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A survey of approaches to determination of the stress-state in layered plates with
the cracks located symmetrically about their thickness is presented. The plate is
subject to a complex biaxial loading; i.e., tension — shear or bending — torsion,
while the crack of length 2a is unloaded. The plate layers can be homogeneous or
non-homogeneous, rigid to shear or yielding due to shear. To study such plates
the following mathematical models are employed: the plates rigid to shear are
congidered within the framework of classical plate theory, while those yielding
due to shear are within the scope of Timoshenko’s theory.

The asymptotic formulae for stress distribution near the crack tip in each layer
of the plate are obtained; the limiting equilibrium of layered plate having a
trangverse crack is studied.

The results presented can be applied to strength evaluation of layered plates
within the framework of fracture mechanics. The paper presents the results ob-
tained by the authors recently and proposes some generalisation.
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1. Introduction

In view of their structure the construction materials can be homogeneous
or non-homogeneous. There are three classes of the latter ones: micronon-
homogeneous materials, layered plates and fibrous composite materials. The
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first group can include; e.g. dispersible hardened materials, porous materials,
ceramics, concrete, powder and discretely reinforced aggregates (see: Dely-
avsky, 1990; Delyavsky and Korkuna, 1995; Delyavsky, 1996). While in layered
composites the separate layers are to be distinguished. Within the framework
of composite mechanics the two approaches (i.e, the continuous or discrete one)
can be adopted when calculating the stress state and limiting equilibrium in
layered plates.

The continuous approach was formulated by V. Bolotin (1980), while one
of the variants was suggested by WozZniak and developed in the papers by
Kaczyfiski and Matysiak (1989), Konieczny (1997), Matysiak and Nagérko
(1989), Wozniak and Wozniak (1997).

Using a discrete approach Berezhnitsky et al. (1984b, 1985) determined
the stress state in layered cracked plates subject to symmetrical and non-
symmetrical bending.

The materials reinforced with fibres, i.e., fibrous composites, can be divided
into two groups: short-fibre-reinforced composites and continuously reinforced
ones. Opanasovich (1997a,b,c) suggested a method for determination of the
stress state in short-fibre composite near the fibre tip. An approximate appro-
ach to calculation of macrostresses in a fibre-reinforced cracked composite was
presented by Berezhnitsky et al. (1987).

There are three levels on which the structure of non-homogeneous mate-
rials can be studied within the framework of composite mechanics; i.e., micro-
level, mezo-level and macro-level. It should be noted that when studied on
macro-level such materials are considered as homogeneous with specific ef-
fective moduli. In view of their mechanical properties these materials can be
considered as isotropic or anisotropic, however in special cases they can reveal
orthotropic or transversely isotropic properties.

Randomly reinforced composites and micro-non-homogeneous aggregates
are the isotropic materials, while orthogonally reinforced composites and ma-
terials reinforced with a fabric are the orthotropic ones. Composites reinforced
in one direction and layered plates composed of isotropic or transversely iso-
tropic layers are transversely-isotropic materials, while those reinforced with
continuous fibres in various directions are anisotropic.

In view of their rigidity the materials under consideration can be rigid to
shear and yielding due to shear. The rigid to shear materials can be studied wi-
thin the scope of classical theory of plates, while when studying those yielding
due to shear the transverse shear effects should be also included.

A variety of defects can be found in heterogeneous materials, most dange-
rous of them are cracks. Therefore, the stress state in such materials should
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be calculated within the framework of fracture mechanics. The present paper
gives a brief account of these problems.

2. Formulation of the problem

We consider a thin transversely symmetrical layered plate with the ortho-
gonal bases e = {e;,es,e3}, such that the vectors e, and e, are located in
the plate mid-plane and e3 is directed perpendicularly to it. We assume the
ideal mechanical contact on the interiayer surfaces

u,(-k_l) = ugk) Ui(:lf_l) = ogc) i=1,2,3 (2.1)
where ugk) , agf ) are the components of displacement vector and transverse
stress vector, respectively, in the kth layer. Let us replace the layered plate
with a homogeneous one with the effective Young modulus, shear modulus
and Poison ratio F, G, u, respectively. We and introduce for such a plate
the displacement field u = [u),us,us] and assume that the plate is subject
either to the forces of intensity P;; (plane stress state) or to the moments of
intensity M;;, (4,5 = 1,2) (bending stress state). Therefore, the displacement
field in the plate can be represented as a sum of symmetric and antisymimetric
parts u = i + % as follows

u; = Ug + U; 1=1,2,3 (2.2)

The first terms correspond to the plane stress state, while the second ones
represent the bending stress state. In our case the load is applied to the lateral
surface of the plate, while its upper and bottom surfaces are unloaded. In this
case the normal stress oglg) can be neglected, (see, e.g. Goldenveizer, 1958).

Depending on the value of transverse shear modulus G}, of the kth layer
we will consider the following two cases separately:

e Layers rigid to shear

o Layers yielding due to shear.

3. Layered cracked plate composed of the uniform isotropic rigid
to shear layers

Let us assume that the transverse shear modulus of each layer G’ — oo.
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Then, we can neglect the stresses a§§), agg) and determine the stress state in

a layered plate within the framework of classical theory of plates. Hence, by
virtue of Eq (2.2) we introduce the displacement vector components ugk

") = P @ + £ 6)ul” (3.1)

The superscript e corresponds to the plane stress state; while b indicates the
bending stress state, d = z/h is a dimensionless co-ordinate, the functions
fék)(é), flfk)(é) are represent displacement distributions over the thickness of
each layer under tension and bending, respectively. The form of these functions
ensures the ideal mechanical contact on the interface of layers. In the classical
theory of plates (bending — according to Kirchhoff) it is assumed that

8 (8) = u? = uf) i=1,2 (3.2)

(e)

We assume that the displacement w3’ is equal to zero and the plate

deflection ug) remains unchanged over the thickness ug) = u( )(:Ll,zg), ie.

the plate is not subjected to transverse deformations.

Let us consider the plane stress state in such a plate. In this case only the
first term remains in Eq (3.1), thus we can omit the superscript e.

The components of stress tensor averaged over the plate thickness have the

form
hk+1

_22 / ®) 4 ij=1,2 (3.3)

where n is the number of layers; hg4 — hg = & is the kth layer thickness,
( ) denote the stress tensor components of the kth layer; h is the plate
thlckness
Using the strain compatibility conditions for the layers 5(]) = €;5, where
€4; are the plate strain tensor components, we obtain the formulae (cf Bere-
zhnitsky et al., 1984a) for the effective moduli of layered plate

> k=0 HECk
= &k=0Fkk E=21+u)G 3.4
S G (14 p) (3.4)
where

hk+1

hg1
Cszk/ %dz —22@/ = (6 d (3.5)
hi
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and for the stress distribution in each layer

E
o = 5t =y O = mm)oss + (s = W93-ix5-9)

- b (3.6)
,® _ Grfe(9)0is .
- &

where FEj, pug, Gy stand for the Young modulus, Poisson ratio and shear
modulus of the kth layer, respectively, and fi(5) = g(k)(é).

Let us assume that there is a crack of length 2a located along the plate
thickness. Replacing in Eqgs (3.6) 0y, 04; with the corresponding formulae
for the isotropic effectively homogeneous cracked plate (Berezhnitsky et al.,
1979) yields the stress distribution in each plate layer near the crack tip. After
Berezhnitsky et al. (1984) we employ the polar co-ordinate system 7,6, with
the origin at the crack tip

5k Ekfk(5)[ K (b SH 1+ p Osﬁg)+

T B e 2 Tt 2
e S

of) = Ekak()L;jl_( g+11+:kcos§)+ (3.7)
* 4%( _"31:;1 “370)]

o8 Gkgc(é) [45?(1n9+smﬁ) 4151217(COSQ+3COS32_9)]

where K1 and Kj are the stress intensity factors averaged over the plate
thickness and

_3(1 = ppk) + 5(pk — 1) 5(1 — ppg) + 3( ~ 1)
a= =2 b= 12 (3.8)

From Egs (3.7) it can be seen that the boundary conditions are satisfied
on the crack edges in each layer of the plate only for the tangential stresses
while for the normal ones, there is a requirement for the load symmetry about
the crack. For the boundary conditions to be satisfied ng) () = 0 in each
layer for an arbitrary load it should be puj = p. Therefore, when taking the
above presented approach, in a general case the boundary conditions on the
crack edges can be satisfied only for the layers, the Poigson ratios of which are
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equal. Otherwise, the average value should be taken in calculations. Hence,
Egs (3.7), (3.8) can be rewritten in the simplified form
o) — Ekak(é) o oF) _ EkJZ;(5) oo oF) = Gkgc(5)gro
(3.9)
where o,, 0g, 0,g are the stresses near the crack tip in the effectively homo-
geneous isotropic plate.

Similarly, a solution to the bending problem of plate composed of the layers
rigid to shear can be obtained. In this case it is necessary to use the second
term appearing in Eq (3.1) and then follow the above approach.

The limiting equilibrium of cracked layered plate composed of the layers
rigid to shear we evaluate using the criterion of elastic energy of a strain
releasing rate. Let us assume that the crack initiates in the sth layer if the
energy averaged over the plate thickness and referred to this layer reaches the
value required for the crack initiation in separate layers, i.e.

Am hm+1
=11 (m), (m) | (m)
o F ki [T ety
m=0 0 hm
(3.10)
i hig1

J () + oG )aras]_
h

where ”crit” indicates the critical value of energy under tension and w; = §;/h
is the relative thickness of ith layer; A4, is a small crack growth in the mth
layer. Let us assume that the Poisson ratios of all layers are equal. Substituting
the formulae for stresses and displacements (Berezhnitsky et al., 1979) into Eq
(3.10) and assuming that the crack toughness of mode I (K,) averaged over
the plate thickness is very small when compared to the crack toughness of
mode IT (K,p) we arrive at the equation of limiting surface in the case when
a cracked laminated plate is subject to a plane stress state

. F?
p*?sin? o + ¢*2 cos’ a = ;:EKCQI (3.11)

where p* and ¢ are the components of external load vector initiating a
crack in the considered layer; « is the angle the direction of p component
makes with the crack line, the functions F; depend on the Young moduli of
separate layers, their thicknesses and the displacement distribution over the
plate thickness.
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The crack toughness K, can be expressed in terms of the crack toughness
of the mth layer K™ as follows

Ky = JQ 3 wm (K (3.12)
m=0

Calculations were made for the five-layer plate with given ratios of each
layer thickness to its Young modulus. The Poisson ratio of each layer was equal
to 0.3.

The curves determining the boundaries of regions of the admissible magni-
tudes of external load areas are presented in Fig.1.

2.4 —
|
g*,jmz/KCl
1.6
0.8 N
\ AN
\ D
v
s )
0 2.4 o 3.2
p*‘/zrtz/KCl

Fig. 1. Ranges of the ultimate load for the plate composed of 5 layers, the Young
moduli of which are equal; thin external layers

The solid lines correspond to the external load applied at 45°, while the
dotted lines are constructed for 30°; ¢ represents the number of the layer, in
which the limiting equilibrium is attained for the first time; K" is the crack
toughness of mode I of zeroth layer. It can be seen that the area of admissible
stresses for each layer of the plate depends mainly on the Young modulus and
relative thickness of the layer. Namely, the area extends as the Young modulus
increases and its thickness decreases.

6 - Mechanika Teoretyczna
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4. Stress state in a cracked plate composed of the layers yielding
due to shear

Let us consider a plate composed of isotropic homogeneous layers. In this
case the transverse shear strain due to bending exerts a decisive influence on
the stress state in the plate while an insignificant strain due to the tensile load
can be neglected in calculation. Thus we arrive at the following calculation
procedure in the case of layered plate: we determine the plane stress state
in terms of the two-dimensional theory of elasticity (see Section 3) and the
bending stress state within the scope of the refined plate theory.

The components of displacement vector for each layer of the plate can be
written as follows (cf Berezhnitsky et al. (1984))

dw

83:]-

ug-k) = ——h[é

+ f’“(‘s)(g—ai + (—1)] afi)] j=12  (41)
where the functions fi(d) represent the displacement distributions over the
thickness of the layered plate when subject to bending, and their form ensures
the ideal mechanical contact conditions on the layer interface; w stands for the
deflection of the plate middle surface; F is the function representing torsion
of the each element perpendicular to the plate mid-plane before deformation;
& is the function of transverse shear. These functions satisfy the equations

A =0 AP — k2P =0 F=cAuw (4.2)

where the parameters k£ and € depend on the elastic moduli of separate layers
and their thicknesses and can be determined from the following relations

4hG D
k= = 4.3
C—B T oG (43)

were h is the plate thickness (—1 < z/h < 1)

% fo=1
Ky = 3 / 55,(8) ds (4.4)
i1 671-}-1 - O
. n+1
G =Y Gilfi(di-1) — fi(8)] (4.5)
i=1

G stands for the shear modulus of this layer in the direction perpendicu-
lar to it.
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Fig. 2. Scheme of the layered cracked plate subject to bending

Let us assume that there is a crack of length 2q (Fig.2) along the thickness
of the considered plate.

The solution to this problem can be presented as a sum of solutions to
the problems of a solid layer and the cracked one, respectively, subject to the
moment M, = — My, applied to the crack edges. Since a solution to the first
problem has no effect on the local stress state we consider only the second one.

Thus, the following boundary conditions should be satisfied along the crack

_ _ . _ AfOO
Q.y Mg, =0 M, MSs for |z|<a (46)
B, =0 for |z| >0

where ﬂg,z) (z,y,6) is the angle the tangent to the deformed ith layer of plate
makes with the plane 0yz. We apply the Fourier transformations of the co-
ordinate z to the unknown functions W and @, respectively. Then taking
into account the conditions for stress attenuation at the infinity we can rewrite
the solutions of Eqs (4.2) as follows

w® = [Ri(@) + ayRy(a)] exp(—ay)
(4.7)

&° = R3(a)exp(—yva? +k?)

The following relations between the functions R;(c), Rs(a) and Rj(c) are

frue
d 1

Ri(@) = =5 = Ry(a) Ry(e)  (438)

where
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and they satisfy the integral equation for the function Rs(«) (Berezhnitsky
et al., 1984b)

o0
D/azRg(a)f(a) cos(azx) da = —gMé’;’ T >a
o0 (4.10)
/aRg(a) cos(az) da =0 z>a
0
where
A 4ot k?
f(a):3+5+—k7(1— 1+?) (4.11)
This equation has the solution
MSS
R(a) = _l_ﬁ[sp(wl(m /Jl(aan (W’))'n dn} (4.12)
2(1 + 5) Vi

where J,(la) is the cylindrical function of the first kind and nth order; the
function ¥(7) represents the solution of the Fredholm integral equation

1
Ve + [FmKEma=vE =<1 (41
0

where the kernel K(¢,7) reads

K(&m) = J_/ ()-—Q%€Q%MQ s=ea  (419)

A
T

Substituting into Eqs (4.11) asymptotic expansions of the functions w
and @ into the Taylor series (Berezhnitsky et al., 1984a,b) we obtain the
stress distributions near the crack tip in each layer of the plate

. ( 2u(® 2 0  d—ek’fi .
0':(;) . [(1 o + d)é + €k fi] co 5 —3 sin f sin 5
) K L2 g
(@ | — B 2 0 ek f; . .3
oy Jor [(m - d)d ek fz] COoS = 5 ——7—— sin fsin 5>
(1) 27
Izy [(d = 1) + ek*f] sin g é—# sin 8 cos 32—6 ]

(4.15)
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and ' ‘
o) = ol = 0(1) (4.16)

The stress intensity factor Kl(i) of the ith layer is determined in terms of
the moment intensity factor Ky = Ms5¥(1)+/a as follows

n+1
i E -1
K = 3K (B [2h*(1+ 1) 3 . _’Lk (63-1 - &3] (4.17)
k=1

A similar solution was obtained for bending non-symmetrical about the crack
edges (Berezhnitsky et al., 1985).

As it follows from Eqs (4.14) the boundary conditions at the crack edges
are satisfied. Thus, in contrast to the classical theory of layered plates, the
solution obtained within the scope of the refined theory of plates is exact. The
bending Mgy, My and twisting My, moments can be represented as functions
of the angle @ in the following way

o~ Lo
M, 0 5 2s1n sin 5
MU (1)\/a g 1 36
M — 227 \JV™ Z 4+ i in — o(1 4.18
y Jor cos2 + 2smt’)sm 5 + 0(1) ( )
My, 1. 3
{ §sm0c057 ]

It should be noted that for an infinitely thin layered plate h/a — 0 while
for the plate treated as one rigid layer G} — oo

D+ A

4.19
3D+ A (4-19)

7(1) —

If, additionally, the Poisson ratios of all the layers are equal u; = p then

L+ p
v(1) — 35,4 (4.20)

This result agrees with that obtained by Knowles and Wang (1960).

The courses of the function ¥(1) versus the parameter h/a for a three-
layer plate are presented in Fig.3 for a given displacement distribution over
the plate thickness for different values of FE5/G'. From the diagrams it can
be seen, that the function ¥(1) grows as one of the parameters increases with
other parameters fixed, especially for small values of h/a or FE,/G}. For
example, the function ¥(1) increases approximately by 94% as h/a varies
from zero to 0.5 for Ey/G| =10 and FE\/E> = 0.2, while it grows by 81% as
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1.0

(1) %
/-J
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0.4

Fig. 3. Dimensionless stress intensity factor W(1) versus the ratio of plate thickness
to the crack length

the value of parameter E;/G| increases from zero to 0.5 for h/a = 1.5 and
E\/E, = 2. The straight line corresponds to the rigid to shear material.

As the function ¥(1) is constant over the plate thickness it can be con-
sidered as the reduced stress intensity factor determining the averaged stress
field near the crack tip for the whole plate.

From the results obtained the conclusion can be drawn that lower ma-
gnitudes of the stress arise in the three-layer plate constructed in the way
ensuring that the Young modulus of the middle layer is much smaller than
the transverse shear modulus of the external layer for a constant value of the
ratio El/ E2.
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Analiza stanu naprezen w plytach warstwowych ze szczelinami

Streszczenie

W pracy przeprowadza sie analize stanu naprezefi w plytach warstwowych ze
szczelinami poddanych dwuosiowemu rozcigganiu lub zginaniu stosujac pewng metode
udredniajaca.

Wykazuje sie, ze przy rozcigganiu mozna oprzec sie na klasycznej teorii pltyt war-
stwowych, za§ w przypadku zginania konieczne jest sterowanie teorii Timoshenki.

Wyprowadzono asymptotyczne wzory rozkladu naprezei w poblizu wierzcholka
szczeliny w kazdej warstwie plyty. Wzory te zaleza od moduléw efektywnych plyty
warstwowej oraz od usrednionego wspdlczynnika intensywnoéci naprezes.

Przedstawiony model zawiera energetyczny test powiekszania sie szczeliny przy
dwuosiowym rozcigganiu plyty.
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