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In the paper a new averaged model for the dynamic response of a
periodic-like straight beam with a variable cross-section is proposed. The
beam under consideration is assumed to interact with Winkler’s subsoil
having periodic-like properties. Assumptions of the Bernoulli-Euler beam
theory as well as the influence of axial forces on deflection of the beam
are taken into account. The approach adapted in the paper is based on
concepts of the tolerance averaging approach by Wozniak (1999). In this
way it is possible to formulate the averaged equations of the structured
beams, which describe the length-scale effect.

Key words: dynamics, beam, periodic-like structure, homogenization

1. Introduction

This paper deals with dynamics of a periodic-like straight beam with a
highly oscillating variable cross section: in a special case it can be composed
of a very large number of repeated line segments. It means that the length
dimensions of these segments are sufficiently small compared to the smallest
wavelength of a dynamic deformation pattern.

In most cases an exact dynamic analysis of these systems, based on solid
or structural mechanics equations, is difficult even using numerical methods.
However, restricting the analysis to the dominant signal wavelengths large
compared to the length of elements, a number of various approximate appro-
aches to dynamics of periodic systems have been proposed. The best known
are those related to periodic systems and based on the homogenization of dif-
ferential equations with highly oscillating periodic coefficients (see Bensoussan
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et al., 1978; Jikov et al., 1994; Sanchez-Palencia, 1980). Using this approach a
periodic heterogeneous system is approximated by a certain homogeneous me-
dium characterized by effective medullae, which describe the averaged proper-
ties of a periodic system. However, the homogenization methods are incapable
of describing dispersion and attenuation effects. To remove this drawback dif-
ferent alternative approaches mainly for investigations of waves propagating
in periodic composite materials have been proposed.

It is known that the waves moving through a highly heterogeneous compo-
site medium are continuously refracted and reflected at the interfaces between
constituents. At the same time there exist certain stable wave trains (Floquet’s
waves), which retain their form (Sun et al., 1968a,b). The Floquet wave the-
ory in elastic periodic composites deals with exact equations of the elasticity
theory in every typical cell of a periodic medium. However, in most cases the
required solutions have to be obtained using approximate methods. The di-
rect application of Floquet’s equations leads to rather troublesome numerical
calculations.

The simplified analysis of waves in periodic composites, which allows the
description of the dispersion phenomena, can be carried out in the frame-
work of the effective stiffness theories (see Achenbach et al., 1968; Achenbach
and Sun, 1972; Herrmann et al., 1976; Lee, 1972). This approach was mainly
related to dynamics of laminates or directionally reinforced composites. The
effective stiffness theories as well as similar approaches (such as the theory of
interacting continua (see Bedford and Stern, 1971; Christensen, 1979; Hege-
meier, 1972; Lee, 1972; Maewal, 1986)) are based on transitions from the solid
mechanics equations with periodic coefficients to partial differential equations
with constant coefficients representing continua with microstructure (see Min-
dlin, 1964; Miihlhaus, 1995). Using these equations we are able to investigate
the dispersion phenomena in heterogeneous solids, but mainly for laminates
or directionally reinforced composites. Alternative approaches to the avera-
ged dynamics of periodic media were proposed by using mixture theories or
micromorphic continuum theories; the review of early papers can be found in
Hegemeier (1972) and Lee (1972).

In the last decade a unified treatment of the dynamic phenomena both
for discrete and continuum periodic structures as well as periodic composite
materials was developed by Cielecka (1995), Cielecka et al. (1998), WoZniak
(1970), (1993a,b,c), (1995), (1997). The proposed averaging approach introdu-
ces into the modeling procedure the concept of kinematic internal variables as
certain extra-unknown fields, which together with the averaged displacement-
type fields describe the class of motion we are to analyze. The characteristic
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feature of the internal variables is that they are governed by the ordinary diffe-
rential equations involving only time derivatives of these variables. Hence the
kinematic internal variables do not enter the boundary conditions. So far, this
concept was used mainly in formulations of the constitutive relations (Coleman
and Gurtin, 1967).

The approach adapted in the paper is based on concepts of the internal
variable model of dynamics (see Wozniak, 1997), and the tolerance averaging
approach by Wozniak (1999). In this way it is possible to formulate the ave-
raged equations of periodic beams, which describe the length-scale effect.

2. Preliminaries

In this paper dynamics of a periodic straight heterogeneous beam with a
highly oscillating variable cross-section will be carried out on the well-known
assumptions of the Euler-Bernoulli linear elastic beam theory. The axis of the
beam will coincide with the interval < 0,L > of the z-axis in Ozyz-space
and the beam has the 0zy-plane as the symmetry plane. The assumption
of uniaxial stress-strain relations o = o(e) of the beam material will be
represented by Hook’s law ¢ = Ee where E = E(z,y,?) stands for Young’s
modulus. Let v = v(z,t), 2 €< 0,L >, stand for the deflection of the beam
axis in the y-axis direction and A = A(z) be the cross-section of the beam at
z €< 0,L >. The assumption that plane cross-sections of the beam remain
plane leads to the well-known relation for the bending moments

M(z,t) = B(x)v" (z,1) (2.1)

where
Ba)= [ v*Ble,y,2) dyds
A(z)
stands for the flexural beam stiffness. Moreover, let p(z) be the mass density
per unit length of the beam. The beam interacts with a subsoil the properties

of which are determined by Winkler’s coefficient & = k(z); hence the reaction
of the subsoil per unit length of the beam is given by

flz,t) = —k(z)v(z,t) (2.2)

Let the beam be subjected to the known transverse loading along the 0y-axis
having the density p(z,t) per unit length of the beam axis as well as subjected
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to the constant axial force N. The equation of the beam has the well-known
form

M"(z,t) — Nv"(z,1) + k(z)v(z,1) + p(z)d(2,t) = p(2,1) (2.3)

and together with Egs (2.1), (2.2) it represents the system of the governing
equations following the Euler-Bernoulli beam theory. Introducing the differen-
tial operator D acting on the function u = u(z,t), z €< 0,L >, defined
by

Du = (Bu"Y' — Nu" + ku + pii (2.4)

from Eqs (2.1)-(2.3) we obtain the beam equation in the operator form
Dyv=p

which, together with adequate boundary conditions and initial conditions, re-
presents a problem of the Euler-Bernoulli beam theory. The known mathema-
tical procedures and standard methods for the analysis of dynamics of beams
are effective provided that the coefficients in Eqs (2.1)-(2.3) are constant or
slowly varying. If these coefficients are rapidly varying functions then most
dynamic problems may become rather difficult to solve.

In this paper the considerations will be restricted to beams in which the
rapidly varying functional coefficients B(:), k(-), p(-) are represented by
periodic-like functions. It means that there exist a slowly varying function
| = I(z), z €< 0,L >, where maxl(z) < L, such that in every interval
Alz) = (z - I()/2,7 + (z)/2), Az €< 0,L >, the functions B("), k(-),
p(-) can be approximated respectively by certain [ = I(z)-periodic functions
By(£), ke(8), pe(€), € €<z —1/2,2+1/2 >. In the special case | = const we
obtain beams with the [-periodic structure.

Moreover, all length dimensions of an arbitrary cross-section A(z) of the
beam must be small compared to [. Beams satisfying the aforementioned
requirement will be referred to as structured beams.

In the framework of the kinematic internal variable model of dynamics
(Wozniak, 1997), and the tolerance averaging approach by Wozniak (1999),
it is possible to formulate equations of the structured beams in the form of
the system of averaged differential equations with slowly varying or constant
coefficients. This approximation describes the effect of structural length pa-
rameter of the beam. In contrast, in the classical homogenization solutions,
for instance in one by Achenbach et al. (1968), this effect disappears. The
paper presents a generalization of the problems of bending of the beams with
a periodic structure (Mazur-Sniady, 1997, 1993).
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3. Modeling assumptions

The approach adapted in the paper is based on concepts of the tole-
rance averaging approach by Wozniak (1999). Define 2 = (0,L), [ = (),
A(z) = (z—1/2,z+1/2), where max! < L, z€ 2° N ={z e 2:
A(z) C 2}. Hence £2° is the subset of £ = (0, L) such that for every z € £2°
the interval A(z), which will be called a line segment at z, is a part of 2.

The functions will be averaged by means of the formula.

z+l/2

W=7 [ o@)d  cen (3.1

z—1/2

where ¢(-) is an arbitrary integrable function defined (almost everywhere) on
2=(0,L).

If ¢ is l-periodic then (p) = const and for ¢ depending also on % we
shall write (p)(z,t); we shall also write (¢) instead of < ¢ > (z,1).

For an arbitrary but sufficiently regular function F(-) defined in {2 and
belonging to a certain linear normed function space, we shall write F' € SV/(l)
provided that the approximation condition (F)(z) & F(z) holds in 29,
where = stands for a certain tolerance relation. It means that the LHS of
this relation can be approximated with a sufficient accuracy by its RHS and
hence |[{(F(z)) — F(z)|| < eF, where ep is the pertinent accuracy parameter.
In this case F(-) will be referred to as the I-slowly varying function. It has
to be remembered that if Fy, F, are differentiable functions belonging to
a certain linear normed space then the tolerance relation F, & F, implies
similar relations for all derivatives of Fj, Fy; to emphasize this fact we shall
also write VF; & VF,.

Let 5(¢) be a I-periodic function of ¢ for every 2 € 29 and be a [-slowly
varying function of =z for every ¢. Then setting (z) = 9;(z) in 2° and
assuming that 1(-) belongs to a certain linear normed function space, we shall
write 1 € PL(l) and refer 4(-) to as the Il-periodic-like function. Roughly
speaking, every I-periodic-like function t(-) after restricting its domain to an
arbitrary line segment A(z), z € £2° can be approximated in this segment
(within a certain tolerance) by the I-periodic function ,(-). It means that
(¥)(z) = (¢z)(z) and ¢, will be called the I-periodic approximation of 4(-)
in A(z). It follows that if ¢ € PL(I) then (y) € SV(I). If 4 € PL(l),
(py) = 0 then ¢ will be referred to as the oscillating (with the weight p)
l-periodic-like function, 1 € OPL(1); here (py) = 0 is called the normality
condition.
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By the tolerance averaging, we shall mean the tolerance relations (Woz-
niak, 1999)

(pF)(z) = {p)(x)F(2) ze 2

(o) () = () (2)

which have to hold for every F € SL(1), ¢ € OPL(l) with ¢ as an arbitrary
integrable function defined in 2 and which make it possible to replace the
left-hand sides of (3.2) by their right-hand sides. At the same time formulae
gimilar to (3.2) have to hold also for all derivatives of F() and (). All
the aforementioned concepts require specification of the tolerance relations
& in the calculations of averages (3.2), which depends on the accuracy of
computations for the problem under consideration.

We base on the physical assumption that the deflection of the [-periodic

beam axis is the I-periodic-like function

(3.2)

v(-,t) € PL(l) (3.3)

Tt follows that v(£,t) = vg(¢,t) for every ¢ € A(x).
Let as define the averaged deflection w(z,t) by means of

w(z,t) = () (2){pv) (2, 1) ze (3.4)
The total deflection of the beam can be represented by the sum
v(z,t) = w(z,t) + d(z, 1) z e ° (3.5)

where d(z,t) is the function of the deflection disturbances.

Taking into account (3.4) and (3.5) we observe that w(-,t) is the slowly
varying function w(z,t) € SV(I) and d(-,t) is the oscillating (with the
weight p) I-periodic-like function.

The unknown functions w(z,t), d(z,t) has to satisfy the averaged equation
of motion

(D(w + d))(z,t) = {p)(2,1) (3.6)
for every z € £2° with D(-) given by (2.4), where the functional coefficients
B(-), k(-), p(-) in (2.4) are the I-periodic-like functions.

Let us observe that from the above assumption and from the concept of a
slowly varying function it follows that

(pd) (@, ) = (pv)(,1) — (pw)( 1) = (pv)(z,1) — () ()w(z,8) =0 (3.7)
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holds for every z € £2°.
As a sequel the deflection disturbance fields d(-,t) will be assumed in the
form of the series

d(z,t) = W (@)ya(z,y) z €2 (3.8)

(summation convention over A = 1,2, ... holds), where h4(-) are the known
a priori oscillating I-periodic-like functions having the periodic approxima-
tions hZ(£), € € A(z), at every z € £2°9 and 1 4(-) are sufficiently regular
slowly varying functions which have to satisfy the equations :

(hg (D(hgpa) + Dw))(z, 1) = (b p)(w,t) (3.9)

for every z € £29°.

Consequently, the I-periodic-like functions RA(), A = 1,2,... will be
referred to as the global mode shape functions contrary to their periodic (local)
approximations hZ (-). It is assumed that every A4(-) has to be the oscillating
I-periodic-like function; this condition is related to the fact that (pd)(z,t) 220
for every z € £2° and hence (ph?)(z) = 0.

We shall seek an approximate solution to problem (3.9) taking A =
1,2,...,n. Here the positive integer 7 is arbitrary but fixed and hence we
can look for the solution to (3.6) on different levels of accuracy. In this case
the functions ¢4, A =1,2,...,n, will be referred to as the kinematic internal
variables for the reason which will be explained in Section 4.

4. Averaged equations

After taking into account modeling assumption (3.3), definition (2.4) of
the operator D as well as formulae (3.8),(3.9), after simple transformations
we obtain the system of n + 1 equations

(M"Y + (p(th + hA4p4)) — N{w + b4 a)" + (k(w + h44pa)) = (p) e

(M"BP) + (ph® (Wha) + ) — N(RB((h*)"pa +w")) +
+(kRP (W4 +w)) = (hPp)
where M are bending moments related to the total deflection v = w + d by

means of
M = Bw" +d") (4.2)
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Let us transform equations (4.1) taking into account that w(-,t), ¥a(-,t) are
slowly varying functions, B(:), k(-), p() are I-periodic-like functions and
hA(-) are oscillating I-periodic-like functions. Denoting m = (M), taking
into account the properties of the slowly varying functions and (ph4) = 0,
the first of equations (4.1) reads

m" + (oY — Nuw' — N((h4Ypa)" + (kyw + (kh*)pa = (o) (4.3)
Using (3.2) we also obtain
m = (B)w" + (B(h*)" )9 (4.4)

Let us transform the second equation of (4.1). From (4.2) and (3.8) it
follows that M(-) and M'(-) are periodic-like functions; they have to be also
continuous excluding the points where the concentrated loadings are applied.
At the same time hB(-) are oscillating I-periodic-like functions; we shall
assume that their derivatives are also oscillating I-periodic-like functions.
Hence formula (3.6) yields

(M"RP) 2 — (M (%) = (M(RP)")

Denoting mP = (M(hB)") and using (3.2) as well as (RP(h%)") =
—{(h*)'(hB)") we can write the second equations of (4.1) in the form

mB + (phBrAYa + N((BAY (WB))pa — N(RP)w" +

(4.5)
+(khPhAYp4 + (khP)w = (hPp)
where by means of (3.2)
m? = (B4 (WP)")a + (B(R)")u" (4.6)

Notice, that (4.5) are the ordinary differential equations for 4 involving only
the time derivatives of 14; hence %4 do not enter the boundary conditions
and that is why they were called the kinematic internal variables.

In formulae (4.3)-(4.6) we have replaced the tolerances by the equalities
obtaining the system of averaged equations of dynamics of a structured beam.
Substituting the right-hand sides of equations (4.4) and (4.6) to equations
(4.3) and (4.5), respectively, we arrive at the system of m+ 1 equations for
the averaged deflection w(z,t), = € 2° and the kinematic internal variables
Yalz,t), = € 2° All the coefficients in these equations are slowly varying
functions because B(), k(-), p(-) are periodic-like functions and hA(:) are
oscillating [-periodic-like functions.
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e The first characteristic feature of averaged equations (4.3), (4.6) is that
for 94(-,t), A=1,2,..,n, we obtain from (4.5), (4.6) the system of n
ordinary differential equations given by

(phPh*)Pa + (B(W)"(h*)"Ya + (B(AP)")u" + wn

+N((hPY (B*))pa — N(BPYw" + (khBhA)pa + (kRPYw = (hPp)

which involve only the time derivatives of 4.
Equations (4.7) are coupled with the equation obtained from (4.3), (4.4)
" n

(o) + ((B)w” + (B(hA)")d}A) — Nu" — N((hA)wA) + w8

+(kyw + (kh*)pa = (p)

The boundary conditions for w(-) can be assumed in the form similar to
that formulated in the Euler-Bernoulli beam theory. For the initial-value
problem two initial conditions for w(-), ¥4(:), A =1,2,...,n, should be
also known.

e The second characteristic feature of the averaged equations is that they
describe the effect of cell length [ on the dynamic behavior of a struc-
tured beam; this statement is implied by the dependence of the mode
shapes hZ(-) on the segment span .

Now the problem arises how to determine the form of the mode shape
functions hZ(-). To this end we shall assume that they are sufficiently smooth
solutions to the eigenvalue periodic problem given by the equation

(Bhiy)" — NRY + khy — w?phy = 0 (4.9)

and the periodic boundary conditions at z % 1/2 together with the pertinent
jump conditions. Let AA(-), A = 1,2,...,n, be a sequence of eigenfunctions
defined on A(z) and related to the sequence of the eigenfrequencies wy.
Every function hZ(€), ¢ € A(z), represents a certain vibration mode shape
assigned to the eigenfrequency w4 and related to the free vibrations of the
beam with the span [ and the axis bounded by the points z +1/2.

Let us introduce the oscillating I-periodic-like functions g¢4(-), §4(-),
GA(-) defined by

gA — hAZ'——2 §A — (hA)I'lV——l GA() — (hA)II
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where 1= I(z).

The functions g4(-), §4(), GA(-) are of the same order with respect to
1 and their values be treated as independent of 1. The system of averaged
equations (4.7), (4.8), which hold in 29, is now seen to be

"
(oY + ((BYW" + (BGAYpa — N — NP{g*)a) + (ko +
+*(kg*Yppa = (p)
(4.10)
pgPg*)fa + (BGPG s + (BGP)w" + PN (G54)pa +
~NE(gPyw" + M {kg® g*)pa + P (kg®)w = *(¢"p)
and depends explicitly on the structural length parameter I given by maxI(z),
z € ° which plays the role of a certain length-scale parameter. All the

functional coefficients in equations (4.10) are sufficiently smooth slowly varying
functions. '

5. Determination of mode shape functions

For a beam with a periodic-like structure the mode shape functions h4(:)
are [-periodic. Hence these functions are uniquely determined by the functions
hi(6), € € (=1/2,1/2) where hA(z) = hA(sl+¢&) = h{(£), s =1,2,... with
z = sl + ¢ In order to find h{'(-) we have to solve the eigenvalue problem,
given by the equation

(B(&)hg(£)" — w?p(€)ho(€) =0 (5.1)

where w is the eigenfrequency.

Equation (5.1) has to hold for almost every & € (—1/2,1/2); where the
interval functions ho(€), ho(€), Bo(&)R§(€), (Bo(€)h§(£))" have to be conti-
nuous. For ¢ = —1/2 and ¢ = /2 the function ho(£) must satisfy the periodic
boundary conditions. In order to prove that

{pho) =0 (5.2)

we get, by introducing the Hilbert space 7 of real functions within the domain
< =1/2,1/2 >, the scalar product

1/2

<flg>= [ pOF©a(e) &

~1/2
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and the operator A acting on the function ho(¢), &€ €< —1/2,1/2 >, defined
by
_ (Bo(©)Rg(£))"
(Aho) () = o08) (5.3)

for which we can write equation (5.1) as

(Aho)(£) = kho(£) (5.4)

where x = w?.

Taking into account the periodic boundary conditions we see that for any
two functions f(£), j(¢) € H the scalar product of the functions f(¢) and

(A7)(&)

12 ot 12
<fuiz= [ wr© P w— [ peporee 69
~1/2 ~1/2

and the scalar product of the functions (Af)(¢) and 5(¢)
12

i© &= [ fOBEOIO & 65

~1/2

1/2

. (B(&) " ()"

L Afli>:= p(&) =2
_4 p(€)

are equal, hence the operator A is self-adjoint.
Having the two eigenfunctions h64 and h§ corresponding to the eigenva-
lues k4 and kp, for k4 # kKp we obtain

ka <h{|RE > = <rabf | > = < ARG |WE > =

= <G |ARE > = <hif|kph > = kp < B |WE >
which leads to
(k4 — k) KB |RE > =0

hence
1/2

<hiln> = [ o) de =0 .7
~1/2
Since ho(€) = 1 is the eigenfunction corresponding to the eigenvalue & = 0,
then for any eigenfunction h{f with k4 # 0 we have

12

[ r©n© 1ae=0 (5.8)

~1/2
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satisfying condition (5.2), which ends the proof.

Finding the solutions to eigenvalue problem (5.1) is rather a difficult task
and in most cases the eigenfunctions h{ have to be obtained using approxi-
mate methods. But in particular cases we can obtain the exact solution.

As an example we consider the segment A(¢), & € (=1/2,1/2) with the
piecewise constant rigidity B(-) and the mass density p(-) as it is shown in
Fig.1. For £ €< —a,a > we have B({) = B, p(§) = p1, for £ €< —1/2,—a >
and < a,l/2 > we have B(£) = Ba, p(§) = p2, where By, By, p1, p2 are
constant.

By, p
B,, p, J B,, Py

12 4 a 12

Fig. 1. The segment A(¢) with the piecewise constant rigidity B(-) and the mass
density p(-)

In this case we have to solve equation (5.1) in the form
RV —Athy =0 for ¢ €(—a,a)
(5.9)
RV — Xha =0 for ¢ €(=1/2,—a) A(a,1/2)
with the eigenvalues Xé =w?ps/B;, B=1,2.

The obtained solution to equations (5.9) ought to be regular, i.e., the mode
function, its first derivative, the bending moment and the transverse force have
to be continuous. For the segment under consideration, the function hs(-) must
satisfy the following periodic boundary conditions

ha(1/2) = ha(=1/2) h5(1/2) = hy(=1/2)
hy(1/2) = hy(=1/2) hy'(1/2) = hy'(=1/2)

The continuity conditions at the points where B(-) and p(-) suffer jumps
will be called the jump conditions. They have the following form

(5.10)

hl(a) = hz(a) hl(—a) = hg(—a)
1(a) = Ry(a) hi(—a) = hy(-a) (5.11)
B} (a) = Bahj(a) Bih{(—a) = Bahy(—a)

By (a) = BahY(a) By !(~a) = Byhf(~a)
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The obtained mode function has to satisfy condition (5.2), namely

/2

= (p2 / ha(€) d€ + p1 / ha(€) d + pa / ha€) d€) = (5.12)

~1/2

Taking into account the symmetry of the segment geometry and the mate-
rial constants we can present the solution to the eigenvalue problem as a sum
of the odd function h*(-) and the even function A**(-).

For the odd function averaged condition (5.12) is trivially satisfied. Addi-
tionally, the following conditions must be satisfied

hy(1/2) = h3(=1/2) =0

(5.13)
(h3)"(1/2) = (h3)"(=1/2) =0
We look for the odd mode shape function in the following form
hi(€) = af sin A\J€ + b} sinh \}¢ for ¢ €(—a,a)
5(&) = a5sin A3(€ —1/2) + by sinh M5(€ — 1/2)+
+c5 cos A5(€ —1/2) + d5 cosh A5(€ — 1/2) for ¢ € (a,l/2)

h3(8) = —h3(=¢) for £ e (-1/2,-a)

(5.14)

From conditions (5.13) we obtain ¢} = 0, d§ = 0. By the aforementioned
choice of the arguments in (5.14) the function A%(-) satisfies the periodic
boundary conditions of mode shape functions (5.10). On the junctions of the
adjacent segments the conditions of equality of the functions A3(-) and all its
derivatives hold.

The nontrivial solution to eigenvalue problem (5.1) exists in form (5.14),
provided that the system of the first four equations given by (5.11) for the
four unknowns af, a3, b7, b5 has the determinant equal to zero. In this way
we find numerically the successive values of \}%, a =1I,II,III,....

Taking the following data

l By p1
a = — —_— = 8 —_— = 2 5.15
4 By P2 (5.15)
related to the rod with a constant width and the height 2H on the segment
< —a,a>and Honthe < —I/2,—a >U < a,l/2 >, we obtain the following
solutions for the first three eigenvalues A}%, see Table 1.
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Table 1
At | 4720m71 | 10.7696171 | 15.39981°
ol & 2 &
bt | 0.2664511% | —0.00963112 | —0.0177671
as —1.7309612 1.9288612 —1.345512
by | 0.158341 | 0.03679612 | 0.0005811%

As an arbitrary constant a} we choose [2.

Fig.2 presents plots of the functions g**(n) = h*® (€)172 of the dimension-
less variable 7 = £I7', 7 €< 0,0.5 > for the successive values of A1 In
the remaining part of the line segment, for 7 €< —0.5,0 >, the plots of the
functions ¢**(n) are antisymmetric.

For the even shape function averaged condition (5.12) is not trivially satis-
fied. We must use equations (5.9) substituting hg = Bﬂhév/(pgoﬂ), B8=12,
to the left-hand side of (5.12) obtaining

12

r*@z]hﬂ@dbﬂn/MQ)%+wy/M@)%):

-1/2

E2AG]

1

a
T w? _

a m m 1/2
4ﬂ+&M@ﬂa+&%@m]=
(5.16)

1
[Bahlf (—a) — Bahg'(<1/2) + Bih{'(a) = Bih{'(=a) +

T W?
+BhY(1/2) - Bahi(a)] = 0
For the even shape function the following extra conditions must be satisfied

(r3)'(1/2) = (h3)'(=1/2) =0

(R3)"(1/2) = (h3)"(=1/2) =0
We look for the even mode shape function in the following form
h¥*(€) = at* cos AT*€ + b* cosh AT*¢ ¢ €(—a,a)

RE*(€) = a}* cos A5* (€ — 1/2) + b3* cosh A3* (€ — 1/2)+
et sin A3 (€ — 1/2) + di* sinh A (€ — 1/2)

h3* () = —h5*(=£)

(5.17)

for

for

¢ € (a,1/2)

£ €(~1/2,—a)
(5.18)

for
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Fig. 2. The plot of the function g**(n) = h**(£)I~2, (a) a =1, (b) a=2,
(¢) a=3,for n€<0,0.5>
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From conditions (5.17) we obtain ¢} = 0, dj = 0. By making use of the
choice of the arguments introduced into (5.18), h3(-) satisfies the periodic
boundary conditions of mode shape functions (5.10).

The nontrivial solution to eigenvalue problem (5.10) in form (5.18) exist
provided that the system of the first four equations in (5.11) for unknowns a7*,
a%*, b¥*, b%* has the determinant equal to zero. In this way we find numerically
the successive values of A7**, a=1I,11,1I1,....

For data (5.15) we obtain the following solutions for the first three eige-
nvalues A}*¢, see Table 2.

Table 2
A | 5.647681°% | 10.039117! | 15.815171
al* 12 12 2
b | —0.0946381% | —0.0698841% | —0.0023561>
af* | —1.704031% | 1.490561>% | —2.113471
by | —0.2004172 0.00739112 0.00655212

As an arbitrary constant a?* we take 2.

Fig.3 presents plots of the functions g¢***(n) = h***(£)I=2 of the dimen-
sionless variable n = £17%, 7 €< 0,0.5 > for the successive values of A7**. In
the remaining part of the line segment, for 7 €< —0.5,0 >, the plots of the
functions ¢**®(n) are symmetric.

6. Conclusions

By applying the tolerance averaging approach, one is able to formulate
equations of structured beams in the form of a system of averaged differential
equations with slowly varying functional or constant coefficients. This approxi-
mation describes the effect of segment length of the beam on its global dynamic
behaviour (this effect disappears in the classical homogenization solutions).

The obtained averaged equations of the structured beam are applicable
to investigations of special problems provided that the mode shapes hA(),
A =1,2,...,n, can be established, In these cases the series Y hft4(z) are
convergent. Moreover, in most problems higher modes h4(-) do not contribute
significantly to the solution and that is why these series can be truncated
and replaced by th sums h24p4(z). In practice however the analytical exact
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solutions hZ2(€), £ € A(z), to the eigenvalue problems of equation (4.9) can
only be obtained for rather simple structured beams.

In most cases, instead of exact solutions to eigenvalue problems, we have
to look for an approximate form of the vibration mode shapes ha(). To do
this we take into account the mode shapes related to the systems similar to
that described by (4.9). We also restrict considerations to a small number n
of mode shapes. These approximations may be significant if we calculate with
sufficient accuracy bending moments and shear forces in a cross section of
structured beam. On the other hand, the overall behavior of the beam can be
analyzed using a properly chosen approximate form of the mode shapes RA().
Because in the obtained equations we only deal with the mean values of the
mode shapes in the pertinent segments the exact expressions for RA(-) are
not necessary.

It is easy to see that for periodic systems all coefficients in averaged equ-
ations are constant. For periodic-like systems, which are not periodic, the
aforementioned coefficients are smooth slowly varying functions. In this case
their values should be calculated at some points of the interval 2 =<0,L >
and then extrapolated on f2.

The averaged equations also describe the simple beam with B, p and k
as a slowly varying functions. In this special case equations (4.1) separate into
well known beam equation (2.3) and the homogeneous system of equations
for 14(-); the latter under the homogeneous initial conditions t4(z,%) =0,
Yalz, to) = 0 leads to the trivial solution ¢4 (z,t) = 0.

Applications of the results obtained in this contribution (i.e. the averaged
model equations) will be investigated in the forthcoming papers.
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Zastosowanie modelu kinematycznych wewnetrznych zmiennych
w dynamice belek o prawie periodycznej strukturze

Streszczenie

Celem pracy jest zaproponowanie nowego usrednionego modelu dynamicznej od-
powiedzi prawie periodycznej prostej belki o zmiennym przekroju. Rozwazana belka
wspétpracuje z podiozem winklerowskim o prawie okresowo zmiennych wlasciwo-
4ciach. Zagadnienie rozpatruje si¢ w ramach teorii Bernoulliego-Eulera, z uwzgled-
nieniem wplywu sil osiowych na ugiecie belki. Zastosowanie metody uéredniania tole-
rancyjnego, Wozniak (1999), umozliwia sformulowanie uérednionych réwnaii belki o
prawie periodycznej strukturze, ktére opisujg efekt skali.
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