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Method of spatial manoeuvres modelling based on solving the inverse
problem of dynamics is presented in this paper. A detailed description
of the inverse problem solution is shown. To illustrate the method, results
of numerical simulations for two selected manoeuvres are also included.

Key words: inverse simulation, flight dynamics

For an aeroplane:

X

14

a, B

P) Q’R
6,%,v
Zg:Ygy 29

T.
0m, 01,0y

For a helicopter:

X -
u,v,w -

w —

S -

5 - Mechanika Teoretyczna

Notations

vector of flight parameters

X = [Vra o, 3,P,Q,R, 0,9,7, LgyYg, zg]

velocity of flight

angle of attack, sideslip angle, respectively
angular velocity components (body axes)

Euler angles of fuselage

position coordinates

vector of control parameters, § = [T, dy, dz, o]
thrust of engines

deflections of stabilator, aileron and rudder, respec-
tively

vector of flight parameters

X = [UaT/,VVrP’ QaRaeaQS:Wazy:yg:zg,w]
linear velocity components (body axes)
angular velocity of the main rotor

vector of control parameters,

= [007 KgyMNs, ¢t7‘]
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6o —  main rotor collective pitch angle
Kks,Ms — longitudinal and lateral cyclic pitch angles
bir —  tail rotor collective pitch angle

1. Introduction

An inverse problem is and has always been one of the main problems of
classical mechanics (Galiullin, 1986). At present, inverse methods are used
to determine active forces acting on a mechanical system, parameters of this
system and limits put on the system corresponding to a given motion. The
fundamental task in inverse simulation applied to flight dynamics is determi-
nation of the control inputs (displacements of control surfaces and thrust of
the engine) that are necessary to perform the required spatial manoeuvre.

There are various methods of solution which can be applied to these pro-
blems. Sometimes the methods based on the solution of sets of differential-
algebraic equations are applied (Blajer, 1994a,b; Blajer and Parczewski, 1987,
1991). These methods require certain complicated transformations and the fi-
nal form of differential-algebraic equations directly depends on the assumed
constraints of motion of the object. Methods of decomposition of the control
task are also applied (Tomczyk, 1996). However, these methods are based on
the assumption that relations between the forces and moments acting on the
object and that the controls are linear.

In this paper, a special numerical method of solution of the inverse pro-
blem is applied. It is based on linearization of the considered problem around
a current position of the object in the state space. The main advantage of this
method is that it doesn’t need any transformation of equations of the object
motion. Equations are the same as in classical problems of the object motion
(object motion with determined control signals). There are no limits imposed
on the relations between forces and controls. This method has been applied
with success to dynamic flight problems of aeroplanes and helicopters (Thom-
son and Bradley, 1990; Hess et al., 1991; Hess and Gao, 1993; Rutherford and
Thomson, 1996a,b).

9. Mathematical model of objects

The inverse simulation has been applied to reconstruct certain aircraft ma-
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noeuvres. Manoeuvres of a helicopter and an aeroplane have been considered.
Both objects have been treated as rigid bodies with six degrees of freedom.
In both cases, their dynamics is described by sets of nonlinear differential
equations. They can be symbolically written in the form
dX
A(t, X)_E + B(t,X) = F(t,X,S) (2.1)

Vector X € R™= is the vector of flight parameters and S € R™ is the vector
of control parameters.

For a helicopter, additionally, dynamics of a blade flapping motion has
been taken into account. In this case, the set (2.1) should be complemented
by the following set of nonlinear algebraic equations

L(X,5,8)8 = F(X, S, ) (2.2)

where B = [ag, a1,b;] is a vector determining orientation of the cone of the
main rotor in relation to the fuselage.

3. Inverse simulation algorithm

The set (2.1) is transformed to the following form

%’tf X =G X,5) (3.1)

which could be integrated using one of the numerical methods (for instance
the Runge-Kutta method).

Vector G is equal to
G=A"Y(F-B) (3.2)

The output vector ¥ € R™ ig uniquely determined by the vector of flight
parameters X
Y = D(X) (3.3)

In the present considerations both vectors are the same
Y=X (3.4)
The set (3.1) is completed by the following initial conditions
X(to) = X, (3.5)
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As it was mentioned, in the considered case, the fundamental problem is to
determine the control vector S(t) for the defined output vector Y ,(t), which
describes constraints of the object motion.

The problem is made discrete for successive time points
t0, ey thy L1y - tv. For each instant —tgi1, the vector Y ,(txy1) is defi-
ned by constraints of the motion. The vector X (t;41) is also calculated as
a result of integration of the set (3.1) in the time interval from %y to tg41-
This interval is determined in the way which preserves the stability of final
solution. Because the described procedure requires one constant time step and
because of a nonlinearity of the problem, this step is determined by numerical
experiments. This means that several simulations should be performed with
decreasing time intervals up to the moment when two convergent solutions
are obtained. The method is in agreement with the Runge-Kutta method with
different time interval. The time interval is dependent upon every individual
problem. According to (3.1), because the derivative dX /dt depends on the
control vector S({), the calculated value X (tx) also depends on this control
vector. The vector Y ({541) determined on the basis of relation (3.3) has to
be equal to the specified value Y ,(tg41). Difference between the calculated
value of the vector Y (ty,1) and the constrained vector Y ,(tx41) is the basis
for the calculation of a corrected value of the control vector S (tk)-

This procedure has an iterative character. It means that for each time po-
int %y, a finite number of iterations is performed till the assumed compatibility
between vectors Y and Y, is obtained. In the ith iteration, the following
operations are performed:

e On the basis of known values of X(f;) and 8™ (t},), making use of
(3.1), the derivative is calculated

X0 (1) = G, X (t), 8™ (1)) (36)
e The value of flight parameters and output vector at the time point fx4+1

is determined by numerical integration of relation (3.6)

tr41
X0 (t0) = X + [ X(8) dt
173
(3.7)
Y (t41) = DX ™ (t1)]

e The difference between the defined output vector Y, (tx11) and the
vector calculated from (3.7) is determined

Aytm (trr1) =Y (tgg1) — Y™ (t11) (3.8)
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If this difference is smaller than the defined accuracy €y, calculations are
continued at the next time point tg42- The vector of flight parameters and
the control vector determined at time tr+1 are taken as initial data. If this
difference AY(™ (tk+1) is greater than ey, the improved value of control
vector S(m+1)(tk) is calculated. For this purpose Newton’s method is applied.
According to this method, the expression for S(m+1)(tk) is as follows

S (1) = 8™ (1) + I AY ™ (3, , 1) (3.9)
where J is the Jakobian. Its elements are determined by the formula

Jitty) = AN )] 0% sr) 310
a8™ (1) aS5\™ (1) |

Because the considered problem is solved numerically, then the following
differential scheme is applied

Y™ b1, S (t) + 6551 = Y™ [ty4, 57 (1) — 658
255(™
J

Jij(tx) =

(3.11)

The expression (3.9) is a result of the following procedure:

e The output vector Y™ (tg41) is calculated at the time point tpt1 at
mth iteration. It depends on the flight parameters vector X (tx) and
the control vector $(™ (tx), which are determined at the previous time
point .

If the calculations are performed again for a modified value of the control
vector

S (1) = 8™ (1) + AST™ (1) (3.12)

one can obtain a new value of the output vector Y(m+1)(tk+1) for the
(m + 1)th iteration.

Making use of the Taylor series and taking into account only linear part
of the expansion in series, one can assume that

Y () = Y (1) + JAS™ (1) (3.13)

where Jacobian elements are determined by relations (3.10) and (3.11).
Using relation (3.13), after elementary transformations, one can obtain
formula (3.9), which allows to calculate the control vector at time 173
for the (m + 1)th iteration S™*1(1,). It is assumed that the calcu-
lated value of the output vector ¥{(™+1) (tk+1) has to be equal to the
determined value Y(m+1)(tk+1) =Y, (tx41). It is taken into account in
relation (3.8).
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4. Simulation of selected aircraft spatial manoeuvres

To illustrate efficiency of the applied inverse method of simulation, some
results of numerical calculation for selected spatial manoeuvres are shown
below. To verify the numerical algorithm, time courses of different flight para-
meters have been taken as the constrains. But for all cases, the following rule
was required: among four selected parameters, which were the constraints, two
were the longitudinal parameters (two from V, a, Q, © for an aeroplane or
two from U, W, Q, © for a helicopter), and two other were connected with a
lateral motion (two from @, P, R, @, ¥ for an aeroplane or two from V, P,
R, &, ¥ for a helicopter). Selection of these parameters has been performed in
order to complete the description of a concrete aircraft manoeuvre. Calcula-
tions have been done for aeroplanes MiG-29 and TS-11 Iskra, and for Polish
helicopter Sokol. Several manoeuvres have been simulated. In this paper, one
aeroplane’s manoeuvre and one helicopter’s manoeuvre are presented.

4,1. Roll manoeuvre

Roll is a typical manoeuvre of an aeroplane. It was supposed that the roll
was performed by rotation about the longitudinal axis of the fuselage Ozj.
Steady-state flight was assumed as the initial condition. It was executed with
velocity V = 200m/s. Angle of incidence was equal to o = 1.61° and thrust
was equal to T, = 7329 N. An assumption was made that the velocity and the
pitch angle of aeroplane were stable

V(t) = 200m/s = const
(4.1)

O(t) = By = ap = 1.61° = const
Two next constraints connected with lateral motion were as follows:
— the yaw angle was equal to zero (1) =0 = const
— changes of the roll angle ¢ were determined by the following formula

0 for t <ty

o(t) = i—g[cos(&rt }to) - 9cos(7rt ;to) + 8] for to<t<te+T

2m for t>T
(4.2)
Tn the presented simulation, the beginning of the roll was at the 2nd se-
cond of flight and it was completed at the 7th second. It means that to = 2s,
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Fig. 1. Roll manoeuvre

T = 5s. Time courses of some selected parameters (1), a(t), B(t), are shown
in Fig.2 + Fig.4 and three calculated control parameters 0r(t), or(¢), dv(t)
are presented in Fig.5 -+ Fig.7 (engine thrust 7T,(t) is not presented). Because
constrains (4.1) and (4.2) are strictly satisfied, they are not presented except
for the roll angle, which is shown in Fig.2. From this figure one can see that
constraints of the motion are satisfied exactly. It is shown that during the
roll manoeuvre, the angle of incidence and the sideslip angle change. For per-
forming this manoeuvre it is necessary to control the aeroplane using all the
control devices.

4.2. Deceleration with bob up to hover

Deceleration with bob up to hover is one of the Nap-of-the-Earth mano-
euvres. It is characterised by a rapid velocity deceleration with vertical trans-
lation and the following staying in a hover. According to data from the Flight
Data Recorder (FDR), the following constraints were taken into account:

— rolling and yawing angular velocities were equal to zero
P(t)=R() =0 (4.3)

— the time history of the desired vertical position was given as

—H, t—1t t—t
2. () = max mi\ mH 4.4
o(t) 16 [cos (37r Tom ) 9cos (w-—*TdH ) + 8] (4.4)

for tym <t <ty + Tyn

where tpg =08, Tyg =58, Hpayx = —16 m/s.
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— the pitching angular velocity changed as follows

(0 for t<tmig N t>tlmeg+ Tasq
—612—;;—[11 for tmig <t <tmg+ Tag
Q4 for tmig+Tag <t <lm2Q
A
Qa— @ 16QB for tsz t <tmag+ szQ
QB for tmag + Taog <t <lmsq
0 QB+ @5 1—6QC for tmag <t <tmsQ+ Ty3g
= 4
Qc for tmag + Tusg <t < tma@
Qc — Qe 16QD Oy for tmag <t <tmag+ Ty
Qb for tmag +Taag <t < tmsQ
C E
Qc — @ 16Q for tymsg <t <tmsq+ Tys0
QE for tmsg +Taso <t <tmeQ
E
\ Qr — 91—6— 6 for tmeg <t <lmeQ + Taeq
(4.5)
where
0; = [cos(37rt———t"iQ—) - 9cos(wt—t@) +v 8] i=1,2,..,6
’ Tuiq Tuiq T
and
tle =0s leQ =1.6s tm4Q =458 Td4Q =258
tmaQ = 1.6 s Taq = 14s tmsQ =78 Tasg = 1.6
tm3g =38 Tazg =198 tmeg = 8.6 8 Taeg = 148
Qa = 31.58° g1 Qp=-10° g~1 Qc =0° gL
Qp = —20.22° g1 QE = 6.25° g1

The steady state flight at V = 25m/s was the initial condition.

Fig.8 + Fig.13 present some results of numerical simulations of bob-up-to-
hover manoeuvre. For comparison, the data from the FDR is also depicted.
One can observe that the recorded and calculated parameters are in good
agreement. Differences are also observed. The observed differences are due to
simplifications of the mathematical model of a helicopter and due to inherent
features of the analytical method of determination of the constraints.
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5. Conclusions

A relatively simple numerical methodology was employed for determining
the controls, which are necessary to perform a constrained flight, both for an
aeroplane and for a helicopter. On the basis of the performed calculations, the
following conclusions can be formulated:

e A very high accuracy of determining the output vector is required.
e This accuracy is strictly limited by errors of numerical rounding.

e High gradients or discontinuities of constraints are causes of the deter-
mined controls broadening.

e The method was not succeeded in determining control signals on the
basis of trajectory of flight.
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Modyfikacja numeryczna symulacji odwrotnej manewréw statkéw
powietrznych

Streszczenie

W pracy przedstawiono metodg numerycznej symulacji manewréw przestrzennych
statkéw powietrznych. Metoda ta oparta jest na rozwigzaniu zagadnienia odwrotnego.
Bazuje ona na linearyzacji problemu wokdél biezacego polozenia w przestrzeni standw.
Pokazano wyniki symulacji ”beczki” wykonywanej przez samolot oraz ”wyskoku do
zawisu” realizowanego przez $miglowiec. W drugim przypadku wyniki symulacji po-
réwnano z zapisami parametréw lotu zarejestrowanymi w czasie wykonywania takiego
manewru.,
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