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1. Introduction

Many problems arising in different fields of technology and physics can be
described by means of linear equations with periodic coefficients. Equation
of this type is satisfied by state vectors and can be used in description of a
wide range of phenomena such as motion of electrons in periodic environments
(crystals), strain of construction an elements or electrical non-stationary cir-
cuits (parametrical circuits). Linear equations with periodical coefficients are
also used when investigating the solution stability of non-linear equations with
periodical solutions (the first variational equations).

The main purpose of the paper is to investigate the stability of the trivial
solution to the Mathieu equation (ME) (Bolotin, 1956; Gutowski, 1971), with
the help of Fourier series. We do this without a common cut-off of the infinite
chain of equations for the corresponding Fourier coefficients (variables). In
this way, the problem of searching for untrivial solutions to those equations
(banal in the case of Eqs (4.1)) is separated from the problem of looking for
the boundary parameters dividing the space F' of parameters (4,¢) into the
regions of stable and unstable solutions to the MEs (Ince-Strutt diagrams).
In other words, we replace the obscure, in our opinion, formalism of zero
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determinants with a new formalism of zero discriminants, heuristically justified
by the qualitative properties of Fourier coefficients discussed in the paper. This
also has the advantage that it associates our approach in a natural way with
the biffurcation theory (Kurnik, 1997).

In the paper we adopt a methodological procedure similar in some way to
the adiabatic principle of the Quantum Field Theory (Bogolubov and Shirkov,
1976), according to which there exists a limit of the weak coupling. In our
case this principle simply means that the end points of unstable regions of the
Ince-Strutt diagrams are situated exactly at these points of the parametrical
space F where they should be according to the monodromy matrix theory for
strongly stable systems (Arnold, 1974). We cannot say this, however, about
other parts of the corresponding regions and in fact more extensive instability
regions were obtained than those usually presented in the literature. However,
the practical meaning of these differences may be important only for low values
of the parameter § (Arnold, 1974, 1975).

2. Mathieu-Hill equations — stability

One of the simple representatives of differential, linear equations with pe-
riodic coefficients is Mathieu-Hill equation (MHE)

d*z 5 _

W"l— (6+e)r=0 (2.1)
with two arbitrary parameters ¢ and ¢ forming the 2D space F and the
periodic function 1) with period T. This equation is related to the very
important issue of determining the regions of stability and instability in space
F of the trivial solution

z=0 (2.2)

It is true that the boundaries of stability regions in the space F (Ince-Strutt
diagrams) are determined by the values of parameters § and ¢ for which
periodic solutions with minimal periods T and 2T exist (Bolotin, 1956;
Mierkin, 1987; Arnold, 1974, 1975; Gutowski, 1971). See also Rouche et al.
(1977), Bogusz (1972), Kurnik (1997).

In the simplest case, the MHEs take the shape of Mathieu’s equations
(MEs) (Landau and Lifshic, 1966; Arnold, 1974, 1975), which, after the cor-
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responding change of the variables, can be described in the standard form

d*z
I + (6 +ecost)z =0 (2.3)

where constants &, ¢ are related to physical parameters.

3. Fourier series method

The traditional method for looking for the boundaries of stability regions
in the parametrical space F for MHEs (2.1) consists in a representation of
periodic solutions with period T and 27 with the help of the Fourier series.
In the case of ME, where the perturbative function 1 = cost, we consider the
solutions with periods 27 and 4x presented as follows

o0
7o . ..
= —2—+ E (njcos jt + Ajsinjt)

’ (3.1)

T = 9‘2£+¥(pjcos%+yjsin%>

These series substituted into Eq (2.3) lead to the appropriate equations for
the expansion coefficients

{mi}, AN} {ps)s {5} (3:2)

In this way the four independent, infinite chains of equations similar to three
point equations (Samarskij and Nikolajev, 1988), are obtained

—~05Yj-1 + CY; — 05Yj+1 = 0 (3.3)

with coefficients a;, b; and c¢; specified properly, where the index j =0,1,2, ...
up to infinity and y; represent one of the sets of Fourier coefficients, Eq (3.2).
The last equation contains the variable y with a negative index j, which is
equalled to zero. In other words, the infinite chains of equations for the Fourier
coefficients considered here and represented by y variables are truncated only
from below which is a consequence of the properties of Fourier coefficients. The
fourfold versions of these equations resalt from the fact that for every period
there exist odd and even solutions due to replacing the variable ¢ with —t.
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For example, for the coefficients 7, which correspond to the even solution with
the period 2, we obtain

€ .
o =bj =~3 c; =68 — 3% (3.4)
for j =1,2,..., whereas, for j =0, a9 =0, ¢g = 6, by = —e. The coeficients

in the remaining versions of the infinite chains of equations are similar, see
Section 5.

At first glance, the problem of finding the parameters J and ¢ which
correspond to the periodic solutions to the ME with the periods 2w and 4n
is now reduced to the problem of finding those values of the parameters for
which solutions to Eqgs (3.3) exist. The usual reasoning is the following: after
making a cut-off at some point of the infinite chain of equations considered,
Egs (3.3), for the sake of obtaining a nontrivial solution we require, that the
determinant of the resulting homogenous, finite system of equations for the
Fourier coefficients be equal to zero. In this way the limitations for the para-
meters of ME are usually obtained. However, in the case of the infinite chains
of equations, the homogeneity of the equations is not an obstacle to obtaining
untrivial solutions. This property of infinite chains of equations and in parti-
cular of Eqs (3.3) is due to their inherent incompleteness, i.e., in each system
of equations obtained from (3.3), for a finite j, the number of variables exce-
eds the number of equations. This additional variable(s) means that a linear
infinite homogeneous system may have other than trivial solutions. It can be
clearly seen from Eqgs (3.3) when we do not use a cut-off at any point on the
infinite chain of equations but, we treat this system of equations as a reccurent
formula allowing us to calculate subsequent Fourier coefficients from the first
one (y with 7 = 0). In fact, this methodology is adopted in paper. As a result
the problem of finding non-trivial solutons to Eqgs (3.3) (in fact a trivial one)
is separated from the problem of finding the boundary values of parameters ¢
and ¢ in the space F which separate the stable from unstable trivial solutions
to ME.

In adopting this methodological principle however, we face the problem of
how to find the parameters of MEs related to periodic solutions with the period
27 and 47. As we well know, general classes of functions, by no means perio-
dic, can be expanded in the Fourier series. For it to be impossible to expand
a function f(t) in a trigonometric series, f(t) would have to have, in its
domain (or over one period if f(t) is periodic), an infinite number of disconti-
nuities (or jumps) or an infinite number of maxima and minima (Zeldovich and
Yaglom, 1987). There i8, however, a certain property of Fourier coefficients,
which distinguishes the expansions of periodic functions from aperiodic. This
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property is expressed by means of the Gibbs phenomenon (Bracewell, 1968;
Edwards, 1979) which consists in a worse convergence of the Fourier series in
the neighbourhoods of points at which the functions analised have jumps or
rapidly change directions. Since in a finite interval every aperiodic function
can be treated as a periodic function with jumps defined upon the infinite in-
terval, we should expect the Gibbs phenomenon when aperiodic solutions are
expanded with the help of series (3.1). So, based on the Gibbs phenomenon,
we can claim that a convergent Fourier series with the same periods, without
the Gibbs phenomenon upon the intervals < 0,7 > or < 0,27 > correspond
to periodic solutions to the MHEs, with the periods T and 27T. So our search
for the boundary values of parameters ¢ and ¢ can be reduced to a search for
the Fourier series with the periods T and 2T without the Gibbs phenomena.

In the case of MEs the above reduction refers to solutions and series (3.1)
with the periods 2#« and 4.

The case in which the aperiodic solution incidently has the same value at
t = T, for parameters 6, € not lying on a border, is also eliminated by the
absence of Gibbs phenomenon since then the first derivative of the conside-
red aperiodic solution should have a jump. Otherwise, from the uniqueness
theorem, it would be a periodic solution.

Taking into account the above heuristic reasoning we accept the following
hypothesis: a good, or even an exact, approximation to a periodic solution to
the ME with period 2x or 4 can be obtained by means of the appropriate,
uniformly convergent Fourier series (3.1).

In fact, we make an additional assumption of the multiplicative structure of
Fourier coefficients y, see Eq (4.5). We assume that the condition of Eq (4.6)
type, after separating the leading terms in j from « coefficient (conditions
for ), depend on parameters J, € in a "uniform” way. It turns out that
this assumption leads to consistent results, Section 5. Moreover, in this way,
the boundary values of parameters ¢, ¢ resulting from dynamical analysis are
related to the border values of these parameters related to the computational
stability in the case of ”final” problems to three point equations, Section 4.
These two sets of parameters may be identical.

4. General remarks concerning three point equations

Let us consider inhomogeneous Egs (3.3)

—03Yj-1+ Y5 = biyj41 = wj (4.1)
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also known as the three-layer equations because of their relations to a discrete
version of the 1D differential equation

d’y  dy

Y LYY b= 4.2
fratog thy=w (4.2)
see Potter (1973). Depending on the range of the discrete variable j, Eq (4.1)
corresponds to an initial or boundary problem. In a typical boundary problem
0 € 7 £ N. We consider ”the initial” problem in which 7 = 0,1,2...; up to
infinity, see also (3.4). In this case

1
Yi+1 = —(Y; — Bj+1) (4.3)
@j+1
for j =0,1,2..., where
b]' w; + ajﬁj
o o= Wi 405 4.4
Qji1 Pu——— Bj+1 ¢ —aya; (4.4)

and a; = by/cy, O1 = wo/cp. It can shown that Eqs (4.3) and (4.4) are
equivalent to Eqs (4.1).

It can be seen that for homogeneous Eqgs (4.1) coefficients £; = 0 and in
this case the general solution to Egs (4.1) can be obtained using the recurrence
formula,

Yj+1 = (4.5)

@j+1
in which «; are expressed by Eq (4.4). In other words, the jth Fourier
coefficient of series (3.1) is the product of inverse powers of the consecutive «
coefficients and the zero order Fourier coefficient y (5 = 0).
This structure of the Fourier coefficients and the requirement for the hypo-
thesis postulated in Section 3 to be satisfied suggest the following limitations

laj| > 1 (4.6)
for a suitably large j > J or equivalently
lysl > g4l (4.7)

The above inequalities are indeed expected from the consecutive Fourier coeffi-
cients constructed by means of more and more intensively oscillating sinusoidal
functions. From Egs (4.5) and (4.6) we obtain

ly;} = 0 for j = oo (4.8)
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which is again expected from the Fourier coefficients resulting from the MEs
solutions.

Of course, it is not true that every convergent series must satisfy conditions
(4.6) or (4.7). If, however, these conditions are satisfied and, additionally, the
values of Fourier coefficients have the same sign, for almost all j, then the
corresponding Fourier series are uniformly convergat (Edwards, 1979), i.e., the
hypothesis of Section 3 can be realized by conditions (4.6) or (4.7).

Below, we show that these and other, also plausible conditions; namely,
that

laj| > M >0 (4.9)

for any finite j, lead to concise expressions for Fourier coefficients with large
indices 7. We could call the last ones the anticlosure conditions because they
are not satisfied if one of the consecutive y is made equal to zero. In this case
the correspond « should tend to infinity and then, from (4.4), the next « is
equal to zero, and conditions (4.9) are not satisfied.

It turns out that the above limitations of the Fourier coefficients are not
satisfied by the formulas obtained from Eq (4.4) in terms of the perturbation
theory, see Eqs (5.1) and (5.2). But even in the cases leading to divergent
Fourier series we can gain certain information about the Ince-Strutt diagrams.

At this point Egs (4.1) should be noted in the context of a ”final” problem.
Given ¢, for j = N, and y with the lower subscript j are calculated. In this

case, conditions
laj| <1 (4.10)

correspond to the computational stability for Eqs (4.1). They are satisfied
when the coefficients of Eqs (4.1) satisfy the following inequalities
¢l > [a;] + [bs] (4.11)

see Samarskij and Nikolajev (1988), Potter (1973). In other words, unstable
computation algorithm for the ”final” problem of Egs (4.1) correspond to
conditions (4.6).

5. Ince-Strutt diagrams

The analysis presented aims at finding, in the space F, the Ince-Strutt
diagrams for the MHEs. The canonical method of putting the determinant(s)
equal to zero is replaced here with inequalities like (4.6) and (4.7). To see
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whether it is easy to satisfy these inequalities let us look more closely at the
recurrent formulas (4.4), in the case of (3.4)

e/2
P S 1
Y+l § -8 — aje/2 (5-1)
for j =1,2..., where «a| = by/cy = —¢/é. First, let us consider the case of

small values of |¢| and the assumption of regularity of «. We should expect
accuraCy ¢ approximatons in terms of the simplified recurrent formulas
~ E/2

for j = 2,3.... At arbitrarily fixed ¢ and 4, « coefficients tend to zero as j
tends to infinity. So, the conditions, Eq (4.6), are not satisfied. Moreover, the
Fourier series (3.1) with the coefficients resulting from Eqs (5.2) and (4.5) are
not even convergent. In other words, from the point of view of Fourier series,
canonical perturbation theory is completely useless even in the case when the
parameter ¢ does not appear in equations in front of the coefficients with
subscript j+1, see Eq (5.1). It is astonishing that in spite of that, some exact
information about the Ince-Strutt diagrams can be obtained from Eq (5.2)
when

§ =m? (5.3)

where m - integer. In such a case, the coefficient « for j = m, tends to
infinity and in spite of the fact that the remaining coefficient o do not satisfy
Eq (4.6), a "very lage” value of one of the coeflicients « compensates for
that. As a result Eq (5.3) represents the system on the stability border. The
above instability points, obtained by means of the Fourier series method, are in
agreement with the instability points obtained within the monodromy matrix
theory (Arnold, 1974, 1975).

Now, we find approximations of « coefficients in different than Eq (5.2).
Looking once more at the recurrent formula (5.1) we see that the new
coeeficients defined by

2(j2 -4
a; = ) . ) + (5.4)
by virtue of Eq (5.1) yield
1
@1 = = (5.5)

Now, the conditions unbounded from above, see Eq (4.6), are replaced with the
bounded conditions for the coefficient <. In the new variables, the recurrent
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formula (5.1) can be rewritten as

1 . 8/2 _ €Y5-1
Yo -0t w2l -d) e

or, equivalently, as
YiYj-1 + 2%5-1(j% = 8) +e =0 (5.6)
By introducing the differences Ay
Y =71+ A
one can describe these equations as
eYj_1 + evj—1 A% + 2751 (2 = 8) +e =0 (5.7)

By treating the above differences as given quantities we can write the formula
for «yj_1, for 7 =2,3,..., as follows

v =[P ey [(6-2 - Say) —] 5)

Hence, and in view of the conditions for A~y (see Eqs (5.5) and (4.6)) we get,

for 7 > J(6,¢)
. oo L Y 2 €

Choosing the sign + and taking into account Eq (5.4) we have, for |6 — j?|

large enough ,
2(5° - 9) €
= - 5.10
ST TaGerg 10

The above formula probably properly reflects the symmetry of coefficients of
aj and b; in equations of (3.3), (4.1) type, see (3.4). In contrast to Eq (5.2) this
formula satisfies conditions (4.6) and « with sufficiently large j are positive.
Therefore, the postulates (4.6) are consistent with the equations considered
for the coefficients.

Moreover, Eq (5.9) and the real values of coefficients ~ bound the para-
meters € and ¢ in the following way

6-35%)7>¢€ (5.11)
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for 7 > J(6,¢). Since the existence requirement of solutions to the MEs or
Eqgs (4.1) is not imposed on the parameters ¢ and § the above inequalities
are the necessary conditions for the parameters ¢ and § for our hypothesis
that they are situated on the border of instability regions to be true.
We show that conditions (5.11) are satisfied by the following relations
between ¢ and ¢
§=m?4¢ (5.12)

where m is an arbitrary natural number and ¢ is positive. This is obviously
true for j = 1,2,...,m. For j > m, it means for j =m+k, where k=1,2, ...
we get from Eq (5.11)

(e — 2km — k%)% > €2

This leads to the following conditions to ¢

k(2m + k) > 2¢ (5.13)

For
§=m?—¢ (5.14)

inequalities (5.11) are satisfied for j = m + k, where k = 1,2,.... For
j = m — k,where k = 1,2 ...,m — 1, similar conditions for the para-
meter ¢ are obtained

k(2m — k) 2 2¢ (5.15)

It is interesting that Eqs (5.12) and (5.14) can also be derived from the re-
quirement of zero discriminants of quadratic equations (5.7) with neglecting
Avy; (large j). In fact, this connection of relations (5.12) and (5.14) with the
bifurcation points of Eq (5.7) distinguishes them from other linear possibilities

§=m?+ue (5.16)

where u is properly chosen constant parameter. The choice of Eqs (5.12) and
(5.14) means that the infinitesimal change of 4 may cause a loss of the positive
value for a discriminant of the one of < coefficient. A symptom which points
that conditions of real values for + definitively cannot be satisfied and that
the original parameters indeed were placed upon the border. The concept of
strongly stable systems according to which small variations of parameters of
ME should not change the stability of trivial solution (Arnold, 1974, 1975)
should be noted here. In other words, small variations should not radically
change the properties of the solution considered if the original parameters do
not belong to a border of instability in the Ince-Strutt diagram.
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Following this reasoning we accept the bifurcation philosophy and postu-
late that for small j

(5 — 2= %ij)z = g2 (5.17)

Now we examine the consequences of that hypothesis in the simplest case
j = 2. We get then

[5 —4- 3(72 —71)]2 =¢?

From (5.4) and (5.1)

71=a1—2(16 5) _ %‘2(15 5)
(5.18)
2(5 — 4) 25 — 4) e
=t s T s e v e

Substituting these formulas into Eq (5.17) we get, according to the above
hypothesis the equation describing the stability borders regions for small 4

er2(6 —4) ed e 2(1-9)
§—4—- — 1
1 U T E A T ] (5.19)
Hence, for small values of ¢
d=xe+1 (5.20)

This result is similar to results (5.12) and (5.14) which were confirmed in ano-
ther way for large j. Unfortunately, it is not in agreement with the standard
results based on the method of nullification of the sequel of determinants rela-
ted to approximated closed equations obtained from Eq (3.3) (cf, e.g., Bolotin,
1956; Jordan and Smith, 1987). The above results can be referred to even so-
lutions to the MEs with period 2. Odd solutions, with the same period, do
not yield new results because they lead to the relations

§=(m+1)2+¢ (5.21)

for m =0,1,2,.... The same may be said about even and odd solutions to the
MEs with period 4w, but now

2
5= % p (5.22)

for m =1,3,5,.... This results from the following formulae
aj:bj:—— CJ'Z(S——— (5.23)

10 - Mechanika Teoretyczna
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(cf Bolotin, 1956; Mierkin, 1987). From the above it follows that the extended
instability regions of Ince-Strutt diagrams are represented by the areas, the
edges of which lie above the & axis exactly at these points which were described
by the monodromy matrix theory (Arnold, 1975, 1976)

m? for m=1,2,3,...
6= 2 (5.24)
mT for m=1,3,5,...

6. Final remarks

In this description of parametrical resonance (unbounded solutions at par-
ticular values of parameters (Mierkin, 1987; Kudrewicz, 1996; Salama and
Chen, 1973) the attention has been focused on the properties of Fourier coef-
ficients (variables), representing periodic solutions for T and 2T periods. An
essensial factor in our analysis was the introduction of new « variables due
to which the old variables y are presented as their products (carry out itera-
tion of (4.5)). Using of these variables uniform convergence of the considered
Fourier series was expressed in terms of separated inequalities, see Eq (4.6).
The absolute values of these variables, even for a uniformly convergent Fourier
series, are only bounded below. The absolute values of gamma variables have
both upper and lower bounds. This is an important factor in construction of
the approximation formulas given in Section 5.

The « coefficients and the -y variables corresponded to variables y satisfy
infinite chains of equations, which are not broken (cut-off) at any point; i.e.,
we separate successfully the problem of searching for untrivial solutions to
Egs (4.1) (banal in this case) from the problem of searching for values of the
parameters ¢ and ¢ related to parametrical resonance. This also means that
singular approximations were avoided.

The main assumption of the paper that the periodic solutions to MEs
with periods 27 and 4w can be well approximated or exactly expressed by
uniformly convergent Fourier series (3.1) can be weakened by the requirement
that averaged solutions satisfying the same equations be considered. It is also
true that all other solutions (unperiodic or with other periods) can not satisfy
that condition because of the Gibbs phenomenon.

We may say in recapitulation that the traditonal approach to the parame-
trical resonance based on the disconnection of infinite chains of equations for
the Fourier coefficients has been substituted by a new approach in which the
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disconnection (cut-off) is replaced by the idea of uniform convergence of the
corresponding Fourier series and the bifurcation concept. Both methods lead
to identical results for ¢ tending to zero. For other cases there arise differences.
These differences, particularly for low order parametrical resonances, could be
the subject of experimental and computational verification (see Arnold, 1974.
1975).

We believe that additional insights into parametrical resonance may result
from taking into account statistical descripton of perturbative factors (Tyli-
kowski, 1991), non-linearity and the possibility of its realization in electrical
systems (Kudrewicz, 1996).
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Niesingularny opis rezonansu parametrycznego

Sstreszczenie

Na przykladzie réwnania Mathieu przedstawiamy niesingularng metode konst-
rukcji diagramoéw Ince’a-Strutta, ktore obrazuja na plaszezyznie F parametréw réw-
nania obszary stabilnoéci 1 niestabilnosci. Niesingularnodé metody zostala osiggnieta
dzieki nie obrywaniu nieskofczonych lancuchéw réwnan dla wspéiczynnikéw Fouriera.
Pozwala to na zachowanie pierwotnego charakteru rozwazanych réwnan (zagadnienie
poczatkowe). Przedstawione rozwazania sugeruja, poszerzenie obszaréw niestabilnoéci.
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