8 | 2.908 3.636 2.845 | 3.557 655.4 1564.7
1.0 | 3.189 3.189 3.116 | 3.116 715.3 1366.6
1.25 | 3.441 2.753 3.319 | 2.642 762.8 1165.6

1.667 | 3.700 2.220 3.486 | 2.100 804.4 921.8
2.5 | 3.938 1.575 3.658 | 1.456 840.0 641.8
5.0 | 4.111 0.822 3.760 | 0.745 863.7 330.0
oo | 4.174 0 3.794 0 872.7 0

The given results indicate that the greatest divergence occurs for lower
contribution of the torsional load — its highest value is about 10%. The reason
for such a divergence may be a difficulty in exact modelling of the boundary
conditions corresponding to both considered support conditions for the pole
edges.

In Figure 4 the buckling modes of the pole walls are presented for /7 = 0
(pure torsion) and 7;/0p = 0 (pure bending).

In the next phase the calculations of the buckling state were conducted for
thin-walled poles of the length [ = 100 mm, the cross-section of which was a
regular polygon with the number of sides equal to N =4,6,8,12,16 and 20.
The circumference of each of the considered polygons was the same and equal
to the circumference of a circle of the radius R = 50 mm. Thus, the width of
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Fig. 3. Comparison of the results obtained by authors, software and by FEM

the wall of the polyhedron with N walls is determined as

_ R
- N

Since the thickness of the polyhedron walls was considered to be the same
for each wall and equal to ¢ = 1mm, the area of the cross-section of each
considered pole was the same.

The aim of the calculations was the analysis of the influence of the number
of polygon sides (from a square up to a polygon of 20 sides) upon buckling
stresses in the pole subjected to bending and torsion. The second aim was the
verification of the correctness of the derived equations, the applied method of
the solution of the problem and also the elaborated computer programme. The
verification congisted in the comparison of the calculation results obtained for
the isotropic thin-walled pole of the regular polygonal cross-section with the
results known from the literature concerning isotropic cylindrical shell of the
same length, thickness and circumference.

Thus, according to the results published by Sturm (1947) a cylindrical shell
of dimensions: | = 100 mm, R = 50 mm and ¢ = 1 mm, made of an isotropic
material with Poisson’s ratio » = 0.3 and subjected to torsion, buckles at the
critical stress of the dimensionless value

b

—_— thr103
th‘-"‘_ E
T

when the number 7 of halfwaves of the buckling amounts 6.

= 4.67
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The same cylindrical shell subject to pure bending buckles at the maximum
dimensionless bending stress, which according

x _ Ob crlos

Opor — B =12.1

Figure 5 presents diagrams of dimensionless buckling stresses in isotropic
thin-walled poles of regular polygonal cross-sections (N = 4,6,8,12,16,20)
subjected to bending and torsion.
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Fig. 5. Influence of the number of regular polygon sides on the stability of poles
subject to torsion and bending

The dimensionless buckling stress oy . in the pole of the cross-section
being the regular polygon of 20 sides, which is subject to pure bending, is
about 3% lower than the corresponding buckling stress in the cylindrical shell
under pure bending, which is mentioned above.

The comparison of the dimensionless buckling shear stresses in a cylindrical
shell under torsion and the corresponding pole of the cross-section being a
polygon of greater number of sides (N = 12,16, 20) shows that for N > 12
the buckling shear stresses are in the interval

3.93 < 77, < 4.67

and depend on the buckling mode (on the number of halfwaves in the cir-
cumferencial direction). For N = 4 + 16 the number of halfwaves in the
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circumferencial direction is equal to the number of walls (sides of the polygon)
and for N = 20 it amounts 12, which corresponds to 6 halfwaves, like in the
cylindrical shell.

The increase of the dimensionless buckling stresses related to the increase
of the number N of the pole walls when under pure bending, is induced not
only by the increase of the pole height (second moment of inertia of the cross-
section) in the plane of bending but (may be to greater extend) diminution of
the width of the pole walls as well.

In order to illustrate the post-buckling behaviour of thin-walled poles sub-
jected to torsion and bending as well as in order to evaluate their load-carrying
capacity numerical calculations were carried out using the programme AN-
SYS 5.4. The calculations were conducted for a pole of the following dimen-
sions and material properties: [ = 100mm, b = 39.27mm, ¢ = 1mm,
E; = 29523 MPa, E, = 97423 MPa, G = 11818 MPa, vy, = 0.3, vgy = 0.09.
Linear material behaviour of the pole was assumed. The values of buckling
stresses in this pole are given in Table 3. The results of load-carrying capacity
calculations are presented in Table 4 and also shown in Figure 6.

Table 4

n=1
N=4 N=6 N=8 N=12 N=16 N=20

g; cr T;cr o-; cr Tt*cr 0’; cr Tt*cr 0';‘._.,. Tt*cr 0‘; cr Tt*(:?' 0-; cr T:cr

0 0 [1.287| 0 |2.287| 0 [3.490| 0 [3.930{ 0 (4.039] 0 |3.971
0.2 ]0.231/1.158/0.419|2.098|0.643|3.215|0.7783.890|0.786 {3.932| 0.778 |3.891
0.4 [0.404|1.011]10.753]1.833{1.154|2.885{1.5612|3.780{1.512|3.781| 1.500 |3.750
0.6 10.531/0.885|1.011|1.685|1.547|2.578(2.175{3.626|2.176|3.627| 2.162 |3.603
0.8 10.624|0.780|1.206|1.5081.846|2.307{2.758|3.447|2.782|3.478 | 2.769 |3.461
1.0 [0.693(0.693|1.352|1.352|2.063|2.063|3.259{3.259|3.335|3.335| 3.325 |3.325
1.25 {0.754{0.603|1.481{1.185|2.261/1.809(3.783{3.027|3.9623.169| 3.958 |3.167
1.667(0.819(0.491(1.614|0.968(2.469|1.481|4.447(2.668(4.867|2.920| 4.880 |2.928
2.5 [0.879]0.356111.733]0.693|2.665|1.066|5.249(2.099|6.275|2.510| 6.397 |2.535
5.0 10.923]0.184|1.816(0.363{2.811|0.562|6.033|1.206|8.663|1.732| 8.936 |1.787
oo 10939 0 |1.846] 0 2.865] 0 |6.195| 0 |9.669] 0 |11.741] O

o/ Tt

—

In the last column of Table 4 the number of halfwaves along the pole length
is given for the wall which is most deformed at buckling.

For one of the considered loading modes when the stresses increase pro-
portionally with the ratio o3/ = 1 the presented diagrams illustrate a si-
multaneous increase of bending moment in terms of the angular displacement
of the cross-section and the torsional moment in terms of the angle of twist
(Fig. 7). The maximum values of these curves indicate the load-carrying capa-
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Fig. 6. Load carrying capacity of the thin-walled pole subject to bending and torsion
for different torsion-to-bending ratios; (a) relation between moments, (b) relation
between stresses
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Fig. 7. Loading versus rotation angle curves; (a) bending moment versus rotation
angle, (b) torsional moment versus rotation angle
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city of the pole in the elastic range. These values are also presented in Table 5
(OCmax = Tmax = 169 MPa, M} pmax = 2315 Nm, Tpayx = 1316 Nm). The values
of My max and Tyax were determined from the obtained stresses using the
well known formulae of the strength of materials.

Table 5
n = 3.2992
o/t leax ‘ My max [%max} O'bmame
|0 | 2970 0 199 0 2
0.2 | 2902 304 195 39 2
0.4 | 2767 o979 186 74 3
0.6 | 2740 861 184 110 3
0.8 | 2656 1112 178 143 3
1.0 | 2513 1316 169 169 3
1.25 | 2388 1563 160 200 3/4
1.667 | 2187 1909 147 245 3
2.5 | 1701 2227 114 286 3
5.0 945 2473 63 317 3
00 0 2789 0 358 4

7. Final remarks

The aim of this study, which was to develop a method for analysis of
the stability of thin-walled orthotropic rods with various shapes of the cross-
sections, subject to complex loads (compression, bending, torsion) has been
achieved. The obtained values of the critical loads of thin-walled rods with
closed cross-sections and with at least one axis of symmetry overlapping the
bending plane of the rods, have proved to be accurate enough for engineering
calculations, which entitles the authors to extend this method to the analysis
of post-critical states in the future.

The development of the computer algorithm for various widths, thicknesses
and material (orthotropic) properties of individual plate strips will allow for
optimisation of the structure with respect to its stability.

The presented analysis of the influence of the number of rod walls with the
cross- section in the form of a regular polygon, subject to simultaneous bending
and torsional deflection, on its stability (values of critical loads and buckling
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modes) shows that one can calculate shell and plate structures (composed of
sections of cylindrical shells and plates) with this method as well.

10.

11.

12.
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Statecznoéé i noénoéé cienkosciennych ortotropowych stupéw o przekroju
wielokata foremnego poddanego obcigzeniom zlozonym

Streszczenie

W pracy przeprowadzono analize statecznodci i noSnosci granicznej cienkoscien-
nych ortotropowych pretéw (stupéw, belek, masztéw, watéw), ktérych przekrdj po-
przeczny jest wielokatem foremnym, poddanych obciazeniom zlozonym (§ciskanie,
zginanie, skrecanie). Zagadnienie statecznosci (stan krytyczny) rozwigzano asymp-
totyczng metoda Byskova-Hutchinsona biorac pod uwage pierwszy rzad przyblizenia.
Sprawdzenie poprawno$ci wynikéw dotyczacych statecznoéci (obcigzent krytycznych
i postaci wyboczenia) oraz obliczenia nosnosci granicznej przeprowadzono metoda ele-
ment6éw skoficzonych, wykorzystujac pakiet MES ANSYS 5.4. Wyniki obliczen przed-
stawiono w postaci wykresow. W oparciu o otrzymane wyniki sformulowano szereg
wniogskow i uwag koricowych.
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